提交 f4b992b4 编写于 作者: D David S. Miller

Merge branch 'net-ks8851-Unify-KS8851-SPI-and-MLL-drivers'

Marek Vasut says:

====================
net: ks8851: Unify KS8851 SPI and MLL drivers

The KS8851SNL/SNLI and KS8851-16MLL/MLLI/MLLU are very much the same pieces
of silicon, except the former has an SPI interface, while the later has a
parallel bus interface. Thus far, Linux has two separate drivers for each
and they are diverging considerably.

This series unifies them into a single driver with small SPI and parallel
bus specific parts. The approach here is to first separate out the SPI
specific parts into a separate file, then add parallel bus accessors in
another separate file and then finally remove the old parallel bus driver.
The reason for replacing the old parallel bus driver is because the SPI
bus driver is much higher quality.

Note that I dropped "net: ks8851: Drop define debug and pr_fmt()" for now,
will send it separatelly later.
====================
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
...@@ -38,6 +38,8 @@ config KS8851_MLL ...@@ -38,6 +38,8 @@ config KS8851_MLL
tristate "Micrel KS8851 MLL" tristate "Micrel KS8851 MLL"
depends on HAS_IOMEM depends on HAS_IOMEM
select MII select MII
select CRC32
select EEPROM_93CX6
---help--- ---help---
This platform driver is for Micrel KS8851 Address/data bus This platform driver is for Micrel KS8851 Address/data bus
multiplexed network chip. multiplexed network chip.
......
...@@ -5,5 +5,7 @@ ...@@ -5,5 +5,7 @@
obj-$(CONFIG_KS8842) += ks8842.o obj-$(CONFIG_KS8842) += ks8842.o
obj-$(CONFIG_KS8851) += ks8851.o obj-$(CONFIG_KS8851) += ks8851.o
ks8851-objs = ks8851_common.o ks8851_spi.o
obj-$(CONFIG_KS8851_MLL) += ks8851_mll.o obj-$(CONFIG_KS8851_MLL) += ks8851_mll.o
ks8851_mll-objs = ks8851_common.o ks8851_par.o
obj-$(CONFIG_KSZ884X_PCI) += ksz884x.o obj-$(CONFIG_KSZ884X_PCI) += ksz884x.o
...@@ -7,6 +7,11 @@ ...@@ -7,6 +7,11 @@
* KS8851 register definitions * KS8851 register definitions
*/ */
#ifndef __KS8851_H__
#define __KS8851_H__
#include <linux/eeprom_93cx6.h>
#define KS_CCR 0x08 #define KS_CCR 0x08
#define CCR_LE (1 << 10) /* KSZ8851-16MLL */ #define CCR_LE (1 << 10) /* KSZ8851-16MLL */
#define CCR_EEPROM (1 << 9) #define CCR_EEPROM (1 << 9)
...@@ -19,7 +24,7 @@ ...@@ -19,7 +24,7 @@
#define CCR_32PIN (1 << 0) /* KSZ8851SNL */ #define CCR_32PIN (1 << 0) /* KSZ8851SNL */
/* MAC address registers */ /* MAC address registers */
#define KS_MAR(_m) (0x15 - (_m)) #define KS_MAR(_m) (0x14 - (_m))
#define KS_MARL 0x10 #define KS_MARL 0x10
#define KS_MARM 0x12 #define KS_MARM 0x12
#define KS_MARH 0x14 #define KS_MARH 0x14
...@@ -300,3 +305,147 @@ ...@@ -300,3 +305,147 @@
#define TXFR_TXIC (1 << 15) #define TXFR_TXIC (1 << 15)
#define TXFR_TXFID_MASK (0x3f << 0) #define TXFR_TXFID_MASK (0x3f << 0)
#define TXFR_TXFID_SHIFT (0) #define TXFR_TXFID_SHIFT (0)
/**
* struct ks8851_rxctrl - KS8851 driver rx control
* @mchash: Multicast hash-table data.
* @rxcr1: KS_RXCR1 register setting
* @rxcr2: KS_RXCR2 register setting
*
* Representation of the settings needs to control the receive filtering
* such as the multicast hash-filter and the receive register settings. This
* is used to make the job of working out if the receive settings change and
* then issuing the new settings to the worker that will send the necessary
* commands.
*/
struct ks8851_rxctrl {
u16 mchash[4];
u16 rxcr1;
u16 rxcr2;
};
/**
* union ks8851_tx_hdr - tx header data
* @txb: The header as bytes
* @txw: The header as 16bit, little-endian words
*
* A dual representation of the tx header data to allow
* access to individual bytes, and to allow 16bit accesses
* with 16bit alignment.
*/
union ks8851_tx_hdr {
u8 txb[6];
__le16 txw[3];
};
/**
* struct ks8851_net - KS8851 driver private data
* @netdev: The network device we're bound to
* @statelock: Lock on this structure for tx list.
* @mii: The MII state information for the mii calls.
* @rxctrl: RX settings for @rxctrl_work.
* @rxctrl_work: Work queue for updating RX mode and multicast lists
* @txq: Queue of packets for transmission.
* @txh: Space for generating packet TX header in DMA-able data
* @rxd: Space for receiving SPI data, in DMA-able space.
* @txd: Space for transmitting SPI data, in DMA-able space.
* @msg_enable: The message flags controlling driver output (see ethtool).
* @fid: Incrementing frame id tag.
* @rc_ier: Cached copy of KS_IER.
* @rc_ccr: Cached copy of KS_CCR.
* @rc_rxqcr: Cached copy of KS_RXQCR.
* @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
* @vdd_reg: Optional regulator supplying the chip
* @vdd_io: Optional digital power supply for IO
* @gpio: Optional reset_n gpio
* @lock: Bus access lock callback
* @unlock: Bus access unlock callback
* @rdreg16: 16bit register read callback
* @wrreg16: 16bit register write callback
* @rdfifo: FIFO read callback
* @wrfifo: FIFO write callback
* @start_xmit: start_xmit() implementation callback
* @rx_skb: rx_skb() implementation callback
* @flush_tx_work: flush_tx_work() implementation callback
*
* The @statelock is used to protect information in the structure which may
* need to be accessed via several sources, such as the network driver layer
* or one of the work queues.
*
* We align the buffers we may use for rx/tx to ensure that if the SPI driver
* wants to DMA map them, it will not have any problems with data the driver
* modifies.
*/
struct ks8851_net {
struct net_device *netdev;
spinlock_t statelock;
union ks8851_tx_hdr txh ____cacheline_aligned;
u8 rxd[8];
u8 txd[8];
u32 msg_enable ____cacheline_aligned;
u16 tx_space;
u8 fid;
u16 rc_ier;
u16 rc_rxqcr;
u16 rc_ccr;
struct mii_if_info mii;
struct ks8851_rxctrl rxctrl;
struct work_struct rxctrl_work;
struct sk_buff_head txq;
struct eeprom_93cx6 eeprom;
struct regulator *vdd_reg;
struct regulator *vdd_io;
int gpio;
void (*lock)(struct ks8851_net *ks,
unsigned long *flags);
void (*unlock)(struct ks8851_net *ks,
unsigned long *flags);
unsigned int (*rdreg16)(struct ks8851_net *ks,
unsigned int reg);
void (*wrreg16)(struct ks8851_net *ks,
unsigned int reg, unsigned int val);
void (*rdfifo)(struct ks8851_net *ks, u8 *buff,
unsigned int len);
void (*wrfifo)(struct ks8851_net *ks,
struct sk_buff *txp, bool irq);
netdev_tx_t (*start_xmit)(struct sk_buff *skb,
struct net_device *dev);
void (*rx_skb)(struct ks8851_net *ks,
struct sk_buff *skb);
void (*flush_tx_work)(struct ks8851_net *ks);
};
int ks8851_probe_common(struct net_device *netdev, struct device *dev,
int msg_en);
int ks8851_remove_common(struct device *dev);
int ks8851_suspend(struct device *dev);
int ks8851_resume(struct device *dev);
static __maybe_unused SIMPLE_DEV_PM_OPS(ks8851_pm_ops,
ks8851_suspend, ks8851_resume);
/**
* ks8851_done_tx - update and then free skbuff after transmitting
* @ks: The device state
* @txb: The buffer transmitted
*/
static void __maybe_unused ks8851_done_tx(struct ks8851_net *ks,
struct sk_buff *txb)
{
struct net_device *dev = ks->netdev;
dev->stats.tx_bytes += txb->len;
dev->stats.tx_packets++;
dev_kfree_skb(txb);
}
#endif /* __KS8851_H__ */
...@@ -19,10 +19,8 @@ ...@@ -19,10 +19,8 @@
#include <linux/cache.h> #include <linux/cache.h>
#include <linux/crc32.h> #include <linux/crc32.h>
#include <linux/mii.h> #include <linux/mii.h>
#include <linux/eeprom_93cx6.h>
#include <linux/regulator/consumer.h> #include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h> #include <linux/gpio.h>
#include <linux/of_gpio.h> #include <linux/of_gpio.h>
#include <linux/of_net.h> #include <linux/of_net.h>
...@@ -30,255 +28,41 @@ ...@@ -30,255 +28,41 @@
#include "ks8851.h" #include "ks8851.h"
/** /**
* struct ks8851_rxctrl - KS8851 driver rx control * ks8851_lock - register access lock
* @mchash: Multicast hash-table data. * @ks: The chip state
* @rxcr1: KS_RXCR1 register setting * @flags: Spinlock flags
* @rxcr2: KS_RXCR2 register setting
*
* Representation of the settings needs to control the receive filtering
* such as the multicast hash-filter and the receive register settings. This
* is used to make the job of working out if the receive settings change and
* then issuing the new settings to the worker that will send the necessary
* commands.
*/
struct ks8851_rxctrl {
u16 mchash[4];
u16 rxcr1;
u16 rxcr2;
};
/**
* union ks8851_tx_hdr - tx header data
* @txb: The header as bytes
* @txw: The header as 16bit, little-endian words
*
* A dual representation of the tx header data to allow
* access to individual bytes, and to allow 16bit accesses
* with 16bit alignment.
*/
union ks8851_tx_hdr {
u8 txb[6];
__le16 txw[3];
};
/**
* struct ks8851_net - KS8851 driver private data
* @netdev: The network device we're bound to
* @spidev: The spi device we're bound to.
* @lock: Lock to ensure that the device is not accessed when busy.
* @statelock: Lock on this structure for tx list.
* @mii: The MII state information for the mii calls.
* @rxctrl: RX settings for @rxctrl_work.
* @tx_work: Work queue for tx packets
* @rxctrl_work: Work queue for updating RX mode and multicast lists
* @txq: Queue of packets for transmission.
* @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
* @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
* @txh: Space for generating packet TX header in DMA-able data
* @rxd: Space for receiving SPI data, in DMA-able space.
* @txd: Space for transmitting SPI data, in DMA-able space.
* @msg_enable: The message flags controlling driver output (see ethtool).
* @fid: Incrementing frame id tag.
* @rc_ier: Cached copy of KS_IER.
* @rc_ccr: Cached copy of KS_CCR.
* @rc_rxqcr: Cached copy of KS_RXQCR.
* @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
* @vdd_reg: Optional regulator supplying the chip
* @vdd_io: Optional digital power supply for IO
* @gpio: Optional reset_n gpio
*
* The @lock ensures that the chip is protected when certain operations are
* in progress. When the read or write packet transfer is in progress, most
* of the chip registers are not ccessible until the transfer is finished and
* the DMA has been de-asserted.
*
* The @statelock is used to protect information in the structure which may
* need to be accessed via several sources, such as the network driver layer
* or one of the work queues.
*
* We align the buffers we may use for rx/tx to ensure that if the SPI driver
* wants to DMA map them, it will not have any problems with data the driver
* modifies.
*/
struct ks8851_net {
struct net_device *netdev;
struct spi_device *spidev;
struct mutex lock;
spinlock_t statelock;
union ks8851_tx_hdr txh ____cacheline_aligned;
u8 rxd[8];
u8 txd[8];
u32 msg_enable ____cacheline_aligned;
u16 tx_space;
u8 fid;
u16 rc_ier;
u16 rc_rxqcr;
u16 rc_ccr;
struct mii_if_info mii;
struct ks8851_rxctrl rxctrl;
struct work_struct tx_work;
struct work_struct rxctrl_work;
struct sk_buff_head txq;
struct spi_message spi_msg1;
struct spi_message spi_msg2;
struct spi_transfer spi_xfer1;
struct spi_transfer spi_xfer2[2];
struct eeprom_93cx6 eeprom;
struct regulator *vdd_reg;
struct regulator *vdd_io;
int gpio;
};
static int msg_enable;
/* SPI frame opcodes */
#define KS_SPIOP_RD (0x00)
#define KS_SPIOP_WR (0x40)
#define KS_SPIOP_RXFIFO (0x80)
#define KS_SPIOP_TXFIFO (0xC0)
/* shift for byte-enable data */
#define BYTE_EN(_x) ((_x) << 2)
/* turn register number and byte-enable mask into data for start of packet */
#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
/* SPI register read/write calls.
* *
* All these calls issue SPI transactions to access the chip's registers. They * Claim chip register access lock
* all require that the necessary lock is held to prevent accesses when the
* chip is busy transferring packet data (RX/TX FIFO accesses).
