提交 f728ed91 编写于 作者: J Juxin Gao 提交者: Hongchen Zhang

LoongArch: Add swiotlb backups buffer

LoongArch inclusion
category: feature
bugzilla: https://gitee.com/openeuler/kernel/issues/I7AHL9

--------------------------------

Change-Id: I1b627be7ca7bd3690a175b3334c088e445278504
Signed-off-by: NJuxin Gao <gaojuxin@loongson.cn>
Signed-off-by: NHongchen Zhang <zhanghongchen@loongson.cn>
上级 c9c2b924
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2020 Loongson Technology Corporation Limited
*/
#ifndef _ASM_DMA_MAPPING_H
#define _ASM_DMA_MAPPING_H
extern const struct dma_map_ops loongson_dma_ops;
extern bool swiotlb_need_fix;
extern phys_addr_t io_tlb_start;
static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
{
if (swiotlb_need_fix)
return &loongson_dma_ops;
else
return NULL;
}
#endif /* _ASM_DMA_MAPPING_H */
......@@ -7,6 +7,8 @@
#include <linux/dma-mapping.h>
#include <linux/dma-map-ops.h>
#include <linux/swiotlb.h>
#include <linux/highmem.h>
#include <linux/iommu-helper.h>
#include <asm/bootinfo.h>
#include <asm/dma.h>
......@@ -17,7 +19,38 @@
* 48bit physical address space and embed it into 40bit.
*/
#define IO_TLB_SHIFT_BACKUPS 12
#define DMA_ATTR_FORCE_SWIOTLB (1UL << 10)
#define SWIOTLB_MAP_ERROR (~(phys_addr_t)0x0)
#define BOOTMEM_ALLOC_ANYWHERE (~(phys_addr_t)0)
#define IO_TLB_DEFAULT_SIZE_BACKUPS (4ULL << 30)
#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
#define OFFSET(val, align) ((unsigned long) \
((val) & ((align) - 1)))
#define arch_dma_cache_sync NULL
unsigned int max_segment_backups;
bool swiotlb_need_fix;
static DEFINE_SPINLOCK(io_tlb_lock_high);
static phys_addr_t io_tlb_backups_start, io_tlb_backups_end;
static phys_addr_t *io_tlb_orig_backups_addr;
static bool no_iotlb_backups_memory;
static int node_id_offset;
static unsigned int *io_tlb_backups_list;
static unsigned long io_tlb_nslabs_backups;
static phys_addr_t map_single_loongson(struct device *hwdev, phys_addr_t phys, size_t size,
enum dma_data_direction dir, unsigned long attrs);
static phys_addr_t map_single_copy(struct device *hwdev, phys_addr_t phys, size_t size,
enum dma_data_direction dir, unsigned long attrs);
static inline bool sme_active(void) { return false; }
void arch_setup_dma_ops(struct device *dev, u64 dma_base,
u64 size, const struct iommu_ops *iommu, bool coherent)
{
}
dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{
......@@ -33,8 +66,839 @@ phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
return ((nid << node_id_offset) ^ daddr) | (nid << 44);
}
static inline void *dma_to_virt(struct device *dev, dma_addr_t dma_addr)
{
return phys_to_virt(dma_to_phys(dev, dma_addr));
}
void swiotlb_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_addr, unsigned long attrs)
{
dma_direct_free(dev, size, vaddr, dma_addr, attrs);
}
static void *loongson_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
void *ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
return ret;
}
static void loongson_dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle, unsigned long attrs)
{
swiotlb_free(dev, size, vaddr, dma_handle, attrs);
}
static int loongson_dma_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs)
{
int ret = -ENXIO;
unsigned long user_count = vma_pages(vma);
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
unsigned long off = vma->vm_pgoff;
unsigned long prot = pgprot_val(vma->vm_page_prot);
prot = (prot & ~_CACHE_MASK) | _CACHE_CC;
vma->vm_page_prot = __pgprot(prot);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (off < count && user_count <= (count - off)) {
ret = remap_pfn_range(vma, vma->vm_start, pfn + off,
user_count << PAGE_SHIFT, vma->vm_page_prot);
}
return ret;
}
static void swiotlb_bounce_loongson(phys_addr_t orig_addr, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir)
