提交 be0d6768 编写于 作者: D Denys Vlasenko 提交者: James Bottomley

[SCSI] aic7xxx, aic79xx: deinline functions

Deinlines and moves big functions from .h to .c files.
Adds prototypes for ahc_lookup_scb and ahd_lookup_scb to .h files.
Signed-off-by: NDenys Vlasenko <vda.linux@googlemail.com>
Signed-off-by: NJames Bottomley <James.Bottomley@HansenPartnership.com>
上级 93c20a59
......@@ -3649,7 +3649,7 @@ scratch_ram {
KERNEL_TQINPOS {
size 1
}
TQINPOS {
TQINPOS {
size 1
}
/*
......
......@@ -266,8 +266,752 @@ static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
int target, char channel, int lun,
u_int tag, role_t role);
/******************************** Private Inlines *****************************/
/************************ Sequencer Execution Control *************************/
void
ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
if (ahd->src_mode == src && ahd->dst_mode == dst)
return;
#ifdef AHD_DEBUG
if (ahd->src_mode == AHD_MODE_UNKNOWN
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
panic("Setting mode prior to saving it.\n");
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
ahd_build_mode_state(ahd, src, dst));
#endif
ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
ahd->src_mode = src;
ahd->dst_mode = dst;
}
void
ahd_update_modes(struct ahd_softc *ahd)
{
ahd_mode_state mode_ptr;
ahd_mode src;
ahd_mode dst;
mode_ptr = ahd_inb(ahd, MODE_PTR);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
printf("Reading mode 0x%x\n", mode_ptr);
#endif
ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
ahd_known_modes(ahd, src, dst);
}
void
ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
ahd_mode dstmode, const char *file, int line)
{
#ifdef AHD_DEBUG
if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
|| (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
panic("%s:%s:%d: Mode assertion failed.\n",
ahd_name(ahd), file, line);
}
#endif
}
#define AHD_ASSERT_MODES(ahd, source, dest) \
ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
ahd_mode_state
ahd_save_modes(struct ahd_softc *ahd)
{
if (ahd->src_mode == AHD_MODE_UNKNOWN
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
ahd_update_modes(ahd);
return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
}
void
ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
{
ahd_mode src;
ahd_mode dst;
ahd_extract_mode_state(ahd, state, &src, &dst);
ahd_set_modes(ahd, src, dst);
}
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
int
ahd_is_paused(struct ahd_softc *ahd)
{
return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
void
ahd_pause(struct ahd_softc *ahd)
{
ahd_outb(ahd, HCNTRL, ahd->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahd_is_paused(ahd) == 0)
;
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
void
ahd_unpause(struct ahd_softc *ahd)
{
/*
* Automatically restore our modes to those saved
* prior to the first change of the mode.
*/
if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
&& ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
ahd_reset_cmds_pending(ahd);
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
}
if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
ahd_outb(ahd, HCNTRL, ahd->unpause);
ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
}
/*********************** Scatter Gather List Handling *************************/
void *
ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
void *sgptr, dma_addr_t addr, bus_size_t len, int last)
{
scb->sg_count++;
if (sizeof(dma_addr_t) > 4
&& (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = (struct ahd_dma64_seg *)sgptr;
sg->addr = ahd_htole64(addr);
sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
return (sg + 1);
} else {
struct ahd_dma_seg *sg;
sg = (struct ahd_dma_seg *)sgptr;
sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
| (last ? AHD_DMA_LAST_SEG : 0));
return (sg + 1);
}
}
void
ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
{
/* XXX Handle target mode SCBs. */
scb->crc_retry_count = 0;
if ((scb->flags & SCB_PACKETIZED) != 0) {
/* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
} else {
if (ahd_get_transfer_length(scb) & 0x01)
scb->hscb->task_attribute = SCB_XFERLEN_ODD;
else
scb->hscb->task_attribute = 0;
}
if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
|| (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
ahd_htole32(scb->sense_busaddr);
}
void
ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
{
/*
* Copy the first SG into the "current" data ponter area.
*/
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = (struct ahd_dma64_seg *)scb->sg_list;
scb->hscb->dataptr = sg->addr;
scb->hscb->datacnt = sg->len;
} else {
struct ahd_dma_seg *sg;
uint32_t *dataptr_words;
sg = (struct ahd_dma_seg *)scb->sg_list;
dataptr_words = (uint32_t*)&scb->hscb->dataptr;
dataptr_words[0] = sg->addr;
dataptr_words[1] = 0;
if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
uint64_t high_addr;
high_addr = ahd_le32toh(sg->len) & 0x7F000000;
scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
}
scb->hscb->datacnt = sg->len;
}
/*
* Note where to find the SG entries in bus space.
* We also set the full residual flag which the
* sequencer will clear as soon as a data transfer
* occurs.
*/
scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
}
void
ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
{
scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
scb->hscb->dataptr = 0;
scb->hscb->datacnt = 0;
}
/************************** Memory mapping routines ***************************/
void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
{
dma_addr_t sg_offset;
/* sg_list_phys points to entry 1, not 0 */
sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
return ((uint8_t *)scb->sg_list + sg_offset);
}
uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
{
dma_addr_t sg_offset;
/* sg_list_phys points to entry 1, not 0 */
sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
- ahd_sg_size(ahd);
return (scb->sg_list_busaddr + sg_offset);
}
void
ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
{
ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
scb->hscb_map->dmamap,
/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
/*len*/sizeof(*scb->hscb), op);
}
void
ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
{
if (scb->sg_count == 0)
return;
ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
scb->sg_map->dmamap,
/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
}
void
ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
{
ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
scb->sense_map->dmamap,
/*offset*/scb->sense_busaddr,
/*len*/AHD_SENSE_BUFSIZE, op);
}
uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
{
return (((uint8_t *)&ahd->targetcmds[index])
- (uint8_t *)ahd->qoutfifo);
}
/*********************** Miscelaneous Support Functions ***********************/
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
u_int remote_id, struct ahd_tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahd->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port)
{
/*
* Read high byte first as some registers increment
* or have other side effects when the low byte is
* read.
*/
uint16_t r = ahd_inb(ahd, port+1) << 8;
return r | ahd_inb(ahd, port);
}
void
ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
{
/*
* Write low byte first to accomodate registers
* such as PRGMCNT where the order maters.
*/
ahd_outb(ahd, port, value & 0xFF);
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
}
uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port)
{
return ((ahd_inb(ahd, port))
| (ahd_inb(ahd, port+1) << 8)
| (ahd_inb(ahd, port+2) << 16)
| (ahd_inb(ahd, port+3) << 24));
}
void
ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
{
ahd_outb(ahd, port, (value) & 0xFF);
ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
}
uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port)
{
return ((ahd_inb(ahd, port))
| (ahd_inb(ahd, port+1) << 8)
| (ahd_inb(ahd, port+2) << 16)
| (ahd_inb(ahd, port+3) << 24)
| (((uint64_t)ahd_inb(ahd, port+4)) << 32)
| (((uint64_t)ahd_inb(ahd, port+5)) << 40)
| (((uint64_t)ahd_inb(ahd, port+6)) << 48)
| (((uint64_t)ahd_inb(ahd, port+7)) << 56));
}
void
ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
{
ahd_outb(ahd, port, value & 0xFF);
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
}
u_int
ahd_get_scbptr(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
}
void
ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
}
u_int
ahd_get_hnscb_qoff(struct ahd_softc *ahd)
{
return (ahd_inw_atomic(ahd, HNSCB_QOFF));
}
void
ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
{
ahd_outw_atomic(ahd, HNSCB_QOFF, value);
}
u_int
ahd_get_hescb_qoff(struct ahd_softc *ahd)
{
return (ahd_inb(ahd, HESCB_QOFF));
}
void
ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
{
ahd_outb(ahd, HESCB_QOFF, value);
}
u_int
ahd_get_snscb_qoff(struct ahd_softc *ahd)
{
u_int oldvalue;
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
oldvalue = ahd_inw(ahd, SNSCB_QOFF);
ahd_outw(ahd, SNSCB_QOFF, oldvalue);
return (oldvalue);
}
void
ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outw(ahd, SNSCB_QOFF, value);
}
u_int
ahd_get_sescb_qoff(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
return (ahd_inb(ahd, SESCB_QOFF));
}
void
ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outb(ahd, SESCB_QOFF, value);
}
u_int
ahd_get_sdscb_qoff(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
}
void
ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
}
u_int
ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
{
u_int value;
/*
* Workaround PCI-X Rev A. hardware bug.
* After a host read of SCB memory, the chip
* may become confused into thinking prefetch
* was required. This starts the discard timer
* running and can cause an unexpected discard
* timer interrupt. The work around is to read
* a normal register prior to the exhaustion of
* the discard timer. The mode pointer register
* has no side effects and so serves well for
* this purpose.
