/* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include "nd-core.h" #include "nd.h" LIST_HEAD(nvdimm_bus_list); DEFINE_MUTEX(nvdimm_bus_list_mutex); void nvdimm_bus_lock(struct device *dev) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); if (!nvdimm_bus) return; mutex_lock(&nvdimm_bus->reconfig_mutex); } EXPORT_SYMBOL(nvdimm_bus_lock); void nvdimm_bus_unlock(struct device *dev) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); if (!nvdimm_bus) return; mutex_unlock(&nvdimm_bus->reconfig_mutex); } EXPORT_SYMBOL(nvdimm_bus_unlock); bool is_nvdimm_bus_locked(struct device *dev) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); if (!nvdimm_bus) return false; return mutex_is_locked(&nvdimm_bus->reconfig_mutex); } EXPORT_SYMBOL(is_nvdimm_bus_locked); struct nvdimm_map { struct nvdimm_bus *nvdimm_bus; struct list_head list; resource_size_t offset; unsigned long flags; size_t size; union { void *mem; void __iomem *iomem; }; struct kref kref; }; static struct nvdimm_map *find_nvdimm_map(struct device *dev, resource_size_t offset) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct nvdimm_map *nvdimm_map; list_for_each_entry(nvdimm_map, &nvdimm_bus->mapping_list, list) if (nvdimm_map->offset == offset) return nvdimm_map; return NULL; } static struct nvdimm_map *alloc_nvdimm_map(struct device *dev, resource_size_t offset, size_t size, unsigned long flags) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct nvdimm_map *nvdimm_map; nvdimm_map = kzalloc(sizeof(*nvdimm_map), GFP_KERNEL); if (!nvdimm_map) return NULL; INIT_LIST_HEAD(&nvdimm_map->list); nvdimm_map->nvdimm_bus = nvdimm_bus; nvdimm_map->offset = offset; nvdimm_map->flags = flags; nvdimm_map->size = size; kref_init(&nvdimm_map->kref); if (!request_mem_region(offset, size, dev_name(&nvdimm_bus->dev))) { dev_err(&nvdimm_bus->dev, "failed to request %pa + %zd for %s\n", &offset, size, dev_name(dev)); goto err_request_region; } if (flags) nvdimm_map->mem = memremap(offset, size, flags); else nvdimm_map->iomem = ioremap(offset, size); if (!nvdimm_map->mem) goto err_map; dev_WARN_ONCE(dev, !is_nvdimm_bus_locked(dev), "%s: bus unlocked!", __func__); list_add(&nvdimm_map->list, &nvdimm_bus->mapping_list); return nvdimm_map; err_map: release_mem_region(offset, size); err_request_region: kfree(nvdimm_map); return NULL; } static void nvdimm_map_release(struct kref *kref) { struct nvdimm_bus *nvdimm_bus; struct nvdimm_map *nvdimm_map; nvdimm_map = container_of(kref, struct nvdimm_map, kref); nvdimm_bus = nvdimm_map->nvdimm_bus; dev_dbg(&nvdimm_bus->dev, "%s: %pa\n", __func__, &nvdimm_map->offset); list_del(&nvdimm_map->list); if (nvdimm_map->flags) memunmap(nvdimm_map->mem); else iounmap(nvdimm_map->iomem); release_mem_region(nvdimm_map->offset, nvdimm_map->size); kfree(nvdimm_map); } static void nvdimm_map_put(void *data) { struct nvdimm_map *nvdimm_map = data; struct nvdimm_bus *nvdimm_bus = nvdimm_map->nvdimm_bus; nvdimm_bus_lock(&nvdimm_bus->dev); kref_put(&nvdimm_map->kref, nvdimm_map_release); nvdimm_bus_unlock(&nvdimm_bus->dev); } /** * devm_nvdimm_memremap - map a resource that is shared across regions * @dev: device that will own a reference to the shared mapping * @offset: physical base address of the mapping * @size: mapping size * @flags: memremap flags, or, if zero, perform an ioremap instead */ void *devm_nvdimm_memremap(struct device *dev, resource_size_t offset, size_t size, unsigned long flags) { struct nvdimm_map *nvdimm_map; nvdimm_bus_lock(dev); nvdimm_map = find_nvdimm_map(dev, offset); if (!nvdimm_map) nvdimm_map = alloc_nvdimm_map(dev, offset, size, flags); else kref_get(&nvdimm_map->kref); nvdimm_bus_unlock(dev); if (!nvdimm_map) return NULL; if (devm_add_action_or_reset(dev, nvdimm_map_put, nvdimm_map)) return NULL; return nvdimm_map->mem; } EXPORT_SYMBOL_GPL(devm_nvdimm_memremap); u64 nd_fletcher64(void *addr, size_t len, bool le) { u32 *buf = addr; u32 lo32 = 0; u64 hi32 = 0; int i; for (i = 0; i < len / sizeof(u32); i++) { lo32 += le ? le32_to_cpu((__le32) buf[i]) : buf[i]; hi32 += lo32; } return hi32 << 32 | lo32; } EXPORT_SYMBOL_GPL(nd_fletcher64); struct nvdimm_bus_descriptor *to_nd_desc(struct nvdimm_bus *nvdimm_bus) { /* struct nvdimm_bus definition is private to libnvdimm */ return nvdimm_bus->nd_desc; } EXPORT_SYMBOL_GPL(to_nd_desc); struct device *to_nvdimm_bus_dev(struct nvdimm_bus *nvdimm_bus) { /* struct nvdimm_bus definition is private to libnvdimm */ return &nvdimm_bus->dev; } EXPORT_SYMBOL_GPL(to_nvdimm_bus_dev); static bool is_uuid_sep(char sep) { if (sep == '\n' || sep == '-' || sep == ':' || sep == '\0') return true; return false; } static int nd_uuid_parse(struct device *dev, u8 *uuid_out, const char *buf, size_t len) { const char *str = buf; u8 uuid[16]; int i; for (i = 0; i < 16; i++) { if (!isxdigit(str[0]) || !isxdigit(str[1])) { dev_dbg(dev, "%s: pos: %d buf[%zd]: %c buf[%zd]: %c\n", __func__, i, str - buf, str[0], str + 1 - buf, str[1]); return -EINVAL; } uuid[i] = (hex_to_bin(str[0]) << 4) | hex_to_bin(str[1]); str += 2; if (is_uuid_sep(*str)) str++; } memcpy(uuid_out, uuid, sizeof(uuid)); return 0; } /** * nd_uuid_store: common implementation for writing 'uuid' sysfs attributes * @dev: container device for the uuid property * @uuid_out: uuid buffer to replace * @buf: raw sysfs buffer to parse * * Enforce that uuids can only be changed while the device is disabled * (driver detached) * LOCKING: expects device_lock() is held on entry */ int nd_uuid_store(struct device *dev, u8 **uuid_out, const char *buf, size_t len) { u8 uuid[16]; int rc; if (dev->driver) return -EBUSY; rc = nd_uuid_parse(dev, uuid, buf, len); if (rc) return rc; kfree(*uuid_out); *uuid_out = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); if (!(*uuid_out)) return -ENOMEM; return 0; } ssize_t nd_sector_size_show(unsigned long current_lbasize, const unsigned long *supported, char *buf) { ssize_t len = 0; int i; for (i = 0; supported[i]; i++) if (current_lbasize == supported[i]) len += sprintf(buf + len, "[%ld] ", supported[i]); else len += sprintf(buf + len, "%ld ", supported[i]); len += sprintf(buf + len, "\n"); return len; } ssize_t nd_sector_size_store(struct device *dev, const char *buf, unsigned long *current_lbasize, const unsigned long *supported) { unsigned long lbasize; int rc, i; if (dev->driver) return -EBUSY; rc = kstrtoul(buf, 0, &lbasize); if (rc) return rc; for (i = 0; supported[i]; i++) if (lbasize == supported[i]) break; if (supported[i]) { *current_lbasize = lbasize; return 0; } else { return -EINVAL; } } static ssize_t commands_show(struct device *dev, struct device_attribute *attr, char *buf) { int cmd, len = 0; struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; for_each_set_bit(cmd, &nd_desc->cmd_mask, BITS_PER_LONG) len += sprintf(buf + len, "%s ", nvdimm_bus_cmd_name(cmd)); len += sprintf(buf + len, "\n"); return len; } static DEVICE_ATTR_RO(commands); static const char *nvdimm_bus_provider(struct nvdimm_bus *nvdimm_bus) { struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; struct device *parent = nvdimm_bus->dev.parent; if (nd_desc->provider_name) return nd_desc->provider_name; else if (parent) return dev_name(parent); else return "unknown"; } static ssize_t provider_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); return sprintf(buf, "%s\n", nvdimm_bus_provider(nvdimm_bus)); } static DEVICE_ATTR_RO(provider); static int flush_namespaces(struct device *dev, void *data) { device_lock(dev); device_unlock(dev); return 0; } static int flush_regions_dimms(struct device *dev, void *data) { device_lock(dev); device_unlock(dev); device_for_each_child(dev, NULL, flush_namespaces); return 0; } static ssize_t wait_probe_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; int rc; if (nd_desc->flush_probe) { rc = nd_desc->flush_probe(nd_desc); if (rc) return rc; } nd_synchronize(); device_for_each_child(dev, NULL, flush_regions_dimms); return sprintf(buf, "1\n"); } static DEVICE_ATTR_RO(wait_probe); static struct attribute *nvdimm_bus_attributes[] = { &dev_attr_commands.attr, &dev_attr_wait_probe.attr, &dev_attr_provider.attr, NULL, }; struct attribute_group nvdimm_bus_attribute_group = { .attrs = nvdimm_bus_attributes, }; EXPORT_SYMBOL_GPL(nvdimm_bus_attribute_group); static void set_badblock(struct badblocks *bb, sector_t s, int num) { dev_dbg(bb->dev, "Found a poison range (0x%llx, 0x%llx)\n", (u64) s * 512, (u64) num * 512); /* this isn't an error as the hardware will still throw an exception */ if (badblocks_set(bb, s, num, 1)) dev_info_once(bb->dev, "%s: failed for sector %llx\n", __func__, (u64) s); } /** * __add_badblock_range() - Convert a physical address range to bad sectors * @bb: badblocks instance to populate * @ns_offset: namespace offset where the error range begins (in bytes) * @len: number of bytes of poison to be added * * This assumes that the range provided with (ns_offset, len) is within * the bounds of physical addresses for this namespace, i.e. lies in the * interval [ns_start, ns_start + ns_size) */ static void __add_badblock_range(struct badblocks *bb, u64 ns_offset, u64 len) { const unsigned int sector_size = 512; sector_t start_sector; u64 num_sectors; u32 rem; start_sector = div_u64(ns_offset, sector_size); num_sectors = div_u64_rem(len, sector_size, &rem); if (rem) num_sectors++; if (unlikely(num_sectors > (u64)INT_MAX)) { u64 remaining = num_sectors; sector_t s = start_sector; while (remaining) { int done = min_t(u64, remaining, INT_MAX); set_badblock(bb, s, done); remaining -= done; s += done; } } else set_badblock(bb, start_sector, num_sectors); } static void badblocks_populate(struct list_head *poison_list, struct badblocks *bb, const struct resource *res) { struct nd_poison *pl; if (list_empty(poison_list)) return; list_for_each_entry(pl, poison_list, list) { u64 pl_end = pl->start + pl->length - 1; /* Discard intervals with no intersection */ if (pl_end < res->start) continue; if (pl->start > res->end) continue; /* Deal with any overlap after start of the namespace */ if (pl->start >= res->start) { u64 start = pl->start; u64 len; if (pl_end <= res->end) len = pl->length; else len = res->start + resource_size(res) - pl->start; __add_badblock_range(bb, start - res->start, len); continue; } /* Deal with overlap for poison starting before the namespace */ if (pl->start < res->start) { u64 len; if (pl_end < res->end) len = pl->start + pl->length - res->start; else len = resource_size(res); __add_badblock_range(bb, 0, len); } } } /** * nvdimm_badblocks_populate() - Convert a list of poison ranges to badblocks * @region: parent region of the range to interrogate * @bb: badblocks instance to populate * @res: resource range to consider * * The poison list generated during bus initialization may contain * multiple, possibly overlapping physical address ranges. Compare each * of these ranges to the resource range currently being initialized, * and add badblocks entries for all matching sub-ranges */ void nvdimm_badblocks_populate(struct nd_region *nd_region, struct badblocks *bb, const struct resource *res) { struct nvdimm_bus *nvdimm_bus; struct list_head *poison_list; if (!is_nd_pmem(&nd_region->dev)) { dev_WARN_ONCE(&nd_region->dev, 1, "%s only valid for pmem regions\n", __func__); return; } nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); poison_list = &nvdimm_bus->poison_list; nvdimm_bus_lock(&nvdimm_bus->dev); badblocks_populate(poison_list, bb, res); nvdimm_bus_unlock(&nvdimm_bus->dev); } EXPORT_SYMBOL_GPL(nvdimm_badblocks_populate); static int add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length, gfp_t flags) { struct nd_poison *pl; pl = kzalloc(sizeof(*pl), flags); if (!pl) return -ENOMEM; pl->start = addr; pl->length = length; list_add_tail(&pl->list, &nvdimm_bus->poison_list); return 0; } static int bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length) { struct nd_poison *pl; if (list_empty(&nvdimm_bus->poison_list)) return add_poison(nvdimm_bus, addr, length, GFP_KERNEL); /* * There is a chance this is a duplicate, check for those first. * This will be