*/ */
static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
{
ks->lock(ks, flags);
}
/** /**
* ks8851_wrreg16 - write 16bit register value to chip * ks8851_unlock - register access unlock
* @ks: The chip state * @ks: The chip state
* @reg: The register address * @flags: Spinlock flags
* @val: The value to write
* *
* Issue a write to put the value @val into the register specified in @reg. * Release chip register access lock
*/ */
static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val) static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
{ {
struct spi_transfer *xfer = &ks->spi_xfer1; ks->unlock(ks, flags);
struct spi_message *msg = &ks->spi_msg1;
__le16 txb[2];
int ret;
txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
txb[1] = cpu_to_le16(val);
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 4;
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "spi_sync() failed\n");
} }
/** /**
* ks8851_wrreg8 - write 8bit register value to chip * ks8851_wrreg16 - write 16bit register value to chip
* @ks: The chip state * @ks: The chip state
* @reg: The register address * @reg: The register address
* @val: The value to write * @val: The value to write
* *
* Issue a write to put the value @val into the register specified in @reg. * Issue a write to put the value @val into the register specified in @reg.
*/ */
static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val) static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
{ unsigned int val)
struct spi_transfer *xfer = &ks->spi_xfer1;
struct spi_message *msg = &ks->spi_msg1;
__le16 txb[2];
int ret;
int bit;
bit = 1 << (reg & 3);
txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
txb[1] = val;
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 3;
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "spi_sync() failed\n");
}
/**
* ks8851_rdreg - issue read register command and return the data
* @ks: The device state
* @op: The register address and byte enables in message format.
* @rxb: The RX buffer to return the result into
* @rxl: The length of data expected.
*
* This is the low level read call that issues the necessary spi message(s)
* to read data from the register specified in @op.
*/
static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
u8 *rxb, unsigned rxl)
{
struct spi_transfer *xfer;
struct spi_message *msg;
__le16 *txb = (__le16 *)ks->txd;
u8 *trx = ks->rxd;
int ret;
txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
msg = &ks->spi_msg2;
xfer = ks->spi_xfer2;
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 2;
xfer++;
xfer->tx_buf = NULL;
xfer->rx_buf = trx;
xfer->len = rxl;
} else {
msg = &ks->spi_msg1;
xfer = &ks->spi_xfer1;
xfer->tx_buf = txb;
xfer->rx_buf = trx;
xfer->len = rxl + 2;
}
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "read: spi_sync() failed\n");
else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
memcpy(rxb, trx, rxl);
else
memcpy(rxb, trx + 2, rxl);
}
/**
* ks8851_rdreg8 - read 8 bit register from device
* @ks: The chip information
* @reg: The register address
*
* Read a 8bit register from the chip, returning the result
*/
static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
{ {
u8 rxb[1]; ks->wrreg16(ks, reg, val);
ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
return rxb[0];
} }
/** /**
...@@ -287,32 +71,11 @@ static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg) ...@@ -287,32 +71,11 @@ static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
* @reg: The register address * @reg: The register address
* *
* Read a 16bit register from the chip, returning the result * Read a 16bit register from the chip, returning the result
*/ */
static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg) static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
{ unsigned int reg)
__le16 rx = 0;
ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
return le16_to_cpu(rx);
}
/**
* ks8851_rdreg32 - read 32 bit register from device
* @ks: The chip information
* @reg: The register address
*
* Read a 32bit register from the chip.
*
* Note, this read requires the address be aligned to 4 bytes.
*/
static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
{ {
__le32 rx = 0; return ks->rdreg16(ks, reg);
WARN_ON(reg & 3);
ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
return le32_to_cpu(rx);
} }
/** /**
...@@ -368,21 +131,27 @@ static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) ...@@ -368,21 +131,27 @@ static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
static int ks8851_write_mac_addr(struct net_device *dev) static int ks8851_write_mac_addr(struct net_device *dev)
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
u16 val;
int i; int i;
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
/* /*
* Wake up chip in case it was powered off when stopped; otherwise, * Wake up chip in case it was powered off when stopped; otherwise,
* the first write to the MAC address does not take effect. * the first write to the MAC address does not take effect.
*/ */
ks8851_set_powermode(ks, PMECR_PM_NORMAL); ks8851_set_powermode(ks, PMECR_PM_NORMAL);
for (i = 0; i < ETH_ALEN; i++)
ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]); for (i = 0; i < ETH_ALEN; i += 2) {
val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
ks8851_wrreg16(ks, KS_MAR(i), val);
}
if (!netif_running(dev)) if (!netif_running(dev))
ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
return 0; return 0;
} }
...@@ -396,19 +165,25 @@ static int ks8851_write_mac_addr(struct net_device *dev) ...@@ -396,19 +165,25 @@ static int ks8851_write_mac_addr(struct net_device *dev)
static void ks8851_read_mac_addr(struct net_device *dev) static void ks8851_read_mac_addr(struct net_device *dev)
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
u16 reg;
int i; int i;
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
for (i = 0; i < ETH_ALEN; i++) for (i = 0; i < ETH_ALEN; i += 2) {
dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i)); reg = ks8851_rdreg16(ks, KS_MAR(i));
dev->dev_addr[i] = reg >> 8;
dev->dev_addr[i + 1] = reg & 0xff;
}
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
} }
/** /**
* ks8851_init_mac - initialise the mac address * ks8851_init_mac - initialise the mac address
* @ks: The device structure * @ks: The device structure
* @np: The device node pointer
* *
* Get or create the initial mac address for the device and then set that * Get or create the initial mac address for the device and then set that
* into the station address register. A mac address supplied in the device * into the station address register. A mac address supplied in the device
...@@ -416,12 +191,12 @@ static void ks8851_read_mac_addr(struct net_device *dev) ...@@ -416,12 +191,12 @@ static void ks8851_read_mac_addr(struct net_device *dev)
* we try that. If no valid mac address is found we use eth_random_addr() * we try that. If no valid mac address is found we use eth_random_addr()
* to create a new one. * to create a new one.
*/ */
static void ks8851_init_mac(struct ks8851_net *ks) static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
{ {
struct net_device *dev = ks->netdev; struct net_device *dev = ks->netdev;
const u8 *mac_addr; const u8 *mac_addr;
mac_addr = of_get_mac_address(ks->spidev->dev.of_node); mac_addr = of_get_mac_address(np);
if (!IS_ERR(mac_addr)) { if (!IS_ERR(mac_addr)) {
ether_addr_copy(dev->dev_addr, mac_addr); ether_addr_copy(dev->dev_addr, mac_addr);
ks8851_write_mac_addr(dev); ks8851_write_mac_addr(dev);
...@@ -441,49 +216,13 @@ static void ks8851_init_mac(struct ks8851_net *ks) ...@@ -441,49 +216,13 @@ static void ks8851_init_mac(struct ks8851_net *ks)
ks8851_write_mac_addr(dev); ks8851_write_mac_addr(dev);
} }
/**
* ks8851_rdfifo - read data from the receive fifo
* @ks: The device state.
* @buff: The buffer address
* @len: The length of the data to read
*
* Issue an RXQ FIFO read command and read the @len amount of data from
* the FIFO into the buffer specified by @buff.
*/
static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
{
struct spi_transfer *xfer = ks->spi_xfer2;
struct spi_message *msg = &ks->spi_msg2;
u8 txb[1];
int ret;
netif_dbg(ks, rx_status, ks->netdev,
"%s: %d@%p\n", __func__, len, buff);
/* set the operation we're issuing */
txb[0] = KS_SPIOP_RXFIFO;
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 1;
xfer++;
xfer->rx_buf = buff;
xfer->tx_buf = NULL;
xfer->len = len;
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
}
/** /**
* ks8851_dbg_dumpkkt - dump initial packet contents to debug * ks8851_dbg_dumpkkt - dump initial packet contents to debug
* @ks: The device state * @ks: The device state
* @rxpkt: The data for the received packet * @rxpkt: The data for the received packet
* *
* Dump the initial data from the packet to dev_dbg(). * Dump the initial data from the packet to dev_dbg().
*/ */
static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
{ {
netdev_dbg(ks->netdev, netdev_dbg(ks->netdev,
...@@ -493,6 +232,16 @@ static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) ...@@ -493,6 +232,16 @@ static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
} }
/**
* ks8851_rx_skb - receive skbuff
* @ks: The device state.
* @skb: The skbuff
*/
static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
{
ks->rx_skb(ks, skb);
}
/** /**
* ks8851_rx_pkts - receive packets from the host * ks8851_rx_pkts - receive packets from the host
* @ks: The device information. * @ks: The device information.
...@@ -507,10 +256,9 @@ static void ks8851_rx_pkts(struct ks8851_net *ks) ...@@ -507,10 +256,9 @@ static void ks8851_rx_pkts(struct ks8851_net *ks)
unsigned rxfc; unsigned rxfc;
unsigned rxlen; unsigned rxlen;
unsigned rxstat; unsigned rxstat;
u32 rxh;
u8 *rxpkt; u8 *rxpkt;
rxfc = ks8851_rdreg8(ks, KS_RXFC); rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
netif_dbg(ks, rx_status, ks->netdev, netif_dbg(ks, rx_status, ks->netdev,
"%s: %d packets\n", __func__, rxfc); "%s: %d packets\n", __func__, rxfc);
...@@ -526,9 +274,8 @@ static void ks8851_rx_pkts(struct ks8851_net *ks) ...@@ -526,9 +274,8 @@ static void ks8851_rx_pkts(struct ks8851_net *ks)
*/ */
for (; rxfc != 0; rxfc--) { for (; rxfc != 0; rxfc--) {
rxh = ks8851_rdreg32(ks, KS_RXFHSR); rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
rxstat = rxh & 0xffff; rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
rxlen = (rxh >> 16) & 0xfff;
netif_dbg(ks, rx_status, ks->netdev, netif_dbg(ks, rx_status, ks->netdev,
"rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen); "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
...@@ -557,13 +304,13 @@ static void ks8851_rx_pkts(struct ks8851_net *ks) ...@@ -557,13 +304,13 @@ static void ks8851_rx_pkts(struct ks8851_net *ks)
rxpkt = skb_put(skb, rxlen) - 8; rxpkt = skb_put(skb, rxlen) - 8;
ks8851_rdfifo(ks, rxpkt, rxalign + 8); ks->rdfifo(ks, rxpkt, rxalign + 8);
if (netif_msg_pktdata(ks)) if (netif_msg_pktdata(ks))
ks8851_dbg_dumpkkt(ks, rxpkt); ks8851_dbg_dumpkkt(ks, rxpkt);
skb->protocol = eth_type_trans(skb, ks->netdev); skb->protocol = eth_type_trans(skb, ks->netdev);
netif_rx_ni(skb); ks8851_rx_skb(ks, skb);
ks->netdev->stats.rx_packets++; ks->netdev->stats.rx_packets++;
ks->netdev->stats.rx_bytes += rxlen; ks->netdev->stats.rx_bytes += rxlen;
...@@ -590,10 +337,11 @@ static void ks8851_rx_pkts(struct ks8851_net *ks) ...@@ -590,10 +337,11 @@ static void ks8851_rx_pkts(struct ks8851_net *ks)
static irqreturn_t ks8851_irq(int irq, void *_ks) static irqreturn_t ks8851_irq(int irq, void *_ks)
{ {
struct ks8851_net *ks = _ks; struct ks8851_net *ks = _ks;
unsigned status;
unsigned handled = 0; unsigned handled = 0;
unsigned long flags;
unsigned int status;
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
status = ks8851_rdreg16(ks, KS_ISR); status = ks8851_rdreg16(ks, KS_ISR);
...@@ -631,7 +379,7 @@ static irqreturn_t ks8851_irq(int irq, void *_ks) ...@@ -631,7 +379,7 @@ static irqreturn_t ks8851_irq(int irq, void *_ks)
handled |= IRQ_RXI; handled |= IRQ_RXI;
if (status & IRQ_SPIBEI) { if (status & IRQ_SPIBEI) {
dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__); netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
handled |= IRQ_SPIBEI; handled |= IRQ_SPIBEI;
} }
...@@ -662,7 +410,7 @@ static irqreturn_t ks8851_irq(int irq, void *_ks) ...@@ -662,7 +410,7 @@ static irqreturn_t ks8851_irq(int irq, void *_ks)
ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
} }
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
if (status & IRQ_LCI) if (status & IRQ_LCI)
mii_check_link(&ks->mii); mii_check_link(&ks->mii);
...@@ -674,108 +422,13 @@ static irqreturn_t ks8851_irq(int irq, void *_ks) ...@@ -674,108 +422,13 @@ static irqreturn_t ks8851_irq(int irq, void *_ks)
} }
/** /**
* calc_txlen - calculate size of message to send packet * ks8851_flush_tx_work - flush outstanding TX work
* @len: Length of data
*
* Returns the size of the TXFIFO message needed to send
* this packet.
*/
static inline unsigned calc_txlen(unsigned len)
{
return ALIGN(len + 4, 4);
}
/**
* ks8851_wrpkt - write packet to TX FIFO
* @ks: The device state.
* @txp: The sk_buff to transmit.