*
* Razor #528
*/
value = ahd_inb(ahd, offset);
if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
ahd_inb(ahd, MODE_PTR);
return (value);
}
u_int
ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inb_scbram(ahd, offset)
| (ahd_inb_scbram(ahd, offset+1) << 8));
}
uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inw_scbram(ahd, offset)
| (ahd_inw_scbram(ahd, offset+2) << 16));
}
uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inl_scbram(ahd, offset)
| ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
}
struct scb *
ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
{
struct scb* scb;
if (tag >= AHD_SCB_MAX)
return (NULL);
scb = ahd->scb_data.scbindex[tag];
if (scb != NULL)
ahd_sync_scb(ahd, scb,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
return (scb);
}
void
ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
{
struct hardware_scb *q_hscb;
struct map_node *q_hscb_map;
uint32_t saved_hscb_busaddr;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB (by address) to download,
* and we can't disappoint it. To achieve this, the next
* HSCB to download is saved off in ahd->next_queued_hscb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahd->next_queued_hscb;
q_hscb_map = ahd->next_queued_hscb_map;
saved_hscb_busaddr = q_hscb->hscb_busaddr;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
q_hscb->hscb_busaddr = saved_hscb_busaddr;
q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
/* Now swap HSCB pointers. */
ahd->next_queued_hscb = scb->hscb;
ahd->next_queued_hscb_map = scb->hscb_map;
scb->hscb = q_hscb;
scb->hscb_map = q_hscb_map;
/* Now define the mapping from tag to SCB in the scbindex */
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
void
ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
{
ahd_swap_with_next_hscb(ahd, scb);
if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
panic("Attempt to queue invalid SCB tag %x\n",
SCB_GET_TAG(scb));
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
ahd->qinfifonext++;
if (scb->sg_count != 0)
ahd_setup_data_scb(ahd, scb);
else
ahd_setup_noxfer_scb(ahd, scb);
ahd_setup_scb_common(ahd, scb);
/*
* Make sure our data is consistent from the
* perspective of the adapter.
*/
ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
uint64_t host_dataptr;
host_dataptr = ahd_le64toh(scb->hscb->dataptr);
printf("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
ahd_name(ahd),
SCB_GET_TAG(scb), scb->hscb->scsiid,
ahd_le32toh(scb->hscb->hscb_busaddr),
(u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
(u_int)(host_dataptr & 0xFFFFFFFF),
ahd_le32toh(scb->hscb->datacnt));
}
#endif
/* Tell the adapter about the newly queued SCB */
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
}
/************************** Interrupt Processing ******************************/
void
ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
{
ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
/*offset*/0,
/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
}
void
ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
{
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0) {
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap,
ahd_targetcmd_offset(ahd, 0),
sizeof(struct target_cmd) * AHD_TMODE_CMDS,
op);
}
#endif
}
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHD_RUN_QOUTFIFO 0x1
#define AHD_RUN_TQINFIFO 0x2
u_int
ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
{
u_int retval;
retval = 0;
ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
== ahd->qoutfifonext_valid_tag)
retval |= AHD_RUN_QOUTFIFO;
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0
&& (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap,
ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
/*len*/sizeof(struct target_cmd),
BUS_DMASYNC_POSTREAD);
if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
retval |= AHD_RUN_TQINFIFO;
}
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
int
ahd_intr(struct ahd_softc *ahd)
{
u_int intstat;
if ((ahd->pause & INTEN) == 0) {
/*
* Our interrupt is not enabled on the chip
* and may be disabled for re-entrancy reasons,
* so just return. This is likely just a shared
* interrupt.
*/
return (0);
}
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
&& (ahd_check_cmdcmpltqueues(ahd) != 0))
intstat = CMDCMPLT;
else
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & INT_PEND) == 0)
return (0);
if (intstat & CMDCMPLT) {
ahd_outb(ahd, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
if (ahd_is_paused(ahd)) {
/*
* Potentially lost SEQINT.
* If SEQINTCODE is non-zero,
* simulate the SEQINT.
*/
if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
intstat |= SEQINT;
}
} else {
ahd_flush_device_writes(ahd);
}
ahd_run_qoutfifo(ahd);
ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
ahd->cmdcmplt_total++;
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0)
ahd_run_tqinfifo(ahd, /*paused*/FALSE);
#endif
}
/*
* Handle statuses that may invalidate our cached
* copy of INTSTAT separately.
*/
if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
/* Hot eject. Do nothing */
} else if (intstat & HWERRINT) {
ahd_handle_hwerrint(ahd);
} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
ahd->bus_intr(ahd);
} else {
if ((intstat & SEQINT) != 0)
ahd_handle_seqint(ahd, intstat);
if ((intstat & SCSIINT) != 0)
ahd_handle_scsiint(ahd, intstat);
}
return (1);
}
/******************************** Private Inlines *****************************/
static __inline void
ahd_assert_atn(struct ahd_softc *ahd)
{
......@@ -280,7 +1024,7 @@ ahd_assert_atn(struct ahd_softc *ahd)
* are currently in a packetized transfer. We could
* just as easily be sending or receiving a message.
*/
static __inline int
static int
ahd_currently_packetized(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
......@@ -3941,7 +4685,7 @@ ahd_clear_msg_state(struct ahd_softc *ahd)
*/
static void
ahd_handle_message_phase(struct ahd_softc *ahd)
{
{
struct ahd_devinfo devinfo;
u_int bus_phase;
int end_session;
......@@ -5983,8 +6727,7 @@ ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
*/
void
ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
{
{
/* Clean up for the next user */
scb->flags = SCB_FLAG_NONE;
scb->hscb->control = 0;
......@@ -6272,6 +7015,24 @@ static const char *termstat_strings[] = {
"Not Configured"
};
/***************************** Timer Facilities *******************************/
#define ahd_timer_init init_timer
#define ahd_timer_stop del_timer_sync
typedef void ahd_linux_callback_t (u_long);
static void
ahd_timer_reset(ahd_timer_t *timer, int usec, ahd_callback_t *func, void *arg)
{
struct ahd_softc *ahd;
ahd = (struct ahd_softc *)arg;
del_timer(timer);
timer->data = (u_long)arg;
timer->expires = jiffies + (usec * HZ)/1000000;
timer->function = (ahd_linux_callback_t*)func;
add_timer(timer);
}
/*
* Start the board, ready for normal operation
*/
......
......@@ -63,18 +63,19 @@ static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd,
static __inline void ahd_extract_mode_state(struct ahd_softc *ahd,
ahd_mode_state state,
ahd_mode *src, ahd_mode *dst);
static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
ahd_mode dst);
static __inline void ahd_update_modes(struct ahd_softc *ahd);
static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
ahd_mode dstmode, const char *file,
int line);
static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
static __inline void ahd_restore_modes(struct ahd_softc *ahd,
ahd_mode_state state);
static __inline int ahd_is_paused(struct ahd_softc *ahd);
static __inline void ahd_pause(struct ahd_softc *ahd);
static __inline void ahd_unpause(struct ahd_softc *ahd);
void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
ahd_mode dst);
void ahd_update_modes(struct ahd_softc *ahd);
void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
ahd_mode dstmode, const char *file,
int line);
ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
void ahd_restore_modes(struct ahd_softc *ahd,
ahd_mode_state state);
int ahd_is_paused(struct ahd_softc *ahd);
void ahd_pause(struct ahd_softc *ahd);
void ahd_unpause(struct ahd_softc *ahd);
static __inline void
ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
......@@ -99,256 +100,37 @@ ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
*dst = (state & DST_MODE) >> DST_MODE_SHIFT;
}
static __inline void
ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
if (ahd->src_mode == src && ahd->dst_mode == dst)
return;
#ifdef AHD_DEBUG
if (ahd->src_mode == AHD_MODE_UNKNOWN
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
panic("Setting mode prior to saving it.\n");
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
ahd_build_mode_state(ahd, src, dst));
#endif
ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
ahd->src_mode = src;
ahd->dst_mode = dst;
}
static __inline void
ahd_update_modes(struct ahd_softc *ahd)
{
ahd_mode_state mode_ptr;
ahd_mode src;
ahd_mode dst;
mode_ptr = ahd_inb(ahd, MODE_PTR);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
printf("Reading mode 0x%x\n", mode_ptr);
#endif
ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
ahd_known_modes(ahd, src, dst);
}
static __inline void
ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
ahd_mode dstmode, const char *file, int line)
{
#ifdef AHD_DEBUG
if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
|| (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
panic("%s:%s:%d: Mode assertion failed.\n",
ahd_name(ahd), file, line);
}
#endif
}
static __inline ahd_mode_state
ahd_save_modes(struct ahd_softc *ahd)
{
if (ahd->src_mode == AHD_MODE_UNKNOWN
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
ahd_update_modes(ahd);
return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
}
static __inline void
ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
{
ahd_mode src;
ahd_mode dst;
ahd_extract_mode_state(ahd, state, &src, &dst);
ahd_set_modes(ahd, src, dst);
}
#define AHD_ASSERT_MODES(ahd, source, dest) \
ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
ahd_is_paused(struct ahd_softc *ahd)
{
return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
ahd_pause(struct ahd_softc *ahd)
{
ahd_outb(ahd, HCNTRL, ahd->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahd_is_paused(ahd) == 0)
;
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
ahd_unpause(struct ahd_softc *ahd)
{
/*
* Automatically restore our modes to those saved
* prior to the first change of the mode.
