提交 e58dc5ed 编写于 作者: J John Cox 提交者: Zheng Zengkai

staging: media: Add Raspberry Pi V4L2 H265 decoder

raspberrypi inclusion
category: feature
bugzilla: 50432

--------------------------------

This driver is for the HEVC/H265 decoder block on the Raspberry
Pi 4, and conforms to the V4L2 stateless decoder API.
Signed-off-by: NJohn Cox <jc@kynesim.co.uk>
Signed-off-by: NFang Yafen <yafen@iscas.ac.cn>
Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
上级 d657bf0b
...@@ -34,6 +34,8 @@ source "drivers/staging/media/omap4iss/Kconfig" ...@@ -34,6 +34,8 @@ source "drivers/staging/media/omap4iss/Kconfig"
source "drivers/staging/media/rkvdec/Kconfig" source "drivers/staging/media/rkvdec/Kconfig"
source "drivers/staging/media/rpivid/Kconfig"
source "drivers/staging/media/sunxi/Kconfig" source "drivers/staging/media/sunxi/Kconfig"
source "drivers/staging/media/tegra-vde/Kconfig" source "drivers/staging/media/tegra-vde/Kconfig"
......
...@@ -5,6 +5,7 @@ obj-$(CONFIG_VIDEO_IMX_MEDIA) += imx/ ...@@ -5,6 +5,7 @@ obj-$(CONFIG_VIDEO_IMX_MEDIA) += imx/
obj-$(CONFIG_VIDEO_MESON_VDEC) += meson/vdec/ obj-$(CONFIG_VIDEO_MESON_VDEC) += meson/vdec/
obj-$(CONFIG_VIDEO_OMAP4) += omap4iss/ obj-$(CONFIG_VIDEO_OMAP4) += omap4iss/
obj-$(CONFIG_VIDEO_ROCKCHIP_VDEC) += rkvdec/ obj-$(CONFIG_VIDEO_ROCKCHIP_VDEC) += rkvdec/
obj-$(CONFIG_VIDEO_RPIVID) += rpivid/
obj-$(CONFIG_VIDEO_SUNXI) += sunxi/ obj-$(CONFIG_VIDEO_SUNXI) += sunxi/
obj-$(CONFIG_VIDEO_TEGRA) += tegra-video/ obj-$(CONFIG_VIDEO_TEGRA) += tegra-video/
obj-$(CONFIG_TEGRA_VDE) += tegra-vde/ obj-$(CONFIG_TEGRA_VDE) += tegra-vde/
......
# SPDX-License-Identifier: GPL-2.0
config VIDEO_RPIVID
tristate "Rpi H265 driver"
depends on VIDEO_DEV && VIDEO_V4L2
depends on MEDIA_CONTROLLER
depends on OF
depends on MEDIA_CONTROLLER_REQUEST_API
select VIDEOBUF2_DMA_CONTIG
select V4L2_MEM2MEM_DEV
help
Support for the Rpi H265 h/w decoder.
To compile this driver as a module, choose M here: the module
will be called rpivid-hevc.
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_VIDEO_RPIVID) += rpivid-hevc.o
rpivid-hevc-y = rpivid.o rpivid_video.o rpivid_dec.o \
rpivid_hw.o rpivid_h265.o
// SPDX-License-Identifier: GPL-2.0
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/of.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-mem2mem.h>
#include "rpivid.h"
#include "rpivid_video.h"
#include "rpivid_hw.h"
#include "rpivid_dec.h"
/*
* Default /dev/videoN node number.
* Deliberately avoid the very low numbers as these are often taken by webcams
* etc, and simple apps tend to only go for /dev/video0.
*/
static int video_nr = 19;
module_param(video_nr, int, 0644);
MODULE_PARM_DESC(video_nr, "decoder video device number");
static const struct rpivid_control rpivid_ctrls[] = {
{
.cfg = {
.id = V4L2_CID_MPEG_VIDEO_HEVC_SPS,
},
.required = true,
},
{
.cfg = {
.id = V4L2_CID_MPEG_VIDEO_HEVC_PPS,
},
.required = true,
},
{
.cfg = {
.id = V4L2_CID_MPEG_VIDEO_HEVC_SCALING_MATRIX,
},
.required = false,
},
{
.cfg = {
.id = V4L2_CID_MPEG_VIDEO_HEVC_SLICE_PARAMS,
},
.required = true,
},
{
.cfg = {
.id = V4L2_CID_MPEG_VIDEO_HEVC_DECODE_MODE,
.max = V4L2_MPEG_VIDEO_HEVC_DECODE_MODE_SLICE_BASED,
.def = V4L2_MPEG_VIDEO_HEVC_DECODE_MODE_SLICE_BASED,
},
.required = false,
},
{
.cfg = {
.id = V4L2_CID_MPEG_VIDEO_HEVC_START_CODE,
.max = V4L2_MPEG_VIDEO_HEVC_START_CODE_NONE,
.def = V4L2_MPEG_VIDEO_HEVC_START_CODE_NONE,
},
.required = false,
},
};
#define rpivid_ctrls_COUNT ARRAY_SIZE(rpivid_ctrls)
void *rpivid_find_control_data(struct rpivid_ctx *ctx, u32 id)
{
unsigned int i;
for (i = 0; ctx->ctrls[i]; i++)
if (ctx->ctrls[i]->id == id)
return ctx->ctrls[i]->p_cur.p;
return NULL;
}
static int rpivid_init_ctrls(struct rpivid_dev *dev, struct rpivid_ctx *ctx)
{
struct v4l2_ctrl_handler *hdl = &ctx->hdl;
struct v4l2_ctrl *ctrl;
unsigned int ctrl_size;
unsigned int i;
v4l2_ctrl_handler_init(hdl, rpivid_ctrls_COUNT);
if (hdl->error) {
v4l2_err(&dev->v4l2_dev,
"Failed to initialize control handler\n");
return hdl->error;
}
ctrl_size = sizeof(ctrl) * rpivid_ctrls_COUNT + 1;
ctx->ctrls = kzalloc(ctrl_size, GFP_KERNEL);
if (!ctx->ctrls)
return -ENOMEM;
for (i = 0; i < rpivid_ctrls_COUNT; i++) {
ctrl = v4l2_ctrl_new_custom(hdl, &rpivid_ctrls[i].cfg,
NULL);
if (hdl->error) {
v4l2_err(&dev->v4l2_dev,
"Failed to create new custom control id=%#x\n",
rpivid_ctrls[i].cfg.id);
v4l2_ctrl_handler_free(hdl);
kfree(ctx->ctrls);
return hdl->error;
}
ctx->ctrls[i] = ctrl;
}
ctx->fh.ctrl_handler = hdl;
v4l2_ctrl_handler_setup(hdl);
return 0;
}
static int rpivid_request_validate(struct media_request *req)
{
struct media_request_object *obj;
struct v4l2_ctrl_handler *parent_hdl, *hdl;
struct rpivid_ctx *ctx = NULL;
struct v4l2_ctrl *ctrl_test;
unsigned int count;
unsigned int i;
list_for_each_entry(obj, &req->objects, list) {
struct vb2_buffer *vb;
if (vb2_request_object_is_buffer(obj)) {
vb = container_of(obj, struct vb2_buffer, req_obj);
ctx = vb2_get_drv_priv(vb->vb2_queue);
break;
}
}
if (!ctx)
return -ENOENT;
count = vb2_request_buffer_cnt(req);
if (!count) {
v4l2_info(&ctx->dev->v4l2_dev,
"No buffer was provided with the request\n");
return -ENOENT;
} else if (count > 1) {
v4l2_info(&ctx->dev->v4l2_dev,
"More than one buffer was provided with the request\n");
return -EINVAL;
}
parent_hdl = &ctx->hdl;
hdl = v4l2_ctrl_request_hdl_find(req, parent_hdl);
if (!hdl) {
v4l2_info(&ctx->dev->v4l2_dev, "Missing codec control(s)\n");
return -ENOENT;
}
for (i = 0; i < rpivid_ctrls_COUNT; i++) {
if (!rpivid_ctrls[i].required)
continue;
ctrl_test =
v4l2_ctrl_request_hdl_ctrl_find(hdl,
rpivid_ctrls[i].cfg.id);
if (!ctrl_test) {
v4l2_info(&ctx->dev->v4l2_dev,
"Missing required codec control\n");
return -ENOENT;
}
}
v4l2_ctrl_request_hdl_put(hdl);
return vb2_request_validate(req);
}
static int rpivid_open(struct file *file)
{
struct rpivid_dev *dev = video_drvdata(file);
struct rpivid_ctx *ctx = NULL;
int ret;
if (mutex_lock_interruptible(&dev->dev_mutex))
return -ERESTARTSYS;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
mutex_unlock(&dev->dev_mutex);
return -ENOMEM;
}
v4l2_fh_init(&ctx->fh, video_devdata(file));
file->private_data = &ctx->fh;
ctx->dev = dev;
ret = rpivid_init_ctrls(dev, ctx);
if (ret)
goto err_free;
ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx,
&rpivid_queue_init);
if (IS_ERR(ctx->fh.m2m_ctx)) {
ret = PTR_ERR(ctx->fh.m2m_ctx);
goto err_ctrls;
}
/* The only bit of format info that we can guess now is H265 src
* Everything else we need more info for
*/
ctx->src_fmt.pixelformat = RPIVID_SRC_PIXELFORMAT_DEFAULT;
rpivid_prepare_src_format(&ctx->src_fmt);
v4l2_fh_add(&ctx->fh);
mutex_unlock(&dev->dev_mutex);
return 0;
err_ctrls:
v4l2_ctrl_handler_free(&ctx->hdl);
err_free:
kfree(ctx);
mutex_unlock(&dev->dev_mutex);
return ret;
}
static int rpivid_release(struct file *file)
{
struct rpivid_dev *dev = video_drvdata(file);
struct rpivid_ctx *ctx = container_of(file->private_data,
struct rpivid_ctx, fh);
mutex_lock(&dev->dev_mutex);
v4l2_fh_del(&ctx->fh);
v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
v4l2_ctrl_handler_free(&ctx->hdl);
kfree(ctx->ctrls);
v4l2_fh_exit(&ctx->fh);
kfree(ctx);
mutex_unlock(&dev->dev_mutex);
return 0;
}
static const struct v4l2_file_operations rpivid_fops = {
.owner = THIS_MODULE,
.open = rpivid_open,
.release = rpivid_release,
.poll = v4l2_m2m_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = v4l2_m2m_fop_mmap,
};
static const struct video_device rpivid_video_device = {
.name = RPIVID_NAME,
.vfl_dir = VFL_DIR_M2M,
.fops = &rpivid_fops,
.ioctl_ops = &rpivid_ioctl_ops,
.minor = -1,
.release = video_device_release_empty,
.device_caps = V4L2_CAP_VIDEO_M2M | V4L2_CAP_STREAMING,
};
static const struct v4l2_m2m_ops rpivid_m2m_ops = {
.device_run = rpivid_device_run,
};
static const struct media_device_ops rpivid_m2m_media_ops = {
.req_validate = rpivid_request_validate,
.req_queue = v4l2_m2m_request_queue,
};
static int rpivid_probe(struct platform_device *pdev)
{
struct rpivid_dev *dev;
struct video_device *vfd;
int ret;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->vfd = rpivid_video_device;
dev->dev = &pdev->dev;
dev->pdev = pdev;
ret = 0;
ret = rpivid_hw_probe(dev);
if (ret) {
dev_err(&pdev->dev, "Failed to probe hardware\n");
return ret;
}
dev->dec_ops = &rpivid_dec_ops_h265;
mutex_init(&dev->dev_mutex);
ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
if (ret) {
dev_err(&pdev->dev, "Failed to register V4L2 device\n");
return ret;
}
vfd = &dev->vfd;
vfd->lock = &dev->dev_mutex;
vfd->v4l2_dev = &dev->v4l2_dev;
snprintf(vfd->name, sizeof(vfd->name), "%s", rpivid_video_device.name);
video_set_drvdata(vfd, dev);
dev->m2m_dev = v4l2_m2m_init(&rpivid_m2m_ops);
if (IS_ERR(dev->m2m_dev)) {
v4l2_err(&dev->v4l2_dev,
"Failed to initialize V4L2 M2M device\n");
ret = PTR_ERR(dev->m2m_dev);
goto err_v4l2;
}
dev->mdev.dev = &pdev->dev;
strscpy(dev->mdev.model, RPIVID_NAME, sizeof(dev->mdev.model));
strscpy(dev->mdev.bus_info, "platform:" RPIVID_NAME,
sizeof(dev->mdev.bus_info));
media_device_init(&dev->mdev);
dev->mdev.ops = &rpivid_m2m_media_ops;
dev->v4l2_dev.mdev = &dev->mdev;
ret = video_register_device(vfd, VFL_TYPE_VIDEO, video_nr);
if (ret) {
v4l2_err(&dev->v4l2_dev, "Failed to register video device\n");
goto err_m2m;
}
v4l2_info(&dev->v4l2_dev,
"Device registered as /dev/video%d\n", vfd->num);
ret = v4l2_m2m_register_media_controller(dev->m2m_dev, vfd,
MEDIA_ENT_F_PROC_VIDEO_DECODER);
if (ret) {
v4l2_err(&dev->v4l2_dev,
"Failed to initialize V4L2 M2M media controller\n");
goto err_video;
}
ret = media_device_register(&dev->mdev);
if (ret) {
v4l2_err(&dev->v4l2_dev, "Failed to register media device\n");
goto err_m2m_mc;
}
platform_set_drvdata(pdev, dev);
return 0;
err_m2m_mc:
v4l2_m2m_unregister_media_controller(dev->m2m_dev);
err_video:
video_unregister_device(&dev->vfd);
err_m2m:
v4l2_m2m_release(dev->m2m_dev);
err_v4l2:
v4l2_device_unregister(&dev->v4l2_dev);
return ret;
}
static int rpivid_remove(struct platform_device *pdev)
{
struct rpivid_dev *dev = platform_get_drvdata(pdev);
if (media_devnode_is_registered(dev->mdev.devnode)) {
media_device_unregister(&dev->mdev);
v4l2_m2m_unregister_media_controller(dev->m2m_dev);
media_device_cleanup(&dev->mdev);
}
v4l2_m2m_release(dev->m2m_dev);
video_unregister_device(&dev->vfd);
v4l2_device_unregister(&dev->v4l2_dev);
rpivid_hw_remove(dev);
return 0;
}
static const struct of_device_id rpivid_dt_match[] = {
{
.compatible = "raspberrypi,rpivid-vid-decoder",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rpivid_dt_match);
static struct platform_driver rpivid_driver = {
.probe = rpivid_probe,
.remove = rpivid_remove,
.driver = {
.name = RPIVID_NAME,
.of_match_table = of_match_ptr(rpivid_dt_match),
},
};
module_platform_driver(rpivid_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("John Cox <jc@kynesim.co.uk>");
MODULE_DESCRIPTION("Raspberry Pi HEVC V4L2 driver");
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#ifndef _RPIVID_H_
#define _RPIVID_H_
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-dma-contig.h>
#define OPT_DEBUG_POLL_IRQ 0
#define RPIVID_NAME "rpivid"
#define RPIVID_CAPABILITY_UNTILED BIT(0)
#define RPIVID_CAPABILITY_H265_DEC BIT(1)
#define RPIVID_QUIRK_NO_DMA_OFFSET BIT(0)
#define RPIVID_SRC_PIXELFORMAT_DEFAULT V4L2_PIX_FMT_HEVC_SLICE
enum rpivid_irq_status {
RPIVID_IRQ_NONE,
RPIVID_IRQ_ERROR,
RPIVID_IRQ_OK,
};
struct rpivid_control {
struct v4l2_ctrl_config cfg;
unsigned char required:1;
};
struct rpivid_h265_run {
const struct v4l2_ctrl_hevc_sps *sps;
const struct v4l2_ctrl_hevc_pps *pps;
const struct v4l2_ctrl_hevc_slice_params *slice_params;
const struct v4l2_ctrl_hevc_scaling_matrix *scaling_matrix;
};
struct rpivid_run {
struct vb2_v4l2_buffer *src;
struct vb2_v4l2_buffer *dst;
struct rpivid_h265_run h265;
};
struct rpivid_buffer {
struct v4l2_m2m_buffer m2m_buf;
};
struct rpivid_dec_state;
struct rpivid_dec_env;
#define RPIVID_DEC_ENV_COUNT 3
struct rpivid_gptr {
size_t size;
__u8 *ptr;
dma_addr_t addr;
unsigned long attrs;
};
struct rpivid_dev;
typedef void (*rpivid_irq_callback)(struct rpivid_dev *dev, void *ctx);
struct rpivid_q_aux;
#define RPIVID_AUX_ENT_COUNT VB2_MAX_FRAME
#define RPIVID_P2BUF_COUNT 2
struct rpivid_ctx {
struct v4l2_fh fh;
struct rpivid_dev *dev;
struct v4l2_pix_format src_fmt;
struct v4l2_pix_format dst_fmt;
int dst_fmt_set;
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl **ctrls;
/* Decode state - stateless decoder my *** */
/* state contains stuff that is only needed in phase0
* it could be held in dec_env but that would be wasteful
*/
struct rpivid_dec_state *state;
struct rpivid_dec_env *dec0;
/* Spinlock protecting dec_free */
spinlock_t dec_lock;
struct rpivid_dec_env *dec_free;
struct rpivid_dec_env *dec_pool;
/* Some of these should be in dev */
struct rpivid_gptr bitbufs[1]; /* Will be 2 */
struct rpivid_gptr cmdbufs[1]; /* Will be 2 */
unsigned int p2idx;
atomic_t p2out;
struct rpivid_gptr pu_bufs[RPIVID_P2BUF_COUNT];
struct rpivid_gptr coeff_bufs[RPIVID_P2BUF_COUNT];
/* Spinlock protecting aux_free */
spinlock_t aux_lock;
struct rpivid_q_aux *aux_free;
struct rpivid_q_aux *aux_ents[RPIVID_AUX_ENT_COUNT];
unsigned int colmv_stride;
unsigned int colmv_picsize;
};
struct rpivid_dec_ops {
void (*setup)(struct rpivid_ctx *ctx, struct rpivid_run *run);
int (*start)(struct rpivid_ctx *ctx);
void (*stop)(struct rpivid_ctx *ctx);
void (*trigger)(struct rpivid_ctx *ctx);
};
struct rpivid_variant {
unsigned int capabilities;
unsigned int quirks;
unsigned int mod_rate;
};
struct rpivid_hw_irq_ent;
struct rpivid_hw_irq_ctrl {
/* Spinlock protecting claim and tail */
spinlock_t lock;
struct rpivid_hw_irq_ent *claim;
struct rpivid_hw_irq_ent *tail;
/* Ent for pending irq - also prevents sched */
struct rpivid_hw_irq_ent *irq;
/* Non-zero => do not start a new job - outer layer sched pending */
int no_sched;
/* Thread CB requested */
bool thread_reqed;
};
struct rpivid_dev {
struct v4l2_device v4l2_dev;
struct video_device vfd;