* @irq: IRQ on completion of the packet.
*
* Send the @txp to the chip. This means creating the relevant packet header
* specifying the length of the packet and the other information the chip
* needs, such as IRQ on completion. Send the header and the packet data to
* the device.
*/
static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
{
struct spi_transfer *xfer = ks->spi_xfer2;
struct spi_message *msg = &ks->spi_msg2;
unsigned fid = 0;
int ret;
netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
__func__, txp, txp->len, txp->data, irq);
fid = ks->fid++;
fid &= TXFR_TXFID_MASK;
if (irq)
fid |= TXFR_TXIC; /* irq on completion */
/* start header at txb[1] to align txw entries */
ks->txh.txb[1] = KS_SPIOP_TXFIFO;
ks->txh.txw[1] = cpu_to_le16(fid);
ks->txh.txw[2] = cpu_to_le16(txp->len);
xfer->tx_buf = &ks->txh.txb[1];
xfer->rx_buf = NULL;
xfer->len = 5;
xfer++;
xfer->tx_buf = txp->data;
xfer->rx_buf = NULL;
xfer->len = ALIGN(txp->len, 4);
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
}
/**
* ks8851_done_tx - update and then free skbuff after transmitting
* @ks: The device state * @ks: The device state
* @txb: The buffer transmitted
*/
static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
{
struct net_device *dev = ks->netdev;
dev->stats.tx_bytes += txb->len;
dev->stats.tx_packets++;
dev_kfree_skb(txb);
}
/**
* ks8851_tx_work - process tx packet(s)
* @work: The work strucutre what was scheduled.
*
* This is called when a number of packets have been scheduled for
* transmission and need to be sent to the device.
*/ */
static void ks8851_tx_work(struct work_struct *work) static void ks8851_flush_tx_work(struct ks8851_net *ks)
{ {
struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work); if (ks->flush_tx_work)
struct sk_buff *txb; ks->flush_tx_work(ks);
bool last = skb_queue_empty(&ks->txq);
mutex_lock(&ks->lock);
while (!last) {
txb = skb_dequeue(&ks->txq);
last = skb_queue_empty(&ks->txq);
if (txb != NULL) {
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
ks8851_wrpkt(ks, txb, last);
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
ks8851_done_tx(ks, txb);
}
}
mutex_unlock(&ks->lock);
} }
/** /**
...@@ -788,6 +441,7 @@ static void ks8851_tx_work(struct work_struct *work) ...@@ -788,6 +441,7 @@ static void ks8851_tx_work(struct work_struct *work)
static int ks8851_net_open(struct net_device *dev) static int ks8851_net_open(struct net_device *dev)
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
int ret; int ret;
ret = request_threaded_irq(dev->irq, NULL, ks8851_irq, ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
...@@ -800,7 +454,7 @@ static int ks8851_net_open(struct net_device *dev) ...@@ -800,7 +454,7 @@ static int ks8851_net_open(struct net_device *dev)
/* lock the card, even if we may not actually be doing anything /* lock the card, even if we may not actually be doing anything
* else at the moment */ * else at the moment */
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
netif_dbg(ks, ifup, ks->netdev, "opening\n"); netif_dbg(ks, ifup, ks->netdev, "opening\n");
...@@ -844,23 +498,14 @@ static int ks8851_net_open(struct net_device *dev) ...@@ -844,23 +498,14 @@ static int ks8851_net_open(struct net_device *dev)
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
/* clear then enable interrupts */ /* clear then enable interrupts */
ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
#define STD_IRQ (IRQ_LCI | /* Link Change */ \ ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
IRQ_TXI | /* TX done */ \
IRQ_RXI | /* RX done */ \
IRQ_SPIBEI | /* SPI bus error */ \
IRQ_TXPSI | /* TX process stop */ \
IRQ_RXPSI) /* RX process stop */
ks->rc_ier = STD_IRQ;
ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
ks8851_wrreg16(ks, KS_IER, STD_IRQ);
netif_start_queue(ks->netdev); netif_start_queue(ks->netdev);
netif_dbg(ks, ifup, ks->netdev, "network device up\n"); netif_dbg(ks, ifup, ks->netdev, "network device up\n");
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
mii_check_link(&ks->mii); mii_check_link(&ks->mii);
return 0; return 0;
} }
...@@ -876,22 +521,23 @@ static int ks8851_net_open(struct net_device *dev) ...@@ -876,22 +521,23 @@ static int ks8851_net_open(struct net_device *dev)
static int ks8851_net_stop(struct net_device *dev) static int ks8851_net_stop(struct net_device *dev)
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
netif_info(ks, ifdown, dev, "shutting down\n"); netif_info(ks, ifdown, dev, "shutting down\n");
netif_stop_queue(dev); netif_stop_queue(dev);
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
/* turn off the IRQs and ack any outstanding */ /* turn off the IRQs and ack any outstanding */
ks8851_wrreg16(ks, KS_IER, 0x0000); ks8851_wrreg16(ks, KS_IER, 0x0000);
ks8851_wrreg16(ks, KS_ISR, 0xffff); ks8851_wrreg16(ks, KS_ISR, 0xffff);
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
/* stop any outstanding work */ /* stop any outstanding work */
flush_work(&ks->tx_work); ks8851_flush_tx_work(ks);
flush_work(&ks->rxctrl_work); flush_work(&ks->rxctrl_work);
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
/* shutdown RX process */ /* shutdown RX process */
ks8851_wrreg16(ks, KS_RXCR1, 0x0000); ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
...@@ -900,7 +546,7 @@ static int ks8851_net_stop(struct net_device *dev) ...@@ -900,7 +546,7 @@ static int ks8851_net_stop(struct net_device *dev)
/* set powermode to soft power down to save power */ /* set powermode to soft power down to save power */
ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
/* ensure any queued tx buffers are dumped */ /* ensure any queued tx buffers are dumped */
while (!skb_queue_empty(&ks->txq)) { while (!skb_queue_empty(&ks->txq)) {
...@@ -934,26 +580,8 @@ static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, ...@@ -934,26 +580,8 @@ static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
struct net_device *dev) struct net_device *dev)
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
unsigned needed = calc_txlen(skb->len);
netdev_tx_t ret = NETDEV_TX_OK;
netif_dbg(ks, tx_queued, ks->netdev,
"%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
spin_lock(&ks->statelock); return ks->start_xmit(skb, dev);
if (needed > ks->tx_space) {
netif_stop_queue(dev);
ret = NETDEV_TX_BUSY;
} else {
ks->tx_space -= needed;
skb_queue_tail(&ks->txq, skb);
}
spin_unlock(&ks->statelock);
schedule_work(&ks->tx_work);
return ret;
} }
/** /**
...@@ -972,13 +600,14 @@ static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, ...@@ -972,13 +600,14 @@ static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
static void ks8851_rxctrl_work(struct work_struct *work) static void ks8851_rxctrl_work(struct work_struct *work)
{ {
struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
unsigned long flags;
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
/* need to shutdown RXQ before modifying filter parameters */ /* need to shutdown RXQ before modifying filter parameters */
ks8851_wrreg16(ks, KS_RXCR1, 0x00); ks8851_wrreg16(ks, KS_RXCR1, 0x00);
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
} }
static void ks8851_set_rx_mode(struct net_device *dev) static void ks8851_set_rx_mode(struct net_device *dev)
...@@ -1160,11 +789,6 @@ static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee) ...@@ -1160,11 +789,6 @@ static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
*/ */
static int ks8851_eeprom_claim(struct ks8851_net *ks) static int ks8851_eeprom_claim(struct ks8851_net *ks)
{ {
if (!(ks->rc_ccr & CCR_EEPROM))
return -ENOENT;
mutex_lock(&ks->lock);
/* start with clock low, cs high */ /* start with clock low, cs high */
ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS); ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
return 0; return 0;
...@@ -1181,7 +805,6 @@ static void ks8851_eeprom_release(struct ks8851_net *ks) ...@@ -1181,7 +805,6 @@ static void ks8851_eeprom_release(struct ks8851_net *ks)
unsigned val = ks8851_rdreg16(ks, KS_EEPCR); unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA); ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
mutex_unlock(&ks->lock);
} }
#define KS_EEPROM_MAGIC (0x00008851) #define KS_EEPROM_MAGIC (0x00008851)
...@@ -1191,6 +814,7 @@ static int ks8851_set_eeprom(struct net_device *dev, ...@@ -1191,6 +814,7 @@ static int ks8851_set_eeprom(struct net_device *dev,
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
int offset = ee->offset; int offset = ee->offset;
unsigned long flags;
int len = ee->len; int len = ee->len;
u16 tmp; u16 tmp;
...@@ -1201,9 +825,13 @@ static int ks8851_set_eeprom(struct net_device *dev, ...@@ -1201,9 +825,13 @@ static int ks8851_set_eeprom(struct net_device *dev,
if (ee->magic != KS_EEPROM_MAGIC) if (ee->magic != KS_EEPROM_MAGIC)
return -EINVAL; return -EINVAL;
if (ks8851_eeprom_claim(ks)) if (!(ks->rc_ccr & CCR_EEPROM))
return -ENOENT; return -ENOENT;
ks8851_lock(ks, &flags);
ks8851_eeprom_claim(ks);
eeprom_93cx6_wren(&ks->eeprom, true); eeprom_93cx6_wren(&ks->eeprom, true);
/* ethtool currently only supports writing bytes, which means /* ethtool currently only supports writing bytes, which means
...@@ -1223,6 +851,7 @@ static int ks8851_set_eeprom(struct net_device *dev, ...@@ -1223,6 +851,7 @@ static int ks8851_set_eeprom(struct net_device *dev,
eeprom_93cx6_wren(&ks->eeprom, false); eeprom_93cx6_wren(&ks->eeprom, false);
ks8851_eeprom_release(ks); ks8851_eeprom_release(ks);
ks8851_unlock(ks, &flags);
return 0; return 0;
} }
...@@ -1232,19 +861,25 @@ static int ks8851_get_eeprom(struct net_device *dev, ...@@ -1232,19 +861,25 @@ static int ks8851_get_eeprom(struct net_device *dev,
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
int offset = ee->offset; int offset = ee->offset;
unsigned long flags;
int len = ee->len; int len = ee->len;
/* must be 2 byte aligned */ /* must be 2 byte aligned */
if (len & 1 || offset & 1) if (len & 1 || offset & 1)
return -EINVAL; return -EINVAL;
if (ks8851_eeprom_claim(ks)) if (!(ks->rc_ccr & CCR_EEPROM))
return -ENOENT; return -ENOENT;
ks8851_lock(ks, &flags);
ks8851_eeprom_claim(ks);
ee->magic = KS_EEPROM_MAGIC; ee->magic = KS_EEPROM_MAGIC;
eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2); eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
ks8851_eeprom_release(ks); ks8851_eeprom_release(ks);
ks8851_unlock(ks, &flags);
return 0; return 0;
} }
...@@ -1318,6 +953,7 @@ static int ks8851_phy_reg(int reg) ...@@ -1318,6 +953,7 @@ static int ks8851_phy_reg(int reg)
static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
int ksreg; int ksreg;
int result; int result;
...@@ -1325,9 +961,9 @@ static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) ...@@ -1325,9 +961,9 @@ static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
if (!ksreg) if (!ksreg)
return 0x0; /* no error return allowed, so use zero */ return 0x0; /* no error return allowed, so use zero */
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
result = ks8851_rdreg16(ks, ksreg); result = ks8851_rdreg16(ks, ksreg);
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
return result; return result;
} }
...@@ -1336,13 +972,14 @@ static void ks8851_phy_write(struct net_device *dev, ...@@ -1336,13 +972,14 @@ static void ks8851_phy_write(struct net_device *dev,
int phy, int reg, int value) int phy, int reg, int value)
{ {
struct ks8851_net *ks = netdev_priv(dev); struct ks8851_net *ks = netdev_priv(dev);
unsigned long flags;
int ksreg; int ksreg;
ksreg = ks8851_phy_reg(reg); ksreg = ks8851_phy_reg(reg);
if (ksreg) { if (ksreg) {
mutex_lock(&ks->lock); ks8851_lock(ks, &flags);
ks8851_wrreg16(ks, ksreg, value); ks8851_wrreg16(ks, ksreg, value);
mutex_unlock(&ks->lock); ks8851_unlock(ks, &flags);
} }
} }
...@@ -1382,7 +1019,7 @@ static int ks8851_read_selftest(struct ks8851_net *ks) ...@@ -1382,7 +1019,7 @@ static int ks8851_read_selftest(struct ks8851_net *ks)