*/
if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
&& ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
ahd_reset_cmds_pending(ahd);
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
}
if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
ahd_outb(ahd, HCNTRL, ahd->unpause);
ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
}
/*********************** Scatter Gather List Handling *************************/
static __inline void *ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
void *sgptr, dma_addr_t addr,
bus_size_t len, int last);
static __inline void ahd_setup_scb_common(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_setup_data_scb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_setup_noxfer_scb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void *
ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
void *sgptr, dma_addr_t addr, bus_size_t len, int last)
{
scb->sg_count++;
if (sizeof(dma_addr_t) > 4
&& (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = (struct ahd_dma64_seg *)sgptr;
sg->addr = ahd_htole64(addr);
sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
return (sg + 1);
} else {
struct ahd_dma_seg *sg;
sg = (struct ahd_dma_seg *)sgptr;
sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
| (last ? AHD_DMA_LAST_SEG : 0));
return (sg + 1);
}
}
static __inline void
ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
{
/* XXX Handle target mode SCBs. */
scb->crc_retry_count = 0;
if ((scb->flags & SCB_PACKETIZED) != 0) {
/* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
} else {
if (ahd_get_transfer_length(scb) & 0x01)
scb->hscb->task_attribute = SCB_XFERLEN_ODD;
else
scb->hscb->task_attribute = 0;
}
if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
|| (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
ahd_htole32(scb->sense_busaddr);
}
static __inline void
ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
{
/*
* Copy the first SG into the "current" data ponter area.
*/
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = (struct ahd_dma64_seg *)scb->sg_list;
scb->hscb->dataptr = sg->addr;
scb->hscb->datacnt = sg->len;
} else {
struct ahd_dma_seg *sg;
uint32_t *dataptr_words;
sg = (struct ahd_dma_seg *)scb->sg_list;
dataptr_words = (uint32_t*)&scb->hscb->dataptr;
dataptr_words[0] = sg->addr;
dataptr_words[1] = 0;
if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
uint64_t high_addr;
high_addr = ahd_le32toh(sg->len) & 0x7F000000;
scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
}
scb->hscb->datacnt = sg->len;
}
/*
* Note where to find the SG entries in bus space.
* We also set the full residual flag which the
* sequencer will clear as soon as a data transfer
* occurs.
*/
scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
}
static __inline void
ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
{
scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
scb->hscb->dataptr = 0;
scb->hscb->datacnt = 0;
}
void *ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
void *sgptr, dma_addr_t addr,
bus_size_t len, int last);
void ahd_setup_scb_common(struct ahd_softc *ahd,
struct scb *scb);
void ahd_setup_data_scb(struct ahd_softc *ahd,
struct scb *scb);
void ahd_setup_noxfer_scb(struct ahd_softc *ahd,
struct scb *scb);
/************************** Memory mapping routines ***************************/
static __inline size_t ahd_sg_size(struct ahd_softc *ahd);
static __inline void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd,
struct scb *scb,
uint32_t sg_busaddr);
static __inline uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd,
struct scb *scb,
void *sg);
static __inline void ahd_sync_scb(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline void ahd_sync_sglist(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline void ahd_sync_sense(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd,
u_int index);
void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd,
struct scb *scb,
uint32_t sg_busaddr);
uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd,
struct scb *scb,
void *sg);
void ahd_sync_scb(struct ahd_softc *ahd,
struct scb *scb, int op);
void ahd_sync_sglist(struct ahd_softc *ahd,
struct scb *scb, int op);
void ahd_sync_sense(struct ahd_softc *ahd,
struct scb *scb, int op);
uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd,
u_int index);
static __inline size_t
ahd_sg_size(struct ahd_softc *ahd)
......@@ -358,104 +140,48 @@ ahd_sg_size(struct ahd_softc *ahd)
return (sizeof(struct ahd_dma_seg));
}
static __inline void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
{
dma_addr_t sg_offset;
/* sg_list_phys points to entry 1, not 0 */
sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
return ((uint8_t *)scb->sg_list + sg_offset);
}
static __inline uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
{
dma_addr_t sg_offset;
/* sg_list_phys points to entry 1, not 0 */
sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
- ahd_sg_size(ahd);
return (scb->sg_list_busaddr + sg_offset);
}
static __inline void
ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
{
ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
scb->hscb_map->dmamap,
/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
/*len*/sizeof(*scb->hscb), op);
}
static __inline void
ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
{
if (scb->sg_count == 0)
return;
ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
scb->sg_map->dmamap,
/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
}
static __inline void
ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
{
ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
scb->sense_map->dmamap,
/*offset*/scb->sense_busaddr,
/*len*/AHD_SENSE_BUFSIZE, op);
}
static __inline uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
{
return (((uint8_t *)&ahd->targetcmds[index])
- (uint8_t *)ahd->qoutfifo);
}
/*********************** Miscellaneous Support Functions ***********************/
static __inline struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd,
char channel, u_int our_id,
u_int remote_id,
struct ahd_tmode_tstate **tstate);
static __inline uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outw(struct ahd_softc *ahd, u_int port,
u_int value);
static __inline uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outl(struct ahd_softc *ahd, u_int port,
uint32_t value);
static __inline uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outq(struct ahd_softc *ahd, u_int port,
uint64_t value);
static __inline u_int ahd_get_scbptr(struct ahd_softc *ahd);
static __inline void ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
static __inline u_int ahd_get_hnscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_hescb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_snscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_sescb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_sdscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
static __inline u_int ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
static __inline uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
static __inline uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset);
static __inline void ahd_swap_with_next_hscb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd,
char channel, u_int our_id,
u_int remote_id,
struct ahd_tmode_tstate **tstate);
uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port);
void ahd_outw(struct ahd_softc *ahd, u_int port,
u_int value);
uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port);
void ahd_outl(struct ahd_softc *ahd, u_int port,
uint32_t value);
uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port);
void ahd_outq(struct ahd_softc *ahd, u_int port,
uint64_t value);
u_int ahd_get_scbptr(struct ahd_softc *ahd);
void ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
u_int ahd_get_hnscb_qoff(struct ahd_softc *ahd);
void ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
u_int ahd_get_hescb_qoff(struct ahd_softc *ahd);
void ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
u_int ahd_get_snscb_qoff(struct ahd_softc *ahd);
void ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
u_int ahd_get_sescb_qoff(struct ahd_softc *ahd);
void ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
u_int ahd_get_sdscb_qoff(struct ahd_softc *ahd);
void ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
u_int ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
u_int ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset);
struct scb *
ahd_lookup_scb(struct ahd_softc *ahd, u_int tag);
void ahd_swap_with_next_hscb(struct ahd_softc *ahd,
struct scb *scb);
void ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
static __inline uint8_t *
ahd_get_sense_buf(struct ahd_softc *ahd,
struct scb *scb);
......@@ -463,25 +189,7 @@ static __inline uint32_t
ahd_get_sense_bufaddr(struct ahd_softc *ahd,
struct scb *scb);
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
u_int remote_id, struct ahd_tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahd->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
#if 0 /* unused */
#define AHD_COPY_COL_IDX(dst, src) \
do { \
......@@ -489,304 +197,7 @@ do { \
dst->hscb->lun = src->hscb->lun; \
} while (0)
static __inline uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port)
{
/*
* Read high byte first as some registers increment
* or have other side effects when the low byte is
* read.
*/
uint16_t r = ahd_inb(ahd, port+1) << 8;
return r | ahd_inb(ahd, port);
}
static __inline void
ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
{
/*
* Write low byte first to accomodate registers
* such as PRGMCNT where the order maters.
*/
ahd_outb(ahd, port, value & 0xFF);
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
}
static __inline uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port)
{
return ((ahd_inb(ahd, port))
| (ahd_inb(ahd, port+1) << 8)
| (ahd_inb(ahd, port+2) << 16)
| (ahd_inb(ahd, port+3) << 24));
}
static __inline void
ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
{
ahd_outb(ahd, port, (value) & 0xFF);
ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
}
static __inline uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port)
{
return ((ahd_inb(ahd, port))
| (ahd_inb(ahd, port+1) << 8)
| (ahd_inb(ahd, port+2) << 16)
| (ahd_inb(ahd, port+3) << 24)
| (((uint64_t)ahd_inb(ahd, port+4)) << 32)
| (((uint64_t)ahd_inb(ahd, port+5)) << 40)
| (((uint64_t)ahd_inb(ahd, port+6)) << 48)
| (((uint64_t)ahd_inb(ahd, port+7)) << 56));
}
static __inline void
ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
{
ahd_outb(ahd, port, value & 0xFF);
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
}
static __inline u_int
ahd_get_scbptr(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
}
static __inline void
ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
}
static __inline u_int
ahd_get_hnscb_qoff(struct ahd_softc *ahd)
{
return (ahd_inw_atomic(ahd, HNSCB_QOFF));
}
static __inline void
ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
{
ahd_outw_atomic(ahd, HNSCB_QOFF, value);
}
static __inline u_int
ahd_get_hescb_qoff(struct ahd_softc *ahd)
{
return (ahd_inb(ahd, HESCB_QOFF));
}
static __inline void
ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
{
ahd_outb(ahd, HESCB_QOFF, value);
}
static __inline u_int
ahd_get_snscb_qoff(struct ahd_softc *ahd)
{
u_int oldvalue;
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
oldvalue = ahd_inw(ahd, SNSCB_QOFF);
ahd_outw(ahd, SNSCB_QOFF, oldvalue);
return (oldvalue);
}
static __inline void
ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outw(ahd, SNSCB_QOFF, value);
}
static __inline u_int
ahd_get_sescb_qoff(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
return (ahd_inb(ahd, SESCB_QOFF));
}
static __inline void
ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outb(ahd, SESCB_QOFF, value);
}
static __inline u_int
ahd_get_sdscb_qoff(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
}
static __inline void
ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
}
static __inline u_int
ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
{
u_int value;
/*
* Workaround PCI-X Rev A. hardware bug.