the common case as ARS_STATUS returns all known * errors in the SPA space, and we can't query it per region */ list_for_each_entry(pl, &nvdimm_bus->poison_list, list) if (pl->start == addr) { /* If length has changed, update this list entry */ if (pl->length != length) pl->length = length; return 0; } /* * If not a duplicate or a simple length update, add the entry as is, * as any overlapping ranges will get resolved when the list is consumed * and converted to badblocks */ return add_poison(nvdimm_bus, addr, length, GFP_KERNEL); } int nvdimm_bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length) { int rc; nvdimm_bus_lock(&nvdimm_bus->dev); rc = bus_add_poison(nvdimm_bus, addr, length); nvdimm_bus_unlock(&nvdimm_bus->dev); return rc; } EXPORT_SYMBOL_GPL(nvdimm_bus_add_poison); void __nvdimm_forget_poison(struct nvdimm_bus *nvdimm_bus, phys_addr_t start, unsigned int len) { struct list_head *poison_list = &nvdimm_bus->poison_list; u64 clr_end = start + len - 1; struct nd_poison *pl, *next; lockdep_assert_held(&nvdimm_bus->reconfig_mutex); WARN_ON_ONCE(list_empty(poison_list)); /* * [start, clr_end] is the poison interval being cleared. * [pl->start, pl_end] is the poison_list entry we're comparing * the above interval against. The poison list entry may need * to be modified (update either start or length), deleted, or * split into two based on the overlap characteristics */ list_for_each_entry_safe(pl, next, poison_list, list) { u64 pl_end = pl->start + pl->length - 1; /* Skip intervals with no intersection */ if (pl_end < start) continue; if (pl->start > clr_end) continue; /* Delete completely overlapped poison entries */ if ((pl->start >= start) && (pl_end <= clr_end)) { list_del(&pl->list); kfree(pl); continue; } /* Adjust start point of partially cleared entries */ if ((start <= pl->start) && (clr_end > pl->start)) { pl->length -= clr_end - pl->start + 1; pl->start = clr_end + 1; continue; } /* Adjust pl->length for partial clearing at the tail end */ if ((pl->start < start) && (pl_end <= clr_end)) { /* pl->start remains the same */ pl->length = start - pl->start; continue; } /* * If clearing in the middle of an entry, we split it into * two by modifying the current entry to represent one half of * the split, and adding a new entry for the second half. */ if ((pl->start < start) && (pl_end > clr_end)) { u64 new_start = clr_end + 1; u64 new_len = pl_end - new_start + 1; /* Add new entry covering the right half */ add_poison(nvdimm_bus, new_start, new_len, GFP_NOIO); /* Adjust this entry to cover the left half */ pl->length = start - pl->start; continue; } } } EXPORT_SYMBOL_GPL(__nvdimm_forget_poison); void nvdimm_forget_poison(struct nvdimm_bus *nvdimm_bus, phys_addr_t start, unsigned int len) { nvdimm_bus_lock(&nvdimm_bus->dev); __nvdimm_forget_poison(nvdimm_bus, start, len); nvdimm_bus_unlock(&nvdimm_bus->dev); } EXPORT_SYMBOL_GPL(nvdimm_forget_poison); #ifdef CONFIG_BLK_DEV_INTEGRITY int nd_integrity_init(struct gendisk *disk, unsigned long meta_size) { struct blk_integrity bi; if (meta_size == 0) return 0; memset(&bi, 0, sizeof(bi)); bi.tuple_size = meta_size; bi.tag_size = meta_size; blk_integrity_register(disk, &bi); blk_queue_max_integrity_segments(disk->queue, 1); return 0; } EXPORT_SYMBOL(nd_integrity_init); #else /* CONFIG_BLK_DEV_INTEGRITY */ int nd_integrity_init(struct gendisk *disk, unsigned long meta_size) { return 0; } EXPORT_SYMBOL(nd_integrity_init); #endif static __init int libnvdimm_init(void) { int rc; rc = nvdimm_bus_init(); if (rc) return rc; rc = nvdimm_init(); if (rc) goto err_dimm; rc = nd_region_init(); if (rc) goto err_region; return 0; err_region: nvdimm_exit(); err_dimm: nvdimm_bus_exit(); return rc; } static __exit void libnvdimm_exit(void) { WARN_ON(!list_empty(&nvdimm_bus_list)); nd_region_exit(); nvdimm_exit(); nvdimm_bus_exit(); nd_region_devs_exit(); nvdimm_devs_exit(); } MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Intel Corporation"); subsys_initcall(libnvdimm_init); module_exit(libnvdimm_exit);