struct media_device mdev;
struct media_pad pad[2];
struct platform_device *pdev;
struct device *dev;
struct v4l2_m2m_dev *m2m_dev;
struct rpivid_dec_ops *dec_ops;
/* Device file mutex */
struct mutex dev_mutex;
void __iomem *base_irq;
void __iomem *base_h265;
struct clk *clock;
struct rpivid_hw_irq_ctrl ic_active1;
struct rpivid_hw_irq_ctrl ic_active2;
};
extern struct rpivid_dec_ops rpivid_dec_ops_h265;
void *rpivid_find_control_data(struct rpivid_ctx *ctx, u32 id);
#endif
// SPDX-License-Identifier: GPL-2.0
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-event.h>
#include <media/v4l2-mem2mem.h>
#include "rpivid.h"
#include "rpivid_dec.h"
void rpivid_device_run(void *priv)
{
struct rpivid_ctx *ctx = priv;
struct rpivid_dev *dev = ctx->dev;
struct rpivid_run run = {};
struct media_request *src_req;
run.src = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
run.dst = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
if (!run.src || !run.dst) {
v4l2_err(&dev->v4l2_dev, "%s: Missing buffer: src=%p, dst=%p\n",
__func__, run.src, run.dst);
/* We are stuffed - this probably won't dig us out of our
* current situation but it is better than nothing
*/
v4l2_m2m_buf_done_and_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx,
VB2_BUF_STATE_ERROR);
return;
}
/* Apply request(s) controls if needed. */
src_req = run.src->vb2_buf.req_obj.req;
if (src_req)
v4l2_ctrl_request_setup(src_req, &ctx->hdl);
switch (ctx->src_fmt.pixelformat) {
case V4L2_PIX_FMT_HEVC_SLICE:
run.h265.sps =
rpivid_find_control_data(ctx,
V4L2_CID_MPEG_VIDEO_HEVC_SPS);
run.h265.pps =
rpivid_find_control_data(ctx,
V4L2_CID_MPEG_VIDEO_HEVC_PPS);
run.h265.slice_params =
rpivid_find_control_data(ctx,
V4L2_CID_MPEG_VIDEO_HEVC_SLICE_PARAMS);
run.h265.scaling_matrix =
rpivid_find_control_data(ctx,
V4L2_CID_MPEG_VIDEO_HEVC_SCALING_MATRIX);
break;
default:
break;
}
v4l2_m2m_buf_copy_metadata(run.src, run.dst, true);
dev->dec_ops->setup(ctx, &run);
/* Complete request(s) controls if needed. */
if (src_req)
v4l2_ctrl_request_complete(src_req, &ctx->hdl);
dev->dec_ops->trigger(ctx);
}
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#ifndef _RPIVID_DEC_H_
#define _RPIVID_DEC_H_
void rpivid_device_run(void *priv);
#endif
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#include <linux/delay.h>
#include <linux/types.h>
#include <media/videobuf2-dma-contig.h>
#include "rpivid.h"
#include "rpivid_hw.h"
#define DEBUG_TRACE_P1_CMD 0
#define DEBUG_TRACE_EXECUTION 0
#if DEBUG_TRACE_EXECUTION
#define xtrace_in(dev_, de_)\
v4l2_info(&(dev_)->v4l2_dev, "%s[%d]: in\n", __func__,\
(de_) == NULL ? -1 : (de_)->decode_order)
#define xtrace_ok(dev_, de_)\
v4l2_info(&(dev_)->v4l2_dev, "%s[%d]: ok\n", __func__,\
(de_) == NULL ? -1 : (de_)->decode_order)
#define xtrace_fin(dev_, de_)\
v4l2_info(&(dev_)->v4l2_dev, "%s[%d]: finish\n", __func__,\
(de_) == NULL ? -1 : (de_)->decode_order)
#define xtrace_fail(dev_, de_)\
v4l2_info(&(dev_)->v4l2_dev, "%s[%d]: FAIL\n", __func__,\
(de_) == NULL ? -1 : (de_)->decode_order)
#else
#define xtrace_in(dev_, de_)
#define xtrace_ok(dev_, de_)
#define xtrace_fin(dev_, de_)
#define xtrace_fail(dev_, de_)
#endif
enum hevc_slice_type {
HEVC_SLICE_B = 0,
HEVC_SLICE_P = 1,
HEVC_SLICE_I = 2,
};
enum hevc_layer { L0 = 0, L1 = 1 };
static int gptr_alloc(struct rpivid_dev *const dev, struct rpivid_gptr *gptr,
size_t size, unsigned long attrs)
{
gptr->size = size;
gptr->attrs = attrs;
gptr->addr = 0;
gptr->ptr = dma_alloc_attrs(dev->dev, gptr->size, &gptr->addr,
GFP_KERNEL, gptr->attrs);
return !gptr->ptr ? -ENOMEM : 0;
}
static void gptr_free(struct rpivid_dev *const dev,
struct rpivid_gptr *const gptr)
{
if (gptr->ptr)
dma_free_attrs(dev->dev, gptr->size, gptr->ptr, gptr->addr,
gptr->attrs);
gptr->size = 0;
gptr->ptr = NULL;
gptr->addr = 0;
gptr->attrs = 0;
}
/* Realloc but do not copy */
static int gptr_realloc_new(struct rpivid_dev * const dev,
struct rpivid_gptr * const gptr, size_t size)
{
if (size == gptr->size)
return 0;
if (gptr->ptr)
dma_free_attrs(dev->dev, gptr->size, gptr->ptr,
gptr->addr, gptr->attrs);
gptr->addr = 0;
gptr->size = size;
gptr->ptr = dma_alloc_attrs(dev->dev, gptr->size,
&gptr->addr, GFP_KERNEL, gptr->attrs);
return gptr->ptr ? 0 : -ENOMEM;
}
/* floor(log2(x)) */
static unsigned int log2_size(size_t x)
{
unsigned int n = 0;
if (x & ~0xffff) {
n += 16;
x >>= 16;
}
if (x & ~0xff) {
n += 8;
x >>= 8;
}
if (x & ~0xf) {
n += 4;
x >>= 4;
}
if (x & ~3) {
n += 2;
x >>= 2;
}
return (x & ~1) ? n + 1 : n;
}
static size_t round_up_size(const size_t x)
{
/* Admit no size < 256 */
const unsigned int n = x < 256 ? 8 : log2_size(x) - 1;
return x >= (3 << n) ? 4 << n : (3 << n);
}
static size_t next_size(const size_t x)
{
return round_up_size(x + 1);
}
#define NUM_SCALING_FACTORS 4064 /* Not a typo = 0xbe0 + 0x400 */
#define AXI_BASE64 0
#define PROB_BACKUP ((20 << 12) + (20 << 6) + (0 << 0))
#define PROB_RELOAD ((20 << 12) + (20 << 0) + (0 << 6))
#define HEVC_MAX_REFS V4L2_HEVC_DPB_ENTRIES_NUM_MAX
//////////////////////////////////////////////////////////////////////////////
struct rpi_cmd {
u32 addr;
u32 data;
} __packed;
struct rpivid_q_aux {
unsigned int refcount;
unsigned int q_index;
struct rpivid_q_aux *next;
struct rpivid_gptr col;
};
//////////////////////////////////////////////////////////////////////////////
enum rpivid_decode_state {
RPIVID_DECODE_SLICE_START,
RPIVID_DECODE_SLICE_CONTINUE,
RPIVID_DECODE_ERROR_CONTINUE,
RPIVID_DECODE_ERROR_DONE,
RPIVID_DECODE_PHASE1,
RPIVID_DECODE_END,
};
struct rpivid_dec_env {
struct rpivid_ctx *ctx;
struct rpivid_dec_env *next;
enum rpivid_decode_state state;
unsigned int decode_order;
int p1_status; /* P1 status - what to realloc */
struct rpivid_dec_env *phase_wait_q_next;
struct rpi_cmd *cmd_fifo;
unsigned int cmd_len, cmd_max;
unsigned int num_slice_msgs;
unsigned int pic_width_in_ctbs_y;
unsigned int pic_height_in_ctbs_y;
unsigned int dpbno_col;
u32 reg_slicestart;
int collocated_from_l0_flag;
unsigned int wpp_entry_x;
unsigned int wpp_entry_y;
u32 rpi_config2;
u32 rpi_framesize;
u32 rpi_currpoc;
struct vb2_v4l2_buffer *frame_buf; // Detached dest buffer
unsigned int frame_c_offset;
unsigned int frame_stride;
dma_addr_t frame_addr;
dma_addr_t ref_addrs[16];
struct rpivid_q_aux *frame_aux;
struct rpivid_q_aux *col_aux;
dma_addr_t pu_base_vc;
dma_addr_t coeff_base_vc;
u32 pu_stride;
u32 coeff_stride;
struct rpivid_gptr *bit_copy_gptr;
size_t bit_copy_len;
struct rpivid_gptr *cmd_copy_gptr;
u16 slice_msgs[2 * HEVC_MAX_REFS * 8 + 3];
u8 scaling_factors[NUM_SCALING_FACTORS];
struct rpivid_hw_irq_ent irq_ent;
};
#define member_size(type, member) sizeof(((type *)0)->member)
struct rpivid_dec_state {
struct v4l2_ctrl_hevc_sps sps;
struct v4l2_ctrl_hevc_pps pps;
// Helper vars & tables derived from sps/pps
unsigned int log2_ctb_size; /* log2 width of a CTB */
unsigned int ctb_width; /* Width in CTBs */
unsigned int ctb_height; /* Height in CTBs */
unsigned int ctb_size; /* Pic area in CTBs */
unsigned int num_tile_columns;
unsigned int num_tile_rows;
u8 column_width[member_size(struct v4l2_ctrl_hevc_pps,
column_width_minus1)];
u8 row_height[member_size(struct v4l2_ctrl_hevc_pps,
row_height_minus1)];
int *col_bd;
int *row_bd;
int *ctb_addr_rs_to_ts;
int *ctb_addr_ts_to_rs;
int *tile_id;
// Aux starage for DPB
// Hold refs
struct rpivid_q_aux *ref_aux[HEVC_MAX_REFS];
struct rpivid_q_aux *frame_aux;
// Slice vars
unsigned int slice_idx;
bool frame_end;
bool slice_temporal_mvp; /* Slice flag but constant for frame */
// Temp vars per run - don't actually need to persist
u8 *src_buf;
dma_addr_t src_addr;
const struct v4l2_ctrl_hevc_slice_params *sh;
unsigned int nb_refs[2];
unsigned int slice_qp;
unsigned int max_num_merge_cand; // 0 if I-slice
bool dependent_slice_segment_flag;
};
static inline int clip_int(const int x, const int lo, const int hi)
{
return x < lo ? lo : x > hi ? hi : x;
}
//////////////////////////////////////////////////////////////////////////////
// Phase 1 command and bit FIFOs
#if DEBUG_TRACE_P1_CMD
static int p1_z;
#endif
// ???? u16 addr - put in u32
static int p1_apb_write(struct rpivid_dec_env *const de, const u16 addr,
const u32 data)
{
if (de->cmd_len == de->cmd_max)
de->cmd_fifo =
krealloc(de->cmd_fifo,
(de->cmd_max *= 2) * sizeof(struct rpi_cmd),
GFP_KERNEL);
de->cmd_fifo[de->cmd_len].addr = addr;
de->cmd_fifo[de->cmd_len].data = data;
#if DEBUG_TRACE_P1_CMD
if (++p1_z < 256) {
v4l2_info(&de->ctx->dev->v4l2_dev, "[%02x] %x %x\n",
de->cmd_len, addr, data);
}
#endif
return de->cmd_len++;
}
static int ctb_to_tile(unsigned int ctb, unsigned int *bd, int num)
{
int i;
for (i = 1; ctb >= bd[i]; i++)
; // bd[] has num+1 elements; bd[0]=0;
return i - 1;
}
static int ctb_to_slice_w_h(unsigned int ctb, int ctb_size, int width,
unsigned int *bd, int num)
{
if (ctb < bd[num - 1])
return ctb_size;
else if (width % ctb_size)
return width % ctb_size;
else
return ctb_size;
}
static void aux_q_free(struct rpivid_ctx *const ctx,
struct rpivid_q_aux *const aq)
{
struct rpivid_dev *const dev = ctx->dev;
gptr_free(dev, &aq->col);
kfree(aq);
}
static struct rpivid_q_aux *aux_q_alloc(struct rpivid_ctx *const ctx)
{
struct rpivid_dev *const dev = ctx->dev;
struct rpivid_q_aux *const aq = kzalloc(sizeof(*aq), GFP_KERNEL);
if (!aq)
return NULL;
aq->refcount = 1;
if (gptr_alloc(dev, &aq->col, ctx->colmv_picsize,
DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_KERNEL_MAPPING))
goto fail;
return aq;
fail:
kfree(aq);
return NULL;
}
static struct rpivid_q_aux *aux_q_new(struct rpivid_ctx *const ctx,
const unsigned int q_index)
{
struct rpivid_q_aux *aq;
unsigned long lockflags;
spin_lock_irqsave(&ctx->aux_lock, lockflags);
aq = ctx->aux_free;
if (aq) {
ctx->aux_free = aq->next;
aq->next = NULL;
aq->refcount = 1;
}
spin_unlock_irqrestore(&ctx->aux_lock, lockflags);
if (!aq) {
aq = aux_q_alloc(ctx);
if (!aq)
return NULL;
}
aq->q_index = q_index;
ctx->aux_ents[q_index] = aq;
return aq;
}
static struct rpivid_q_aux *aux_q_ref(struct rpivid_ctx *const ctx,
struct rpivid_q_aux *const aq)
{
if (aq) {
unsigned long lockflags;
spin_lock_irqsave(&ctx->aux_lock, lockflags);
++aq->refcount;
spin_unlock_irqrestore(&ctx->aux_lock, lockflags);
}
return aq;
}
static void aux_q_release(struct rpivid_ctx *const ctx,
struct rpivid_q_aux **const paq)
{
struct rpivid_q_aux *const aq = *paq;
*paq = NULL;
if (aq) {
unsigned long lockflags;
spin_lock_irqsave(&ctx->aux_lock, lockflags);
if (--aq->refcount == 0) {
aq->next = ctx->aux_free;
ctx->aux_free = aq;
ctx->aux_ents[aq->q_index] = NULL;
}
spin_unlock_irqrestore(&ctx->aux_lock, lockflags);
}
}
static void aux_q_init(struct rpivid_ctx *const ctx)
{
spin_lock_init(&ctx->aux_lock);
ctx->aux_free = NULL;
}
static void aux_q_uninit(struct rpivid_ctx *const ctx)
{
struct rpivid_q_aux *aq;
ctx->colmv_picsize = 0;
ctx->colmv_stride = 0;
while ((aq = ctx->aux_free) != NULL) {
ctx->aux_free = aq->next;
aux_q_free(ctx, aq);
}
}
//////////////////////////////////////////////////////////////////////////////
/*
* Initialisation process for context variables (CABAC init)
* see H.265 9.3.2.2
*
* N.B. If comparing with FFmpeg note that this h/w uses slightly different
* offsets to FFmpegs array
*/
/* Actual number of values */
#define RPI_PROB_VALS 154U
/* Rounded up as we copy words */
#define RPI_PROB_ARRAY_SIZE ((154 + 3) & ~3)
/* Initialiser values - see tables H.265 9-4 through 9-42 */
static const u8 prob_init[3][156] = {
{
153, 200, 139, 141, 157, 154, 154, 154, 154, 154, 184, 154, 154,
154, 184, 63, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154,
154, 154, 154, 153, 138, 138, 111, 141, 94, 138, 182, 154, 154,
154, 140, 92, 137, 138, 140, 152, 138, 139, 153, 74, 149, 92,
139, 107, 122, 152, 140, 179, 166, 182, 140, 227, 122, 197, 110,
110, 124, 125, 140, 153, 125, 127, 140, 109, 111, 143, 127, 111,
79, 108, 123, 63, 110, 110, 124, 125, 140, 153, 125, 127, 140,
109, 111, 143, 127, 111, 79, 108, 123, 63, 91, 171, 134, 141,
138, 153, 136, 167, 152, 152, 139, 139, 111, 111, 125, 110, 110,
94, 124, 108, 124, 107, 125, 141, 179, 153, 125, 107, 125, 141,
179, 153, 125, 107, 125, 141, 179, 153, 125, 140, 139, 182, 182,
152, 136, 152, 136, 153, 136, 139, 111, 136, 139, 111, 0, 0,
},
{
153, 185, 107, 139, 126, 197, 185, 201, 154, 149, 154, 139, 154,
154, 154, 152, 110, 122, 95, 79, 63, 31, 31, 153, 153, 168,
140, 198, 79, 124, 138, 94, 153, 111, 149, 107, 167, 154, 154,
154, 154, 196, 196, 167, 154, 152, 167, 182, 182, 134, 149, 136,
153, 121, 136, 137, 169, 194, 166, 167, 154, 167, 137, 182, 125,
110, 94, 110, 95, 79, 125, 111, 110, 78, 110, 111, 111, 95,
94, 108, 123, 108, 125, 110, 94, 110, 95, 79, 125, 111, 110,
78, 110, 111, 111, 95, 94, 108, 123, 108, 121, 140, 61, 154,
107, 167, 91, 122, 107, 167, 139, 139, 155, 154, 139, 153, 139,
123, 123, 63, 153, 166, 183, 140, 136, 153, 154, 166, 183, 140,
136, 153, 154, 166, 183, 140, 136, 153, 154, 170, 153, 123, 123,
107, 121, 107, 121, 167, 151, 183, 140, 151, 183, 140, 0, 0,
},
{
153, 160, 107, 139, 126, 197, 185, 201, 154, 134, 154, 139, 154,
154, 183, 152, 154, 137, 95, 79, 63, 31, 31, 153, 153, 168,
169, 198, 79, 224, 167, 122, 153, 111, 149, 92, 167, 154, 154,
154, 154, 196, 167, 167, 154, 152, 167, 182, 182, 134, 149, 136,
153, 121, 136, 122, 169, 208, 166, 167, 154, 152, 167, 182, 125,
110, 124, 110, 95, 94, 125, 111, 111, 79, 125, 126, 111, 111,
79, 108, 123, 93, 125, 110, 124, 110, 95, 94, 125, 111, 111,
79, 125, 126, 111, 111, 79, 108, 123, 93, 121, 140, 61, 154,
107, 167, 91, 107, 107, 167, 139, 139, 170, 154, 139, 153, 139,
123, 123, 63, 124, 166, 183, 140, 136, 153, 154, 166, 183, 140,
136, 153, 154, 166, 183, 140, 136, 153, 154, 170, 153, 138, 138,
122, 121, 122, 121, 167, 151, 183, 140, 151, 183, 140, 0, 0,
},
};
static void write_prob(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s)
{
u8 dst[RPI_PROB_ARRAY_SIZE];
const unsigned int init_type =
((s->sh->flags & V4L2_HEVC_SLICE_PARAMS_FLAG_CABAC_INIT) != 0 &&
s->sh->slice_type != HEVC_SLICE_I) ?