* After a host read of SCB memory, the chip
* may become confused into thinking prefetch
* was required. This starts the discard timer
* running and can cause an unexpected discard
* timer interrupt. The work around is to read
* a normal register prior to the exhaustion of
* the discard timer. The mode pointer register
* has no side effects and so serves well for
* this purpose.
*
* Razor #528
*/
value = ahd_inb(ahd, offset);
if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
ahd_inb(ahd, MODE_PTR);
return (value);
}
static __inline u_int
ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inb_scbram(ahd, offset)
| (ahd_inb_scbram(ahd, offset+1) << 8));
}
static __inline uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inw_scbram(ahd, offset)
| (ahd_inw_scbram(ahd, offset+2) << 16));
}
static __inline uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inl_scbram(ahd, offset)
| ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
}
static __inline struct scb *
ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
{
struct scb* scb;
if (tag >= AHD_SCB_MAX)
return (NULL);
scb = ahd->scb_data.scbindex[tag];
if (scb != NULL)
ahd_sync_scb(ahd, scb,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
return (scb);
}
static __inline void
ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
{
struct hardware_scb *q_hscb;
struct map_node *q_hscb_map;
uint32_t saved_hscb_busaddr;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB (by address) to download,
* and we can't disappoint it. To achieve this, the next
* HSCB to download is saved off in ahd->next_queued_hscb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahd->next_queued_hscb;
q_hscb_map = ahd->next_queued_hscb_map;
saved_hscb_busaddr = q_hscb->hscb_busaddr;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
q_hscb->hscb_busaddr = saved_hscb_busaddr;
q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
/* Now swap HSCB pointers. */
ahd->next_queued_hscb = scb->hscb;
ahd->next_queued_hscb_map = scb->hscb_map;
scb->hscb = q_hscb;
scb->hscb_map = q_hscb_map;
/* Now define the mapping from tag to SCB in the scbindex */
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
{
ahd_swap_with_next_hscb(ahd, scb);
if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
panic("Attempt to queue invalid SCB tag %x\n",
SCB_GET_TAG(scb));
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
ahd->qinfifonext++;
if (scb->sg_count != 0)
ahd_setup_data_scb(ahd, scb);
else
ahd_setup_noxfer_scb(ahd, scb);
ahd_setup_scb_common(ahd, scb);
/*
* Make sure our data is consistent from the
* perspective of the adapter.
*/
ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
uint64_t host_dataptr;
host_dataptr = ahd_le64toh(scb->hscb->dataptr);
printf("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
ahd_name(ahd),
SCB_GET_TAG(scb), scb->hscb->scsiid,
ahd_le32toh(scb->hscb->hscb_busaddr),
(u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
(u_int)(host_dataptr & 0xFFFFFFFF),
ahd_le32toh(scb->hscb->datacnt));
}
#endif
/* Tell the adapter about the newly queued SCB */
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
}
static __inline uint8_t *
ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
......@@ -801,151 +212,9 @@ ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
}
/************************** Interrupt Processing ******************************/
static __inline void ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
static __inline void ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
static __inline u_int ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
static __inline int ahd_intr(struct ahd_softc *ahd);
static __inline void
ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
{
ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
/*offset*/0,
/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
}
static __inline void
ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
{
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0) {
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap,
ahd_targetcmd_offset(ahd, 0),
sizeof(struct target_cmd) * AHD_TMODE_CMDS,
op);
}
#endif
}
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHD_RUN_QOUTFIFO 0x1
#define AHD_RUN_TQINFIFO 0x2
static __inline u_int
ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
{
u_int retval;
retval = 0;
ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
== ahd->qoutfifonext_valid_tag)
retval |= AHD_RUN_QOUTFIFO;
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0
&& (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap,
ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
/*len*/sizeof(struct target_cmd),
BUS_DMASYNC_POSTREAD);
if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
retval |= AHD_RUN_TQINFIFO;
}
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
static __inline int
ahd_intr(struct ahd_softc *ahd)
{
u_int intstat;
if ((ahd->pause & INTEN) == 0) {
/*
* Our interrupt is not enabled on the chip
* and may be disabled for re-entrancy reasons,
* so just return. This is likely just a shared
* interrupt.
*/
return (0);
}
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
&& (ahd_check_cmdcmpltqueues(ahd) != 0))
intstat = CMDCMPLT;
else
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & INT_PEND) == 0)
return (0);
if (intstat & CMDCMPLT) {
ahd_outb(ahd, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
if (ahd_is_paused(ahd)) {
/*
* Potentially lost SEQINT.
* If SEQINTCODE is non-zero,
* simulate the SEQINT.
*/
if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
intstat |= SEQINT;
}
} else {
ahd_flush_device_writes(ahd);
}
ahd_run_qoutfifo(ahd);
ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
ahd->cmdcmplt_total++;
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0)
ahd_run_tqinfifo(ahd, /*paused*/FALSE);
#endif
}
/*
* Handle statuses that may invalidate our cached
* copy of INTSTAT separately.
*/
if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
/* Hot eject. Do nothing */
} else if (intstat & HWERRINT) {
ahd_handle_hwerrint(ahd);
} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
ahd->bus_intr(ahd);
} else {
if ((intstat & SEQINT) != 0)
ahd_handle_seqint(ahd, intstat);
if ((intstat & SCSIINT) != 0)
ahd_handle_scsiint(ahd, intstat);
}
return (1);
}
void ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
void ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
u_int ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
int ahd_intr(struct ahd_softc *ahd);
#endif /* _AIC79XX_INLINE_H_ */
......@@ -369,10 +369,166 @@ static void ahd_release_simq(struct ahd_softc *ahd);
static int ahd_linux_unit;
/************************** OS Utility Wrappers *******************************/
void ahd_delay(long);
void
ahd_delay(long usec)
{
/*
* udelay on Linux can have problems for
* multi-millisecond waits. Wait at most
* 1024us per call.
*/
while (usec > 0) {
udelay(usec % 1024);
usec -= 1024;
}
}
/***************************** Low Level I/O **********************************/
uint8_t ahd_inb(struct ahd_softc * ahd, long port);
uint16_t ahd_inw_atomic(struct ahd_softc * ahd, long port);
void ahd_outb(struct ahd_softc * ahd, long port, uint8_t val);
void ahd_outw_atomic(struct ahd_softc * ahd,
long port, uint16_t val);
void ahd_outsb(struct ahd_softc * ahd, long port,
uint8_t *, int count);
void ahd_insb(struct ahd_softc * ahd, long port,
uint8_t *, int count);
uint8_t
ahd_inb(struct ahd_softc * ahd, long port)
{
uint8_t x;
if (ahd->tags[0] == BUS_SPACE_MEMIO) {
x = readb(ahd->bshs[0].maddr + port);
} else {
x = inb(ahd->bshs[(port) >> 8].ioport + ((port) & 0xFF));
}
mb();
return (x);
}
uint16_t
ahd_inw_atomic(struct ahd_softc * ahd, long port)
{
uint8_t x;
if (ahd->tags[0] == BUS_SPACE_MEMIO) {
x = readw(ahd->bshs[0].maddr + port);
} else {
x = inw(ahd->bshs[(port) >> 8].ioport + ((port) & 0xFF));
}
mb();
return (x);
}
void
ahd_outb(struct ahd_softc * ahd, long port, uint8_t val)
{
if (ahd->tags[0] == BUS_SPACE_MEMIO) {
writeb(val, ahd->bshs[0].maddr + port);
} else {
outb(val, ahd->bshs[(port) >> 8].ioport + (port & 0xFF));
}
mb();
}
void
ahd_outw_atomic(struct ahd_softc * ahd, long port, uint16_t val)
{
if (ahd->tags[0] == BUS_SPACE_MEMIO) {
writew(val, ahd->bshs[0].maddr + port);
} else {
outw(val, ahd->bshs[(port) >> 8].ioport + (port & 0xFF));
}
mb();
}
void
ahd_outsb(struct ahd_softc * ahd, long port, uint8_t *array, int count)
{
int i;
/*
* There is probably a more efficient way to do this on Linux
* but we don't use this for anything speed critical and this
* should work.
*/
for (i = 0; i < count; i++)
ahd_outb(ahd, port, *array++);
}
void
ahd_insb(struct ahd_softc * ahd, long port, uint8_t *array, int count)
{
int i;
/*
* There is probably a more efficient way to do this on Linux
* but we don't use this for anything speed critical and this
* should work.