#ifdef CONFIG_PM_SLEEP #ifdef CONFIG_PM_SLEEP
static int ks8851_suspend(struct device *dev) int ks8851_suspend(struct device *dev)
{ {
struct ks8851_net *ks = dev_get_drvdata(dev); struct ks8851_net *ks = dev_get_drvdata(dev);
struct net_device *netdev = ks->netdev; struct net_device *netdev = ks->netdev;
...@@ -1395,7 +1032,7 @@ static int ks8851_suspend(struct device *dev) ...@@ -1395,7 +1032,7 @@ static int ks8851_suspend(struct device *dev)
return 0; return 0;
} }
static int ks8851_resume(struct device *dev) int ks8851_resume(struct device *dev)
{ {
struct ks8851_net *ks = dev_get_drvdata(dev); struct ks8851_net *ks = dev_get_drvdata(dev);
struct net_device *netdev = ks->netdev; struct net_device *netdev = ks->netdev;
...@@ -1409,46 +1046,32 @@ static int ks8851_resume(struct device *dev) ...@@ -1409,46 +1046,32 @@ static int ks8851_resume(struct device *dev)
} }
#endif #endif
static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume); int ks8851_probe_common(struct net_device *netdev, struct device *dev,
int msg_en)
static int ks8851_probe(struct spi_device *spi)
{ {
struct net_device *ndev; struct ks8851_net *ks = netdev_priv(netdev);
struct ks8851_net *ks;
int ret;
unsigned cider; unsigned cider;
int gpio; int gpio;
int ret;
ndev = alloc_etherdev(sizeof(struct ks8851_net)); ks->netdev = netdev;
if (!ndev)
return -ENOMEM;
spi->bits_per_word = 8;
ks = netdev_priv(ndev);
ks->netdev = ndev;
ks->spidev = spi;
ks->tx_space = 6144; ks->tx_space = 6144;
gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios", gpio = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, NULL);
0, NULL); if (gpio == -EPROBE_DEFER)
if (gpio == -EPROBE_DEFER) { return gpio;
ret = gpio;
goto err_gpio;
}
ks->gpio = gpio; ks->gpio = gpio;
if (gpio_is_valid(gpio)) { if (gpio_is_valid(gpio)) {
ret = devm_gpio_request_one(&spi->dev, gpio, ret = devm_gpio_request_one(dev, gpio,
GPIOF_OUT_INIT_LOW, "ks8851_rst_n"); GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
if (ret) { if (ret) {
dev_err(&spi->dev, "reset gpio request failed\n"); dev_err(dev, "reset gpio request failed\n");
goto err_gpio; return ret;
} }
} }
ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io"); ks->vdd_io = devm_regulator_get(dev, "vdd-io");
if (IS_ERR(ks->vdd_io)) { if (IS_ERR(ks->vdd_io)) {
ret = PTR_ERR(ks->vdd_io); ret = PTR_ERR(ks->vdd_io);
goto err_reg_io; goto err_reg_io;
...@@ -1456,12 +1079,11 @@ static int ks8851_probe(struct spi_device *spi) ...@@ -1456,12 +1079,11 @@ static int ks8851_probe(struct spi_device *spi)
ret = regulator_enable(ks->vdd_io); ret = regulator_enable(ks->vdd_io);
if (ret) { if (ret) {
dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n", dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
ret);
goto err_reg_io; goto err_reg_io;
} }
ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd"); ks->vdd_reg = devm_regulator_get(dev, "vdd");
if (IS_ERR(ks->vdd_reg)) { if (IS_ERR(ks->vdd_reg)) {
ret = PTR_ERR(ks->vdd_reg); ret = PTR_ERR(ks->vdd_reg);
goto err_reg; goto err_reg;
...@@ -1469,8 +1091,7 @@ static int ks8851_probe(struct spi_device *spi) ...@@ -1469,8 +1091,7 @@ static int ks8851_probe(struct spi_device *spi)
ret = regulator_enable(ks->vdd_reg); ret = regulator_enable(ks->vdd_reg);
if (ret) { if (ret) {
dev_err(&spi->dev, "regulator vdd enable fail: %d\n", dev_err(dev, "regulator vdd enable fail: %d\n", ret);
ret);
goto err_reg; goto err_reg;
} }
...@@ -1479,54 +1100,41 @@ static int ks8851_probe(struct spi_device *spi) ...@@ -1479,54 +1100,41 @@ static int ks8851_probe(struct spi_device *spi)
gpio_set_value(gpio, 1); gpio_set_value(gpio, 1);
} }
mutex_init(&ks->lock);
spin_lock_init(&ks->statelock); spin_lock_init(&ks->statelock);
INIT_WORK(&ks->tx_work, ks8851_tx_work);
INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
/* initialise pre-made spi transfer messages */
spi_message_init(&ks->spi_msg1);
spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
spi_message_init(&ks->spi_msg2);
spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
/* setup EEPROM state */ /* setup EEPROM state */
ks->eeprom.data = ks; ks->eeprom.data = ks;
ks->eeprom.width = PCI_EEPROM_WIDTH_93C46; ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
ks->eeprom.register_read = ks8851_eeprom_regread; ks->eeprom.register_read = ks8851_eeprom_regread;
ks->eeprom.register_write = ks8851_eeprom_regwrite; ks->eeprom.register_write = ks8851_eeprom_regwrite;
/* setup mii state */ /* setup mii state */
ks->mii.dev = ndev; ks->mii.dev = netdev;
ks->mii.phy_id = 1, ks->mii.phy_id = 1,
ks->mii.phy_id_mask = 1; ks->mii.phy_id_mask = 1;
ks->mii.reg_num_mask = 0xf; ks->mii.reg_num_mask = 0xf;
ks->mii.mdio_read = ks8851_phy_read; ks->mii.mdio_read = ks8851_phy_read;
ks->mii.mdio_write = ks8851_phy_write; ks->mii.mdio_write = ks8851_phy_write;
dev_info(&spi->dev, "message enable is %d\n", msg_enable); dev_info(dev, "message enable is %d\n", msg_en);
/* set the default message enable */ /* set the default message enable */
ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV | ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
NETIF_MSG_PROBE | NETIF_MSG_PROBE |
NETIF_MSG_LINK)); NETIF_MSG_LINK);
skb_queue_head_init(&ks->txq); skb_queue_head_init(&ks->txq);
ndev->ethtool_ops = &ks8851_ethtool_ops; netdev->ethtool_ops = &ks8851_ethtool_ops;
SET_NETDEV_DEV(ndev, &spi->dev); SET_NETDEV_DEV(netdev, dev);
spi_set_drvdata(spi, ks); dev_set_drvdata(dev, ks);
netif_carrier_off(ks->netdev); netif_carrier_off(ks->netdev);
ndev->if_port = IF_PORT_100BASET; netdev->if_port = IF_PORT_100BASET;
ndev->netdev_ops = &ks8851_netdev_ops; netdev->netdev_ops = &ks8851_netdev_ops;
ndev->irq = spi->irq;
/* issue a global soft reset to reset the device. */ /* issue a global soft reset to reset the device. */
ks8851_soft_reset(ks, GRR_GSR); ks8851_soft_reset(ks, GRR_GSR);
...@@ -1534,7 +1142,7 @@ static int ks8851_probe(struct spi_device *spi) ...@@ -1534,7 +1142,7 @@ static int ks8851_probe(struct spi_device *spi)
/* simple check for a valid chip being connected to the bus */ /* simple check for a valid chip being connected to the bus */
cider = ks8851_rdreg16(ks, KS_CIDER); cider = ks8851_rdreg16(ks, KS_CIDER);
if ((cider & ~CIDER_REV_MASK) != CIDER_ID) { if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
dev_err(&spi->dev, "failed to read device ID\n"); dev_err(dev, "failed to read device ID\n");
ret = -ENODEV; ret = -ENODEV;
goto err_id; goto err_id;
} }
...@@ -1543,16 +1151,16 @@ static int ks8851_probe(struct spi_device *spi) ...@@ -1543,16 +1151,16 @@ static int ks8851_probe(struct spi_device *spi)
ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR); ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
ks8851_read_selftest(ks); ks8851_read_selftest(ks);
ks8851_init_mac(ks); ks8851_init_mac(ks, dev->of_node);
ret = register_netdev(ndev); ret = register_netdev(netdev);
if (ret) { if (ret) {
dev_err(&spi->dev, "failed to register network device\n"); dev_err(dev, "failed to register network device\n");
goto err_netdev; goto err_netdev;
} }
netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n", netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq, CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
ks->rc_ccr & CCR_EEPROM ? "has" : "no"); ks->rc_ccr & CCR_EEPROM ? "has" : "no");
return 0; return 0;
...@@ -1565,49 +1173,21 @@ static int ks8851_probe(struct spi_device *spi) ...@@ -1565,49 +1173,21 @@ static int ks8851_probe(struct spi_device *spi)
err_reg: err_reg:
regulator_disable(ks->vdd_io); regulator_disable(ks->vdd_io);
err_reg_io: err_reg_io:
err_gpio:
free_netdev(ndev);
return ret; return ret;
} }
static int ks8851_remove(struct spi_device *spi) int ks8851_remove_common(struct device *dev)
{ {
struct ks8851_net *priv = spi_get_drvdata(spi); struct ks8851_net *priv = dev_get_drvdata(dev);
if (netif_msg_drv(priv)) if (netif_msg_drv(priv))
dev_info(&spi->dev, "remove\n"); dev_info(dev, "remove\n");
unregister_netdev(priv->netdev); unregister_netdev(priv->netdev);
if (gpio_is_valid(priv->gpio)) if (gpio_is_valid(priv->gpio))
gpio_set_value(priv->gpio, 0); gpio_set_value(priv->gpio, 0);
regulator_disable(priv->vdd_reg); regulator_disable(priv->vdd_reg);
regulator_disable(priv->vdd_io); regulator_disable(priv->vdd_io);
free_netdev(priv->netdev);
return 0; return 0;
} }
static const struct of_device_id ks8851_match_table[] = {
{ .compatible = "micrel,ks8851" },
{ }
};
MODULE_DEVICE_TABLE(of, ks8851_match_table);
static struct spi_driver ks8851_driver = {
.driver = {
.name = "ks8851",
.of_match_table = ks8851_match_table,
.pm = &ks8851_pm_ops,
},
.probe = ks8851_probe,
.remove = ks8851_remove,
};
module_spi_driver(ks8851_driver);
MODULE_DESCRIPTION("KS8851 Network driver");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
MODULE_ALIAS("spi:ks8851");
// SPDX-License-Identifier: GPL-2.0-only
/**
* drivers/net/ethernet/micrel/ks8851_mll.c
* Copyright (c) 2009 Micrel Inc.
*/
/* Supports:
* KS8851 16bit MLL chip from Micrel Inc.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/crc32poly.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/ks8851_mll.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_net.h>
#include "ks8851.h"
#define DRV_NAME "ks8851_mll"
static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
#define MAX_RECV_FRAMES 255
#define MAX_BUF_SIZE 2048
#define TX_BUF_SIZE 2000
#define RX_BUF_SIZE 2000
#define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
RXCR1_RXMAFMA | RXCR1_RXPAFMA)
#define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
#define ENUM_BUS_NONE 0
#define ENUM_BUS_8BIT 1
#define ENUM_BUS_16BIT 2
#define ENUM_BUS_32BIT 3
#define MAX_MCAST_LST 32
#define HW_MCAST_SIZE 8
/**
* union ks_tx_hdr - tx header data
* @txb: The header as bytes
* @txw: The header as 16bit, little-endian words
*
* A dual representation of the tx header data to allow
* access to individual bytes, and to allow 16bit accesses
* with 16bit alignment.
*/
union ks_tx_hdr {
u8 txb[4];
__le16 txw[2];
};
/**
* struct ks_net - KS8851 driver private data
* @net_device : The network device we're bound to
* @hw_addr : start address of data register.
* @hw_addr_cmd : start address of command register.
* @txh : temporaly buffer to save status/length.
* @lock : Lock to ensure that the device is not accessed when busy.
* @pdev : Pointer to platform device.
* @mii : The MII state information for the mii calls.
* @frame_head_info : frame header information for multi-pkt rx.
* @statelock : Lock on this structure for tx list.
* @msg_enable : The message flags controlling driver output (see ethtool).
* @frame_cnt : number of frames received.
* @bus_width : i/o bus width.
* @rc_rxqcr : Cached copy of KS_RXQCR.
* @rc_txcr : Cached copy of KS_TXCR.
* @rc_ier : Cached copy of KS_IER.
* @sharedbus : Multipex(addr and data bus) mode indicator.
* @cmd_reg_cache : command register cached.
* @cmd_reg_cache_int : command register cached. Used in the irq handler.
* @promiscuous : promiscuous mode indicator.
* @all_mcast : mutlicast indicator.
* @mcast_lst_size : size of multicast list.
* @mcast_lst : multicast list.
* @mcast_bits : multicast enabed.
* @mac_addr : MAC address assigned to this device.
* @fid : frame id.
* @extra_byte : number of extra byte prepended rx pkt.
* @enabled : indicator this device works.
*
* The @lock ensures that the chip is protected when certain operations are
* in progress. When the read or write packet transfer is in progress, most
* of the chip registers are not accessible until the transfer is finished and
* the DMA has been de-asserted.
*
* The @statelock is used to protect information in the structure which may
* need to be accessed via several sources, such as the network driver layer
* or one of the work queues.