s->sh->slice_type + 1 :
2 - s->sh->slice_type;
const u8 *p = prob_init[init_type];
const int q = clip_int(s->slice_qp, 0, 51);
unsigned int i;
for (i = 0; i < RPI_PROB_VALS; i++) {
int init_value = p[i];
int m = (init_value >> 4) * 5 - 45;
int n = ((init_value & 15) << 3) - 16;
int pre = 2 * (((m * q) >> 4) + n) - 127;
pre ^= pre >> 31;
if (pre > 124)
pre = 124 + (pre & 1);
dst[i] = pre;
}
for (i = RPI_PROB_VALS; i != RPI_PROB_ARRAY_SIZE; ++i)
dst[i] = 0;
for (i = 0; i < RPI_PROB_ARRAY_SIZE; i += 4)
p1_apb_write(de, 0x1000 + i,
dst[i] + (dst[i + 1] << 8) + (dst[i + 2] << 16) +
(dst[i + 3] << 24));
}
static void write_scaling_factors(struct rpivid_dec_env *const de)
{
int i;
const u8 *p = (u8 *)de->scaling_factors;
for (i = 0; i < NUM_SCALING_FACTORS; i += 4, p += 4)
p1_apb_write(de, 0x2000 + i,
p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24));
}
static inline __u32 dma_to_axi_addr(dma_addr_t a)
{
return (__u32)(a >> 6);
}
static void write_bitstream(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s)
{
// Note that FFmpeg removes emulation prevention bytes, so this is
// matched in the configuration here.
// Whether that is the correct behaviour or not is not clear in the
// spec.
const int rpi_use_emu = 1;
unsigned int offset = s->sh->data_bit_offset / 8 + 1;
const unsigned int len = (s->sh->bit_size + 7) / 8 - offset;
dma_addr_t addr;
if (s->src_addr != 0) {
addr = s->src_addr + offset;
} else {
memcpy(de->bit_copy_gptr->ptr + de->bit_copy_len,
s->src_buf + offset, len);
addr = de->bit_copy_gptr->addr + de->bit_copy_len;
de->bit_copy_len += (len + 63) & ~63;
}
offset = addr & 63;
p1_apb_write(de, RPI_BFBASE, dma_to_axi_addr(addr));
p1_apb_write(de, RPI_BFNUM, len);
p1_apb_write(de, RPI_BFCONTROL, offset + (1 << 7)); // Stop
p1_apb_write(de, RPI_BFCONTROL, offset + (rpi_use_emu << 6));
}
//////////////////////////////////////////////////////////////////////////////
static void write_slice(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s,
const unsigned int slice_w,
const unsigned int slice_h)
{
u32 u32 = (s->sh->slice_type << 12) +
(((s->sh->flags &
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_SAO_LUMA) != 0)
<< 14) +
(((s->sh->flags &
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_SAO_CHROMA) != 0)
<< 15) +
(slice_w << 17) + (slice_h << 24);
u32 |= (s->max_num_merge_cand << 0) + (s->nb_refs[L0] << 4) +
(s->nb_refs[L1] << 8);
if (s->sh->slice_type == HEVC_SLICE_B)
u32 |= ((s->sh->flags &
V4L2_HEVC_SLICE_PARAMS_FLAG_MVD_L1_ZERO) != 0)
<< 16;
p1_apb_write(de, RPI_SLICE, u32);
}
//////////////////////////////////////////////////////////////////////////////
// Tiles mode
static void new_entry_point(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s,
const int do_bte,
const int reset_qp_y, const int ctb_addr_ts)
{
int ctb_col = s->ctb_addr_ts_to_rs[ctb_addr_ts] %
de->pic_width_in_ctbs_y;
int ctb_row = s->ctb_addr_ts_to_rs[ctb_addr_ts] /
de->pic_width_in_ctbs_y;
int tile_x = ctb_to_tile(ctb_col, s->col_bd, s->num_tile_columns);
int tile_y = ctb_to_tile(ctb_row, s->row_bd, s->num_tile_rows);
int endx = s->col_bd[tile_x + 1] - 1;
int endy = s->row_bd[tile_y + 1] - 1;
u8 slice_w = ctb_to_slice_w_h(ctb_col, 1 << s->log2_ctb_size,
s->sps.pic_width_in_luma_samples,
s->col_bd, s->num_tile_columns);
u8 slice_h = ctb_to_slice_w_h(ctb_row, 1 << s->log2_ctb_size,
s->sps.pic_height_in_luma_samples,
s->row_bd, s->num_tile_rows);
p1_apb_write(de, RPI_TILESTART,
s->col_bd[tile_x] + (s->row_bd[tile_y] << 16));
p1_apb_write(de, RPI_TILEEND, endx + (endy << 16));
if (do_bte)
p1_apb_write(de, RPI_BEGINTILEEND, endx + (endy << 16));
write_slice(de, s, slice_w, slice_h);
if (reset_qp_y) {
unsigned int sps_qp_bd_offset =
6 * s->sps.bit_depth_luma_minus8;
p1_apb_write(de, RPI_QP, sps_qp_bd_offset + s->slice_qp);
}
p1_apb_write(de, RPI_MODE,
(0xFFFF << 0) + (0x0 << 16) +
((tile_x == s->num_tile_columns - 1) << 17) +
((tile_y == s->num_tile_rows - 1) << 18));
p1_apb_write(de, RPI_CONTROL, (ctb_col << 0) + (ctb_row << 16));
}
//////////////////////////////////////////////////////////////////////////////
static void new_slice_segment(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s)
{
const struct v4l2_ctrl_hevc_sps *const sps = &s->sps;
const struct v4l2_ctrl_hevc_pps *const pps = &s->pps;
p1_apb_write(de,
RPI_SPS0,
((sps->log2_min_luma_coding_block_size_minus3 + 3) << 0) |
(s->log2_ctb_size << 4) |
((sps->log2_min_luma_transform_block_size_minus2 + 2)
<< 8) |
((sps->log2_min_luma_transform_block_size_minus2 + 2 +
sps->log2_diff_max_min_luma_transform_block_size)
<< 12) |
((sps->bit_depth_luma_minus8 + 8) << 16) |
((sps->bit_depth_chroma_minus8 + 8) << 20) |
(sps->max_transform_hierarchy_depth_intra << 24) |
(sps->max_transform_hierarchy_depth_inter << 28));
p1_apb_write(de,
RPI_SPS1,
((sps->pcm_sample_bit_depth_luma_minus1 + 1) << 0) |
((sps->pcm_sample_bit_depth_chroma_minus1 + 1) << 4) |
((sps->log2_min_pcm_luma_coding_block_size_minus3 + 3)
<< 8) |
((sps->log2_min_pcm_luma_coding_block_size_minus3 + 3 +
sps->log2_diff_max_min_pcm_luma_coding_block_size)
<< 12) |
(((sps->flags & V4L2_HEVC_SPS_FLAG_SEPARATE_COLOUR_PLANE) ?
0 : sps->chroma_format_idc) << 16) |
((!!(sps->flags & V4L2_HEVC_SPS_FLAG_AMP_ENABLED)) << 18) |
((!!(sps->flags & V4L2_HEVC_SPS_FLAG_PCM_ENABLED)) << 19) |
((!!(sps->flags & V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED))
<< 20) |
((!!(sps->flags &
V4L2_HEVC_SPS_FLAG_STRONG_INTRA_SMOOTHING_ENABLED))
<< 21));
p1_apb_write(de,
RPI_PPS,
((s->log2_ctb_size - pps->diff_cu_qp_delta_depth) << 0) |
((!!(pps->flags & V4L2_HEVC_PPS_FLAG_CU_QP_DELTA_ENABLED))
<< 4) |
((!!(pps->flags &
V4L2_HEVC_PPS_FLAG_TRANSQUANT_BYPASS_ENABLED))
<< 5) |
((!!(pps->flags & V4L2_HEVC_PPS_FLAG_TRANSFORM_SKIP_ENABLED))
<< 6) |
((!!(pps->flags &
V4L2_HEVC_PPS_FLAG_SIGN_DATA_HIDING_ENABLED))
<< 7) |
(((pps->pps_cb_qp_offset + s->sh->slice_cb_qp_offset) & 255)
<< 8) |
(((pps->pps_cr_qp_offset + s->sh->slice_cr_qp_offset) & 255)
<< 16) |
((!!(pps->flags &
V4L2_HEVC_PPS_FLAG_CONSTRAINED_INTRA_PRED))
<< 24));
if ((sps->flags & V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED) != 0)
write_scaling_factors(de);
if (!s->dependent_slice_segment_flag) {
int ctb_col = s->sh->slice_segment_addr %
de->pic_width_in_ctbs_y;
int ctb_row = s->sh->slice_segment_addr /
de->pic_width_in_ctbs_y;
de->reg_slicestart = (ctb_col << 0) + (ctb_row << 16);
}
p1_apb_write(de, RPI_SLICESTART, de->reg_slicestart);
}
//////////////////////////////////////////////////////////////////////////////
// Slice messages
static void msg_slice(struct rpivid_dec_env *const de, const u16 msg)
{
de->slice_msgs[de->num_slice_msgs++] = msg;
}
static void program_slicecmds(struct rpivid_dec_env *const de,
const int sliceid)
{
int i;
p1_apb_write(de, RPI_SLICECMDS, de->num_slice_msgs + (sliceid << 8));
for (i = 0; i < de->num_slice_msgs; i++)
p1_apb_write(de, 0x4000 + 4 * i, de->slice_msgs[i] & 0xffff);
}
// NoBackwardPredictionFlag 8.3.5
// Simply checks POCs
static int has_backward(const struct v4l2_hevc_dpb_entry *const dpb,
const __u8 *const idx, const unsigned int n,
const unsigned int cur_poc)
{
unsigned int i;
for (i = 0; i < n; ++i) {
// Compare mod 2^16
// We only get u16 pocs & 8.3.1 says
// "The bitstream shall not contain data that result in values
// of DiffPicOrderCnt( picA, picB ) used in the decoding
// process that are not in the range of −2^15 to 2^15 − 1,
// inclusive."
if (((cur_poc - dpb[idx[i]].pic_order_cnt[0]) & 0x8000) != 0)
return 0;
}
return 1;
}
static void pre_slice_decode(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s)
{
const struct v4l2_ctrl_hevc_slice_params *const sh = s->sh;
int weighted_pred_flag, idx;
u16 cmd_slice;
unsigned int collocated_from_l0_flag;
de->num_slice_msgs = 0;
cmd_slice = 0;
if (sh->slice_type == HEVC_SLICE_I)
cmd_slice = 1;
if (sh->slice_type == HEVC_SLICE_P)
cmd_slice = 2;
if (sh->slice_type == HEVC_SLICE_B)
cmd_slice = 3;
cmd_slice |= (s->nb_refs[L0] << 2) | (s->nb_refs[L1] << 6) |
(s->max_num_merge_cand << 11);
collocated_from_l0_flag =
!s->slice_temporal_mvp ||
sh->slice_type != HEVC_SLICE_B ||
(sh->flags & V4L2_HEVC_SLICE_PARAMS_FLAG_COLLOCATED_FROM_L0);
cmd_slice |= collocated_from_l0_flag << 14;
if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
// Flag to say all reference pictures are from the past
const int no_backward_pred_flag =
has_backward(sh->dpb, sh->ref_idx_l0, s->nb_refs[L0],
sh->slice_pic_order_cnt) &&
has_backward(sh->dpb, sh->ref_idx_l1, s->nb_refs[L1],
sh->slice_pic_order_cnt);
cmd_slice |= no_backward_pred_flag << 10;
msg_slice(de, cmd_slice);
if (s->slice_temporal_mvp) {
const __u8 *const rpl = collocated_from_l0_flag ?
sh->ref_idx_l0 : sh->ref_idx_l1;
de->dpbno_col = rpl[sh->collocated_ref_idx];
//v4l2_info(&de->ctx->dev->v4l2_dev,
// "L0=%d col_ref_idx=%d,
// dpb_no=%d\n", collocated_from_l0_flag,
// sh->collocated_ref_idx, de->dpbno_col);
}
// Write reference picture descriptions
weighted_pred_flag =
sh->slice_type == HEVC_SLICE_P ?
!!(s->pps.flags & V4L2_HEVC_PPS_FLAG_WEIGHTED_PRED) :
!!(s->pps.flags & V4L2_HEVC_PPS_FLAG_WEIGHTED_BIPRED);
for (idx = 0; idx < s->nb_refs[L0]; ++idx) {
unsigned int dpb_no = sh->ref_idx_l0[idx];
//v4l2_info(&de->ctx->dev->v4l2_dev,
// "L0[%d]=dpb[%d]\n", idx, dpb_no);
msg_slice(de,
dpb_no |
(sh->dpb[dpb_no].rps ==
V4L2_HEVC_DPB_ENTRY_RPS_LT_CURR ?
(1 << 4) : 0) |
(weighted_pred_flag ? (3 << 5) : 0));
msg_slice(de, sh->dpb[dpb_no].pic_order_cnt[0]);
if (weighted_pred_flag) {
const struct v4l2_hevc_pred_weight_table
*const w = &sh->pred_weight_table;
const int luma_weight_denom =
(1 << w->luma_log2_weight_denom);
const unsigned int chroma_log2_weight_denom =
(w->luma_log2_weight_denom +
w->delta_chroma_log2_weight_denom);
const int chroma_weight_denom =
(1 << chroma_log2_weight_denom);
msg_slice(de,
w->luma_log2_weight_denom |
(((w->delta_luma_weight_l0[idx] +
luma_weight_denom) & 0x1ff)
<< 3));
msg_slice(de, w->luma_offset_l0[idx] & 0xff);
msg_slice(de,
chroma_log2_weight_denom |
(((w->delta_chroma_weight_l0[idx][0] +
chroma_weight_denom) & 0x1ff)
<< 3));
msg_slice(de,
w->chroma_offset_l0[idx][0] & 0xff);
msg_slice(de,
chroma_log2_weight_denom |
(((w->delta_chroma_weight_l0[idx][1] +
chroma_weight_denom) & 0x1ff)
<< 3));
msg_slice(de,
w->chroma_offset_l0[idx][1] & 0xff);
}
}
for (idx = 0; idx < s->nb_refs[L1]; ++idx) {
unsigned int dpb_no = sh->ref_idx_l1[idx];
//v4l2_info(&de->ctx->dev->v4l2_dev,
// "L1[%d]=dpb[%d]\n", idx, dpb_no);
msg_slice(de,
dpb_no |
(sh->dpb[dpb_no].rps ==
V4L2_HEVC_DPB_ENTRY_RPS_LT_CURR ?