*/
for (i = 0; i < count; i++)
*array++ = ahd_inb(ahd, port);
}
/******************************* PCI Routines *********************************/
uint32_t
ahd_pci_read_config(ahd_dev_softc_t pci, int reg, int width)
{
switch (width) {
case 1:
{
uint8_t retval;
pci_read_config_byte(pci, reg, &retval);
return (retval);
}
case 2:
{
uint16_t retval;
pci_read_config_word(pci, reg, &retval);
return (retval);
}
case 4:
{
uint32_t retval;
pci_read_config_dword(pci, reg, &retval);
return (retval);
}
default:
panic("ahd_pci_read_config: Read size too big");
/* NOTREACHED */
return (0);
}
}
void
ahd_pci_write_config(ahd_dev_softc_t pci, int reg, uint32_t value, int width)
{
switch (width) {
case 1:
pci_write_config_byte(pci, reg, value);
break;
case 2:
pci_write_config_word(pci, reg, value);
break;
case 4:
pci_write_config_dword(pci, reg, value);
break;
default:
panic("ahd_pci_write_config: Write size too big");
/* NOTREACHED */
}
}
/****************************** Inlines ***************************************/
static __inline void ahd_linux_unmap_scb(struct ahd_softc*, struct scb*);
static void ahd_linux_unmap_scb(struct ahd_softc*, struct scb*);
static __inline void
static void
ahd_linux_unmap_scb(struct ahd_softc *ahd, struct scb *scb)
{
struct scsi_cmnd *cmd;
......@@ -432,7 +588,7 @@ ahd_linux_queue(struct scsi_cmnd * cmd, void (*scsi_done) (struct scsi_cmnd *))
return rtn;
}
static inline struct scsi_target **
static struct scsi_target **
ahd_linux_target_in_softc(struct scsi_target *starget)
{
struct ahd_softc *ahd =
......
......@@ -222,22 +222,6 @@ typedef struct timer_list ahd_timer_t;
/***************************** Timer Facilities *******************************/
#define ahd_timer_init init_timer
#define ahd_timer_stop del_timer_sync
typedef void ahd_linux_callback_t (u_long);
static __inline void ahd_timer_reset(ahd_timer_t *timer, int usec,
ahd_callback_t *func, void *arg);
static __inline void
ahd_timer_reset(ahd_timer_t *timer, int usec, ahd_callback_t *func, void *arg)
{
struct ahd_softc *ahd;
ahd = (struct ahd_softc *)arg;
del_timer(timer);
timer->data = (u_long)arg;
timer->expires = jiffies + (usec * HZ)/1000000;
timer->function = (ahd_linux_callback_t*)func;
add_timer(timer);
}
/***************************** SMP support ************************************/
#include <linux/spinlock.h>
......@@ -386,111 +370,19 @@ struct ahd_platform_data {
#define malloc(size, type, flags) kmalloc(size, flags)
#define free(ptr, type) kfree(ptr)
static __inline void ahd_delay(long);
static __inline void
ahd_delay(long usec)
{
/*
* udelay on Linux can have problems for
* multi-millisecond waits. Wait at most
* 1024us per call.
*/
while (usec > 0) {
udelay(usec % 1024);
usec -= 1024;
}
}
void ahd_delay(long);
/***************************** Low Level I/O **********************************/
static __inline uint8_t ahd_inb(struct ahd_softc * ahd, long port);
static __inline uint16_t ahd_inw_atomic(struct ahd_softc * ahd, long port);
static __inline void ahd_outb(struct ahd_softc * ahd, long port, uint8_t val);
static __inline void ahd_outw_atomic(struct ahd_softc * ahd,
uint8_t ahd_inb(struct ahd_softc * ahd, long port);
uint16_t ahd_inw_atomic(struct ahd_softc * ahd, long port);
void ahd_outb(struct ahd_softc * ahd, long port, uint8_t val);
void ahd_outw_atomic(struct ahd_softc * ahd,
long port, uint16_t val);
static __inline void ahd_outsb(struct ahd_softc * ahd, long port,
void ahd_outsb(struct ahd_softc * ahd, long port,
uint8_t *, int count);
static __inline void ahd_insb(struct ahd_softc * ahd, long port,
void ahd_insb(struct ahd_softc * ahd, long port,
uint8_t *, int count);
static __inline uint8_t
ahd_inb(struct ahd_softc * ahd, long port)
{
uint8_t x;
if (ahd->tags[0] == BUS_SPACE_MEMIO) {
x = readb(ahd->bshs[0].maddr + port);
} else {
x = inb(ahd->bshs[(port) >> 8].ioport + ((port) & 0xFF));
}
mb();
return (x);
}
static __inline uint16_t
ahd_inw_atomic(struct ahd_softc * ahd, long port)
{
uint8_t x;
if (ahd->tags[0] == BUS_SPACE_MEMIO) {
x = readw(ahd->bshs[0].maddr + port);
} else {
x = inw(ahd->bshs[(port) >> 8].ioport + ((port) & 0xFF));
}
mb();
return (x);
}
static __inline void
ahd_outb(struct ahd_softc * ahd, long port, uint8_t val)
{
if (ahd->tags[0] == BUS_SPACE_MEMIO) {
writeb(val, ahd->bshs[0].maddr + port);
} else {
outb(val, ahd->bshs[(port) >> 8].ioport + (port & 0xFF));
}
mb();
}
static __inline void
ahd_outw_atomic(struct ahd_softc * ahd, long port, uint16_t val)
{
if (ahd->tags[0] == BUS_SPACE_MEMIO) {
writew(val, ahd->bshs[0].maddr + port);
} else {
outw(val, ahd->bshs[(port) >> 8].ioport + (port & 0xFF));
}
mb();
}
static __inline void
ahd_outsb(struct ahd_softc * ahd, long port, uint8_t *array, int count)
{
int i;
/*
* There is probably a more efficient way to do this on Linux
* but we don't use this for anything speed critical and this
* should work.
*/
for (i = 0; i < count; i++)
ahd_outb(ahd, port, *array++);
}
static __inline void
ahd_insb(struct ahd_softc * ahd, long port, uint8_t *array, int count)
{
int i;
/*
* There is probably a more efficient way to do this on Linux
* but we don't use this for anything speed critical and this
* should work.
*/
for (i = 0; i < count; i++)
*array++ = ahd_inb(ahd, port);
}
/**************************** Initialization **********************************/
int ahd_linux_register_host(struct ahd_softc *,
struct scsi_host_template *);
......@@ -593,62 +485,12 @@ void ahd_linux_pci_exit(void);
int ahd_pci_map_registers(struct ahd_softc *ahd);
int ahd_pci_map_int(struct ahd_softc *ahd);
static __inline uint32_t ahd_pci_read_config(ahd_dev_softc_t pci,
uint32_t ahd_pci_read_config(ahd_dev_softc_t pci,
int reg, int width);
static __inline uint32_t
ahd_pci_read_config(ahd_dev_softc_t pci, int reg, int width)
{
switch (width) {
case 1:
{
uint8_t retval;
pci_read_config_byte(pci, reg, &retval);
return (retval);
}
case 2:
{
uint16_t retval;
pci_read_config_word(pci, reg, &retval);
return (retval);
}
case 4:
{
uint32_t retval;
pci_read_config_dword(pci, reg, &retval);
return (retval);
}
default:
panic("ahd_pci_read_config: Read size too big");
/* NOTREACHED */
return (0);
}
}
static __inline void ahd_pci_write_config(ahd_dev_softc_t pci,
void ahd_pci_write_config(ahd_dev_softc_t pci,
int reg, uint32_t value,
int width);
static __inline void
ahd_pci_write_config(ahd_dev_softc_t pci, int reg, uint32_t value, int width)
{
switch (width) {
case 1:
pci_write_config_byte(pci, reg, value);
break;
case 2:
pci_write_config_word(pci, reg, value);
break;
case 4:
pci_write_config_dword(pci, reg, value);
break;
default:
panic("ahd_pci_write_config: Write size too big");
/* NOTREACHED */
}
}
static __inline int ahd_get_pci_function(ahd_dev_softc_t);
static __inline int
ahd_get_pci_function(ahd_dev_softc_t pci)
......
......@@ -1436,7 +1436,7 @@ scratch_ram {
KERNEL_TQINPOS {
size 1
}
TQINPOS {
TQINPOS {
size 1
}
ARG_1 {
......
......@@ -237,6 +237,510 @@ static void ahc_update_scsiid(struct ahc_softc *ahc,
static int ahc_handle_target_cmd(struct ahc_softc *ahc,
struct target_cmd *cmd);
#endif
/************************* Sequencer Execution Control ************************/
/*
* Work around any chip bugs related to halting sequencer execution.
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
* reading a register that will set this signal and deassert it.
* Without this workaround, if the chip is paused, by an interrupt or
* manual pause while accessing scb ram, accesses to certain registers
* will hang the system (infinite pci retries).