*
*/
/* Receive multiplex framer header info */
struct type_frame_head {
u16 sts; /* Frame status */
u16 len; /* Byte count */
};
struct ks_net {
struct net_device *netdev;
void __iomem *hw_addr;
void __iomem *hw_addr_cmd;
union ks_tx_hdr txh ____cacheline_aligned;
struct mutex lock; /* spinlock to be interrupt safe */
struct platform_device *pdev;
struct mii_if_info mii;
struct type_frame_head *frame_head_info;
spinlock_t statelock;
u32 msg_enable;
u32 frame_cnt;
int bus_width;
u16 rc_rxqcr;
u16 rc_txcr;
u16 rc_ier;
u16 sharedbus;
u16 cmd_reg_cache;
u16 cmd_reg_cache_int;
u16 promiscuous;
u16 all_mcast;
u16 mcast_lst_size;
u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN];
u8 mcast_bits[HW_MCAST_SIZE];
u8 mac_addr[6];
u8 fid;
u8 extra_byte;
u8 enabled;
};
static int msg_enable;
#define BE3 0x8000 /* Byte Enable 3 */
#define BE2 0x4000 /* Byte Enable 2 */
#define BE1 0x2000 /* Byte Enable 1 */
#define BE0 0x1000 /* Byte Enable 0 */
/* register read/write calls.
*
* All these calls issue transactions to access the chip's registers. They
* all require that the necessary lock is held to prevent accesses when the
* chip is busy transferring packet data (RX/TX FIFO accesses).
*/
/**
* ks_check_endian - Check whether endianness of the bus is correct
* @ks : The chip information
*
* The KS8851-16MLL EESK pin allows selecting the endianness of the 16bit
* bus. To maintain optimum performance, the bus endianness should be set
* such that it matches the endianness of the CPU.
*/
static int ks_check_endian(struct ks_net *ks)
{
u16 cider;
/*
* Read CIDER register first, however read it the "wrong" way around.
* If the endian strap on the KS8851-16MLL in incorrect and the chip
* is operating in different endianness than the CPU, then the meaning
* of BE[3:0] byte-enable bits is also swapped such that:
* BE[3,2,1,0] becomes BE[1,0,3,2]
*
* Luckily for us, the byte-enable bits are the top four MSbits of
* the address register and the CIDER register is at offset 0xc0.
* Hence, by reading address 0xc0c0, which is not impacted by endian
* swapping, we assert either BE[3:2] or BE[1:0] while reading the
* CIDER register.
*
* If the bus configuration is correct, reading 0xc0c0 asserts
* BE[3:2] and this read returns 0x0000, because to read register
* with bottom two LSbits of address set to 0, BE[1:0] must be
* asserted.
*
* If the bus configuration is NOT correct, reading 0xc0c0 asserts
* BE[1:0] and this read returns non-zero 0x8872 value.
*/
iowrite16(BE3 | BE2 | KS_CIDER, ks->hw_addr_cmd);
cider = ioread16(ks->hw_addr);
if (!cider)
return 0;
netdev_err(ks->netdev, "incorrect EESK endian strap setting\n");
return -EINVAL;
}
/**
* ks_rdreg16 - read 16 bit register from device
* @ks : The chip information
* @offset: The register address
*
* Read a 16bit register from the chip, returning the result
*/
static u16 ks_rdreg16(struct ks_net *ks, int offset)
{
ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
return ioread16(ks->hw_addr);
}
/**
* ks_wrreg16 - write 16bit register value to chip
* @ks: The chip information
* @offset: The register address
* @value: The value to write
*
*/
static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
{
ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
iowrite16(value, ks->hw_addr);
}
/**
* ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
* @ks: The chip state
* @wptr: buffer address to save data
* @len: length in byte to read
*
*/
static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
*wptr++ = (u16)ioread16(ks->hw_addr);
}
/**
* ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
* @ks: The chip information
* @wptr: buffer address
* @len: length in byte to write
*
*/
static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
iowrite16(*wptr++, ks->hw_addr);
}
static void ks_disable_int(struct ks_net *ks)
{
ks_wrreg16(ks, KS_IER, 0x0000);
} /* ks_disable_int */
static void ks_enable_int(struct ks_net *ks)
{
ks_wrreg16(ks, KS_IER, ks->rc_ier);
} /* ks_enable_int */
/**
* ks_tx_fifo_space - return the available hardware buffer size.
* @ks: The chip information
*
*/
static inline u16 ks_tx_fifo_space(struct ks_net *ks)
{
return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
}
/**
* ks_save_cmd_reg - save the command register from the cache.
* @ks: The chip information
*
*/
static inline void ks_save_cmd_reg(struct ks_net *ks)
{
/*ks8851 MLL has a bug to read back the command register.
* So rely on software to save the content of command register.
*/
ks->cmd_reg_cache_int = ks->cmd_reg_cache;
}
/**
* ks_restore_cmd_reg - restore the command register from the cache and
* write to hardware register.
* @ks: The chip information
*
*/
static inline void ks_restore_cmd_reg(struct ks_net *ks)
{
ks->cmd_reg_cache = ks->cmd_reg_cache_int;
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
}
/**
* ks_set_powermode - set power mode of the device
* @ks: The chip information
* @pwrmode: The power mode value to write to KS_PMECR.
*
* Change the power mode of the chip.
*/
static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
{
unsigned pmecr;
netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
ks_rdreg16(ks, KS_GRR);
pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_PM_MASK;
pmecr |= pwrmode;
ks_wrreg16(ks, KS_PMECR, pmecr);
}
/**
* ks_read_config - read chip configuration of bus width.
* @ks: The chip information
*
*/
static void ks_read_config(struct ks_net *ks)
{
u16 reg_data = 0;
/* Regardless of bus width, 8 bit read should always work.*/
reg_data = ks_rdreg16(ks, KS_CCR);
/* addr/data bus are multiplexed */
ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
/* There are garbage data when reading data from QMU,
depending on bus-width.
*/
if (reg_data & CCR_8BIT) {
ks->bus_width = ENUM_BUS_8BIT;
ks->extra_byte = 1;
} else if (reg_data & CCR_16BIT) {
ks->bus_width = ENUM_BUS_16BIT;
ks->extra_byte = 2;
} else {
ks->bus_width = ENUM_BUS_32BIT;
ks->extra_byte = 4;
}
}
/**
* ks_soft_reset - issue one of the soft reset to the device
* @ks: The device state.
* @op: The bit(s) to set in the GRR
*
* Issue the relevant soft-reset command to the device's GRR register
* specified by @op.
*
* Note, the delays are in there as a caution to ensure that the reset
* has time to take effect and then complete. Since the datasheet does
* not currently specify the exact sequence, we have chosen something
* that seems to work with our device.
*/
static void ks_soft_reset(struct ks_net *ks, unsigned op)
{
/* Disable interrupt first */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_GRR, op);
mdelay(10); /* wait a short time to effect reset */
ks_wrreg16(ks, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
static void ks_enable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Enables QMU Transmit (TXCR). */
ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
/*
* RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
* Enable
*/
w = ks_rdreg16(ks, KS_RXQCR);
ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
/* Enables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
ks->enabled = true;
} /* ks_enable_qmu */
static void ks_disable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Disables QMU Transmit (TXCR). */
w &= ~TXCR_TXE;
ks_wrreg16(ks, KS_TXCR, w);
/* Disables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
w &= ~RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, w);
ks->enabled = false;
} /* ks_disable_qmu */
/**
* ks_read_qmu - read 1 pkt data from the QMU.
* @ks: The chip information
* @buf: buffer address to save 1 pkt
* @len: Pkt length
* Here is the sequence to read 1 pkt:
* 1. set sudo DMA mode
* 2. read prepend data
* 3. read pkt data
* 4. reset sudo DMA Mode
*/
static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
{
u32 r = ks->extra_byte & 0x1 ;
u32 w = ks->extra_byte - r;
/* 1. set sudo DMA mode */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
/* 2. read prepend data */
/**
* read 4 + extra bytes and discard them.
* extra bytes for dummy, 2 for status, 2 for len
*/
/* use likely(r) for 8 bit access for performance */
if (unlikely(r))
ioread8(ks->hw_addr);
ks_inblk(ks, buf, w + 2 + 2);
/* 3. read pkt data */
ks_inblk(ks, buf, ALIGN(len, 4));
/* 4. reset sudo DMA Mode */
ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
}
/**
* ks_rcv - read multiple pkts data from the QMU.
* @ks: The chip information
* @netdev: The network device being opened.
*
* Read all of header information before reading pkt content.
* It is not allowed only port of pkts in QMU after issuing
* interrupt ack.
*/
static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
{
u32 i;
struct type_frame_head *frame_hdr = ks->frame_head_info;
struct sk_buff *skb;
ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
/* read all header information */
for (i = 0; i < ks->frame_cnt; i++) {
/* Checking Received packet status */
frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
/* Get packet len from hardware */
frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
frame_hdr++;
}
frame_hdr = ks->frame_head_info;
while (ks->frame_cnt--) {
if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
frame_hdr->len >= RX_BUF_SIZE ||
frame_hdr->len <= 0)) {
/* discard an invalid packet */
ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
netdev->stats.rx_dropped++;
if (!(frame_hdr->sts & RXFSHR_RXFV))
netdev->stats.rx_frame_errors++;
else
netdev->stats.rx_length_errors++;
frame_hdr++;
continue;
}
skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
if (likely(skb)) {
skb_reserve(skb, 2);
/* read data block including CRC 4 bytes */
ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
skb_put(skb, frame_hdr->len - 4);
skb->protocol = eth_type_trans(skb, netdev);
netif_rx(skb);
/* exclude CRC size */
netdev->stats.rx_bytes += frame_hdr->len - 4;
netdev->stats.rx_packets++;
} else {
ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
netdev->stats.rx_dropped++;
}
frame_hdr++;
}
}
/**
* ks_update_link_status - link status update.
* @netdev: The network device being opened.
* @ks: The chip information
*
*/
static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
{
/* check the status of the link */
u32 link_up_status;
if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
netif_carrier_on(netdev);
link_up_status = true;
} else {
netif_carrier_off(netdev);
link_up_status = false;
}
netif_dbg(ks, link, ks->netdev,
"%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
}
/**
* ks_irq - device interrupt handler
* @irq: Interrupt number passed from the IRQ handler.
* @pw: The private word passed to register_irq(), our struct ks_net.
*
* This is the handler invoked to find out what happened
*
* Read the interrupt status, work out what needs to be done and then clear
* any of the interrupts that are not needed.
*/
static irqreturn_t ks_irq(int irq, void *pw)
{
struct net_device *netdev = pw;
struct ks_net *ks = netdev_priv(netdev);
unsigned long flags;
u16 status;
spin_lock_irqsave(&ks->statelock, flags);
/*this should be the first in IRQ handler */
ks_save_cmd_reg(ks);
status = ks_rdreg16(ks, KS_ISR);
if (unlikely(!status)) {
ks_restore_cmd_reg(ks);
spin_unlock_irqrestore(&ks->statelock, flags);
return IRQ_NONE;
}
ks_wrreg16(ks, KS_ISR, status);
if (likely(status & IRQ_RXI))
ks_rcv(ks, netdev);
if (unlikely(status & IRQ_LCI))
ks_update_link_status(netdev, ks);
if (unlikely(status & IRQ_TXI))
netif_wake_queue(netdev);
if (unlikely(status & IRQ_LDI)) {
u16 pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_WKEVT_MASK;
ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
}
if (unlikely(status & IRQ_RXOI))
ks->netdev->stats.rx_over_errors++;
/* this should be the last in IRQ handler*/
ks_restore_cmd_reg(ks);
spin_unlock_irqrestore(&ks->statelock, flags);
return IRQ_HANDLED;
}
/**
* ks_net_open - open network device
* @netdev: The network device being opened.
*
* Called when the network device is marked active, such as a user executing
* 'ifconfig up' on the device.
*/
static int ks_net_open(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
int err;
#define KS_INT_FLAGS IRQF_TRIGGER_LOW
/* lock the card, even if we may not actually do anything
* else at the moment.
*/
netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
/* reset the HW */
err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
if (err) {
pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
return err;
}
/* wake up powermode to normal mode */
ks_set_powermode(ks, PMECR_PM_NORMAL);
mdelay(1); /* wait for normal mode to take effect */
ks_wrreg16(ks, KS_ISR, 0xffff);
ks_enable_int(ks);
ks_enable_qmu(ks);
netif_start_queue(ks->netdev);
netif_dbg(ks, ifup, ks->netdev, "network device up\n");
return 0;
}
/**
* ks_net_stop - close network device
* @netdev: The device being closed.
*
* Called to close down a network device which has been active. Cancell any
* work, shutdown the RX and TX process and then place the chip into a low
* power state whilst it is not being used.
*/
static int ks_net_stop(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
netif_info(ks, ifdown, netdev, "shutting down\n");
netif_stop_queue(netdev);
mutex_lock(&ks->lock);
/* turn off the IRQs and ack any outstanding */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_ISR, 0xffff);
/* shutdown RX/TX QMU */
ks_disable_qmu(ks);
ks_disable_int(ks);
/* set powermode to soft power down to save power */
ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
free_irq(netdev->irq, netdev);
mutex_unlock(&ks->lock);
return 0;
}
/**
* ks_write_qmu - write 1 pkt data to the QMU.