(1 << 4) : 0) |
(weighted_pred_flag ? (3 << 5) : 0));
msg_slice(de, sh->dpb[dpb_no].pic_order_cnt[0]);
if (weighted_pred_flag) {
const struct v4l2_hevc_pred_weight_table
*const w = &sh->pred_weight_table;
const int luma_weight_denom =
(1 << w->luma_log2_weight_denom);
const unsigned int chroma_log2_weight_denom =
(w->luma_log2_weight_denom +
w->delta_chroma_log2_weight_denom);
const int chroma_weight_denom =
(1 << chroma_log2_weight_denom);
msg_slice(de,
w->luma_log2_weight_denom |
(((w->delta_luma_weight_l1[idx] +
luma_weight_denom) & 0x1ff) << 3));
msg_slice(de, w->luma_offset_l1[idx] & 0xff);
msg_slice(de,
chroma_log2_weight_denom |
(((w->delta_chroma_weight_l1[idx][0] +
chroma_weight_denom) & 0x1ff)
<< 3));
msg_slice(de,
w->chroma_offset_l1[idx][0] & 0xff);
msg_slice(de,
chroma_log2_weight_denom |
(((w->delta_chroma_weight_l1[idx][1] +
chroma_weight_denom) & 0x1ff)
<< 3));
msg_slice(de,
w->chroma_offset_l1[idx][1] & 0xff);
}
}
} else {
msg_slice(de, cmd_slice);
}
msg_slice(de,
(sh->slice_beta_offset_div2 & 15) |
((sh->slice_tc_offset_div2 & 15) << 4) |
((sh->flags &
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_DEBLOCKING_FILTER_DISABLED) ?
1 << 8 : 0) |
((sh->flags &
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_LOOP_FILTER_ACROSS_SLICES_ENABLED) ?
1 << 9 : 0) |
((s->pps.flags &
V4L2_HEVC_PPS_FLAG_LOOP_FILTER_ACROSS_TILES_ENABLED) ?
1 << 10 : 0));
msg_slice(de, ((sh->slice_cr_qp_offset & 31) << 5) +
(sh->slice_cb_qp_offset & 31)); // CMD_QPOFF
}
//////////////////////////////////////////////////////////////////////////////
// Write STATUS register with expected end CTU address of previous slice
static void end_previous_slice(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s,
const int ctb_addr_ts)
{
int last_x =
s->ctb_addr_ts_to_rs[ctb_addr_ts - 1] % de->pic_width_in_ctbs_y;
int last_y =
s->ctb_addr_ts_to_rs[ctb_addr_ts - 1] / de->pic_width_in_ctbs_y;
p1_apb_write(de, RPI_STATUS, 1 + (last_x << 5) + (last_y << 18));
}
static void wpp_pause(struct rpivid_dec_env *const de, int ctb_row)
{
p1_apb_write(de, RPI_STATUS, (ctb_row << 18) + 0x25);
p1_apb_write(de, RPI_TRANSFER, PROB_BACKUP);
p1_apb_write(de, RPI_MODE,
ctb_row == de->pic_height_in_ctbs_y - 1 ?
0x70000 : 0x30000);
p1_apb_write(de, RPI_CONTROL, (ctb_row << 16) + 2);
}
static void wpp_end_previous_slice(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s,
int ctb_addr_ts)
{
int new_x = s->sh->slice_segment_addr % de->pic_width_in_ctbs_y;
int new_y = s->sh->slice_segment_addr / de->pic_width_in_ctbs_y;
int last_x =
s->ctb_addr_ts_to_rs[ctb_addr_ts - 1] % de->pic_width_in_ctbs_y;
int last_y =
s->ctb_addr_ts_to_rs[ctb_addr_ts - 1] / de->pic_width_in_ctbs_y;
if (de->wpp_entry_x < 2 && (de->wpp_entry_y < new_y || new_x > 2) &&
de->pic_width_in_ctbs_y > 2)
wpp_pause(de, last_y);
p1_apb_write(de, RPI_STATUS, 1 + (last_x << 5) + (last_y << 18));
if (new_x == 2 || (de->pic_width_in_ctbs_y == 2 &&
de->wpp_entry_y < new_y))
p1_apb_write(de, RPI_TRANSFER, PROB_BACKUP);
}
//////////////////////////////////////////////////////////////////////////////
// Wavefront mode
static void wpp_entry_point(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s,
const int do_bte,
const int reset_qp_y, const int ctb_addr_ts)
{
int ctb_size = 1 << s->log2_ctb_size;
int ctb_addr_rs = s->ctb_addr_ts_to_rs[ctb_addr_ts];
int ctb_col = de->wpp_entry_x = ctb_addr_rs % de->pic_width_in_ctbs_y;
int ctb_row = de->wpp_entry_y = ctb_addr_rs / de->pic_width_in_ctbs_y;
int endx = de->pic_width_in_ctbs_y - 1;
int endy = ctb_row;
u8 slice_w = ctb_to_slice_w_h(ctb_col, ctb_size,
s->sps.pic_width_in_luma_samples,
s->col_bd, s->num_tile_columns);
u8 slice_h = ctb_to_slice_w_h(ctb_row, ctb_size,
s->sps.pic_height_in_luma_samples,
s->row_bd, s->num_tile_rows);
p1_apb_write(de, RPI_TILESTART, 0);
p1_apb_write(de, RPI_TILEEND, endx + (endy << 16));
if (do_bte)
p1_apb_write(de, RPI_BEGINTILEEND, endx + (endy << 16));
write_slice(de, s, slice_w,
ctb_row == de->pic_height_in_ctbs_y - 1 ?
slice_h : ctb_size);
if (reset_qp_y) {
unsigned int sps_qp_bd_offset =
6 * s->sps.bit_depth_luma_minus8;
p1_apb_write(de, RPI_QP, sps_qp_bd_offset + s->slice_qp);
}
p1_apb_write(de, RPI_MODE,
ctb_row == de->pic_height_in_ctbs_y - 1 ?
0x60001 : 0x20001);
p1_apb_write(de, RPI_CONTROL, (ctb_col << 0) + (ctb_row << 16));
}
//////////////////////////////////////////////////////////////////////////////
// Wavefront mode
static void wpp_decode_slice(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s,
const struct v4l2_ctrl_hevc_slice_params *sh,
int ctb_addr_ts)
{
int i, reset_qp_y = 1;
int indep = !s->dependent_slice_segment_flag;
int ctb_col = s->sh->slice_segment_addr % de->pic_width_in_ctbs_y;
if (ctb_addr_ts)
wpp_end_previous_slice(de, s, ctb_addr_ts);
pre_slice_decode(de, s);
write_bitstream(de, s);
if (ctb_addr_ts == 0 || indep || de->pic_width_in_ctbs_y == 1)
write_prob(de, s);
else if (ctb_col == 0)
p1_apb_write(de, RPI_TRANSFER, PROB_RELOAD);
else
reset_qp_y = 0;
program_slicecmds(de, s->slice_idx);
new_slice_segment(de, s);
wpp_entry_point(de, s, indep, reset_qp_y, ctb_addr_ts);
for (i = 0; i < s->sh->num_entry_point_offsets; i++) {
int ctb_addr_rs = s->ctb_addr_ts_to_rs[ctb_addr_ts];
int ctb_row = ctb_addr_rs / de->pic_width_in_ctbs_y;
int last_x = de->pic_width_in_ctbs_y - 1;
if (de->pic_width_in_ctbs_y > 2)
wpp_pause(de, ctb_row);
p1_apb_write(de, RPI_STATUS,
(ctb_row << 18) + (last_x << 5) + 2);
if (de->pic_width_in_ctbs_y == 2)
p1_apb_write(de, RPI_TRANSFER, PROB_BACKUP);
if (de->pic_width_in_ctbs_y == 1)
write_prob(de, s);
else
p1_apb_write(de, RPI_TRANSFER, PROB_RELOAD);
ctb_addr_ts += s->column_width[0];
wpp_entry_point(de, s, 0, 1, ctb_addr_ts);
}
}
//////////////////////////////////////////////////////////////////////////////
// Tiles mode
static void decode_slice(struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s,
const struct v4l2_ctrl_hevc_slice_params *const sh,
int ctb_addr_ts)
{
int i, reset_qp_y;
if (ctb_addr_ts)
end_previous_slice(de, s, ctb_addr_ts);
pre_slice_decode(de, s);
write_bitstream(de, s);
#if DEBUG_TRACE_P1_CMD
if (p1_z < 256) {
v4l2_info(&de->ctx->dev->v4l2_dev,
"TS=%d, tile=%d/%d, dss=%d, flags=%#llx\n",
ctb_addr_ts, s->tile_id[ctb_addr_ts],
s->tile_id[ctb_addr_ts - 1],
s->dependent_slice_segment_flag, sh->flags);
}
#endif
reset_qp_y = ctb_addr_ts == 0 ||
s->tile_id[ctb_addr_ts] != s->tile_id[ctb_addr_ts - 1] ||
!s->dependent_slice_segment_flag;
if (reset_qp_y)
write_prob(de, s);
program_slicecmds(de, s->slice_idx);
new_slice_segment(de, s);
new_entry_point(de, s, !s->dependent_slice_segment_flag, reset_qp_y,
ctb_addr_ts);
for (i = 0; i < s->sh->num_entry_point_offsets; i++) {
int ctb_addr_rs = s->ctb_addr_ts_to_rs[ctb_addr_ts];
int ctb_col = ctb_addr_rs % de->pic_width_in_ctbs_y;
int ctb_row = ctb_addr_rs / de->pic_width_in_ctbs_y;
int tile_x = ctb_to_tile(ctb_col, s->col_bd,
s->num_tile_columns - 1);
int tile_y =
ctb_to_tile(ctb_row, s->row_bd, s->num_tile_rows - 1);
int last_x = s->col_bd[tile_x + 1] - 1;
int last_y = s->row_bd[tile_y + 1] - 1;
p1_apb_write(de, RPI_STATUS,
2 + (last_x << 5) + (last_y << 18));
write_prob(de, s);
ctb_addr_ts += s->column_width[tile_x] * s->row_height[tile_y];
new_entry_point(de, s, 0, 1, ctb_addr_ts);
}
}
//////////////////////////////////////////////////////////////////////////////
// Scaling factors
static void expand_scaling_list(const unsigned int size_id,
const unsigned int matrix_id, u8 *const dst0,
const u8 *const src0, uint8_t dc)
{
u8 *d;
unsigned int x, y;
// FIXME: matrix_id is unused ?
switch (size_id) {
case 0:
memcpy(dst0, src0, 16);
break;
case 1:
memcpy(dst0, src0, 64);
break;
case 2:
d = dst0;
for (y = 0; y != 16; y++) {
const u8 *s = src0 + (y >> 1) * 8;
for (x = 0; x != 8; ++x) {
*d++ = *s;
*d++ = *s++;
}
}
dst0[0] = dc;
break;
default:
d = dst0;
for (y = 0; y != 32; y++) {
const u8 *s = src0 + (y >> 2) * 8;
for (x = 0; x != 8; ++x) {
*d++ = *s;
*d++ = *s;
*d++ = *s;
*d++ = *s++;
}
}
dst0[0] = dc;
break;
}
}
static void populate_scaling_factors(const struct rpivid_run *const run,
struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s)
{
const struct v4l2_ctrl_hevc_scaling_matrix *const sl =
run->h265.scaling_matrix;
// Array of constants for scaling factors
static const u32 scaling_factor_offsets[4][6] = {
// MID0 MID1 MID2 MID3 MID4 MID5
// SID0 (4x4)
{ 0x0000, 0x0010, 0x0020, 0x0030, 0x0040, 0x0050 },
// SID1 (8x8)
{ 0x0060, 0x00A0, 0x00E0, 0x0120, 0x0160, 0x01A0 },
// SID2 (16x16)
{ 0x01E0, 0x02E0, 0x03E0, 0x04E0, 0x05E0, 0x06E0 },
// SID3 (32x32)
{ 0x07E0, 0x0BE0, 0x0000, 0x0000, 0x0000, 0x0000 }
};
unsigned int mid;
for (mid = 0; mid < 6; mid++)
expand_scaling_list(0, mid,
de->scaling_factors +
scaling_factor_offsets[0][mid],
sl->scaling_list_4x4[mid], 0);
for (mid = 0; mid < 6; mid++)
expand_scaling_list(1, mid,
de->scaling_factors +
scaling_factor_offsets[1][mid],
sl->scaling_list_8x8[mid], 0);
for (mid = 0; mid < 6; mid++)
expand_scaling_list(2, mid,
de->scaling_factors +
scaling_factor_offsets[2][mid],
sl->scaling_list_16x16[mid],
sl->scaling_list_dc_coef_16x16[mid]);
for (mid = 0; mid < 2; mid += 1)
expand_scaling_list(3, mid,
de->scaling_factors +
scaling_factor_offsets[3][mid],
sl->scaling_list_32x32[mid],
sl->scaling_list_dc_coef_32x32[mid]);
}
static void free_ps_info(struct rpivid_dec_state *const s)
{
kfree(s->ctb_addr_rs_to_ts);
s->ctb_addr_rs_to_ts = NULL;
kfree(s->ctb_addr_ts_to_rs);
s->ctb_addr_ts_to_rs = NULL;
kfree(s->tile_id);
s->tile_id = NULL;
kfree(s->col_bd);
s->col_bd = NULL;
kfree(s->row_bd);
s->row_bd = NULL;
}
static int updated_ps(struct rpivid_dec_state *const s)
{
unsigned int ctb_addr_rs;
int j, x, y, tile_id;
unsigned int i;
free_ps_info(s);
// Inferred parameters
s->log2_ctb_size = s->sps.log2_min_luma_coding_block_size_minus3 + 3 +
s->sps.log2_diff_max_min_luma_coding_block_size;
s->ctb_width = (s->sps.pic_width_in_luma_samples +
(1 << s->log2_ctb_size) - 1) >>
s->log2_ctb_size;
s->ctb_height = (s->sps.pic_height_in_luma_samples +
(1 << s->log2_ctb_size) - 1) >>
s->log2_ctb_size;
s->ctb_size = s->ctb_width * s->ctb_height;
// Inferred parameters
if (!(s->pps.flags & V4L2_HEVC_PPS_FLAG_TILES_ENABLED)) {
s->num_tile_columns = 1;
s->num_tile_rows = 1;
s->column_width[0] = s->ctb_width;
s->row_height[0] = s->ctb_height;
} else {
s->num_tile_columns = s->pps.num_tile_columns_minus1 + 1;
s->num_tile_rows = s->pps.num_tile_rows_minus1 + 1;
for (i = 0; i < s->num_tile_columns; ++i)
s->column_width[i] = s->pps.column_width_minus1[i] + 1;
for (i = 0; i < s->num_tile_rows; ++i)
s->row_height[i] = s->pps.row_height_minus1[i] + 1;
}
s->col_bd = kmalloc((s->num_tile_columns + 1) * sizeof(*s->col_bd),
GFP_KERNEL);
s->row_bd = kmalloc((s->num_tile_rows + 1) * sizeof(*s->row_bd),
GFP_KERNEL);
s->col_bd[0] = 0;
for (i = 0; i < s->num_tile_columns; i++)
s->col_bd[i + 1] = s->col_bd[i] + s->column_width[i];
s->row_bd[0] = 0;
for (i = 0; i < s->num_tile_rows; i++)
s->row_bd[i + 1] = s->row_bd[i] + s->row_height[i];
s->ctb_addr_rs_to_ts = kmalloc_array(s->ctb_size,
sizeof(*s->ctb_addr_rs_to_ts),
GFP_KERNEL);
s->ctb_addr_ts_to_rs = kmalloc_array(s->ctb_size,
sizeof(*s->ctb_addr_ts_to_rs),
GFP_KERNEL);
s->tile_id = kmalloc_array(s->ctb_size, sizeof(*s->tile_id),
GFP_KERNEL);
for (ctb_addr_rs = 0; ctb_addr_rs < s->ctb_size; ctb_addr_rs++) {
int tb_x = ctb_addr_rs % s->ctb_width;
int tb_y = ctb_addr_rs / s->ctb_width;
int tile_x = 0;
int tile_y = 0;
int val = 0;
for (i = 0; i < s->num_tile_columns; i++) {
if (tb_x < s->col_bd[i + 1]) {
tile_x = i;
break;
}
}
for (i = 0; i < s->num_tile_rows; i++) {
if (tb_y < s->row_bd[i + 1]) {
tile_y = i;
break;
}
}
for (i = 0; i < tile_x; i++)
val += s->row_height[tile_y] * s->column_width[i];
for (i = 0; i < tile_y; i++)
val += s->ctb_width * s->row_height[i];
val += (tb_y - s->row_bd[tile_y]) * s->column_width[tile_x] +
tb_x - s->col_bd[tile_x];
s->ctb_addr_rs_to_ts[ctb_addr_rs] = val;
s->ctb_addr_ts_to_rs[val] = ctb_addr_rs;
}
for (j = 0, tile_id = 0; j < s->num_tile_rows; j++)