*/
void
ahc_pause_bug_fix(struct ahc_softc *ahc)
{
if ((ahc->features & AHC_ULTRA2) != 0)
(void)ahc_inb(ahc, CCSCBCTL);
}
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
int
ahc_is_paused(struct ahc_softc *ahc)
{
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
void
ahc_pause(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahc_is_paused(ahc) == 0)
;
ahc_pause_bug_fix(ahc);
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
void
ahc_unpause(struct ahc_softc *ahc)
{
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
/************************** Memory mapping routines ***************************/
struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
{
int sg_index;
sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
/* sg_list_phys points to entry 1, not 0 */
sg_index++;
return (&scb->sg_list[sg_index]);
}
uint32_t
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
{
int sg_index;
/* sg_list_phys points to entry 1, not 0 */
sg_index = sg - &scb->sg_list[1];
return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
}
uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->scb_data->hscb_busaddr
+ (sizeof(struct hardware_scb) * index));
}
void
ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
{
ahc_dmamap_sync(ahc, ahc->scb_data->hscb_dmat,
ahc->scb_data->hscb_dmamap,
/*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb),
/*len*/sizeof(*scb->hscb), op);
}
void
ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
{
if (scb->sg_count == 0)
return;
ahc_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap,
/*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
* sizeof(struct ahc_dma_seg),
/*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
}
uint32_t
ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
{
return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
}
/*********************** Miscelaneous Support Functions ***********************/
/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
void
ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
{
uint32_t sgptr;
sgptr = ahc_le32toh(scb->hscb->sgptr);
if ((sgptr & SG_RESID_VALID) != 0)
ahc_calc_residual(ahc, scb);
}
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
u_int remote_id, struct ahc_tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahc->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
uint16_t
ahc_inw(struct ahc_softc *ahc, u_int port)
{
uint16_t r = ahc_inb(ahc, port+1) << 8;
return r | ahc_inb(ahc, port);
}
void
ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
{
ahc_outb(ahc, port, value & 0xFF);
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
}
uint32_t
ahc_inl(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port))
| (ahc_inb(ahc, port+1) << 8)
| (ahc_inb(ahc, port+2) << 16)
| (ahc_inb(ahc, port+3) << 24));
}
void
ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
{
ahc_outb(ahc, port, (value) & 0xFF);
ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
}
uint64_t
ahc_inq(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port))
| (ahc_inb(ahc, port+1) << 8)
| (ahc_inb(ahc, port+2) << 16)
| (ahc_inb(ahc, port+3) << 24)
| (((uint64_t)ahc_inb(ahc, port+4)) << 32)
| (((uint64_t)ahc_inb(ahc, port+5)) << 40)
| (((uint64_t)ahc_inb(ahc, port+6)) << 48)
| (((uint64_t)ahc_inb(ahc, port+7)) << 56));
}
void
ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
{
ahc_outb(ahc, port, value & 0xFF);
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
}
/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
struct scb *scb;
if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
ahc_alloc_scbs(ahc);
scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
if (scb == NULL)
return (NULL);
}
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
return (scb);
}
/*
* Return an SCB resource to the free list.
*/
void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/* Clean up for the next user */
ahc->scb_data->scbindex[hscb->tag] = NULL;
scb->flags = SCB_FREE;
hscb->control = 0;
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
/* Notify the OSM that a resource is now available. */
ahc_platform_scb_free(ahc, scb);
}
struct scb *
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
{
struct scb* scb;
scb = ahc->scb_data->scbindex[tag];
if (scb != NULL)
ahc_sync_scb(ahc, scb,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
return (scb);
}
void
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *q_hscb;
u_int saved_tag;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB to download, and we
* can't disappoint it. To achieve this, the next
* SCB to download is saved off in ahc->next_queued_scb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahc->next_queued_scb->hscb;
saved_tag = q_hscb->tag;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
if ((scb->flags & SCB_CDB32_PTR) != 0) {
q_hscb->shared_data.cdb_ptr =
ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
+ offsetof(struct hardware_scb, cdb32));
}
q_hscb->tag = saved_tag;
q_hscb->next = scb->hscb->tag;
/* Now swap HSCB pointers. */
ahc->next_queued_scb->hscb = scb->hscb;
scb->hscb = q_hscb;
/* Now define the mapping from tag to SCB in the scbindex */
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
void
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
{
ahc_swap_with_next_hscb(ahc, scb);
if (scb->hscb->tag == SCB_LIST_NULL
|| scb->hscb->next == SCB_LIST_NULL)
panic("Attempt to queue invalid SCB tag %x:%x\n",
scb->hscb->tag, scb->hscb->next);
/*
* Setup data "oddness".
*/
scb->hscb->lun &= LID;
if (ahc_get_transfer_length(scb) & 0x1)
scb->hscb->lun |= SCB_XFERLEN_ODD;
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
/*
* Make sure our data is consistent from the
* perspective of the adapter.
*/
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Tell the adapter about the newly queued SCB */
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_pause(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_unpause(ahc);
}
}
struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (&ahc->scb_data->sense[offset]);
}
uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (ahc->scb_data->sense_busaddr
+ (offset * sizeof(struct scsi_sense_data)));
}
/************************** Interrupt Processing ******************************/
void
ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
{
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
/*offset*/0, /*len*/256, op);
}
void
ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
{
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0) {
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, 0),
sizeof(struct target_cmd) * AHC_TMODE_CMDS,
op);
}
#endif
}
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHC_RUN_QOUTFIFO 0x1
#define AHC_RUN_TQINFIFO 0x2
u_int
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
{
u_int retval;
retval = 0;
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
/*offset*/ahc->qoutfifonext, /*len*/1,
BUS_DMASYNC_POSTREAD);
if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
retval |= AHC_RUN_QOUTFIFO;
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0
&& (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, ahc->tqinfifofnext),
/*len*/sizeof(struct target_cmd),
BUS_DMASYNC_POSTREAD);
if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
retval |= AHC_RUN_TQINFIFO;
}
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
int
ahc_intr(struct ahc_softc *ahc)
{
u_int intstat;
if ((ahc->pause & INTEN) == 0) {
/*
* Our interrupt is not enabled on the chip
* and may be disabled for re-entrancy reasons,
* so just return. This is likely just a shared
* interrupt.
*/
return (0);
}
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
&& (ahc_check_cmdcmpltqueues(ahc) != 0))
intstat = CMDCMPLT;
else {
intstat = ahc_inb(ahc, INTSTAT);
}
if ((intstat & INT_PEND) == 0) {
#if AHC_PCI_CONFIG > 0
if (ahc->unsolicited_ints > 500) {
ahc->unsolicited_ints = 0;
if ((ahc->chip & AHC_PCI) != 0
&& (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
ahc->bus_intr(ahc);
}
#endif
ahc->unsolicited_ints++;
return (0);
}
ahc->unsolicited_ints = 0;
if (intstat & CMDCMPLT) {
ahc_outb(ahc, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
ahc_flush_device_writes(ahc);
ahc_run_qoutfifo(ahc);
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0)
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
#endif
}
/*
* Handle statuses that may invalidate our cached
* copy of INTSTAT separately.
*/
if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) {
/* Hot eject. Do nothing */
} else if (intstat & BRKADRINT) {
ahc_handle_brkadrint(ahc);
} else if ((intstat & (SEQINT|SCSIINT)) != 0) {
ahc_pause_bug_fix(ahc);
if ((intstat & SEQINT) != 0)
ahc_handle_seqint(ahc, intstat);
if ((intstat & SCSIINT) != 0)
ahc_handle_scsiint(ahc, intstat);
}
return (1);
}
/************************* Sequencer Execution Control ************************/
/*
* Restart the sequencer program from address zero
......@@ -2655,7 +3159,7 @@ ahc_handle_proto_violation(struct ahc_softc *ahc)
*/
static void
ahc_handle_message_phase(struct ahc_softc *ahc)
{
{
struct ahc_devinfo devinfo;
u_int bus_phase;
int end_session;
......@@ -5707,7 +6211,7 @@ ahc_add_curscb_to_free_list(struct ahc_softc *ahc)
*/
static u_int
ahc_rem_wscb(struct ahc_softc *ahc, u_int scbpos, u_int prev)
{
{
u_int curscb, next;
/*
......
......@@ -46,74 +46,10 @@
#define _AIC7XXX_INLINE_H_
/************************* Sequencer Execution Control ************************/
static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc);
static __inline int ahc_is_paused(struct ahc_softc *ahc);
static __inline void ahc_pause(struct ahc_softc *ahc);
static __inline void ahc_unpause(struct ahc_softc *ahc);
/*
* Work around any chip bugs related to halting sequencer execution.
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
* reading a register that will set this signal and deassert it.
* Without this workaround, if the chip is paused, by an interrupt or
* manual pause while accessing scb ram, accesses to certain registers
* will hang the system (infinite pci retries).