* @ks: The chip information
* @pdata: buffer address to save 1 pkt
* @len: Pkt length in byte
* Here is the sequence to write 1 pkt:
* 1. set sudo DMA mode
* 2. write status/length
* 3. write pkt data
* 4. reset sudo DMA Mode
* 5. reset sudo DMA mode
* 6. Wait until pkt is out
*/
static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
{
/* start header at txb[0] to align txw entries */
ks->txh.txw[0] = 0;
ks->txh.txw[1] = cpu_to_le16(len);
/* 1. set sudo-DMA mode */
ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
/* 2. write status/lenth info */
ks_outblk(ks, ks->txh.txw, 4);
/* 3. write pkt data */
ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
/* 4. reset sudo-DMA mode */
ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
/* 6. wait until TXQCR_METFE is auto-cleared */
while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
;
}
/**
* ks_start_xmit - transmit packet
* @skb : The buffer to transmit
* @netdev : The device used to transmit the packet.
*
* Called by the network layer to transmit the @skb.
* spin_lock_irqsave is required because tx and rx should be mutual exclusive.
* So while tx is in-progress, prevent IRQ interrupt from happenning.
*/
static netdev_tx_t ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
netdev_tx_t retv = NETDEV_TX_OK;
struct ks_net *ks = netdev_priv(netdev);
unsigned long flags;
spin_lock_irqsave(&ks->statelock, flags);
/* Extra space are required:
* 4 byte for alignment, 4 for status/length, 4 for CRC
*/
if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
ks_write_qmu(ks, skb->data, skb->len);
/* add tx statistics */
netdev->stats.tx_bytes += skb->len;
netdev->stats.tx_packets++;
dev_kfree_skb(skb);
} else
retv = NETDEV_TX_BUSY;
spin_unlock_irqrestore(&ks->statelock, flags);
return retv;
}
/**
* ks_start_rx - ready to serve pkts
* @ks : The chip information
*
*/
static void ks_start_rx(struct ks_net *ks)
{
u16 cntl;
/* Enables QMU Receive (RXCR1). */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl |= RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, cntl);
} /* ks_start_rx */
/**
* ks_stop_rx - stop to serve pkts
* @ks : The chip information
*
*/
static void ks_stop_rx(struct ks_net *ks)
{
u16 cntl;
/* Disables QMU Receive (RXCR1). */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, cntl);
} /* ks_stop_rx */
static unsigned long const ethernet_polynomial = CRC32_POLY_BE;
static unsigned long ether_gen_crc(int length, u8 *data)
{
long crc = -1;
while (--length >= 0) {
u8 current_octet = *data++;
int bit;
for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
crc = (crc << 1) ^
((crc < 0) ^ (current_octet & 1) ?
ethernet_polynomial : 0);
}
}
return (unsigned long)crc;
} /* ether_gen_crc */
/**
* ks_set_grpaddr - set multicast information
* @ks : The chip information
*/
static void ks_set_grpaddr(struct ks_net *ks)
{
u8 i;
u32 index, position, value;
memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
for (i = 0; i < ks->mcast_lst_size; i++) {
position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
index = position >> 3;
value = 1 << (position & 7);
ks->mcast_bits[index] |= (u8)value;
}
for (i = 0; i < HW_MCAST_SIZE; i++) {
if (i & 1) {
ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
(ks->mcast_bits[i] << 8) |
ks->mcast_bits[i - 1]);
}
}
} /* ks_set_grpaddr */
/**
* ks_clear_mcast - clear multicast information
*
* @ks : The chip information
* This routine removes all mcast addresses set in the hardware.
*/
static void ks_clear_mcast(struct ks_net *ks)
{
u16 i, mcast_size;
for (i = 0; i < HW_MCAST_SIZE; i++)
ks->mcast_bits[i] = 0;
mcast_size = HW_MCAST_SIZE >> 2;
for (i = 0; i < mcast_size; i++)
ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
}
static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
{
u16 cntl;
ks->promiscuous = promiscuous_mode;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_FILTER_MASK;
if (promiscuous_mode)
/* Enable Promiscuous mode */
cntl |= RXCR1_RXAE | RXCR1_RXINVF;
else
/* Disable Promiscuous mode (default normal mode) */
cntl |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, cntl);
if (ks->enabled)
ks_start_rx(ks);
} /* ks_set_promis */
static void ks_set_mcast(struct ks_net *ks, u16 mcast)
{
u16 cntl;
ks->all_mcast = mcast;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_FILTER_MASK;
if (mcast)
/* Enable "Perfect with Multicast address passed mode" */
cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
else
/**
* Disable "Perfect with Multicast address passed
* mode" (normal mode).
*/
cntl |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, cntl);
if (ks->enabled)
ks_start_rx(ks);
} /* ks_set_mcast */
static void ks_set_rx_mode(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
struct netdev_hw_addr *ha;
/* Turn on/off promiscuous mode. */
if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
ks_set_promis(ks,
(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
/* Turn on/off all mcast mode. */
else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
ks_set_mcast(ks,
(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
else
ks_set_promis(ks, false);
if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
int i = 0;
netdev_for_each_mc_addr(ha, netdev) {
if (i >= MAX_MCAST_LST)
break;
memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
}
ks->mcast_lst_size = (u8)i;
ks_set_grpaddr(ks);
} else {
/**
* List too big to support so
* turn on all mcast mode.
*/
ks->mcast_lst_size = MAX_MCAST_LST;
ks_set_mcast(ks, true);
}
} else {
ks->mcast_lst_size = 0;
ks_clear_mcast(ks);
}
} /* ks_set_rx_mode */
static void ks_set_mac(struct ks_net *ks, u8 *data)
{
u16 *pw = (u16 *)data;
u16 w, u;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
u = *pw++;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARH, w);
u = *pw++;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARM, w);
u = *pw;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARL, w);
memcpy(ks->mac_addr, data, ETH_ALEN);
if (ks->enabled)
ks_start_rx(ks);
}
static int ks_set_mac_address(struct net_device *netdev, void *paddr)
{
struct ks_net *ks = netdev_priv(netdev);
struct sockaddr *addr = paddr;
u8 *da;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
da = (u8 *)netdev->dev_addr;
ks_set_mac(ks, da);
return 0;
}
static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
{
struct ks_net *ks = netdev_priv(netdev);
if (!netif_running(netdev))
return -EINVAL;
return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}
static const struct net_device_ops ks_netdev_ops = {
.ndo_open = ks_net_open,
.ndo_stop = ks_net_stop,
.ndo_do_ioctl = ks_net_ioctl,
.ndo_start_xmit = ks_start_xmit,
.ndo_set_mac_address = ks_set_mac_address,
.ndo_set_rx_mode = ks_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
};
/* ethtool support */
static void ks_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *di)
{
strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
strlcpy(di->version, "1.00", sizeof(di->version));
strlcpy(di->bus_info, dev_name(netdev->dev.parent),
sizeof(di->bus_info));
}
static u32 ks_get_msglevel(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return ks->msg_enable;
}
static void ks_set_msglevel(struct net_device *netdev, u32 to)
{
struct ks_net *ks = netdev_priv(netdev);
ks->msg_enable = to;
}
static int ks_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct ks_net *ks = netdev_priv(netdev);
mii_ethtool_get_link_ksettings(&ks->mii, cmd);
return 0;
}
static int ks_set_link_ksettings(struct net_device *netdev,
const struct ethtool_link_ksettings *cmd)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
}
static u32 ks_get_link(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_link_ok(&ks->mii);
}
static int ks_nway_reset(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_nway_restart(&ks->mii);
}
static const struct ethtool_ops ks_ethtool_ops = {
.get_drvinfo = ks_get_drvinfo,
.get_msglevel = ks_get_msglevel,
.set_msglevel = ks_set_msglevel,
.get_link = ks_get_link,
.nway_reset = ks_nway_reset,
.get_link_ksettings = ks_get_link_ksettings,
.set_link_ksettings = ks_set_link_ksettings,
};
/* MII interface controls */
/**
* ks_phy_reg - convert MII register into a KS8851 register
* @reg: MII register number.
*
* Return the KS8851 register number for the corresponding MII PHY register
* if possible. Return zero if the MII register has no direct mapping to the
* KS8851 register set.
*/
static int ks_phy_reg(int reg)
{
switch (reg) {
case MII_BMCR:
return KS_P1MBCR;
case MII_BMSR:
return KS_P1MBSR;
case MII_PHYSID1:
return KS_PHY1ILR;
case MII_PHYSID2:
return KS_PHY1IHR;
case MII_ADVERTISE:
return KS_P1ANAR;
case MII_LPA:
return KS_P1ANLPR;
}
return 0x0;
}
/**
* ks_phy_read - MII interface PHY register read.
* @netdev: The network device the PHY is on.
* @phy_addr: Address of PHY (ignored as we only have one)
* @reg: The register to read.
*
* This call reads data from the PHY register specified in @reg. Since the
* device does not support all the MII registers, the non-existent values
* are always returned as zero.
*
* We return zero for unsupported registers as the MII code does not check
* the value returned for any error status, and simply returns it to the
* caller. The mii-tool that the driver was tested with takes any -ve error
* as real PHY capabilities, thus displaying incorrect data to the user.
*/
static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
{
struct ks_net *ks = netdev_priv(netdev);
int ksreg;
int result;
ksreg = ks_phy_reg(reg);
if (!ksreg)
return 0x0; /* no error return allowed, so use zero */
mutex_lock(&ks->lock);
result = ks_rdreg16(ks, ksreg);
mutex_unlock(&ks->lock);
return result;
}
static void ks_phy_write(struct net_device *netdev,
int phy, int reg, int value)
{
struct ks_net *ks = netdev_priv(netdev);
int ksreg;
ksreg = ks_phy_reg(reg);
if (ksreg) {
mutex_lock(&ks->lock);
ks_wrreg16(ks, ksreg, value);
mutex_unlock(&ks->lock);
}
}
/**
* ks_read_selftest - read the selftest memory info.
* @ks: The device state
*
* Read and check the TX/RX memory selftest information.
*/
static int ks_read_selftest(struct ks_net *ks)
{
unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
int ret = 0;
unsigned rd;
rd = ks_rdreg16(ks, KS_MBIR);
if ((rd & both_done) != both_done) {
netdev_warn(ks->netdev, "Memory selftest not finished\n");
return 0;
}
if (rd & MBIR_TXMBFA) {
netdev_err(ks->netdev, "TX memory selftest fails\n");
ret |= 1;
}
if (rd & MBIR_RXMBFA) {
netdev_err(ks->netdev, "RX memory selftest fails\n");
ret |= 2;
}
netdev_info(ks->netdev, "the selftest passes\n");
return ret;
}
static void ks_setup(struct ks_net *ks)
{
u16 w;
/**
* Configure QMU Transmit
*/
/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
/* Setup Receive Frame Data Pointer Auto-Increment */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_RXFCT_MASK);
/* Setup RxQ Command Control (RXQCR) */
ks->rc_rxqcr = RXQCR_CMD_CNTL;
ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
/**
* set the force mode to half duplex, default is full duplex
* because if the auto-negotiation fails, most switch uses
* half-duplex.