for (i = 0; i < s->num_tile_columns; i++, tile_id++)
for (y = s->row_bd[j]; y < s->row_bd[j + 1]; y++)
for (x = s->col_bd[i];
x < s->col_bd[i + 1];
x++)
s->tile_id[s->ctb_addr_rs_to_ts
[y * s->ctb_width +
x]] = tile_id;
return 0;
}
static int frame_end(struct rpivid_dev *const dev,
struct rpivid_dec_env *const de,
const struct rpivid_dec_state *const s)
{
const unsigned int last_x = s->col_bd[s->num_tile_columns] - 1;
const unsigned int last_y = s->row_bd[s->num_tile_rows] - 1;
size_t cmd_size;
if (s->pps.flags & V4L2_HEVC_PPS_FLAG_ENTROPY_CODING_SYNC_ENABLED) {
if (de->wpp_entry_x < 2 && de->pic_width_in_ctbs_y > 2)
wpp_pause(de, last_y);
}
p1_apb_write(de, RPI_STATUS, 1 + (last_x << 5) + (last_y << 18));
// Copy commands out to dma buf
cmd_size = de->cmd_len * sizeof(de->cmd_fifo[0]);
if (!de->cmd_copy_gptr->ptr || cmd_size > de->cmd_copy_gptr->size) {
size_t cmd_alloc = round_up_size(cmd_size);
if (gptr_realloc_new(dev, de->cmd_copy_gptr, cmd_alloc)) {
v4l2_err(&dev->v4l2_dev,
"Alloc cmd buffer (%d): FAILED\n", cmd_alloc);
return -ENOMEM;
}
v4l2_info(&dev->v4l2_dev, "Alloc cmd buffer (%d): OK\n",
cmd_alloc);
}
memcpy(de->cmd_copy_gptr->ptr, de->cmd_fifo, cmd_size);
return 0;
}
static void setup_colmv(struct rpivid_ctx *const ctx, struct rpivid_run *run,
struct rpivid_dec_state *const s)
{
ctx->colmv_stride = ALIGN(s->sps.pic_width_in_luma_samples, 64);
ctx->colmv_picsize = ctx->colmv_stride *
(ALIGN(s->sps.pic_height_in_luma_samples, 64) >> 4);
}
// Can be called from irq context
static struct rpivid_dec_env *dec_env_new(struct rpivid_ctx *const ctx)
{
struct rpivid_dec_env *de;
unsigned long lock_flags;
spin_lock_irqsave(&ctx->dec_lock, lock_flags);
de = ctx->dec_free;
if (de) {
ctx->dec_free = de->next;
de->next = NULL;
de->state = RPIVID_DECODE_SLICE_START;
}
spin_unlock_irqrestore(&ctx->dec_lock, lock_flags);
return de;
}
// Can be called from irq context
static void dec_env_delete(struct rpivid_dec_env *const de)
{
struct rpivid_ctx * const ctx = de->ctx;
unsigned long lock_flags;
aux_q_release(ctx, &de->frame_aux);
aux_q_release(ctx, &de->col_aux);
spin_lock_irqsave(&ctx->dec_lock, lock_flags);
de->state = RPIVID_DECODE_END;
de->next = ctx->dec_free;
ctx->dec_free = de;
spin_unlock_irqrestore(&ctx->dec_lock, lock_flags);
}
static void dec_env_uninit(struct rpivid_ctx *const ctx)
{
unsigned int i;
if (ctx->dec_pool) {
for (i = 0; i != RPIVID_DEC_ENV_COUNT; ++i) {
struct rpivid_dec_env *const de = ctx->dec_pool + i;
kfree(de->cmd_fifo);
}
kfree(ctx->dec_pool);
}
ctx->dec_pool = NULL;
ctx->dec_free = NULL;
}
static int dec_env_init(struct rpivid_ctx *const ctx)
{
unsigned int i;
ctx->dec_pool = kzalloc(sizeof(*ctx->dec_pool) * RPIVID_DEC_ENV_COUNT,
GFP_KERNEL);
if (!ctx->dec_pool)
return -1;
spin_lock_init(&ctx->dec_lock);
// Build free chain
ctx->dec_free = ctx->dec_pool;
for (i = 0; i != RPIVID_DEC_ENV_COUNT - 1; ++i)
ctx->dec_pool[i].next = ctx->dec_pool + i + 1;
// Fill in other bits
for (i = 0; i != RPIVID_DEC_ENV_COUNT; ++i) {
struct rpivid_dec_env *const de = ctx->dec_pool + i;
de->ctx = ctx;
de->decode_order = i;
de->cmd_max = 1024;
de->cmd_fifo = kmalloc_array(de->cmd_max,
sizeof(struct rpi_cmd),
GFP_KERNEL);
if (!de->cmd_fifo)
goto fail;
}
return 0;
fail:
dec_env_uninit(ctx);
return -1;
}
// Assume that we get exactly the same DPB for every slice
// it makes no real sense otherwise
#if V4L2_HEVC_DPB_ENTRIES_NUM_MAX > 16
#error HEVC_DPB_ENTRIES > h/w slots
#endif
static u32 mk_config2(const struct rpivid_dec_state *const s)
{
const struct v4l2_ctrl_hevc_sps *const sps = &s->sps;
const struct v4l2_ctrl_hevc_pps *const pps = &s->pps;
u32 c;
// BitDepthY
c = (sps->bit_depth_luma_minus8 + 8) << 0;
// BitDepthC
c |= (sps->bit_depth_chroma_minus8 + 8) << 4;
// BitDepthY
if (sps->bit_depth_luma_minus8)
c |= BIT(8);
// BitDepthC
if (sps->bit_depth_chroma_minus8)
c |= BIT(9);
c |= s->log2_ctb_size << 10;
if (pps->flags & V4L2_HEVC_PPS_FLAG_CONSTRAINED_INTRA_PRED)
c |= BIT(13);
if (sps->flags & V4L2_HEVC_SPS_FLAG_STRONG_INTRA_SMOOTHING_ENABLED)
c |= BIT(14);
if (sps->flags & V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED)
c |= BIT(15); /* Write motion vectors to external memory */
c |= (pps->log2_parallel_merge_level_minus2 + 2) << 16;
if (s->slice_temporal_mvp)
c |= BIT(19);
if (sps->flags & V4L2_HEVC_SPS_FLAG_PCM_LOOP_FILTER_DISABLED)
c |= BIT(20);
c |= (pps->pps_cb_qp_offset & 31) << 21;
c |= (pps->pps_cr_qp_offset & 31) << 26;
return c;
}
static void rpivid_h265_setup(struct rpivid_ctx *ctx, struct rpivid_run *run)
{
struct rpivid_dev *const dev = ctx->dev;
const struct v4l2_ctrl_hevc_slice_params *const sh =
run->h265.slice_params;
const struct v4l2_hevc_pred_weight_table *pred_weight_table;
struct rpivid_q_aux *dpb_q_aux[V4L2_HEVC_DPB_ENTRIES_NUM_MAX];
struct rpivid_dec_state *const s = ctx->state;
struct vb2_queue *vq;
struct rpivid_dec_env *de;
int ctb_addr_ts;
unsigned int i;
int use_aux;
bool slice_temporal_mvp;
pred_weight_table = &sh->pred_weight_table;
s->frame_end =
((run->src->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF) == 0);
de = ctx->dec0;
slice_temporal_mvp = (sh->flags &
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_TEMPORAL_MVP_ENABLED);
if (de && de->state != RPIVID_DECODE_END) {
++s->slice_idx;
switch (de->state) {
case RPIVID_DECODE_SLICE_CONTINUE:
// Expected state
break;
default:
v4l2_err(&dev->v4l2_dev, "%s: Unexpected state: %d\n",
__func__, de->state);
/* FALLTHRU */
case RPIVID_DECODE_ERROR_CONTINUE:
// Uncleared error - fail now
goto fail;
}
if (s->slice_temporal_mvp != slice_temporal_mvp) {
v4l2_warn(&dev->v4l2_dev,
"Slice Temporal MVP non-constant\n");
goto fail;
}
} else {
/* Frame start */
unsigned int ctb_size_y;
bool sps_changed = false;
if (memcmp(&s->sps, run->h265.sps, sizeof(s->sps)) != 0) {
/* SPS changed */
v4l2_info(&dev->v4l2_dev, "SPS changed\n");
memcpy(&s->sps, run->h265.sps, sizeof(s->sps));
sps_changed = true;
}
if (sps_changed ||
memcmp(&s->pps, run->h265.pps, sizeof(s->pps)) != 0) {
/* SPS changed */
v4l2_info(&dev->v4l2_dev, "PPS changed\n");
memcpy(&s->pps, run->h265.pps, sizeof(s->pps));
/* Recalc stuff as required */
updated_ps(s);
}
de = dec_env_new(ctx);
if (!de) {
v4l2_err(&dev->v4l2_dev,
"Failed to find free decode env\n");
goto fail;
}
ctx->dec0 = de;
ctb_size_y =
1U << (s->sps.log2_min_luma_coding_block_size_minus3 +
3 +
s->sps.log2_diff_max_min_luma_coding_block_size);
de->pic_width_in_ctbs_y =
(s->sps.pic_width_in_luma_samples + ctb_size_y - 1) /
ctb_size_y; // 7-15
de->pic_height_in_ctbs_y =
(s->sps.pic_height_in_luma_samples + ctb_size_y - 1) /
ctb_size_y; // 7-17
de->cmd_len = 0;
de->dpbno_col = ~0U;
de->bit_copy_gptr = ctx->bitbufs + 0;
de->bit_copy_len = 0;
de->cmd_copy_gptr = ctx->cmdbufs + 0;
de->frame_c_offset = ctx->dst_fmt.height * 128;
de->frame_stride = ctx->dst_fmt.bytesperline * 128;
de->frame_addr =
vb2_dma_contig_plane_dma_addr(&run->dst->vb2_buf, 0);
de->frame_aux = NULL;
if (s->sps.bit_depth_luma_minus8 !=
s->sps.bit_depth_chroma_minus8) {
v4l2_warn(&dev->v4l2_dev,
"Chroma depth (%d) != Luma depth (%d)\n",
s->sps.bit_depth_chroma_minus8 + 8,
s->sps.bit_depth_luma_minus8 + 8);
goto fail;
}
if (s->sps.bit_depth_luma_minus8 == 0) {
if (ctx->dst_fmt.pixelformat !=
V4L2_PIX_FMT_NV12_COL128) {
v4l2_err(&dev->v4l2_dev,
"Pixel format %#x != NV12_COL128 for 8-bit output",
ctx->dst_fmt.pixelformat);
goto fail;
}
} else if (s->sps.bit_depth_luma_minus8 == 2) {
if (ctx->dst_fmt.pixelformat !=
V4L2_PIX_FMT_NV12_10_COL128) {
v4l2_err(&dev->v4l2_dev,
"Pixel format %#x != NV12_10_COL128 for 10-bit output",
ctx->dst_fmt.pixelformat);
goto fail;
}
} else {
v4l2_warn(&dev->v4l2_dev,
"Luma depth (%d) unsupported\n",
s->sps.bit_depth_luma_minus8 + 8);
goto fail;
}
if (run->dst->vb2_buf.num_planes != 1) {
v4l2_warn(&dev->v4l2_dev, "Capture planes (%d) != 1\n",
run->dst->vb2_buf.num_planes);
goto fail;
}
if (run->dst->planes[0].length <
ctx->dst_fmt.sizeimage) {
v4l2_warn(&dev->v4l2_dev,
"Capture plane[0] length (%d) < sizeimage (%d)\n",
run->dst->planes[0].length,
ctx->dst_fmt.sizeimage);
goto fail;
}
if (s->sps.pic_width_in_luma_samples > 4096 ||
s->sps.pic_height_in_luma_samples > 4096) {
v4l2_warn(&dev->v4l2_dev,
"Pic dimension (%dx%d) exeeds 4096\n",
s->sps.pic_width_in_luma_samples,
s->sps.pic_height_in_luma_samples);
goto fail;
}
// Fill in ref planes with our address s.t. if we mess
// up refs somehow then we still have a valid address
// entry
for (i = 0; i != 16; ++i)
de->ref_addrs[i] = de->frame_addr;
/*
* Stash initial temporal_mvp flag
* This must be the same for all pic slices (7.4.7.1)
*/
s->slice_temporal_mvp = slice_temporal_mvp;
// Phase 2 reg pre-calc
de->rpi_config2 = mk_config2(s);
de->rpi_framesize = (s->sps.pic_height_in_luma_samples << 16) |
s->sps.pic_width_in_luma_samples;
de->rpi_currpoc = sh->slice_pic_order_cnt;
if (s->sps.flags &
V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED) {
setup_colmv(ctx, run, s);
}
s->slice_idx = 0;
if (sh->slice_segment_addr != 0) {
v4l2_warn(&dev->v4l2_dev,
"New frame but segment_addr=%d\n",
sh->slice_segment_addr);
goto fail;
}
/* Allocate a bitbuf if we need one - don't need one if single
* slice as we can use the src buf directly
*/
if (!s->frame_end && !de->bit_copy_gptr->ptr) {
const size_t wxh = s->sps.pic_width_in_luma_samples *
s->sps.pic_height_in_luma_samples;
size_t bits_alloc;
/* Annex A gives a min compression of 2 @ lvl 3.1
* (wxh <= 983040) and min 4 thereafter but avoid
* the odity of 983041 having a lower limit than
* 983040.
* Multiply by 3/2 for 4:2:0
*/
bits_alloc = wxh < 983040 ? wxh * 3 / 4 :
wxh < 983040 * 2 ? 983040 * 3 / 4 :
wxh * 3 / 8;
bits_alloc = round_up_size(bits_alloc);
if (gptr_alloc(dev, de->bit_copy_gptr,
bits_alloc,
DMA_ATTR_FORCE_CONTIGUOUS) != 0) {
v4l2_err(&dev->v4l2_dev,
"Unable to alloc buf (%d) for bit copy\n",
bits_alloc);
goto fail;
}
v4l2_info(&dev->v4l2_dev,
"Alloc buf (%d) for bit copy OK\n",
bits_alloc);
}
}
// Pre calc a few things
s->src_addr =
!s->frame_end ?
0 :
vb2_dma_contig_plane_dma_addr(&run->src->vb2_buf, 0);
s->src_buf = s->src_addr != 0 ? NULL :
vb2_plane_vaddr(&run->src->vb2_buf, 0);
if (!s->src_addr && !s->src_buf) {
v4l2_err(&dev->v4l2_dev, "Failed to map src buffer\n");
goto fail;
}
s->sh = sh;
s->slice_qp = 26 + s->pps.init_qp_minus26 + s->sh->slice_qp_delta;
s->max_num_merge_cand = sh->slice_type == HEVC_SLICE_I ?
0 :
(5 - sh->five_minus_max_num_merge_cand);
// * SH DSS flag invented by me - but clearly needed
s->dependent_slice_segment_flag =
((sh->flags &
V4L2_HEVC_SLICE_PARAMS_FLAG_DEPENDENT_SLICE_SEGMENT) != 0);
s->nb_refs[0] = (sh->slice_type == HEVC_SLICE_I) ?
0 :
sh->num_ref_idx_l0_active_minus1 + 1;
s->nb_refs[1] = (sh->slice_type != HEVC_SLICE_B) ?
0 :
sh->num_ref_idx_l1_active_minus1 + 1;
if (s->sps.flags & V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED)
populate_scaling_factors(run, de, s);
ctb_addr_ts = s->ctb_addr_rs_to_ts[sh->slice_segment_addr];
if ((s->pps.flags & V4L2_HEVC_PPS_FLAG_ENTROPY_CODING_SYNC_ENABLED))
wpp_decode_slice(de, s, sh, ctb_addr_ts);
else
decode_slice(de, s, sh, ctb_addr_ts);
if (!s->frame_end)
return;
// Frame end
memset(dpb_q_aux, 0,
sizeof(*dpb_q_aux) * V4L2_HEVC_DPB_ENTRIES_NUM_MAX);
/*
* Need Aux ents for all (ref) DPB ents if temporal MV could
* be enabled for any pic
* ** At the moment we have aux ents for all pics whether or not
* they are ref
*/
use_aux = ((s->sps.flags &
V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED) != 0);
// Locate ref frames
// At least in the current implementation this is constant across all
// slices. If this changes we will need idx mapping code.
// Uses sh so here rather than trigger
vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
if (!vq) {
v4l2_err(&dev->v4l2_dev, "VQ gone!\n");
goto fail;
}
// v4l2_info(&dev->v4l2_dev, "rpivid_h265_end of frame\n");
if (frame_end(dev, de, s))
goto fail;
for (i = 0; i < sh->num_active_dpb_entries; ++i) {
int buffer_index =
vb2_find_timestamp(vq, sh->dpb[i].timestamp, 0);
struct vb2_buffer *buf = buffer_index < 0 ?