*/
static __inline void
ahc_pause_bug_fix(struct ahc_softc *ahc)
{
if ((ahc->features & AHC_ULTRA2) != 0)
(void)ahc_inb(ahc, CCSCBCTL);
}
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
ahc_is_paused(struct ahc_softc *ahc)
{
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
ahc_pause(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahc_is_paused(ahc) == 0)
;
ahc_pause_bug_fix(ahc);
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
ahc_unpause(struct ahc_softc *ahc)
{
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
void ahc_pause_bug_fix(struct ahc_softc *ahc);
int ahc_is_paused(struct ahc_softc *ahc);
void ahc_pause(struct ahc_softc *ahc);
void ahc_unpause(struct ahc_softc *ahc);
/*********************** Untagged Transaction Routines ************************/
static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
......@@ -147,78 +83,21 @@ ahc_release_untagged_queues(struct ahc_softc *ahc)
}
/************************** Memory mapping routines ***************************/
static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb,
uint32_t sg_busaddr);
static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb,
struct ahc_dma_seg *sg);
static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index);
static __inline void ahc_sync_scb(struct ahc_softc *ahc,
struct scb *scb, int op);
static __inline void ahc_sync_sglist(struct ahc_softc *ahc,
struct scb *scb, int op);
static __inline uint32_t
ahc_targetcmd_offset(struct ahc_softc *ahc,
u_int index);
static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
{
int sg_index;
sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
/* sg_list_phys points to entry 1, not 0 */
sg_index++;
return (&scb->sg_list[sg_index]);
}
static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
{
int sg_index;
/* sg_list_phys points to entry 1, not 0 */
sg_index = sg - &scb->sg_list[1];
return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
}
static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->scb_data->hscb_busaddr
+ (sizeof(struct hardware_scb) * index));
}
static __inline void
ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
{
ahc_dmamap_sync(ahc, ahc->scb_data->hscb_dmat,
ahc->scb_data->hscb_dmamap,
/*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb),
/*len*/sizeof(*scb->hscb), op);
}
static __inline void
ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
{
if (scb->sg_count == 0)
return;
ahc_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap,
/*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
* sizeof(struct ahc_dma_seg),
/*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
}
static __inline uint32_t
ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
{
return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
}
struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb,
uint32_t sg_busaddr);
uint32_t
ahc_sg_virt_to_bus(struct scb *scb,
struct ahc_dma_seg *sg);
uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index);
void ahc_sync_scb(struct ahc_softc *ahc,
struct scb *scb, int op);
void ahc_sync_sglist(struct ahc_softc *ahc,
struct scb *scb, int op);
uint32_t
ahc_targetcmd_offset(struct ahc_softc *ahc,
u_int index);
/******************************** Debugging ***********************************/
static __inline char *ahc_name(struct ahc_softc *ahc);
......@@ -231,420 +110,44 @@ ahc_name(struct ahc_softc *ahc)
/*********************** Miscellaneous Support Functions ***********************/
static __inline void ahc_update_residual(struct ahc_softc *ahc,
struct scb *scb);
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc,
char channel, u_int our_id,
u_int remote_id,
struct ahc_tmode_tstate **tstate);
static __inline uint16_t
ahc_inw(struct ahc_softc *ahc, u_int port);
static __inline void ahc_outw(struct ahc_softc *ahc, u_int port,
u_int value);
static __inline uint32_t
ahc_inl(struct ahc_softc *ahc, u_int port);
static __inline void ahc_outl(struct ahc_softc *ahc, u_int port,
uint32_t value);
static __inline uint64_t
ahc_inq(struct ahc_softc *ahc, u_int port);
static __inline void ahc_outq(struct ahc_softc *ahc, u_int port,
uint64_t value);
static __inline struct scb*
ahc_get_scb(struct ahc_softc *ahc);
static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc,
struct scb *scb);
static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc,
struct scb *scb);
static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc,
struct scb *scb);
/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
static __inline void
ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
{
uint32_t sgptr;
sgptr = ahc_le32toh(scb->hscb->sgptr);
if ((sgptr & SG_RESID_VALID) != 0)
ahc_calc_residual(ahc, scb);
}
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
u_int remote_id, struct ahc_tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahc->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
static __inline uint16_t
ahc_inw(struct ahc_softc *ahc, u_int port)
{
uint16_t r = ahc_inb(ahc, port+1) << 8;
return r | ahc_inb(ahc, port);
}
static __inline void
ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
{
ahc_outb(ahc, port, value & 0xFF);
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
}
static __inline uint32_t
ahc_inl(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port))
| (ahc_inb(ahc, port+1) << 8)
| (ahc_inb(ahc, port+2) << 16)
| (ahc_inb(ahc, port+3) << 24));
}
static __inline void
ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
{
ahc_outb(ahc, port, (value) & 0xFF);
ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
}
static __inline uint64_t
ahc_inq(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port))
| (ahc_inb(ahc, port+1) << 8)
| (ahc_inb(ahc, port+2) << 16)
| (ahc_inb(ahc, port+3) << 24)
| (((uint64_t)ahc_inb(ahc, port+4)) << 32)
| (((uint64_t)ahc_inb(ahc, port+5)) << 40)
| (((uint64_t)ahc_inb(ahc, port+6)) << 48)
| (((uint64_t)ahc_inb(ahc, port+7)) << 56));
}
static __inline void
ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
{
ahc_outb(ahc, port, value & 0xFF);
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
}
/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
static __inline struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
struct scb *scb;
if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
ahc_alloc_scbs(ahc);
scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
if (scb == NULL)
return (NULL);
}
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
return (scb);
}
/*
* Return an SCB resource to the free list.
*/
static __inline void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/* Clean up for the next user */
ahc->scb_data->scbindex[hscb->tag] = NULL;
scb->flags = SCB_FREE;
hscb->control = 0;
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
/* Notify the OSM that a resource is now available. */
ahc_platform_scb_free(ahc, scb);
}
static __inline struct scb *
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
{
struct scb* scb;
scb = ahc->scb_data->scbindex[tag];
if (scb != NULL)
ahc_sync_scb(ahc, scb,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
return (scb);
}
static __inline void
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *q_hscb;
u_int saved_tag;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB to download, and we
* can't disappoint it. To achieve this, the next
* SCB to download is saved off in ahc->next_queued_scb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahc->next_queued_scb->hscb;
saved_tag = q_hscb->tag;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
if ((scb->flags & SCB_CDB32_PTR) != 0) {
q_hscb->shared_data.cdb_ptr =
ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
+ offsetof(struct hardware_scb, cdb32));
}
q_hscb->tag = saved_tag;
q_hscb->next = scb->hscb->tag;
/* Now swap HSCB pointers. */
ahc->next_queued_scb->hscb = scb->hscb;
scb->hscb = q_hscb;
/* Now define the mapping from tag to SCB in the scbindex */
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
{
ahc_swap_with_next_hscb(ahc, scb);
if (scb->hscb->tag == SCB_LIST_NULL
|| scb->hscb->next == SCB_LIST_NULL)
panic("Attempt to queue invalid SCB tag %x:%x\n",
scb->hscb->tag, scb->hscb->next);
/*
* Setup data "oddness".
*/
scb->hscb->lun &= LID;
if (ahc_get_transfer_length(scb) & 0x1)
scb->hscb->lun |= SCB_XFERLEN_ODD;
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
/*
* Make sure our data is consistent from the
* perspective of the adapter.
*/
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Tell the adapter about the newly queued SCB */
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_pause(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_unpause(ahc);
}
}
static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (&ahc->scb_data->sense[offset]);
}
static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (ahc->scb_data->sense_busaddr
+ (offset * sizeof(struct scsi_sense_data)));
}
void ahc_update_residual(struct ahc_softc *ahc,
struct scb *scb);
struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc,
char channel, u_int our_id,
u_int remote_id,
struct ahc_tmode_tstate **tstate);
uint16_t
ahc_inw(struct ahc_softc *ahc, u_int port);
void ahc_outw(struct ahc_softc *ahc, u_int port,
u_int value);
uint32_t
ahc_inl(struct ahc_softc *ahc, u_int port);
void ahc_outl(struct ahc_softc *ahc, u_int port,
uint32_t value);
uint64_t
ahc_inq(struct ahc_softc *ahc, u_int port);
void ahc_outq(struct ahc_softc *ahc, u_int port,
uint64_t value);
struct scb*
ahc_get_scb(struct ahc_softc *ahc);
void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
struct scb *
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag);
void ahc_swap_with_next_hscb(struct ahc_softc *ahc,
struct scb *scb);
void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb);
struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc,
struct scb *scb);
uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc,
struct scb *scb);
/************************** Interrupt Processing ******************************/
static __inline void ahc_sync_qoutfifo(struct ahc_softc *ahc, int op);
static __inline void ahc_sync_tqinfifo(struct ahc_softc *ahc, int op);
static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc);
static __inline int ahc_intr(struct ahc_softc *ahc);
static __inline void
ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
{
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
/*offset*/0, /*len*/256, op);
}
static __inline void
ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
{
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0) {
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, 0),
sizeof(struct target_cmd) * AHC_TMODE_CMDS,
op);
}
#endif
}
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHC_RUN_QOUTFIFO 0x1
#define AHC_RUN_TQINFIFO 0x2
static __inline u_int
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
{
u_int retval;
retval = 0;
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
/*offset*/ahc->qoutfifonext, /*len*/1,
BUS_DMASYNC_POSTREAD);
if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
retval |= AHC_RUN_QOUTFIFO;
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0
&& (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, ahc->tqinfifofnext),
/*len*/sizeof(struct target_cmd),
BUS_DMASYNC_POSTREAD);
if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
retval |= AHC_RUN_TQINFIFO;
}
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
static __inline int
ahc_intr(struct ahc_softc *ahc)
{
u_int intstat;
if ((ahc->pause & INTEN) == 0) {
/*
* Our interrupt is not enabled on the chip
* and may be disabled for re-entrancy reasons,
* so just return. This is likely just a shared
* interrupt.