*/
w = ks_rdreg16(ks, KS_P1MBCR);
w &= ~BMCR_FULLDPLX;
ks_wrreg16(ks, KS_P1MBCR, w);
w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
ks_wrreg16(ks, KS_TXCR, w);
w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
if (ks->promiscuous) /* bPromiscuous */
w |= (RXCR1_RXAE | RXCR1_RXINVF);
else if (ks->all_mcast) /* Multicast address passed mode */
w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
else /* Normal mode */
w |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, w);
} /*ks_setup */
static void ks_setup_int(struct ks_net *ks)
{
ks->rc_ier = 0x00;
/* Clear the interrupts status of the hardware. */
ks_wrreg16(ks, KS_ISR, 0xffff);
/* Enables the interrupts of the hardware. */
ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
} /* ks_setup_int */
static int ks_hw_init(struct ks_net *ks)
{
#define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
ks->promiscuous = 0;
ks->all_mcast = 0;
ks->mcast_lst_size = 0;
ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
GFP_KERNEL);
if (!ks->frame_head_info)
return false;
ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
return true;
}
#if defined(CONFIG_OF)
static const struct of_device_id ks8851_ml_dt_ids[] = {
{ .compatible = "micrel,ks8851-mll" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
#endif
static int ks8851_probe(struct platform_device *pdev)
{
int err;
struct net_device *netdev;
struct ks_net *ks;
u16 id, data;
const char *mac;
netdev = alloc_etherdev(sizeof(struct ks_net));
if (!netdev)
return -ENOMEM;
SET_NETDEV_DEV(netdev, &pdev->dev);
ks = netdev_priv(netdev);
ks->netdev = netdev;
ks->hw_addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ks->hw_addr)) {
err = PTR_ERR(ks->hw_addr);
goto err_free;
}
ks->hw_addr_cmd = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(ks->hw_addr_cmd)) {
err = PTR_ERR(ks->hw_addr_cmd);
goto err_free;
}
err = ks_check_endian(ks);
if (err)
goto err_free;
netdev->irq = platform_get_irq(pdev, 0);
if ((int)netdev->irq < 0) {
err = netdev->irq;
goto err_free;
}
ks->pdev = pdev;
mutex_init(&ks->lock);
spin_lock_init(&ks->statelock);
netdev->netdev_ops = &ks_netdev_ops;
netdev->ethtool_ops = &ks_ethtool_ops;
/* setup mii state */
ks->mii.dev = netdev;
ks->mii.phy_id = 1,
ks->mii.phy_id_mask = 1;
ks->mii.reg_num_mask = 0xf;
ks->mii.mdio_read = ks_phy_read;
ks->mii.mdio_write = ks_phy_write;
netdev_info(netdev, "message enable is %d\n", msg_enable);
/* set the default message enable */
ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
NETIF_MSG_PROBE |
NETIF_MSG_LINK));
ks_read_config(ks);
/* simple check for a valid chip being connected to the bus */
if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
netdev_err(netdev, "failed to read device ID\n");
err = -ENODEV;
goto err_free;
}
if (ks_read_selftest(ks)) {
netdev_err(netdev, "failed to read device ID\n");
err = -ENODEV;
goto err_free;
}
err = register_netdev(netdev);
if (err)
goto err_free;
platform_set_drvdata(pdev, netdev);
ks_soft_reset(ks, GRR_GSR);
ks_hw_init(ks);
ks_disable_qmu(ks);
ks_setup(ks);
ks_setup_int(ks);
data = ks_rdreg16(ks, KS_OBCR);
ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16mA);
/* overwriting the default MAC address */
if (pdev->dev.of_node) {
mac = of_get_mac_address(pdev->dev.of_node);
if (!IS_ERR(mac))
ether_addr_copy(ks->mac_addr, mac);
} else {
struct ks8851_mll_platform_data *pdata;
pdata = dev_get_platdata(&pdev->dev);
if (!pdata) {
netdev_err(netdev, "No platform data\n");
err = -ENODEV;
goto err_pdata;
}
memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
}
if (!is_valid_ether_addr(ks->mac_addr)) {
/* Use random MAC address if none passed */
eth_random_addr(ks->mac_addr);
netdev_info(netdev, "Using random mac address\n");
}
netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
ks_set_mac(ks, netdev->dev_addr);
id = ks_rdreg16(ks, KS_CIDER);
netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
(id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
return 0;
err_pdata:
unregister_netdev(netdev);
err_free:
free_netdev(netdev);
return err;
}
static int ks8851_remove(struct platform_device *pdev)
{
struct net_device *netdev = platform_get_drvdata(pdev);
unregister_netdev(netdev);
free_netdev(netdev);
return 0;
}
static struct platform_driver ks8851_platform_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(ks8851_ml_dt_ids),
},
.probe = ks8851_probe,
.remove = ks8851_remove,
};
module_platform_driver(ks8851_platform_driver);
MODULE_DESCRIPTION("KS8851 MLL Network driver");
MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
// SPDX-License-Identifier: GPL-2.0-only
/* drivers/net/ethernet/micrel/ks8851.c
*
* Copyright 2009 Simtec Electronics
* http://www.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DEBUG
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/iopoll.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <linux/of_net.h>
#include "ks8851.h"
static int msg_enable;
#define BE3 0x8000 /* Byte Enable 3 */
#define BE2 0x4000 /* Byte Enable 2 */
#define BE1 0x2000 /* Byte Enable 1 */
#define BE0 0x1000 /* Byte Enable 0 */
/**
* struct ks8851_net_par - KS8851 Parallel driver private data
* @ks8851: KS8851 driver common private data
* @lock: Lock to ensure that the device is not accessed when busy.
* @hw_addr : start address of data register.
* @hw_addr_cmd : start address of command register.
* @cmd_reg_cache : command register cached.
*
* The @lock ensures that the chip is protected when certain operations are
* in progress. When the read or write packet transfer is in progress, most
* of the chip registers are not accessible until the transfer is finished
* and the DMA has been de-asserted.
*/
struct ks8851_net_par {
struct ks8851_net ks8851;
spinlock_t lock;
void __iomem *hw_addr;
void __iomem *hw_addr_cmd;
u16 cmd_reg_cache;
};
#define to_ks8851_par(ks) container_of((ks), struct ks8851_net_par, ks8851)
/**
* ks8851_lock_par - register access lock
* @ks: The chip state
* @flags: Spinlock flags
*
* Claim chip register access lock
*/
static void ks8851_lock_par(struct ks8851_net *ks, unsigned long *flags)
{
struct ks8851_net_par *ksp = to_ks8851_par(ks);
spin_lock_irqsave(&ksp->lock, *flags);
}
/**
* ks8851_unlock_par - register access unlock
* @ks: The chip state
* @flags: Spinlock flags
*
* Release chip register access lock
*/
static void ks8851_unlock_par(struct ks8851_net *ks, unsigned long *flags)
{
struct ks8851_net_par *ksp = to_ks8851_par(ks);
spin_unlock_irqrestore(&ksp->lock, *flags);
}
/**
* ks_check_endian - Check whether endianness of the bus is correct
* @ks : The chip information
*
* The KS8851-16MLL EESK pin allows selecting the endianness of the 16bit
* bus. To maintain optimum performance, the bus endianness should be set
* such that it matches the endianness of the CPU.
*/
static int ks_check_endian(struct ks8851_net *ks)
{
struct ks8851_net_par *ksp = to_ks8851_par(ks);
u16 cider;
/*
* Read CIDER register first, however read it the "wrong" way around.
* If the endian strap on the KS8851-16MLL in incorrect and the chip
* is operating in different endianness than the CPU, then the meaning
* of BE[3:0] byte-enable bits is also swapped such that:
* BE[3,2,1,0] becomes BE[1,0,3,2]
*
* Luckily for us, the byte-enable bits are the top four MSbits of
* the address register and the CIDER register is at offset 0xc0.
* Hence, by reading address 0xc0c0, which is not impacted by endian
* swapping, we assert either BE[3:2] or BE[1:0] while reading the
* CIDER register.
*
* If the bus configuration is correct, reading 0xc0c0 asserts
* BE[3:2] and this read returns 0x0000, because to read register
* with bottom two LSbits of address set to 0, BE[1:0] must be
* asserted.
*
* If the bus configuration is NOT correct, reading 0xc0c0 asserts
* BE[1:0] and this read returns non-zero 0x8872 value.
*/
iowrite16(BE3 | BE2 | KS_CIDER, ksp->hw_addr_cmd);
cider = ioread16(ksp->hw_addr);
if (!cider)
return 0;
netdev_err(ks->netdev, "incorrect EESK endian strap setting\n");
return -EINVAL;
}
/**
* ks8851_wrreg16_par - write 16bit register value to chip
* @ks: The chip state
* @reg: The register address
* @val: The value to write
*
* Issue a write to put the value @val into the register specified in @reg.
*/
static void ks8851_wrreg16_par(struct ks8851_net *ks, unsigned int reg,
unsigned int val)
{
struct ks8851_net_par *ksp = to_ks8851_par(ks);
ksp->cmd_reg_cache = (u16)reg | ((BE1 | BE0) << (reg & 0x02));
iowrite16(ksp->cmd_reg_cache, ksp->hw_addr_cmd);
iowrite16(val, ksp->hw_addr);
}
/**
* ks8851_rdreg16_par - read 16 bit register from chip
* @ks: The chip information
* @reg: The register address
*
* Read a 16bit register from the chip, returning the result
*/
static unsigned int ks8851_rdreg16_par(struct ks8851_net *ks, unsigned int reg)
{
struct ks8851_net_par *ksp = to_ks8851_par(ks);
ksp->cmd_reg_cache = (u16)reg | ((BE1 | BE0) << (reg & 0x02));
iowrite16(ksp->cmd_reg_cache, ksp->hw_addr_cmd);
return ioread16(ksp->hw_addr);
}
/**
* ks8851_rdfifo_par - read data from the receive fifo
* @ks: The device state.
* @buff: The buffer address
* @len: The length of the data to read
*
* Issue an RXQ FIFO read command and read the @len amount of data from
* the FIFO into the buffer specified by @buff.
*/
static void ks8851_rdfifo_par(struct ks8851_net *ks, u8 *buff, unsigned int len)
{
struct ks8851_net_par *ksp = to_ks8851_par(ks);
netif_dbg(ks, rx_status, ks->netdev,
"%s: %d@%p\n", __func__, len, buff);
ioread16_rep(ksp->hw_addr, (u16 *)buff + 1, len / 2);
}
/**
* ks8851_wrfifo_par - write packet to TX FIFO
* @ks: The device state.
* @txp: The sk_buff to transmit.
* @irq: IRQ on completion of the packet.
*
* Send the @txp to the chip. This means creating the relevant packet header
* specifying the length of the packet and the other information the chip
* needs, such as IRQ on completion. Send the header and the packet data to
* the device.
*/
static void ks8851_wrfifo_par(struct ks8851_net *ks, struct sk_buff *txp,
bool irq)
{
struct ks8851_net_par *ksp = to_ks8851_par(ks);
unsigned int len = ALIGN(txp->len, 4);
unsigned int fid = 0;
netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
__func__, txp, txp->len, txp->data, irq);
fid = ks->fid++;
fid &= TXFR_TXFID_MASK;
if (irq)
fid |= TXFR_TXIC; /* irq on completion */
iowrite16(fid, ksp->hw_addr);
iowrite16(txp->len, ksp->hw_addr);
iowrite16_rep(ksp->hw_addr, txp->data, len / 2);
}
/**
* ks8851_rx_skb_par - receive skbuff
* @ks: The device state.
* @skb: The skbuff
*/
static void ks8851_rx_skb_par(struct ks8851_net *ks, struct sk_buff *skb)
{
netif_rx(skb);
}
static unsigned int ks8851_rdreg16_par_txqcr(struct ks8851_net *ks)
{
return ks8851_rdreg16_par(ks, KS_TXQCR);
}
/**
* ks8851_start_xmit_par - transmit packet
* @skb: The buffer to transmit
* @dev: The device used to transmit the packet.
*
* Called by the network layer to transmit the @skb. Queue the packet for
* the device and schedule the necessary work to transmit the packet when
* it is free.
*
* We do this to firstly avoid sleeping with the network device locked,
* and secondly so we can round up more than one packet to transmit which
* means we can try and avoid generating too many transmit done interrupts.
*/
static netdev_tx_t ks8851_start_xmit_par(struct sk_buff *skb,
struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
netdev_tx_t ret = NETDEV_TX_OK;
unsigned long flags;
unsigned int txqcr;
u16 txmir;
int err;
netif_dbg(ks, tx_queued, ks->netdev,
"%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
ks8851_lock_par(ks, &flags);
txmir = ks8851_rdreg16_par(ks, KS_TXMIR) & 0x1fff;
if (likely(txmir >= skb->len + 12)) {
ks8851_wrreg16_par(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
ks8851_wrfifo_par(ks, skb, false);
ks8851_wrreg16_par(ks, KS_RXQCR, ks->rc_rxqcr);
ks8851_wrreg16_par(ks, KS_TXQCR, TXQCR_METFE);
err = readx_poll_timeout_atomic(ks8851_rdreg16_par_txqcr, ks,
txqcr, !(txqcr & TXQCR_METFE),
5, 1000000);
if (err)
ret = NETDEV_TX_BUSY;
ks8851_done_tx(ks, skb);
} else {
ret = NETDEV_TX_BUSY;
}
ks8851_unlock_par(ks, &flags);
return ret;
}
static int ks8851_probe_par(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ks8851_net_par *ksp;
struct net_device *netdev;
struct ks8851_net *ks;
int ret;
netdev = devm_alloc_etherdev(dev, sizeof(struct ks8851_net_par));
if (!netdev)
return -ENOMEM;
ks = netdev_priv(netdev);
ks->lock = ks8851_lock_par;
ks->unlock = ks8851_unlock_par;
ks->rdreg16 = ks8851_rdreg16_par;
ks->wrreg16 = ks8851_wrreg16_par;
ks->rdfifo = ks8851_rdfifo_par;
ks->wrfifo = ks8851_wrfifo_par;
ks->start_xmit = ks8851_start_xmit_par;
ks->rx_skb = ks8851_rx_skb_par;
#define STD_IRQ (IRQ_LCI | /* Link Change */ \
IRQ_RXI | /* RX done */ \
IRQ_RXPSI) /* RX process stop */
ks->rc_ier = STD_IRQ;
ksp = to_ks8851_par(ks);
spin_lock_init(&ksp->lock);
ksp->hw_addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ksp->hw_addr))
return PTR_ERR(ksp->hw_addr);
ksp->hw_addr_cmd = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(ksp->hw_addr_cmd))
return PTR_ERR(ksp->hw_addr_cmd);
ret = ks_check_endian(ks);
if (ret)
return ret;
netdev->irq = platform_get_irq(pdev, 0);
return ks8851_probe_common(netdev, dev, msg_enable);
}
static int ks8851_remove_par(struct platform_device *pdev)
{
return ks8851_remove_common(&pdev->dev);
}
static const struct of_device_id ks8851_match_table[] = {
{ .compatible = "micrel,ks8851-mll" },
{ }
};
MODULE_DEVICE_TABLE(of, ks8851_match_table);
static struct platform_driver ks8851_driver = {
.driver = {
.name = "ks8851",
.of_match_table = ks8851_match_table,
.pm = &ks8851_pm_ops,
},
.probe = ks8851_probe_par,
.remove = ks8851_remove_par,
};
module_platform_driver(ks8851_driver);
MODULE_DESCRIPTION("KS8851 Network driver");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
// SPDX-License-Identifier: GPL-2.0-only
/* drivers/net/ethernet/micrel/ks8851.c
*
* Copyright 2009 Simtec Electronics
* http://www.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DEBUG
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of_net.h>
#include "ks8851.h"
static int msg_enable;
/**
* struct ks8851_net_spi - KS8851 SPI driver private data
* @lock: Lock to ensure that the device is not accessed when busy.