NULL :
vb2_get_buffer(vq, buffer_index);
if (!buf) {
v4l2_warn(&dev->v4l2_dev,
"Missing DPB ent %d, timestamp=%lld, index=%d\n",
i, (long long)sh->dpb[i].timestamp,
buffer_index);
continue;
}
if (use_aux) {
dpb_q_aux[i] = aux_q_ref(ctx,
ctx->aux_ents[buffer_index]);
if (!dpb_q_aux[i])
v4l2_warn(&dev->v4l2_dev,
"Missing DPB AUX ent %d index=%d\n",
i, buffer_index);
}
de->ref_addrs[i] =
vb2_dma_contig_plane_dma_addr(buf, 0);
}
// Move DPB from temp
for (i = 0; i != V4L2_HEVC_DPB_ENTRIES_NUM_MAX; ++i) {
aux_q_release(ctx, &s->ref_aux[i]);
s->ref_aux[i] = dpb_q_aux[i];
}
// Unref the old frame aux too - it is either in the DPB or not
// now
aux_q_release(ctx, &s->frame_aux);
if (use_aux) {
// New frame so new aux ent
// ??? Do we need this if non-ref ??? can we tell
s->frame_aux = aux_q_new(ctx, run->dst->vb2_buf.index);
if (!s->frame_aux) {
v4l2_err(&dev->v4l2_dev,
"Failed to obtain aux storage for frame\n");
goto fail;
}
de->frame_aux = aux_q_ref(ctx, s->frame_aux);
}
if (de->dpbno_col != ~0U) {
if (de->dpbno_col >= sh->num_active_dpb_entries) {
v4l2_err(&dev->v4l2_dev,
"Col ref index %d >= %d\n",
de->dpbno_col,
sh->num_active_dpb_entries);
} else {
// Standard requires that the col pic is
// constant for the duration of the pic
// (text of collocated_ref_idx in H265-2 2018
// 7.4.7.1)
// Spot the collocated ref in passing
de->col_aux = aux_q_ref(ctx,
dpb_q_aux[de->dpbno_col]);
if (!de->col_aux) {
v4l2_warn(&dev->v4l2_dev,
"Missing DPB ent for col\n");
// Probably need to abort if this fails
// as P2 may explode on bad data
goto fail;
}
}
}
de->state = RPIVID_DECODE_PHASE1;
return;
fail:
if (de)
// Actual error reporting happens in Trigger
de->state = s->frame_end ? RPIVID_DECODE_ERROR_DONE :
RPIVID_DECODE_ERROR_CONTINUE;
}
//////////////////////////////////////////////////////////////////////////////
// Handle PU and COEFF stream overflow
// Returns:
// -1 Phase 1 decode error
// 0 OK
// >0 Out of space (bitmask)
#define STATUS_COEFF_EXHAUSTED 8
#define STATUS_PU_EXHAUSTED 16
static int check_status(const struct rpivid_dev *const dev)
{
const u32 cfstatus = apb_read(dev, RPI_CFSTATUS);
const u32 cfnum = apb_read(dev, RPI_CFNUM);
u32 status = apb_read(dev, RPI_STATUS);
// Handle PU and COEFF stream overflow
// this is the definition of successful completion of phase 1
// it assures that status register is zero and all blocks in each tile
// have completed
if (cfstatus == cfnum)
return 0; //No error
status &= (STATUS_PU_EXHAUSTED | STATUS_COEFF_EXHAUSTED);
if (status)
return status;
return -1;
}
static void cb_phase2(struct rpivid_dev *const dev, void *v)
{
struct rpivid_dec_env *const de = v;
struct rpivid_ctx *const ctx = de->ctx;
xtrace_in(dev, de);
v4l2_m2m_cap_buf_return(dev->m2m_dev, ctx->fh.m2m_ctx, de->frame_buf,
VB2_BUF_STATE_DONE);
de->frame_buf = NULL;
/* Delete de before finish as finish might immediately trigger a reuse
* of de
*/
dec_env_delete(de);
if (atomic_add_return(-1, &ctx->p2out) >= RPIVID_P2BUF_COUNT - 1) {
xtrace_fin(dev, de);
v4l2_m2m_buf_done_and_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx,
VB2_BUF_STATE_DONE);
}
xtrace_ok(dev, de);
}
static void phase2_claimed(struct rpivid_dev *const dev, void *v)
{
struct rpivid_dec_env *const de = v;
unsigned int i;
xtrace_in(dev, de);
apb_write_vc_addr(dev, RPI_PURBASE, de->pu_base_vc);
apb_write_vc_len(dev, RPI_PURSTRIDE, de->pu_stride);
apb_write_vc_addr(dev, RPI_COEFFRBASE, de->coeff_base_vc);
apb_write_vc_len(dev, RPI_COEFFRSTRIDE, de->coeff_stride);
apb_write_vc_addr(dev, RPI_OUTYBASE, de->frame_addr);
apb_write_vc_addr(dev, RPI_OUTCBASE,
de->frame_addr + de->frame_c_offset);
apb_write_vc_len(dev, RPI_OUTYSTRIDE, de->frame_stride);
apb_write_vc_len(dev, RPI_OUTCSTRIDE, de->frame_stride);
// v4l2_info(&dev->v4l2_dev, "Frame: Y=%llx, C=%llx, Stride=%x\n",
// de->frame_addr, de->frame_addr + de->frame_c_offset,
// de->frame_stride);
for (i = 0; i < 16; i++) {
// Strides are in fact unused but fill in anyway
apb_write_vc_addr(dev, 0x9000 + 16 * i, de->ref_addrs[i]);
apb_write_vc_len(dev, 0x9004 + 16 * i, de->frame_stride);
apb_write_vc_addr(dev, 0x9008 + 16 * i,
de->ref_addrs[i] + de->frame_c_offset);
apb_write_vc_len(dev, 0x900C + 16 * i, de->frame_stride);
}
apb_write(dev, RPI_CONFIG2, de->rpi_config2);
apb_write(dev, RPI_FRAMESIZE, de->rpi_framesize);
apb_write(dev, RPI_CURRPOC, de->rpi_currpoc);
// v4l2_info(&dev->v4l2_dev, "Config2=%#x, FrameSize=%#x, POC=%#x\n",
// de->rpi_config2, de->rpi_framesize, de->rpi_currpoc);
// collocated reads/writes
apb_write_vc_len(dev, RPI_COLSTRIDE,
de->ctx->colmv_stride); // Read vals
apb_write_vc_len(dev, RPI_MVSTRIDE,
de->ctx->colmv_stride); // Write vals
apb_write_vc_addr(dev, RPI_MVBASE,
!de->frame_aux ? 0 : de->frame_aux->col.addr);
apb_write_vc_addr(dev, RPI_COLBASE,
!de->col_aux ? 0 : de->col_aux->col.addr);
//v4l2_info(&dev->v4l2_dev,
// "Mv=%llx, Col=%llx, Stride=%x, Buf=%llx->%llx\n",
// de->rpi_mvbase, de->rpi_colbase, de->ctx->colmv_stride,
// de->ctx->colmvbuf.addr, de->ctx->colmvbuf.addr +
// de->ctx->colmvbuf.size);
rpivid_hw_irq_active2_irq(dev, &de->irq_ent, cb_phase2, de);
apb_write_final(dev, RPI_NUMROWS, de->pic_height_in_ctbs_y);
xtrace_ok(dev, de);
}
static void phase1_claimed(struct rpivid_dev *const dev, void *v);
static void phase1_thread(struct rpivid_dev *const dev, void *v)
{
struct rpivid_dec_env *const de = v;
struct rpivid_ctx *const ctx = de->ctx;
struct rpivid_gptr *const pu_gptr = ctx->pu_bufs + ctx->p2idx;
struct rpivid_gptr *const coeff_gptr = ctx->coeff_bufs + ctx->p2idx;
xtrace_in(dev, de);
if (de->p1_status & STATUS_PU_EXHAUSTED) {
if (gptr_realloc_new(dev, pu_gptr, next_size(pu_gptr->size))) {
v4l2_err(&dev->v4l2_dev,
"%s: PU realloc (%#x) failed\n",
__func__, pu_gptr->size);
goto fail;
}
v4l2_info(&dev->v4l2_dev, "%s: PU realloc (%#x) OK\n",
__func__, pu_gptr->size);
}
if (de->p1_status & STATUS_COEFF_EXHAUSTED) {
if (gptr_realloc_new(dev, coeff_gptr,
next_size(coeff_gptr->size))) {
v4l2_err(&dev->v4l2_dev,
"%s: Coeff realloc (%#x) failed\n",
__func__, coeff_gptr->size);
goto fail;
}
v4l2_info(&dev->v4l2_dev, "%s: Coeff realloc (%#x) OK\n",
__func__, coeff_gptr->size);
}
phase1_claimed(dev, de);
xtrace_ok(dev, de);
return;
fail:
dec_env_delete(de);
xtrace_fin(dev, de);
v4l2_m2m_buf_done_and_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx,
VB2_BUF_STATE_ERROR);
xtrace_fail(dev, de);
}
/* Always called in irq context (this is good) */
static void cb_phase1(struct rpivid_dev *const dev, void *v)
{
struct rpivid_dec_env *const de = v;
struct rpivid_ctx *const ctx = de->ctx;
xtrace_in(dev, de);
de->p1_status = check_status(dev);
if (de->p1_status != 0) {
v4l2_info(&dev->v4l2_dev, "%s: Post wait: %#x\n",
__func__, de->p1_status);
if (de->p1_status < 0)
goto fail;
/* Need to realloc - push onto a thread rather than IRQ */
rpivid_hw_irq_active1_thread(dev, &de->irq_ent,
phase1_thread, de);
return;
}
/* After the frame-buf is detached it must be returned but from
* this point onward (phase2_claimed, cb_phase2) there are no error
* paths so the return at the end of cb_phase2 is all that is needed
*/
de->frame_buf = v4l2_m2m_cap_buf_detach(dev->m2m_dev, ctx->fh.m2m_ctx);
if (!de->frame_buf) {
v4l2_err(&dev->v4l2_dev, "%s: No detached buffer\n", __func__);
goto fail;
}
ctx->p2idx =
(ctx->p2idx + 1 >= RPIVID_P2BUF_COUNT) ? 0 : ctx->p2idx + 1;
// Enable the next setup if our Q isn't too big
if (atomic_add_return(1, &ctx->p2out) < RPIVID_P2BUF_COUNT) {
xtrace_fin(dev, de);
v4l2_m2m_buf_done_and_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx,
VB2_BUF_STATE_DONE);
}
rpivid_hw_irq_active2_claim(dev, &de->irq_ent, phase2_claimed, de);
xtrace_ok(dev, de);
return;
fail:
dec_env_delete(de);
xtrace_fin(dev, de);
v4l2_m2m_buf_done_and_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx,
VB2_BUF_STATE_ERROR);
xtrace_fail(dev, de);
}
static void phase1_claimed(struct rpivid_dev *const dev, void *v)
{
struct rpivid_dec_env *const de = v;
struct rpivid_ctx *const ctx = de->ctx;
const struct rpivid_gptr * const pu_gptr = ctx->pu_bufs + ctx->p2idx;
const struct rpivid_gptr * const coeff_gptr = ctx->coeff_bufs +
ctx->p2idx;
xtrace_in(dev, de);
de->pu_base_vc = pu_gptr->addr;
de->pu_stride =
ALIGN_DOWN(pu_gptr->size / de->pic_height_in_ctbs_y, 64);
de->coeff_base_vc = coeff_gptr->addr;
de->coeff_stride =
ALIGN_DOWN(coeff_gptr->size / de->pic_height_in_ctbs_y, 64);
apb_write_vc_addr(dev, RPI_PUWBASE, de->pu_base_vc);
apb_write_vc_len(dev, RPI_PUWSTRIDE, de->pu_stride);
apb_write_vc_addr(dev, RPI_COEFFWBASE, de->coeff_base_vc);
apb_write_vc_len(dev, RPI_COEFFWSTRIDE, de->coeff_stride);
// Trigger command FIFO
apb_write(dev, RPI_CFNUM, de->cmd_len);
// Claim irq
rpivid_hw_irq_active1_irq(dev, &de->irq_ent, cb_phase1, de);
// And start the h/w
apb_write_vc_addr_final(dev, RPI_CFBASE, de->cmd_copy_gptr->addr);
xtrace_ok(dev, de);
}
static void dec_state_delete(struct rpivid_ctx *const ctx)
{
unsigned int i;
struct rpivid_dec_state *const s = ctx->state;
if (!s)
return;
ctx->state = NULL;
free_ps_info(s);
for (i = 0; i != HEVC_MAX_REFS; ++i)
aux_q_release(ctx, &s->ref_aux[i]);
aux_q_release(ctx, &s->frame_aux);
kfree(s);
}
static void rpivid_h265_stop(struct rpivid_ctx *ctx)
{
struct rpivid_dev *const dev = ctx->dev;
unsigned int i;
v4l2_info(&dev->v4l2_dev, "%s\n", __func__);
dec_env_uninit(ctx);
dec_state_delete(ctx);
// dec_env & state must be killed before this to release the buffer to
// the free pool
aux_q_uninit(ctx);
for (i = 0; i != ARRAY_SIZE(ctx->bitbufs); ++i)
gptr_free(dev, ctx->bitbufs + i);
for (i = 0; i != ARRAY_SIZE(ctx->cmdbufs); ++i)
gptr_free(dev, ctx->cmdbufs + i);
for (i = 0; i != ARRAY_SIZE(ctx->pu_bufs); ++i)
gptr_free(dev, ctx->pu_bufs + i);
for (i = 0; i != ARRAY_SIZE(ctx->coeff_bufs); ++i)
gptr_free(dev, ctx->coeff_bufs + i);
}
static int rpivid_h265_start(struct rpivid_ctx *ctx)
{
struct rpivid_dev *const dev = ctx->dev;
unsigned int i;
unsigned int w = ctx->dst_fmt.width;
unsigned int h = ctx->dst_fmt.height;
unsigned int wxh;
size_t pu_alloc;
size_t coeff_alloc;
// Generate a sanitised WxH for memory alloc
// Assume HD if unset
if (w == 0)
w = 1920;
if (w > 4096)
w = 4096;
if (h == 0)
w = 1088;
if (h > 4096)
h = 4096;
wxh = w * h;
v4l2_info(&dev->v4l2_dev, "%s: (%dx%d)\n", __func__,
ctx->dst_fmt.width, ctx->dst_fmt.height);
ctx->dec0 = NULL;
ctx->state = kzalloc(sizeof(*ctx->state), GFP_KERNEL);
if (!ctx->state) {
v4l2_err(&dev->v4l2_dev, "Failed to allocate decode state\n");
goto fail;
}
if (dec_env_init(ctx) != 0) {
v4l2_err(&dev->v4l2_dev, "Failed to allocate decode envs\n");
goto fail;
}
// 16k is plenty for most purposes but we will realloc if needed
for (i = 0; i != ARRAY_SIZE(ctx->cmdbufs); ++i) {
if (gptr_alloc(dev, ctx->cmdbufs + i, 0x4000,
DMA_ATTR_FORCE_CONTIGUOUS))
goto fail;
}
// Finger in the air PU & Coeff alloc
// Will be realloced if too small
coeff_alloc = round_up_size(wxh);
pu_alloc = round_up_size(wxh / 4);
for (i = 0; i != ARRAY_SIZE(ctx->pu_bufs); ++i) {
// Don't actually need a kernel mapping here
if (gptr_alloc(dev, ctx->pu_bufs + i, pu_alloc,
DMA_ATTR_FORCE_CONTIGUOUS |
DMA_ATTR_NO_KERNEL_MAPPING))
goto fail;
if (gptr_alloc(dev, ctx->coeff_bufs + i, coeff_alloc,
DMA_ATTR_FORCE_CONTIGUOUS |
DMA_ATTR_NO_KERNEL_MAPPING))
goto fail;
}
aux_q_init(ctx);
return 0;
fail:
rpivid_h265_stop(ctx);
return -ENOMEM;
}
static void rpivid_h265_trigger(struct rpivid_ctx *ctx)
{
struct rpivid_dev *const dev = ctx->dev;
struct rpivid_dec_env *const de = ctx->dec0;
xtrace_in(dev, de);
switch (!de ? RPIVID_DECODE_ERROR_CONTINUE : de->state) {
case RPIVID_DECODE_SLICE_START:
de->state = RPIVID_DECODE_SLICE_CONTINUE;
/* FALLTHRU */
case RPIVID_DECODE_SLICE_CONTINUE:
v4l2_m2m_buf_done_and_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx,
VB2_BUF_STATE_DONE);
break;
default:
v4l2_err(&dev->v4l2_dev, "%s: Unexpected state: %d\n", __func__,
de->state);
/* FALLTHRU */
case RPIVID_DECODE_ERROR_DONE:
ctx->dec0 = NULL;
dec_env_delete(de);
/* FALLTHRU */
case RPIVID_DECODE_ERROR_CONTINUE:
xtrace_fin(dev, de);
v4l2_m2m_buf_done_and_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx,
VB2_BUF_STATE_ERROR);
break;
case RPIVID_DECODE_PHASE1:
ctx->dec0 = NULL;
rpivid_hw_irq_active1_claim(dev, &de->irq_ent, phase1_claimed,
de);
break;
}
xtrace_ok(dev, de);
}
struct rpivid_dec_ops rpivid_dec_ops_h265 = {
.setup = rpivid_h265_setup,
.start = rpivid_h265_start,
.stop = rpivid_h265_stop,
.trigger = rpivid_h265_trigger,
};
// SPDX-License-Identifier: GPL-2.0
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of_reserved_mem.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <media/videobuf2-core.h>
#include <media/v4l2-mem2mem.h>
#include "rpivid.h"
#include "rpivid_hw.h"
static void pre_irq(struct rpivid_dev *dev, struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback cb, void *v,
struct rpivid_hw_irq_ctrl *ictl)
{
unsigned long flags;
if (ictl->irq) {
v4l2_err(&dev->v4l2_dev, "Attempt to claim IRQ when already claimed\n");
return;
}
ient->cb = cb;
ient->v = v;
// Not sure this lock is actually required
spin_lock_irqsave(&ictl->lock, flags);
ictl->irq = ient;
spin_unlock_irqrestore(&ictl->lock, flags);
}
static void sched_claim(struct rpivid_dev * const dev,
struct rpivid_hw_irq_ctrl * const ictl)
{
for (;;) {
struct rpivid_hw_irq_ent *ient = NULL;
unsigned long flags;
spin_lock_irqsave(&ictl->lock, flags);
if (--ictl->no_sched <= 0) {
ient = ictl->claim;
if (!ictl->irq && ient) {
ictl->claim = ient->next;
ictl->no_sched = 1;
}
}
spin_unlock_irqrestore(&ictl->lock, flags);
if (!ient)
break;
ient->cb(dev, ient->v);
}
}
/* Should only ever be called from its own IRQ cb so no lock required */
static void pre_thread(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback cb, void *v,
struct rpivid_hw_irq_ctrl *ictl)
{
ient->cb = cb;
ient->v = v;
ictl->irq = ient;
ictl->thread_reqed = true;
ictl->no_sched++;
}
// Called in irq context
static void do_irq(struct rpivid_dev * const dev,
struct rpivid_hw_irq_ctrl * const ictl)
{
struct rpivid_hw_irq_ent *ient;
unsigned long flags;
spin_lock_irqsave(&ictl->lock, flags);
ient = ictl->irq;
if (ient) {
ictl->no_sched++;
ictl->irq = NULL;
}
spin_unlock_irqrestore(&ictl->lock, flags);
if (ient) {
ient->cb(dev, ient->v);
sched_claim(dev, ictl);
}
}
static void do_claim(struct rpivid_dev * const dev,
struct rpivid_hw_irq_ent *ient,
const rpivid_irq_callback cb, void * const v,
struct rpivid_hw_irq_ctrl * const ictl)
{
unsigned long flags;
ient->next = NULL;
ient->cb = cb;
ient->v = v;
spin_lock_irqsave(&ictl->lock, flags);
if (ictl->claim) {
// If we have a Q then add to end
ictl->tail->next = ient;
ictl->tail = ient;
ient = NULL;
} else if (ictl->no_sched || ictl->irq) {
// Empty Q but other activity in progress so Q
ictl->claim = ient;
ictl->tail = ient;
ient = NULL;
} else {
// Nothing else going on - schedule immediately and
// prevent anything else scheduling claims
ictl->no_sched = 1;
}
spin_unlock_irqrestore(&ictl->lock, flags);
if (ient) {
ient->cb(dev, ient->v);
sched_claim(dev, ictl);
}
}
static void ictl_init(struct rpivid_hw_irq_ctrl * const ictl)
{
spin_lock_init(&ictl->lock);
ictl->claim = NULL;
ictl->tail = NULL;
ictl->irq = NULL;
ictl->no_sched = 0;
}
static void ictl_uninit(struct rpivid_hw_irq_ctrl * const ictl)
{
// Nothing to do
}
#if !OPT_DEBUG_POLL_IRQ
static irqreturn_t rpivid_irq_irq(int irq, void *data)
{
struct rpivid_dev * const dev = data;
__u32 ictrl;
ictrl = irq_read(dev, ARG_IC_ICTRL);
if (!(ictrl & ARG_IC_ICTRL_ALL_IRQ_MASK)) {
v4l2_warn(&dev->v4l2_dev, "IRQ but no IRQ bits set\n");
return IRQ_NONE;
}
// Cancel any/all irqs
irq_write(dev, ARG_IC_ICTRL, ictrl & ~ARG_IC_ICTRL_SET_ZERO_MASK);
// Service Active2 before Active1 so Phase 1 can transition to Phase 2
// without delay
if (ictrl & ARG_IC_ICTRL_ACTIVE2_INT_SET)
do_irq(dev, &dev->ic_active2);
if (ictrl & ARG_IC_ICTRL_ACTIVE1_INT_SET)
do_irq(dev, &dev->ic_active1);
return dev->ic_active1.thread_reqed || dev->ic_active2.thread_reqed ?