*/
return (0);
}
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
&& (ahc_check_cmdcmpltqueues(ahc) != 0))
intstat = CMDCMPLT;
else {
intstat = ahc_inb(ahc, INTSTAT);
}
if ((intstat & INT_PEND) == 0) {
#if AHC_PCI_CONFIG > 0
if (ahc->unsolicited_ints > 500) {
ahc->unsolicited_ints = 0;
if ((ahc->chip & AHC_PCI) != 0
&& (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
ahc->bus_intr(ahc);
}
#endif
ahc->unsolicited_ints++;
return (0);
}
ahc->unsolicited_ints = 0;
if (intstat & CMDCMPLT) {
ahc_outb(ahc, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
ahc_flush_device_writes(ahc);
ahc_run_qoutfifo(ahc);
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0)
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
#endif
}
/*
* Handle statuses that may invalidate our cached
* copy of INTSTAT separately.
*/
if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) {
/* Hot eject. Do nothing */
} else if (intstat & BRKADRINT) {
ahc_handle_brkadrint(ahc);
} else if ((intstat & (SEQINT|SCSIINT)) != 0) {
ahc_pause_bug_fix(ahc);
if ((intstat & SEQINT) != 0)
ahc_handle_seqint(ahc, intstat);
if ((intstat & SCSIINT) != 0)
ahc_handle_scsiint(ahc, intstat);
}
return (1);
}
void ahc_sync_qoutfifo(struct ahc_softc *ahc, int op);
void ahc_sync_tqinfifo(struct ahc_softc *ahc, int op);
u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc);
int ahc_intr(struct ahc_softc *ahc);
#endif /* _AIC7XXX_INLINE_H_ */
......@@ -388,14 +388,83 @@ static int aic7xxx_setup(char *s);
static int ahc_linux_unit;
/************************** OS Utility Wrappers *******************************/
void
ahc_delay(long usec)
{
/*
* udelay on Linux can have problems for
* multi-millisecond waits. Wait at most
* 1024us per call.
*/
while (usec > 0) {
udelay(usec % 1024);
usec -= 1024;
}
}
/***************************** Low Level I/O **********************************/
uint8_t
ahc_inb(struct ahc_softc * ahc, long port)
{
uint8_t x;
if (ahc->tag == BUS_SPACE_MEMIO) {
x = readb(ahc->bsh.maddr + port);
} else {
x = inb(ahc->bsh.ioport + port);
}
mb();
return (x);
}
void
ahc_outb(struct ahc_softc * ahc, long port, uint8_t val)
{
if (ahc->tag == BUS_SPACE_MEMIO) {
writeb(val, ahc->bsh.maddr + port);
} else {
outb(val, ahc->bsh.ioport + port);
}
mb();
}
void
ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
{
int i;
/*
* There is probably a more efficient way to do this on Linux
* but we don't use this for anything speed critical and this
* should work.
*/
for (i = 0; i < count; i++)
ahc_outb(ahc, port, *array++);
}
void
ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
{
int i;
/*
* There is probably a more efficient way to do this on Linux
* but we don't use this for anything speed critical and this
* should work.
*/
for (i = 0; i < count; i++)
*array++ = ahc_inb(ahc, port);
}
/********************************* Inlines ************************************/
static __inline void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
struct ahc_dma_seg *sg,
dma_addr_t addr, bus_size_t len);
static __inline void
static void
ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct scsi_cmnd *cmd;
......@@ -406,7 +475,7 @@ ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
scsi_dma_unmap(cmd);
}
static __inline int
static int
ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
{
......
......@@ -375,82 +375,16 @@ struct ahc_platform_data {
#define malloc(size, type, flags) kmalloc(size, flags)
#define free(ptr, type) kfree(ptr)
static __inline void ahc_delay(long);
static __inline void
ahc_delay(long usec)
{
/*
* udelay on Linux can have problems for
* multi-millisecond waits. Wait at most
* 1024us per call.
*/
while (usec > 0) {
udelay(usec % 1024);
usec -= 1024;
}
}
void ahc_delay(long);
/***************************** Low Level I/O **********************************/
static __inline uint8_t ahc_inb(struct ahc_softc * ahc, long port);
static __inline void ahc_outb(struct ahc_softc * ahc, long port, uint8_t val);
static __inline void ahc_outsb(struct ahc_softc * ahc, long port,
uint8_t *, int count);
static __inline void ahc_insb(struct ahc_softc * ahc, long port,
uint8_t *, int count);
static __inline uint8_t
ahc_inb(struct ahc_softc * ahc, long port)
{
uint8_t x;
if (ahc->tag == BUS_SPACE_MEMIO) {
x = readb(ahc->bsh.maddr + port);
} else {
x = inb(ahc->bsh.ioport + port);
}
mb();
return (x);
}
static __inline void
ahc_outb(struct ahc_softc * ahc, long port, uint8_t val)
{
if (ahc->tag == BUS_SPACE_MEMIO) {
writeb(val, ahc->bsh.maddr + port);
} else {
outb(val, ahc->bsh.ioport + port);
}
mb();
}
static __inline void
ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
{
int i;
/*
* There is probably a more efficient way to do this on Linux
* but we don't use this for anything speed critical and this
* should work.
*/
for (i = 0; i < count; i++)
ahc_outb(ahc, port, *array++);
}
static __inline void
ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
{
int i;
/*
* There is probably a more efficient way to do this on Linux
* but we don't use this for anything speed critical and this
* should work.
*/
for (i = 0; i < count; i++)
*array++ = ahc_inb(ahc, port);
}
uint8_t ahc_inb(struct ahc_softc * ahc, long port);
void ahc_outb(struct ahc_softc * ahc, long port, uint8_t val);
void ahc_outsb(struct ahc_softc * ahc, long port,
uint8_t *, int count);
void ahc_insb(struct ahc_softc * ahc, long port,
uint8_t *, int count);
/**************************** Initialization **********************************/
int ahc_linux_register_host(struct ahc_softc *,
......@@ -555,61 +489,12 @@ void ahc_linux_pci_exit(void);
int ahc_pci_map_registers(struct ahc_softc *ahc);
int ahc_pci_map_int(struct ahc_softc *ahc);
static __inline uint32_t ahc_pci_read_config(ahc_dev_softc_t pci,
uint32_t ahc_pci_read_config(ahc_dev_softc_t pci,
int reg, int width);
static __inline uint32_t
ahc_pci_read_config(ahc_dev_softc_t pci, int reg, int width)
{
switch (width) {
case 1:
{
uint8_t retval;
pci_read_config_byte(pci, reg, &retval);
return (retval);
}
case 2:
{
uint16_t retval;
pci_read_config_word(pci, reg, &retval);
return (retval);
}
case 4:
{
uint32_t retval;
pci_read_config_dword(pci, reg, &retval);
return (retval);
}
default:
panic("ahc_pci_read_config: Read size too big");
/* NOTREACHED */
return (0);
}
}
static __inline void ahc_pci_write_config(ahc_dev_softc_t pci,
int reg, uint32_t value,
int width);
static __inline void
ahc_pci_write_config(ahc_dev_softc_t pci, int reg, uint32_t value, int width)
{
switch (width) {
case 1:
pci_write_config_byte(pci, reg, value);
break;
case 2:
pci_write_config_word(pci, reg, value);
break;
case 4:
pci_write_config_dword(pci, reg, value);
break;
default:
panic("ahc_pci_write_config: Write size too big");
/* NOTREACHED */
}
}
void ahc_pci_write_config(ahc_dev_softc_t pci,
int reg, uint32_t value,
int width);
static __inline int ahc_get_pci_function(ahc_dev_softc_t);
static __inline int
......
......@@ -269,6 +269,57 @@ ahc_linux_pci_dev_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
return (0);
}
/******************************* PCI Routines *********************************/
uint32_t
ahc_pci_read_config(ahc_dev_softc_t pci, int reg, int width)
{
switch (width) {
case 1:
{
uint8_t retval;
pci_read_config_byte(pci, reg, &retval);
return (retval);
}
case 2:
{
uint16_t retval;
pci_read_config_word(pci, reg, &retval);
return (retval);
}
case 4:
{
uint32_t retval;
pci_read_config_dword(pci, reg, &retval);
return (retval);
}
default:
panic("ahc_pci_read_config: Read size too big");
/* NOTREACHED */
return (0);
}
}
void
ahc_pci_write_config(ahc_dev_softc_t pci, int reg, uint32_t value, int width)
{
switch (width) {
case 1:
pci_write_config_byte(pci, reg, value);
break;
case 2:
pci_write_config_word(pci, reg, value);
break;
case 4:
pci_write_config_dword(pci, reg, value);
break;
default:
panic("ahc_pci_write_config: Write size too big");
/* NOTREACHED */
}
}
static struct pci_driver aic7xxx_pci_driver = {
.name = "aic7xxx",
.probe = ahc_linux_pci_dev_probe,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册