diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 68d4470523a0393158c593c76cf38795d5acc4fe..7c6aef253173eb6dae3503c3223b6e5763eb9815 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -260,6 +260,24 @@ enum bpf_attach_type { */ #define BPF_F_ANY_ALIGNMENT (1U << 1) +/* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose. + * Verifier does sub-register def/use analysis and identifies instructions whose + * def only matters for low 32-bit, high 32-bit is never referenced later + * through implicit zero extension. Therefore verifier notifies JIT back-ends + * that it is safe to ignore clearing high 32-bit for these instructions. This + * saves some back-ends a lot of code-gen. However such optimization is not + * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends + * hence hasn't used verifier's analysis result. But, we really want to have a + * way to be able to verify the correctness of the described optimization on + * x86_64 on which testsuites are frequently exercised. + * + * So, this flag is introduced. Once it is set, verifier will randomize high + * 32-bit for those instructions who has been identified as safe to ignore them. + * Then, if verifier is not doing correct analysis, such randomization will + * regress tests to expose bugs. + */ +#define BPF_F_TEST_RND_HI32 (1U << 2) + /* When BPF ldimm64's insn[0].src_reg != 0 then this can have * two extensions: * diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c index cb5440b02e82332394e674c04eaa7b3fbe501b08..3d546b6f464610ae7648cbe9bac5180ade535bb8 100644 --- a/kernel/bpf/syscall.c +++ b/kernel/bpf/syscall.c @@ -1604,7 +1604,9 @@ static int bpf_prog_load(union bpf_attr *attr, union bpf_attr __user *uattr) if (CHECK_ATTR(BPF_PROG_LOAD)) return -EINVAL; - if (attr->prog_flags & ~(BPF_F_STRICT_ALIGNMENT | BPF_F_ANY_ALIGNMENT)) + if (attr->prog_flags & ~(BPF_F_STRICT_ALIGNMENT | + BPF_F_ANY_ALIGNMENT | + BPF_F_TEST_RND_HI32)) return -EINVAL; if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&