IRQ_WAKE_THREAD : IRQ_HANDLED;
}
static void do_thread(struct rpivid_dev * const dev,
struct rpivid_hw_irq_ctrl *const ictl)
{
unsigned long flags;
struct rpivid_hw_irq_ent *ient = NULL;
spin_lock_irqsave(&ictl->lock, flags);
if (ictl->thread_reqed) {
ient = ictl->irq;
ictl->thread_reqed = false;
ictl->irq = NULL;
}
spin_unlock_irqrestore(&ictl->lock, flags);
if (ient) {
ient->cb(dev, ient->v);
sched_claim(dev, ictl);
}
}
static irqreturn_t rpivid_irq_thread(int irq, void *data)
{
struct rpivid_dev * const dev = data;
do_thread(dev, &dev->ic_active1);
do_thread(dev, &dev->ic_active2);
return IRQ_HANDLED;
}
#endif
/* May only be called from Active1 CB
* IRQs should not be expected until execution continues in the cb
*/
void rpivid_hw_irq_active1_thread(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback thread_cb, void *ctx)
{
pre_thread(dev, ient, thread_cb, ctx, &dev->ic_active1);
}
void rpivid_hw_irq_active1_claim(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback ready_cb, void *ctx)
{
do_claim(dev, ient, ready_cb, ctx, &dev->ic_active1);
}
void rpivid_hw_irq_active1_irq(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback irq_cb, void *ctx)
{
pre_irq(dev, ient, irq_cb, ctx, &dev->ic_active1);
}
void rpivid_hw_irq_active2_claim(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback ready_cb, void *ctx)
{
do_claim(dev, ient, ready_cb, ctx, &dev->ic_active2);
}
void rpivid_hw_irq_active2_irq(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback irq_cb, void *ctx)
{
pre_irq(dev, ient, irq_cb, ctx, &dev->ic_active2);
}
int rpivid_hw_probe(struct rpivid_dev *dev)
{
struct resource *res;
__u32 irq_stat;
int irq_dec;
int ret = 0;
ictl_init(&dev->ic_active1);
ictl_init(&dev->ic_active2);
res = platform_get_resource_byname(dev->pdev, IORESOURCE_MEM, "intc");
if (!res)
return -ENODEV;
dev->base_irq = devm_ioremap(dev->dev, res->start, resource_size(res));
if (IS_ERR(dev->base_irq))
return PTR_ERR(dev->base_irq);
res = platform_get_resource_byname(dev->pdev, IORESOURCE_MEM, "hevc");
if (!res)
return -ENODEV;
dev->base_h265 = devm_ioremap(dev->dev, res->start, resource_size(res));
if (IS_ERR(dev->base_h265))
return PTR_ERR(dev->base_h265);
dev->clock = devm_clk_get(&dev->pdev->dev, "hevc");
if (IS_ERR(dev->clock))
return PTR_ERR(dev->clock);
// Disable IRQs & reset anything pending
irq_write(dev, 0,
ARG_IC_ICTRL_ACTIVE1_EN_SET | ARG_IC_ICTRL_ACTIVE2_EN_SET);
irq_stat = irq_read(dev, 0);
irq_write(dev, 0, irq_stat);
#if !OPT_DEBUG_POLL_IRQ
irq_dec = platform_get_irq(dev->pdev, 0);
if (irq_dec <= 0)
return irq_dec;
ret = devm_request_threaded_irq(dev->dev, irq_dec,
rpivid_irq_irq,
rpivid_irq_thread,
0, dev_name(dev->dev), dev);
if (ret) {
dev_err(dev->dev, "Failed to request IRQ - %d\n", ret);
return ret;
}
#endif
return ret;
}
void rpivid_hw_remove(struct rpivid_dev *dev)
{
// IRQ auto freed on unload so no need to do it here
ictl_uninit(&dev->ic_active1);
ictl_uninit(&dev->ic_active2);
}
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#ifndef _RPIVID_HW_H_
#define _RPIVID_HW_H_
struct rpivid_hw_irq_ent {
struct rpivid_hw_irq_ent *next;
rpivid_irq_callback cb;
void *v;
};
/* Phase 1 Register offsets */
#define RPI_SPS0 0
#define RPI_SPS1 4
#define RPI_PPS 8
#define RPI_SLICE 12
#define RPI_TILESTART 16
#define RPI_TILEEND 20
#define RPI_SLICESTART 24
#define RPI_MODE 28
#define RPI_LEFT0 32
#define RPI_LEFT1 36
#define RPI_LEFT2 40
#define RPI_LEFT3 44
#define RPI_QP 48
#define RPI_CONTROL 52
#define RPI_STATUS 56
#define RPI_VERSION 60
#define RPI_BFBASE 64
#define RPI_BFNUM 68
#define RPI_BFCONTROL 72
#define RPI_BFSTATUS 76
#define RPI_PUWBASE 80
#define RPI_PUWSTRIDE 84
#define RPI_COEFFWBASE 88
#define RPI_COEFFWSTRIDE 92
#define RPI_SLICECMDS 96
#define RPI_BEGINTILEEND 100
#define RPI_TRANSFER 104
#define RPI_CFBASE 108
#define RPI_CFNUM 112
#define RPI_CFSTATUS 116
/* Phase 2 Register offsets */
#define RPI_PURBASE 0x8000
#define RPI_PURSTRIDE 0x8004
#define RPI_COEFFRBASE 0x8008
#define RPI_COEFFRSTRIDE 0x800C
#define RPI_NUMROWS 0x8010
#define RPI_CONFIG2 0x8014
#define RPI_OUTYBASE 0x8018
#define RPI_OUTYSTRIDE 0x801C
#define RPI_OUTCBASE 0x8020
#define RPI_OUTCSTRIDE 0x8024
#define RPI_STATUS2 0x8028
#define RPI_FRAMESIZE 0x802C
#define RPI_MVBASE 0x8030
#define RPI_MVSTRIDE 0x8034
#define RPI_COLBASE 0x8038
#define RPI_COLSTRIDE 0x803C
#define RPI_CURRPOC 0x8040
/*
* Write a general register value
* Order is unimportant
*/
static inline void apb_write(const struct rpivid_dev * const dev,
const unsigned int offset, const u32 val)
{
writel_relaxed(val, dev->base_h265 + offset);
}
/* Write the final register value that actually starts the phase */
static inline void apb_write_final(const struct rpivid_dev * const dev,
const unsigned int offset, const u32 val)
{
writel(val, dev->base_h265 + offset);
}
static inline u32 apb_read(const struct rpivid_dev * const dev,
const unsigned int offset)
{
return readl(dev->base_h265 + offset);
}
static inline void irq_write(const struct rpivid_dev * const dev,
const unsigned int offset, const u32 val)
{
writel(val, dev->base_irq + offset);
}
static inline u32 irq_read(const struct rpivid_dev * const dev,
const unsigned int offset)
{
return readl(dev->base_irq + offset);
}
static inline void apb_write_vc_addr(const struct rpivid_dev * const dev,
const unsigned int offset,
const dma_addr_t a)
{
apb_write(dev, offset, (u32)(a >> 6));
}
static inline void apb_write_vc_addr_final(const struct rpivid_dev * const dev,
const unsigned int offset,
const dma_addr_t a)
{
apb_write_final(dev, offset, (u32)(a >> 6));
}
static inline void apb_write_vc_len(const struct rpivid_dev * const dev,
const unsigned int offset,
const unsigned int x)
{
apb_write(dev, offset, (x + 63) >> 6);
}
/* *ARG_IC_ICTRL - Interrupt control for ARGON Core*
* Offset (byte space) = 40'h2b10000
* Physical Address (byte space) = 40'h7eb10000
* Verilog Macro Address = `ARG_IC_REG_START + `ARGON_INTCTRL_ICTRL
* Reset Value = 32'b100x100x_100xxxxx_xxxxxxx0_x100x100
* Access = RW (32-bit only)
* Interrupt control logic for ARGON Core.
*/
#define ARG_IC_ICTRL 0
/* acc=LWC ACTIVE1_INT FIELD ACCESS: LWC
*
* Interrupt 1
* This is set and held when an hevc_active1 interrupt edge is detected
* The polarity of the edge is set by the ACTIVE1_EDGE field
* Write a 1 to this bit to clear down the latched interrupt
* The latched interrupt is only enabled out onto the interrupt line if
* ACTIVE1_EN is set
* Reset value is *0* decimal.
*/
#define ARG_IC_ICTRL_ACTIVE1_INT_SET BIT(0)
/* ACTIVE1_EDGE Sets the polarity of the interrupt edge detection logic
* This logic detects edges of the hevc_active1 line from the argon core
* 0 = negedge, 1 = posedge
* Reset value is *0* decimal.
*/
#define ARG_IC_ICTRL_ACTIVE1_EDGE_SET BIT(1)
/* ACTIVE1_EN Enables ACTIVE1_INT out onto the argon interrupt line.
* If this isn't set, the interrupt logic will work but no interrupt will be
* set to the interrupt controller
* Reset value is *1* decimal.
*
* [JC] The above appears to be a lie - if unset then b0 is never set
*/
#define ARG_IC_ICTRL_ACTIVE1_EN_SET BIT(2)
/* acc=RO ACTIVE1_STATUS FIELD ACCESS: RO
*
* The current status of the hevc_active1 signal
*/
#define ARG_IC_ICTRL_ACTIVE1_STATUS_SET BIT(3)
/* acc=LWC ACTIVE2_INT FIELD ACCESS: LWC
*
* Interrupt 2
* This is set and held when an hevc_active2 interrupt edge is detected
* The polarity of the edge is set by the ACTIVE2_EDGE field
* Write a 1 to this bit to clear down the latched interrupt
* The latched interrupt is only enabled out onto the interrupt line if
* ACTIVE2_EN is set
* Reset value is *0* decimal.
*/
#define ARG_IC_ICTRL_ACTIVE2_INT_SET BIT(4)
/* ACTIVE2_EDGE Sets the polarity of the interrupt edge detection logic
* This logic detects edges of the hevc_active2 line from the argon core
* 0 = negedge, 1 = posedge
* Reset value is *0* decimal.
*/
#define ARG_IC_ICTRL_ACTIVE2_EDGE_SET BIT(5)
/* ACTIVE2_EN Enables ACTIVE2_INT out onto the argon interrupt line.
* If this isn't set, the interrupt logic will work but no interrupt will be
* set to the interrupt controller
* Reset value is *1* decimal.
*/
#define ARG_IC_ICTRL_ACTIVE2_EN_SET BIT(6)
/* acc=RO ACTIVE2_STATUS FIELD ACCESS: RO
*
* The current status of the hevc_active2 signal
*/
#define ARG_IC_ICTRL_ACTIVE2_STATUS_SET BIT(7)
/* TEST_INT Forces the argon int high for test purposes.
* Reset value is *0* decimal.
*/
#define ARG_IC_ICTRL_TEST_INT BIT(8)
#define ARG_IC_ICTRL_SPARE BIT(9)
/* acc=RO VP9_INTERRUPT_STATUS FIELD ACCESS: RO
*
* The current status of the vp9_interrupt signal
*/
#define ARG_IC_ICTRL_VP9_INTERRUPT_STATUS BIT(10)
/* AIO_INT_ENABLE 1 = Or the AIO int in with the Argon int so the VPU can see
* it
* 0 = the AIO int is masked. (It should still be connected to the GIC though).
*/
#define ARG_IC_ICTRL_AIO_INT_ENABLE BIT(20)
#define ARG_IC_ICTRL_H264_ACTIVE_INT BIT(21)
#define ARG_IC_ICTRL_H264_ACTIVE_EDGE BIT(22)
#define ARG_IC_ICTRL_H264_ACTIVE_EN BIT(23)
#define ARG_IC_ICTRL_H264_ACTIVE_STATUS BIT(24)
#define ARG_IC_ICTRL_H264_INTERRUPT_INT BIT(25)
#define ARG_IC_ICTRL_H264_INTERRUPT_EDGE BIT(26)
#define ARG_IC_ICTRL_H264_INTERRUPT_EN BIT(27)
/* acc=RO H264_INTERRUPT_STATUS FIELD ACCESS: RO
*
* The current status of the h264_interrupt signal
*/
#define ARG_IC_ICTRL_H264_INTERRUPT_STATUS BIT(28)
/* acc=LWC VP9_INTERRUPT_INT FIELD ACCESS: LWC
*
* Interrupt 1
* This is set and held when an vp9_interrupt interrupt edge is detected
* The polarity of the edge is set by the VP9_INTERRUPT_EDGE field
* Write a 1 to this bit to clear down the latched interrupt
* The latched interrupt is only enabled out onto the interrupt line if
* VP9_INTERRUPT_EN is set
* Reset value is *0* decimal.
*/
#define ARG_IC_ICTRL_VP9_INTERRUPT_INT BIT(29)
/* VP9_INTERRUPT_EDGE Sets the polarity of the interrupt edge detection logic
* This logic detects edges of the vp9_interrupt line from the argon h264 core
* 0 = negedge, 1 = posedge
* Reset value is *0* decimal.
*/
#define ARG_IC_ICTRL_VP9_INTERRUPT_EDGE BIT(30)
/* VP9_INTERRUPT_EN Enables VP9_INTERRUPT_INT out onto the argon interrupt line.
* If this isn't set, the interrupt logic will work but no interrupt will be
* set to the interrupt controller
* Reset value is *1* decimal.