* @tx_work: Work queue for tx packets
* @ks8851: KS8851 driver common private data
* @spidev: The spi device we're bound to.
* @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
* @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
* @spi_xfer1: @spi_msg1 SPI transfer structure
* @spi_xfer2: @spi_msg2 SPI transfer structure
*
* The @lock ensures that the chip is protected when certain operations are
* in progress. When the read or write packet transfer is in progress, most
* of the chip registers are not ccessible until the transfer is finished and
* the DMA has been de-asserted.
*/
struct ks8851_net_spi {
struct ks8851_net ks8851;
struct mutex lock;
struct work_struct tx_work;
struct spi_device *spidev;
struct spi_message spi_msg1;
struct spi_message spi_msg2;
struct spi_transfer spi_xfer1;
struct spi_transfer spi_xfer2[2];
};
#define to_ks8851_spi(ks) container_of((ks), struct ks8851_net_spi, ks8851)
/* SPI frame opcodes */
#define KS_SPIOP_RD 0x00
#define KS_SPIOP_WR 0x40
#define KS_SPIOP_RXFIFO 0x80
#define KS_SPIOP_TXFIFO 0xC0
/* shift for byte-enable data */
#define BYTE_EN(_x) ((_x) << 2)
/* turn register number and byte-enable mask into data for start of packet */
#define MK_OP(_byteen, _reg) \
(BYTE_EN(_byteen) | (_reg) << (8 + 2) | (_reg) >> 6)
/**
* ks8851_lock_spi - register access lock
* @ks: The chip state
* @flags: Spinlock flags
*
* Claim chip register access lock
*/
static void ks8851_lock_spi(struct ks8851_net *ks, unsigned long *flags)
{
struct ks8851_net_spi *kss = to_ks8851_spi(ks);
mutex_lock(&kss->lock);
}
/**
* ks8851_unlock_spi - register access unlock
* @ks: The chip state
* @flags: Spinlock flags
*
* Release chip register access lock
*/
static void ks8851_unlock_spi(struct ks8851_net *ks, unsigned long *flags)
{
struct ks8851_net_spi *kss = to_ks8851_spi(ks);
mutex_unlock(&kss->lock);
}
/* SPI register read/write calls.
*
* All these calls issue SPI transactions to access the chip's registers. They
* all require that the necessary lock is held to prevent accesses when the
* chip is busy transferring packet data (RX/TX FIFO accesses).
*/
/**
* ks8851_wrreg16_spi - write 16bit register value to chip via SPI
* @ks: The chip state
* @reg: The register address
* @val: The value to write
*
* Issue a write to put the value @val into the register specified in @reg.
*/
static void ks8851_wrreg16_spi(struct ks8851_net *ks, unsigned int reg,
unsigned int val)
{
struct ks8851_net_spi *kss = to_ks8851_spi(ks);
struct spi_transfer *xfer = &kss->spi_xfer1;
struct spi_message *msg = &kss->spi_msg1;
__le16 txb[2];
int ret;
txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
txb[1] = cpu_to_le16(val);
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 4;
ret = spi_sync(kss->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "spi_sync() failed\n");
}
/**
* ks8851_rdreg - issue read register command and return the data
* @ks: The device state
* @op: The register address and byte enables in message format.
* @rxb: The RX buffer to return the result into
* @rxl: The length of data expected.
*
* This is the low level read call that issues the necessary spi message(s)
* to read data from the register specified in @op.
*/
static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op,
u8 *rxb, unsigned int rxl)
{
struct ks8851_net_spi *kss = to_ks8851_spi(ks);
struct spi_transfer *xfer;
struct spi_message *msg;
__le16 *txb = (__le16 *)ks->txd;
u8 *trx = ks->rxd;
int ret;
txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
msg = &kss->spi_msg2;
xfer = kss->spi_xfer2;
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 2;
xfer++;
xfer->tx_buf = NULL;
xfer->rx_buf = trx;
xfer->len = rxl;
} else {
msg = &kss->spi_msg1;
xfer = &kss->spi_xfer1;
xfer->tx_buf = txb;
xfer->rx_buf = trx;
xfer->len = rxl + 2;
}
ret = spi_sync(kss->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "read: spi_sync() failed\n");
else if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
memcpy(rxb, trx, rxl);
else
memcpy(rxb, trx + 2, rxl);
}
/**
* ks8851_rdreg16_spi - read 16 bit register from device via SPI
* @ks: The chip information
* @reg: The register address
*
* Read a 16bit register from the chip, returning the result
*/
static unsigned int ks8851_rdreg16_spi(struct ks8851_net *ks, unsigned int reg)
{
__le16 rx = 0;
ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
return le16_to_cpu(rx);
}
/**
* ks8851_rdfifo_spi - read data from the receive fifo via SPI
* @ks: The device state.
* @buff: The buffer address
* @len: The length of the data to read
*
* Issue an RXQ FIFO read command and read the @len amount of data from
* the FIFO into the buffer specified by @buff.
*/
static void ks8851_rdfifo_spi(struct ks8851_net *ks, u8 *buff, unsigned int len)
{
struct ks8851_net_spi *kss = to_ks8851_spi(ks);
struct spi_transfer *xfer = kss->spi_xfer2;
struct spi_message *msg = &kss->spi_msg2;
u8 txb[1];
int ret;
netif_dbg(ks, rx_status, ks->netdev,
"%s: %d@%p\n", __func__, len, buff);
/* set the operation we're issuing */
txb[0] = KS_SPIOP_RXFIFO;
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 1;
xfer++;
xfer->rx_buf = buff;
xfer->tx_buf = NULL;
xfer->len = len;
ret = spi_sync(kss->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
}
/**
* ks8851_wrfifo_spi - write packet to TX FIFO via SPI
* @ks: The device state.
* @txp: The sk_buff to transmit.
* @irq: IRQ on completion of the packet.
*
* Send the @txp to the chip. This means creating the relevant packet header
* specifying the length of the packet and the other information the chip
* needs, such as IRQ on completion. Send the header and the packet data to
* the device.
*/
static void ks8851_wrfifo_spi(struct ks8851_net *ks, struct sk_buff *txp,
bool irq)
{
struct ks8851_net_spi *kss = to_ks8851_spi(ks);
struct spi_transfer *xfer = kss->spi_xfer2;
struct spi_message *msg = &kss->spi_msg2;
unsigned int fid = 0;
int ret;
netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
__func__, txp, txp->len, txp->data, irq);
fid = ks->fid++;
fid &= TXFR_TXFID_MASK;
if (irq)
fid |= TXFR_TXIC; /* irq on completion */
/* start header at txb[1] to align txw entries */
ks->txh.txb[1] = KS_SPIOP_TXFIFO;
ks->txh.txw[1] = cpu_to_le16(fid);
ks->txh.txw[2] = cpu_to_le16(txp->len);
xfer->tx_buf = &ks->txh.txb[1];
xfer->rx_buf = NULL;
xfer->len = 5;
xfer++;
xfer->tx_buf = txp->data;
xfer->rx_buf = NULL;
xfer->len = ALIGN(txp->len, 4);
ret = spi_sync(kss->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
}
/**
* ks8851_rx_skb_spi - receive skbuff
* @ks: The device state
* @skb: The skbuff
*/
static void ks8851_rx_skb_spi(struct ks8851_net *ks, struct sk_buff *skb)
{
netif_rx_ni(skb);
}
/**
* ks8851_tx_work - process tx packet(s)
* @work: The work strucutre what was scheduled.
*
* This is called when a number of packets have been scheduled for
* transmission and need to be sent to the device.
*/
static void ks8851_tx_work(struct work_struct *work)
{
struct ks8851_net_spi *kss;
struct ks8851_net *ks;
unsigned long flags;
struct sk_buff *txb;
bool last;
kss = container_of(work, struct ks8851_net_spi, tx_work);
ks = &kss->ks8851;
last = skb_queue_empty(&ks->txq);
ks8851_lock_spi(ks, &flags);
while (!last) {
txb = skb_dequeue(&ks->txq);
last = skb_queue_empty(&ks->txq);
if (txb) {
ks8851_wrreg16_spi(ks, KS_RXQCR,
ks->rc_rxqcr | RXQCR_SDA);
ks8851_wrfifo_spi(ks, txb, last);
ks8851_wrreg16_spi(ks, KS_RXQCR, ks->rc_rxqcr);
ks8851_wrreg16_spi(ks, KS_TXQCR, TXQCR_METFE);
ks8851_done_tx(ks, txb);
}
}
ks8851_unlock_spi(ks, &flags);
}
/**
* ks8851_flush_tx_work_spi - flush outstanding TX work
* @ks: The device state
*/
static void ks8851_flush_tx_work_spi(struct ks8851_net *ks)
{
struct ks8851_net_spi *kss = to_ks8851_spi(ks);
flush_work(&kss->tx_work);
}
/**
* calc_txlen - calculate size of message to send packet
* @len: Length of data
*
* Returns the size of the TXFIFO message needed to send
* this packet.
*/
static unsigned int calc_txlen(unsigned int len)
{
return ALIGN(len + 4, 4);
}
/**
* ks8851_start_xmit_spi - transmit packet using SPI
* @skb: The buffer to transmit
* @dev: The device used to transmit the packet.
*
* Called by the network layer to transmit the @skb. Queue the packet for
* the device and schedule the necessary work to transmit the packet when
* it is free.
*
* We do this to firstly avoid sleeping with the network device locked,
* and secondly so we can round up more than one packet to transmit which
* means we can try and avoid generating too many transmit done interrupts.
*/
static netdev_tx_t ks8851_start_xmit_spi(struct sk_buff *skb,
struct net_device *dev)
{
unsigned int needed = calc_txlen(skb->len);
struct ks8851_net *ks = netdev_priv(dev);
netdev_tx_t ret = NETDEV_TX_OK;
struct ks8851_net_spi *kss;
kss = to_ks8851_spi(ks);
netif_dbg(ks, tx_queued, ks->netdev,
"%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
spin_lock(&ks->statelock);
if (needed > ks->tx_space) {
netif_stop_queue(dev);
ret = NETDEV_TX_BUSY;
} else {
ks->tx_space -= needed;
skb_queue_tail(&ks->txq, skb);
}
spin_unlock(&ks->statelock);
schedule_work(&kss->tx_work);
return ret;
}
static int ks8851_probe_spi(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct ks8851_net_spi *kss;
struct net_device *netdev;
struct ks8851_net *ks;
netdev = devm_alloc_etherdev(dev, sizeof(struct ks8851_net_spi));
if (!netdev)
return -ENOMEM;
spi->bits_per_word = 8;
ks = netdev_priv(netdev);
ks->lock = ks8851_lock_spi;
ks->unlock = ks8851_unlock_spi;
ks->rdreg16 = ks8851_rdreg16_spi;
ks->wrreg16 = ks8851_wrreg16_spi;
ks->rdfifo = ks8851_rdfifo_spi;
ks->wrfifo = ks8851_wrfifo_spi;
ks->start_xmit = ks8851_start_xmit_spi;
ks->rx_skb = ks8851_rx_skb_spi;
ks->flush_tx_work = ks8851_flush_tx_work_spi;
#define STD_IRQ (IRQ_LCI | /* Link Change */ \
IRQ_TXI | /* TX done */ \
IRQ_RXI | /* RX done */ \
IRQ_SPIBEI | /* SPI bus error */ \
IRQ_TXPSI | /* TX process stop */ \
IRQ_RXPSI) /* RX process stop */
ks->rc_ier = STD_IRQ;
kss = to_ks8851_spi(ks);
kss->spidev = spi;
mutex_init(&kss->lock);
INIT_WORK(&kss->tx_work, ks8851_tx_work);
/* initialise pre-made spi transfer messages */
spi_message_init(&kss->spi_msg1);
spi_message_add_tail(&kss->spi_xfer1, &kss->spi_msg1);
spi_message_init(&kss->spi_msg2);
spi_message_add_tail(&kss->spi_xfer2[0], &kss->spi_msg2);
spi_message_add_tail(&kss->spi_xfer2[1], &kss->spi_msg2);
netdev->irq = spi->irq;
return ks8851_probe_common(netdev, dev, msg_enable);
}
static int ks8851_remove_spi(struct spi_device *spi)
{
return ks8851_remove_common(&spi->dev);
}
static const struct of_device_id ks8851_match_table[] = {
{ .compatible = "micrel,ks8851" },
{ }
};
MODULE_DEVICE_TABLE(of, ks8851_match_table);
static struct spi_driver ks8851_driver = {
.driver = {
.name = "ks8851",
.of_match_table = ks8851_match_table,
.pm = &ks8851_pm_ops,
},
.probe = ks8851_probe_spi,
.remove = ks8851_remove_spi,
};
module_spi_driver(ks8851_driver);
MODULE_DESCRIPTION("KS8851 Network driver");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
MODULE_ALIAS("spi:ks8851");
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册