{
unsigned long pfn = PFN_DOWN(orig_addr);
unsigned char *vaddr = phys_to_virt(tlb_addr);
if (PageHighMem(pfn_to_page(pfn))) {
/* The buffer does not have a mapping. Map it in and copy */
unsigned int offset = orig_addr & ~PAGE_MASK;
char *buffer;
unsigned int sz = 0;
unsigned long flags;
while (size) {
sz = min_t(size_t, PAGE_SIZE - offset, size);
local_irq_save(flags);
buffer = kmap_atomic(pfn_to_page(pfn));
if (dir == DMA_TO_DEVICE)
memcpy(vaddr, buffer + offset, sz);
else
memcpy(buffer + offset, vaddr, sz);
kunmap_atomic(buffer);
local_irq_restore(flags);
size -= sz;
pfn++;
vaddr += sz;
offset = 0;
}
} else if (dir == DMA_TO_DEVICE) {
memcpy(vaddr, phys_to_virt(orig_addr), size);
} else {
memcpy(phys_to_virt(orig_addr), vaddr, size);
}
}
void swiotlb_tbl_unmap_single_loongson(struct device *hwdev, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
unsigned long flags;
int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT_BACKUPS) >> IO_TLB_SHIFT_BACKUPS;
int index = (tlb_addr - io_tlb_backups_start) >> IO_TLB_SHIFT_BACKUPS;
phys_addr_t orig_addr = io_tlb_orig_backups_addr[index];
/*
* First, sync the memory before unmapping the entry
*/
if (orig_addr != INVALID_PHYS_ADDR &&
!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
swiotlb_bounce_loongson(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
/*
* Return the buffer to the free list by setting the corresponding
* entries to indicate the number of contiguous entries available.
* While returning the entries to the free list, we merge the entries
* with slots below and above the pool being returned.
*/
spin_lock_irqsave(&io_tlb_lock_high, flags);
{
count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
io_tlb_backups_list[index + nslots] : 0);
/*
* Step 1: return the slots to the free list, merging the
* slots with superceeding slots
*/
for (i = index + nslots - 1; i >= index; i--) {
io_tlb_backups_list[i] = ++count;
io_tlb_orig_backups_addr[i] = INVALID_PHYS_ADDR;
}
/*
* Step 2: merge the returned slots with the preceding slots,
* if available (non zero)
*/
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1)
&& io_tlb_backups_list[i]; i--)
io_tlb_backups_list[i] = ++count;
}
spin_unlock_irqrestore(&io_tlb_lock_high, flags);
}
/*
* Map a single buffer of the indicated size for DMA in streaming mode. The
* physical address to use is returned.
*
* Once the device is given the dma address, the device owns this memory until
* either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
*/
dma_addr_t swiotlb_map_page_loongson(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t map, phys = page_to_phys(page) + offset;
dma_addr_t dev_addr = phys_to_dma(dev, phys);
WARN_ON(dir == DMA_NONE);
/* Oh well, have to allocate and map a bounce buffer. */
map = map_single_loongson(dev, phys, size, dir, attrs);
if (map == SWIOTLB_MAP_ERROR)
return DMA_MAPPING_ERROR;
dev_addr = phys_to_dma(dev, map);
/* Ensure that the address returned is DMA'ble */
if (dma_capable(dev, dev_addr, size, true))
return dev_addr;
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
swiotlb_tbl_unmap_single_loongson(dev, map, size, dir, attrs);
return DMA_MAPPING_ERROR;
}
/*
* Allocates bounce buffer and returns its physical address.
*/
static phys_addr_t
map_single(struct device *hwdev, phys_addr_t phys, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t start_dma_addr;
if (swiotlb_force == SWIOTLB_NO_FORCE) {
dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
&phys);
return SWIOTLB_MAP_ERROR;
}
start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
dir, attrs);
}
/*
* Map a single buffer of the indicated size for DMA in streaming mode. The
* physical address to use is returned.