*/
#define ARG_IC_ICTRL_VP9_INTERRUPT_EN BIT(31)
/* Bits 19:12, 11 reserved - read ?, write 0 */
#define ARG_IC_ICTRL_SET_ZERO_MASK ((0xff << 12) | BIT(11))
/* All IRQ bits */
#define ARG_IC_ICTRL_ALL_IRQ_MASK (\
ARG_IC_ICTRL_VP9_INTERRUPT_INT |\
ARG_IC_ICTRL_H264_INTERRUPT_INT |\
ARG_IC_ICTRL_ACTIVE1_INT_SET |\
ARG_IC_ICTRL_ACTIVE2_INT_SET)
/* Auto release once all CBs called */
void rpivid_hw_irq_active1_claim(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback ready_cb, void *ctx);
/* May only be called in claim cb */
void rpivid_hw_irq_active1_irq(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback irq_cb, void *ctx);
/* May only be called in irq cb */
void rpivid_hw_irq_active1_thread(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback thread_cb, void *ctx);
/* Auto release once all CBs called */
void rpivid_hw_irq_active2_claim(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback ready_cb, void *ctx);
/* May only be called in claim cb */
void rpivid_hw_irq_active2_irq(struct rpivid_dev *dev,
struct rpivid_hw_irq_ent *ient,
rpivid_irq_callback irq_cb, void *ctx);
int rpivid_hw_probe(struct rpivid_dev *dev);
void rpivid_hw_remove(struct rpivid_dev *dev);
#endif
// SPDX-License-Identifier: GPL-2.0
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#include <media/videobuf2-dma-contig.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-event.h>
#include <media/v4l2-mem2mem.h>
#include "rpivid.h"
#include "rpivid_video.h"
#include "rpivid_dec.h"
#define RPIVID_DECODE_SRC BIT(0)
#define RPIVID_DECODE_DST BIT(1)
#define RPIVID_MIN_WIDTH 16U
#define RPIVID_MIN_HEIGHT 16U
#define RPIVID_MAX_WIDTH 4096U
#define RPIVID_MAX_HEIGHT 4096U
static inline struct rpivid_ctx *rpivid_file2ctx(struct file *file)
{
return container_of(file->private_data, struct rpivid_ctx, fh);
}
/* constrain x to y,y*2 */
static inline unsigned int constrain2x(unsigned int x, unsigned int y)
{
return (x < y) ?
y :
(x > y * 2) ? y : x;
}
int rpivid_prepare_src_format(struct v4l2_pix_format *pix_fmt)
{
if (pix_fmt->pixelformat != V4L2_PIX_FMT_HEVC_SLICE)
return -EINVAL;
/* Zero bytes per line for encoded source. */
pix_fmt->bytesperline = 0;
/* Choose some minimum size since this can't be 0 */
pix_fmt->sizeimage = max_t(u32, SZ_1K, pix_fmt->sizeimage);
pix_fmt->field = V4L2_FIELD_NONE;
return 0;
}
int rpivid_prepare_dst_format(struct v4l2_pix_format *pix_fmt)
{
unsigned int width = pix_fmt->width;
unsigned int height = pix_fmt->height;
unsigned int sizeimage = pix_fmt->sizeimage;
unsigned int bytesperline = pix_fmt->bytesperline;
switch (pix_fmt->pixelformat) {
/* For column formats set bytesperline to column height (stride2) */
case V4L2_PIX_FMT_NV12_COL128:
/* Width rounds up to columns */
width = ALIGN(min(width, RPIVID_MAX_WIDTH), 128);
/* 16 aligned height - not sure we even need that */
height = ALIGN(height, 16);
/* column height
* Accept suggested shape if at least min & < 2 * min
*/
bytesperline = constrain2x(bytesperline, height * 3 / 2);
/* image size
* Again allow plausible variation in case added padding is
* required
*/
sizeimage = constrain2x(sizeimage, bytesperline * width);
break;
case V4L2_PIX_FMT_NV12_10_COL128:
/* width in pixels (3 pels = 4 bytes) rounded to 128 byte
* columns
*/
width = ALIGN(((min(width, RPIVID_MAX_WIDTH) + 2) / 3), 32) * 3;
/* 16-aligned height. */
height = ALIGN(height, 16);
/* column height
* Accept suggested shape if at least min & < 2 * min
*/
bytesperline = constrain2x(bytesperline, height * 3 / 2);
/* image size
* Again allow plausible variation in case added padding is
* required
*/
sizeimage = constrain2x(sizeimage,
bytesperline * width * 4 / 3);
break;
default:
return -EINVAL;
}
pix_fmt->width = width;
pix_fmt->height = height;
pix_fmt->field = V4L2_FIELD_NONE;
pix_fmt->bytesperline = bytesperline;
pix_fmt->sizeimage = sizeimage;
return 0;
}
static int rpivid_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strscpy(cap->driver, RPIVID_NAME, sizeof(cap->driver));
strscpy(cap->card, RPIVID_NAME, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", RPIVID_NAME);
return 0;
}
static int rpivid_enum_fmt_vid_out(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
// Input formats
// H.265 Slice only currently
if (f->index == 0) {
f->pixelformat = V4L2_PIX_FMT_HEVC_SLICE;
return 0;
}
return -EINVAL;
}
static int rpivid_hevc_validate_sps(const struct v4l2_ctrl_hevc_sps * const sps)
{
const unsigned int ctb_log2_size_y =
sps->log2_min_luma_coding_block_size_minus3 + 3 +
sps->log2_diff_max_min_luma_coding_block_size;
const unsigned int min_tb_log2_size_y =
sps->log2_min_luma_transform_block_size_minus2 + 2;
const unsigned int max_tb_log2_size_y = min_tb_log2_size_y +
sps->log2_diff_max_min_luma_transform_block_size;
/* Local limitations */
if (sps->pic_width_in_luma_samples < 32 ||
sps->pic_width_in_luma_samples > 4096)
return 0;
if (sps->pic_height_in_luma_samples < 32 ||
sps->pic_height_in_luma_samples > 4096)
return 0;
if (!(sps->bit_depth_luma_minus8 == 0 ||
sps->bit_depth_luma_minus8 == 2))
return 0;
if (sps->bit_depth_luma_minus8 != sps->bit_depth_chroma_minus8)
return 0;
if (sps->chroma_format_idc != 1)
return 0;
/* Limits from H.265 7.4.3.2.1 */
if (sps->log2_max_pic_order_cnt_lsb_minus4 > 12)
return 0;
if (sps->sps_max_dec_pic_buffering_minus1 > 15)
return 0;
if (sps->sps_max_num_reorder_pics >
sps->sps_max_dec_pic_buffering_minus1)
return 0;
if (ctb_log2_size_y > 6)
return 0;
if (max_tb_log2_size_y > 5)
return 0;
if (max_tb_log2_size_y > ctb_log2_size_y)
return 0;
if (sps->max_transform_hierarchy_depth_inter >
(ctb_log2_size_y - min_tb_log2_size_y))
return 0;
if (sps->max_transform_hierarchy_depth_intra >
(ctb_log2_size_y - min_tb_log2_size_y))
return 0;
/* Check pcm stuff */
if (sps->num_short_term_ref_pic_sets > 64)
return 0;
if (sps->num_long_term_ref_pics_sps > 32)
return 0;
return 1;
}
static inline int is_sps_set(const struct v4l2_ctrl_hevc_sps * const sps)
{
return sps && sps->pic_width_in_luma_samples != 0;
}
static u32 pixelformat_from_sps(const struct v4l2_ctrl_hevc_sps * const sps,
const int index)
{
u32 pf = 0;
// Use width 0 as a signifier of unsetness
if (!is_sps_set(sps)) {
/* Treat this as an error? For now return both */
if (index == 0)
pf = V4L2_PIX_FMT_NV12_COL128;
else if (index == 1)
pf = V4L2_PIX_FMT_NV12_10_COL128;
} else if (index == 0 && rpivid_hevc_validate_sps(sps)) {
if (sps->bit_depth_luma_minus8 == 0)
pf = V4L2_PIX_FMT_NV12_COL128;
else if (sps->bit_depth_luma_minus8 == 2)
pf = V4L2_PIX_FMT_NV12_10_COL128;
}
return pf;
}
static struct v4l2_pix_format
rpivid_hevc_default_dst_fmt(struct rpivid_ctx * const ctx)
{
const struct v4l2_ctrl_hevc_sps * const sps =
rpivid_find_control_data(ctx, V4L2_CID_MPEG_VIDEO_HEVC_SPS);
struct v4l2_pix_format pix_fmt = {
.width = sps->pic_width_in_luma_samples,
.height = sps->pic_height_in_luma_samples,
.pixelformat = pixelformat_from_sps(sps, 0)
};
rpivid_prepare_dst_format(&pix_fmt);
return pix_fmt;
}
static u32 rpivid_hevc_get_dst_pixelformat(struct rpivid_ctx * const ctx,
const int index)
{
const struct v4l2_ctrl_hevc_sps * const sps =
rpivid_find_control_data(ctx, V4L2_CID_MPEG_VIDEO_HEVC_SPS);
return pixelformat_from_sps(sps, index);
}
static int rpivid_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct rpivid_ctx * const ctx = rpivid_file2ctx(file);
const u32 pf = rpivid_hevc_get_dst_pixelformat(ctx, f->index);
if (pf == 0)
return -EINVAL;
f->pixelformat = pf;
return 0;
}
static int rpivid_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct rpivid_ctx *ctx = rpivid_file2ctx(file);
if (!ctx->dst_fmt_set)
ctx->dst_fmt = rpivid_hevc_default_dst_fmt(ctx);
f->fmt.pix = ctx->dst_fmt;
return 0;
}
static int rpivid_g_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct rpivid_ctx *ctx = rpivid_file2ctx(file);
f->fmt.pix = ctx->src_fmt;
return 0;
}
static inline void copy_color(struct v4l2_pix_format *d,
const struct v4l2_pix_format *s)
{
d->colorspace = s->colorspace;
d->xfer_func = s->xfer_func;
d->ycbcr_enc = s->ycbcr_enc;
d->quantization = s->quantization;
}
static int rpivid_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct rpivid_ctx *ctx = rpivid_file2ctx(file);
const struct v4l2_ctrl_hevc_sps * const sps =
rpivid_find_control_data(ctx, V4L2_CID_MPEG_VIDEO_HEVC_SPS);
u32 pixelformat;
int i;
/* Reject format types we don't support */
if (f->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
for (i = 0; (pixelformat = pixelformat_from_sps(sps, i)) != 0; i++) {
if (f->fmt.pix.pixelformat == pixelformat)
break;
}
// If we can't use requested fmt then set to default
if (pixelformat == 0) {
pixelformat = pixelformat_from_sps(sps, 0);
// If we don't have a default then give up
if (pixelformat == 0)
return -EINVAL;
}
// We don't have any way of finding out colourspace so believe
// anything we are told - take anything set in src as a default
if (f->fmt.pix.colorspace == V4L2_COLORSPACE_DEFAULT)
copy_color(&f->fmt.pix, &ctx->src_fmt);
f->fmt.pix.pixelformat = pixelformat;
return rpivid_prepare_dst_format(&f->fmt.pix);
}
static int rpivid_try_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
if (f->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
if (rpivid_prepare_src_format(&f->fmt.pix)) {
// Set default src format
f->fmt.pix.pixelformat = RPIVID_SRC_PIXELFORMAT_DEFAULT;
rpivid_prepare_src_format(&f->fmt.pix);
}
return 0;
}
static int rpivid_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct rpivid_ctx *ctx = rpivid_file2ctx(file);
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
if (vb2_is_busy(vq))
return -EBUSY;
ret = rpivid_try_fmt_vid_cap(file, priv, f);
if (ret)
return ret;
ctx->dst_fmt = f->fmt.pix;
ctx->dst_fmt_set = 1;
return 0;
}
static int rpivid_s_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct rpivid_ctx *ctx = rpivid_file2ctx(file);
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
if (vb2_is_busy(vq))
return -EBUSY;
ret = rpivid_try_fmt_vid_out(file, priv, f);
if (ret)
return ret;
ctx->src_fmt = f->fmt.pix;
ctx->dst_fmt_set = 0; // Setting src invalidates dst
vq->subsystem_flags |=
VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF;
/* Propagate colorspace information to capture. */
copy_color(&ctx->dst_fmt, &f->fmt.pix);
return 0;
}
const struct v4l2_ioctl_ops rpivid_ioctl_ops = {
.vidioc_querycap = rpivid_querycap,
.vidioc_enum_fmt_vid_cap = rpivid_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = rpivid_g_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = rpivid_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = rpivid_s_fmt_vid_cap,
.vidioc_enum_fmt_vid_out = rpivid_enum_fmt_vid_out,
.vidioc_g_fmt_vid_out = rpivid_g_fmt_vid_out,
.vidioc_try_fmt_vid_out = rpivid_try_fmt_vid_out,
.vidioc_s_fmt_vid_out = rpivid_s_fmt_vid_out,
.vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
.vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
.vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
.vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
.vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
.vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
.vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
.vidioc_streamon = v4l2_m2m_ioctl_streamon,
.vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
.vidioc_try_decoder_cmd = v4l2_m2m_ioctl_stateless_try_decoder_cmd,
.vidioc_decoder_cmd = v4l2_m2m_ioctl_stateless_decoder_cmd,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
static int rpivid_queue_setup(struct vb2_queue *vq, unsigned int *nbufs,
unsigned int *nplanes, unsigned int sizes[],
struct device *alloc_devs[])
{
struct rpivid_ctx *ctx = vb2_get_drv_priv(vq);
struct v4l2_pix_format *pix_fmt;
if (V4L2_TYPE_IS_OUTPUT(vq->type))
pix_fmt = &ctx->src_fmt;
else
pix_fmt = &ctx->dst_fmt;
if (*nplanes) {
if (sizes[0] < pix_fmt->sizeimage)
return -EINVAL;
} else {
sizes[0] = pix_fmt->sizeimage;
*nplanes = 1;
}
return 0;
}
static void rpivid_queue_cleanup(struct vb2_queue *vq, u32 state)
{
struct rpivid_ctx *ctx = vb2_get_drv_priv(vq);
struct vb2_v4l2_buffer *vbuf;
for (;;) {
if (V4L2_TYPE_IS_OUTPUT(vq->type))
vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
else
vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
if (!vbuf)
return;
v4l2_ctrl_request_complete(vbuf->vb2_buf.req_obj.req,
&ctx->hdl);
v4l2_m2m_buf_done(vbuf, state);
}
}
static int rpivid_buf_out_validate(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
vbuf->field = V4L2_FIELD_NONE;
return 0;
}
static int rpivid_buf_prepare(struct vb2_buffer *vb)
{
struct vb2_queue *vq = vb->vb2_queue;
struct rpivid_ctx *ctx = vb2_get_drv_priv(vq);
struct v4l2_pix_format *pix_fmt;
if (V4L2_TYPE_IS_OUTPUT(vq->type))
pix_fmt = &ctx->src_fmt;
else
pix_fmt = &ctx->dst_fmt;
if (vb2_plane_size(vb, 0) < pix_fmt->sizeimage)
return -EINVAL;
vb2_set_plane_payload(vb, 0, pix_fmt->sizeimage);
return 0;
}
static int rpivid_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct rpivid_ctx *ctx = vb2_get_drv_priv(vq);
struct rpivid_dev *dev = ctx->dev;
int ret = 0;
if (ctx->src_fmt.pixelformat != V4L2_PIX_FMT_HEVC_SLICE)
return -EINVAL;
if (V4L2_TYPE_IS_OUTPUT(vq->type) && dev->dec_ops->start)
ret = dev->dec_ops->start(ctx);
ret = clk_set_rate(dev->clock, 500 * 1000 * 1000);
if (ret) {
dev_err(dev->dev, "Failed to set clock rate\n");
goto out;
}
ret = clk_prepare_enable(dev->clock);
if (ret)
dev_err(dev->dev, "Failed to enable clock\n");
out:
if (ret)
rpivid_queue_cleanup(vq, VB2_BUF_STATE_QUEUED);
return ret;
}
static void rpivid_stop_streaming(struct vb2_queue *vq)
{
struct rpivid_ctx *ctx = vb2_get_drv_priv(vq);
struct rpivid_dev *dev = ctx->dev;
if (V4L2_TYPE_IS_OUTPUT(vq->type) && dev->dec_ops->stop)
dev->dec_ops->stop(ctx);
rpivid_queue_cleanup(vq, VB2_BUF_STATE_ERROR);
clk_disable_unprepare(dev->clock);
}
static void rpivid_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct rpivid_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
}
static void rpivid_buf_request_complete(struct vb2_buffer *vb)
{
struct rpivid_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
v4l2_ctrl_request_complete(vb->req_obj.req, &ctx->hdl);
}
static struct vb2_ops rpivid_qops = {
.queue_setup = rpivid_queue_setup,
.buf_prepare = rpivid_buf_prepare,
.buf_queue = rpivid_buf_queue,
.buf_out_validate = rpivid_buf_out_validate,
.buf_request_complete = rpivid_buf_request_complete,
.start_streaming = rpivid_start_streaming,
.stop_streaming = rpivid_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
int rpivid_queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
struct rpivid_ctx *ctx = priv;
int ret;
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
src_vq->drv_priv = ctx;
src_vq->buf_struct_size = sizeof(struct rpivid_buffer);
src_vq->min_buffers_needed = 1;
src_vq->ops = &rpivid_qops;
src_vq->mem_ops = &vb2_dma_contig_memops;
src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
src_vq->lock = &ctx->dev->dev_mutex;
src_vq->dev = ctx->dev->dev;
src_vq->supports_requests = true;
src_vq->requires_requests = true;
ret = vb2_queue_init(src_vq);
if (ret)
return ret;
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
dst_vq->drv_priv = ctx;
dst_vq->buf_struct_size = sizeof(struct rpivid_buffer);
dst_vq->min_buffers_needed = 1;
dst_vq->ops = &rpivid_qops;
dst_vq->mem_ops = &vb2_dma_contig_memops;
dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
dst_vq->lock = &ctx->dev->dev_mutex;
dst_vq->dev = ctx->dev->dev;
return vb2_queue_init(dst_vq);
}
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Raspberry Pi HEVC driver
*
* Copyright (C) 2020 Raspberry Pi (Trading) Ltd
*
* Based on the Cedrus VPU driver, that is:
*
* Copyright (C) 2016 Florent Revest <florent.revest@free-electrons.com>
* Copyright (C) 2018 Paul Kocialkowski <paul.kocialkowski@bootlin.com>
* Copyright (C) 2018 Bootlin
*/
#ifndef _RPIVID_VIDEO_H_
#define _RPIVID_VIDEO_H_
struct rpivid_format {
u32 pixelformat;
u32 directions;
unsigned int capabilities;
};
extern const struct v4l2_ioctl_ops rpivid_ioctl_ops;
int rpivid_queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq);
int rpivid_prepare_src_format(struct v4l2_pix_format *pix_fmt);
int rpivid_prepare_dst_format(struct v4l2_pix_format *pix_fmt);
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册