*
* Once the device is given the dma address, the device owns this memory until
* either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
*/
dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t map, phys = page_to_phys(page) + offset;
dma_addr_t dev_addr = phys_to_dma(dev, phys);
int dev_swiotlb_force = attrs & DMA_ATTR_FORCE_SWIOTLB;
WARN_ON(dir == DMA_NONE);
/*
* If the address happens to be in the device's DMA window,
* we can safely return the device addr and not worry about bounce
* buffering it.
*/
if (dma_capable(dev, dev_addr, size, true) &&
swiotlb_force != SWIOTLB_FORCE && !dev_swiotlb_force)
return dev_addr;
/* Oh well, have to allocate and map a bounce buffer. */
map = map_single(dev, phys, size, dir, attrs);
if (map == SWIOTLB_MAP_ERROR)
return DMA_MAPPING_ERROR;
dev_addr = phys_to_dma(dev, map);
/* Ensure that the address returned is DMA'ble */
if (dma_capable(dev, dev_addr, size, true))
return dev_addr;
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
swiotlb_tbl_unmap_single(dev, map, size, size, dir, attrs);
return DMA_MAPPING_ERROR;
}
static dma_addr_t loongson_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t daddr;
phys_addr_t phys = page_to_phys(page) + offset;
/* check if phys addr is on Node 4,5,6,7 and need swiotlb fix */
if ((phys & (0x4ULL << 44)) && swiotlb_need_fix)
daddr = swiotlb_map_page_loongson(dev, page, offset, size, dir, attrs);
else
daddr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
return daddr;
}
int is_swiotlb_backups_buffer(phys_addr_t paddr)
{
return paddr >= io_tlb_backups_start && paddr < io_tlb_backups_end;
}
static void unmap_single_loongson(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
WARN_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(paddr)) {
swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
return;
}
if (is_swiotlb_backups_buffer(paddr)) {
swiotlb_tbl_unmap_single_loongson(hwdev, paddr, size, dir, attrs);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
}
static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
WARN_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(paddr)) {
swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
}
void swiotlb_unmap_page_loongson(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
unmap_single_loongson(hwdev, dev_addr, size, dir, attrs);
}
static void loongson_dma_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
swiotlb_unmap_page_loongson(dev, dev_addr, size, dir, attrs);
}
static unsigned int io_tlb_backups_index;
phys_addr_t swiotlb_tbl_map_single_loongson(struct device *hwdev,
dma_addr_t tbl_dma_addr,
phys_addr_t orig_addr, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
unsigned long flags;
phys_addr_t tlb_addr;
unsigned int nslots, stride, index, wrap;
int i;
unsigned long mask;
unsigned long offset_slots;
unsigned long max_slots;
if (no_iotlb_backups_memory)
panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
if (mem_encrypt_active())
pr_warn_once("%s is active and system is using DMA bounce buffers\n",
sme_active() ? "SME" : "SEV");
mask = dma_get_seg_boundary(hwdev);
tbl_dma_addr &= mask;
offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT_BACKUPS) >> IO_TLB_SHIFT_BACKUPS;
/*
* Carefully handle integer overflow which can occur when mask == ~0UL.
*/
max_slots = mask + 1
? ALIGN(mask + 1, 1 << IO_TLB_SHIFT_BACKUPS) >> IO_TLB_SHIFT_BACKUPS
: 1UL << (BITS_PER_LONG - IO_TLB_SHIFT_BACKUPS);
/*
* For mappings greater than or equal to a page, we limit the stride
* (and hence alignment) to a page size.
*/
nslots = ALIGN(size, 1 << IO_TLB_SHIFT_BACKUPS) >> IO_TLB_SHIFT_BACKUPS;
if (size >= PAGE_SIZE)
stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT_BACKUPS));
else
stride = 1;
WARN_ON(!nslots);
/*
* Find suitable number of IO TLB entries size that will fit this
* request and allocate a buffer from that IO TLB pool.
*/
spin_lock_irqsave(&io_tlb_lock_high, flags);
index = ALIGN(io_tlb_backups_index, stride);
if (index >= io_tlb_nslabs_backups)
index = 0;
wrap = index;
do {
while (iommu_is_span_boundary(index, nslots, offset_slots,
max_slots)) {
index += stride;
if (index >= io_tlb_nslabs_backups)
index = 0;
if (index == wrap)
goto not_found;
}
/*
* If we find a slot that indicates we have 'nslots' number of
* contiguous buffers, we allocate the buffers from that slot
* and mark the entries as '0' indicating unavailable.
*/
if (io_tlb_backups_list[index] >= nslots) {
int count = 0;
for (i = index; i < (int) (index + nslots); i++)
io_tlb_backups_list[i] = 0;
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1)
&& io_tlb_backups_list[i]; i--)
io_tlb_backups_list[i] = ++count;
tlb_addr = io_tlb_backups_start + (index << IO_TLB_SHIFT_BACKUPS);
/*
* Update the indices to avoid searching in the next
* round.
*/
io_tlb_backups_index = ((index + nslots) < io_tlb_nslabs_backups
? (index + nslots) : 0);
goto found;
}
index += stride;
if (index >= io_tlb_nslabs_backups)
index = 0;
} while (index != wrap);
not_found:
spin_unlock_irqrestore(&io_tlb_lock_high, flags);
if (!(attrs & DMA_ATTR_NO_WARN))
dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
return SWIOTLB_MAP_ERROR;
found:
spin_unlock_irqrestore(&io_tlb_lock_high, flags);
/*
* Save away the mapping from the original address to the DMA address.
* This is needed when we sync the memory. Then we sync the buffer if
* needed.
*/
for (i = 0; i < nslots; i++)
io_tlb_orig_backups_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT_BACKUPS);
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce_loongson(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
return tlb_addr;
}
static phys_addr_t map_single_copy(struct device *hwdev, phys_addr_t phys, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t start_dma_addr;
if (swiotlb_force == SWIOTLB_NO_FORCE) {
dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
&phys);
return SWIOTLB_MAP_ERROR;
}
start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
dir, attrs);
}
/*
* Allocates bounce buffer and returns its physical address.
*/
static phys_addr_t map_single_loongson(struct device *hwdev, phys_addr_t phys, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t start_dma_addr;
if (swiotlb_force == SWIOTLB_NO_FORCE) {
dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
&phys);
return SWIOTLB_MAP_ERROR;
}
start_dma_addr = phys_to_dma(hwdev, io_tlb_backups_start);
return swiotlb_tbl_map_single_loongson(hwdev, start_dma_addr, phys, size,
dir, attrs);
}
void swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int i;
WARN_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i)
unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
attrs);
}
int swiotlb_map_sg_attrs_loongson(struct device *hwdev, struct scatterlist *sgl, int nelems,
enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i, dev_swiotlb_force = attrs & DMA_ATTR_FORCE_SWIOTLB;
WARN_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i) {
phys_addr_t paddr = sg_phys(sg);
dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
if (swiotlb_force == SWIOTLB_FORCE || dev_swiotlb_force ||
!dma_capable(hwdev, dev_addr, sg->length, true)) {
phys_addr_t map = map_single_copy(hwdev, sg_phys(sg),
sg->length, dir, attrs);
if (map == SWIOTLB_MAP_ERROR) {
/*
* Don't panic here, we expect map_sg users
* to do proper error handling.
*/
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
attrs);
sg_dma_len(sgl) = 0;
return 0;
}
sg->dma_address = phys_to_dma(hwdev, map);
} else if (paddr & (0x4ULL << 44) && swiotlb_need_fix) {
phys_addr_t map = map_single_loongson(hwdev, sg_phys(sg),
sg->length, dir, attrs);
if (map == SWIOTLB_MAP_ERROR) {
/*
* Don't panic here, we expect map_sg users
* to do proper error handling.
*/
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
attrs);
sg_dma_len(sgl) = 0;
return 0;
}
sg->dma_address = phys_to_dma(hwdev, map);
} else {
sg->dma_address = dev_addr;
}
sg_dma_len(sg) = sg->length;
}
return nelems;
}
static int loongson_dma_map_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
int r;
r = swiotlb_map_sg_attrs_loongson(dev, sgl, nents, dir, attrs);
return r;
}
void swiotlb_unmap_sg_attrs_loongson(struct device *hwdev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int i;
WARN_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i)
unmap_single_loongson(hwdev, sg->dma_address, sg_dma_len(sg), dir,
attrs);
}
static void loongson_dma_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
unsigned long attrs)
{
swiotlb_unmap_sg_attrs_loongson(dev, sgl, nelems, dir, attrs);
}
void swiotlb_tbl_sync_single_loongson(struct device *hwdev, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir,
enum dma_sync_target target)
{
int index = (tlb_addr - io_tlb_backups_start) >> IO_TLB_SHIFT_BACKUPS;
phys_addr_t orig_addr = io_tlb_orig_backups_addr[index];
if (orig_addr == INVALID_PHYS_ADDR)
return;
orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT_BACKUPS) - 1);
switch (target) {
case SYNC_FOR_CPU:
if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce_loongson(orig_addr, tlb_addr,
size, DMA_FROM_DEVICE);
else
WARN_ON(dir != DMA_TO_DEVICE);
break;
case SYNC_FOR_DEVICE:
if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce_loongson(orig_addr, tlb_addr,
size, DMA_TO_DEVICE);
else
WARN_ON(dir != DMA_FROM_DEVICE);
break;
default:
WARN(1, "bug");
}
}
static void swiotlb_sync_single_loongson(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
enum dma_sync_target target)
{
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
WARN_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(paddr)) {
swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
return;
}
if (is_swiotlb_backups_buffer(paddr)) {
swiotlb_tbl_sync_single_loongson(hwdev, paddr, size, dir, target);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
}
static void swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
enum dma_sync_target target)
{
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
WARN_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(paddr)) {
swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
}
void swiotlb_sync_single_for_cpu_loongson(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir)
{
swiotlb_sync_single_loongson(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
}
void swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir)
{
swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
}
static void loongson_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir)
{
/* use dma address directly since dma addr == phy addr for swiotlb */
if (is_swiotlb_buffer(dev_addr))
swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
if (is_swiotlb_backups_buffer(dev_addr))
swiotlb_sync_single_for_cpu_loongson(dev, dev_addr, size, dir);
}
void swiotlb_sync_single_for_device_loongson(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir)
{
swiotlb_sync_single_loongson(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
}
static void loongson_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
{
swiotlb_sync_single_for_device_loongson(dev, dma_handle, size, dir);
/*
* There maybe exist write-buffer, device can not get cpu's write buffer
* need flush data from write-buffer to cache
*/
mb();
}
static void swiotlb_sync_sg_loongson(struct device *hwdev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
enum dma_sync_target target)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nelems, i)
swiotlb_sync_single_loongson(hwdev, sg->dma_address,
sg_dma_len(sg), dir, target);
}
void swiotlb_sync_sg_for_cpu_loongson(struct device *hwdev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
swiotlb_sync_sg_loongson(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
}
static void loongson_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nents,
enum dma_data_direction dir)
{
swiotlb_sync_sg_for_cpu_loongson(dev, sgl, nents, dir);
}
void swiotlb_sync_sg_for_device_loongson(struct device *hwdev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
swiotlb_sync_sg_loongson(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
}
static void loongson_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nents,
enum dma_data_direction dir)
{
swiotlb_sync_sg_for_device_loongson(dev, sgl, nents, dir);
/*
* There maybe exist write-buffer, device can not get cpu's write buffer
* need flush data from write-buffer to cache
*/
mb();
}
static int loongson_dma_supported(struct device *dev, u64 mask)
{
return dma_direct_supported(dev, mask);
}
const struct dma_map_ops loongson_dma_ops = {
.alloc = loongson_dma_alloc_coherent,
.free = loongson_dma_free_coherent,
.mmap = loongson_dma_mmap,
.map_page = loongson_dma_map_page,
.unmap_page = loongson_dma_unmap_page,
.map_sg = loongson_dma_map_sg,
.unmap_sg = loongson_dma_unmap_sg,
.sync_single_for_cpu = loongson_dma_sync_single_for_cpu,
.sync_single_for_device = loongson_dma_sync_single_for_device,
.sync_sg_for_cpu = loongson_dma_sync_sg_for_cpu,
.sync_sg_for_device = loongson_dma_sync_sg_for_device,
.dma_supported = loongson_dma_supported,
.cache_sync = arch_dma_cache_sync,
};
EXPORT_SYMBOL(loongson_dma_ops);
static inline void * __init memblock_alloc_high(
phys_addr_t size, phys_addr_t align)
{
return memblock_alloc_try_nid(size, align, ARCH_LOW_ADDRESS_LIMIT,
BOOTMEM_ALLOC_ANYWHERE,
NUMA_NO_NODE);
}
void swiotlb_print_info_loongson(void)
{
unsigned long bytes = io_tlb_nslabs_backups << IO_TLB_SHIFT_BACKUPS;
if (no_iotlb_backups_memory) {
pr_warn("No low mem\n");
return;
}
pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
(unsigned long long)io_tlb_backups_start,
(unsigned long long)io_tlb_backups_end,
bytes >> 20);
}
void swiotlb_set_max_segment_loongson(unsigned int val)
{
if (swiotlb_force == SWIOTLB_FORCE)
max_segment_backups = 1;
else
max_segment_backups = rounddown(val, PAGE_SIZE);
}
int __init swiotlb_init_with_tbl_backups(char *tlb, unsigned long nslabs, int verbose)
{
size_t alloc_size;
unsigned long i, bytes;
bytes = nslabs << IO_TLB_SHIFT_BACKUPS;
io_tlb_nslabs_backups = nslabs;
io_tlb_backups_start = __pa(tlb);
io_tlb_backups_end = io_tlb_backups_start + bytes;
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
* between io_tlb_backups_start and io_tlb_backups_end.
*/
alloc_size = PAGE_ALIGN(io_tlb_nslabs_backups * sizeof(int));
io_tlb_backups_list = memblock_alloc(alloc_size, PAGE_SIZE);
if (!io_tlb_backups_list)
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__, alloc_size, PAGE_SIZE);
alloc_size = PAGE_ALIGN(io_tlb_nslabs_backups * sizeof(phys_addr_t));
io_tlb_orig_backups_addr = memblock_alloc(alloc_size, PAGE_SIZE);
if (!io_tlb_orig_backups_addr)
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__, alloc_size, PAGE_SIZE);
for (i = 0; i < io_tlb_nslabs_backups; i++) {
io_tlb_backups_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_orig_backups_addr[i] = INVALID_PHYS_ADDR;
}
io_tlb_backups_index = 0;
no_iotlb_backups_memory = false;
if (verbose)
swiotlb_print_info_loongson();
swiotlb_set_max_segment_loongson(io_tlb_nslabs_backups << IO_TLB_SHIFT_BACKUPS);
return 0;
}
void __init swiotlb_init_backups(int verbose)
{
size_t default_size = IO_TLB_DEFAULT_SIZE_BACKUPS;
unsigned char *vstart;
unsigned long bytes;
if ((!strcmp(__cpu_full_name[0], "Loongson-3D5000")) && loongson_sysconf.nr_nodes > 4)
swiotlb_need_fix = 1;
if (!io_tlb_nslabs_backups) {
io_tlb_nslabs_backups = (default_size >> IO_TLB_SHIFT_BACKUPS);
io_tlb_nslabs_backups = ALIGN(io_tlb_nslabs_backups, IO_TLB_SEGSIZE);
}
bytes = io_tlb_nslabs_backups << IO_TLB_SHIFT_BACKUPS;
/* Get IO TLB memory from the high pages */
vstart = memblock_alloc_high(PAGE_ALIGN(bytes), PAGE_SIZE);
if (vstart && !swiotlb_init_with_tbl_backups(vstart, io_tlb_nslabs_backups, verbose))
return;
if (io_tlb_backups_start) {
memblock_free_early(io_tlb_backups_start,
PAGE_ALIGN(io_tlb_nslabs_backups << IO_TLB_SHIFT_BACKUPS));
io_tlb_backups_start = 0;
}
pr_warn("Cannot allocate buffer");
no_iotlb_backups_memory = true;
}
void __init plat_swiotlb_setup(void)
{
swiotlb_init(true);
swiotlb_init_backups(1);
node_id_offset = ((readl(LS7A_DMA_CFG) & LS7A_DMA_NODE_MASK) >> LS7A_DMA_NODE_SHF) + 36;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册