diff --git a/Documentation/vm/frontswap.txt b/Documentation/vm/frontswap.txt new file mode 100644 index 0000000000000000000000000000000000000000..37067cf455f4de3792dbcaa54326205238bf1652 --- /dev/null +++ b/Documentation/vm/frontswap.txt @@ -0,0 +1,278 @@ +Frontswap provides a "transcendent memory" interface for swap pages. +In some environments, dramatic performance savings may be obtained because +swapped pages are saved in RAM (or a RAM-like device) instead of a swap disk. + +(Note, frontswap -- and cleancache (merged at 3.0) -- are the "frontends" +and the only necessary changes to the core kernel for transcendent memory; +all other supporting code -- the "backends" -- is implemented as drivers. +See the LWN.net article "Transcendent memory in a nutshell" for a detailed +overview of frontswap and related kernel parts: +https://lwn.net/Articles/454795/ ) + +Frontswap is so named because it can be thought of as the opposite of +a "backing" store for a swap device. The storage is assumed to be +a synchronous concurrency-safe page-oriented "pseudo-RAM device" conforming +to the requirements of transcendent memory (such as Xen's "tmem", or +in-kernel compressed memory, aka "zcache", or future RAM-like devices); +this pseudo-RAM device is not directly accessible or addressable by the +kernel and is of unknown and possibly time-varying size. The driver +links itself to frontswap by calling frontswap_register_ops to set the +frontswap_ops funcs appropriately and the functions it provides must +conform to certain policies as follows: + +An "init" prepares the device to receive frontswap pages associated +with the specified swap device number (aka "type"). A "store" will +copy the page to transcendent memory and associate it with the type and +offset associated with the page. A "load" will copy the page, if found, +from transcendent memory into kernel memory, but will NOT remove the page +from from transcendent memory. An "invalidate_page" will remove the page +from transcendent memory and an "invalidate_area" will remove ALL pages +associated with the swap type (e.g., like swapoff) and notify the "device" +to refuse further stores with that swap type. + +Once a page is successfully stored, a matching load on the page will normally +succeed. So when the kernel finds itself in a situation where it needs +to swap out a page, it first attempts to use frontswap. If the store returns +success, the data has been successfully saved to transcendent memory and +a disk write and, if the data is later read back, a disk read are avoided. +If a store returns failure, transcendent memory has rejected the data, and the +page can be written to swap as usual. + +If a backend chooses, frontswap can be configured as a "writethrough +cache" by calling frontswap_writethrough(). In this mode, the reduction +in swap device writes is lost (and also a non-trivial performance advantage) +in order to allow the backend to arbitrarily "reclaim" space used to +store frontswap pages to more completely manage its memory usage. + +Note that if a page is stored and the page already exists in transcendent memory +(a "duplicate" store), either the store succeeds and the data is overwritten, +or the store fails AND the page is invalidated. This ensures stale data may +never be obtained from frontswap. + +If properly configured, monitoring of frontswap is done via debugfs in +the /sys/kernel/debug/frontswap directory. The effectiveness of +frontswap can be measured (across all swap devices) with: + +failed_stores - how many store attempts have failed +loads - how many loads were attempted (all should succeed) +succ_stores - how many store attempts have succeeded +invalidates - how many invalidates were attempted + +A backend implementation may provide additional metrics. + +FAQ + +1) Where's the value? + +When a workload starts swapping, performance falls through the floor. +Frontswap significantly increases performance in many such workloads by +providing a clean, dynamic interface to read and write swap pages to +"transcendent memory" that is otherwise not directly addressable to the kernel. +This interface is ideal when data is transformed to a different form +and size (such as with compression) or secretly moved (as might be +useful for write-balancing for some RAM-like devices). Swap pages (and +evicted page-cache pages) are a great use for this kind of slower-than-RAM- +but-much-faster-than-disk "pseudo-RAM device" and the frontswap (and +cleancache) interface to transcendent memory provides a nice way to read +and write -- and indirectly "name" -- the pages. + +Frontswap -- and cleancache -- with a fairly small impact on the kernel, +provides a huge amount of flexibility for more dynamic, flexible RAM +utilization in various system configurations: + +In the single kernel case, aka "zcache", pages are compressed and +stored in local memory, thus increasing the total anonymous pages +that can be safely kept in RAM. Zcache essentially trades off CPU +cycles used in compression/decompression for better memory utilization. +Benchmarks have shown little or no impact when memory pressure is +low while providing a significant performance improvement (25%+) +on some workloads under high memory pressure. + +"RAMster" builds on zcache by adding "peer-to-peer" transcendent memory +support for clustered systems. Frontswap pages are locally compressed +as in zcache, but then "remotified" to another system's RAM. This +allows RAM to be dynamically load-balanced back-and-forth as needed, +i.e. when system A is overcommitted, it can swap to system B, and +vice versa. RAMster can also be configured as a memory server so +many servers in a cluster can swap, dynamically as needed, to a single +server configured with a large amount of RAM... without pre-configuring +how much of the RAM is available for each of the clients! + +In the virtual case, the whole point of virtualization is to statistically +multiplex physical resources acrosst the varying demands of multiple +virtual machines. This is really hard to do with RAM and efforts to do +it well with no kernel changes have essentially failed (except in some +well-publicized special-case workloads). +Specifically, the Xen Transcendent Memory backend allows otherwise +"fallow" hypervisor-owned RAM to not only be "time-shared" between multiple +virtual machines, but the pages can be compressed and deduplicated to +optimize RAM utilization. And when guest OS's are induced to surrender +underutilized RAM (e.g. with "selfballooning"), sudden unexpected +memory pressure may result in swapping; frontswap allows those pages +to be swapped to and from hypervisor RAM (if overall host system memory +conditions allow), thus mitigating the potentially awful performance impact +of unplanned swapping. + +A KVM implementation is underway and has been RFC'ed to lkml. And, +using frontswap, investigation is also underway on the use of NVM as +a memory extension technology. + +2) Sure there may be performance advantages in some situations, but + what's the space/time overhead of frontswap? + +If CONFIG_FRONTSWAP is disabled, every frontswap hook compiles into +nothingness and the only overhead is a few extra bytes per swapon'ed +swap device. If CONFIG_FRONTSWAP is enabled but no frontswap "backend" +registers, there is one extra global variable compared to zero for +every swap page read or written. If CONFIG_FRONTSWAP is enabled +AND a frontswap backend registers AND the backend fails every "store" +request (i.e. provides no memory despite claiming it might), +CPU overhead is still negligible -- and since every frontswap fail +precedes a swap page write-to-disk, the system is highly likely +to be I/O bound and using a small fraction of a percent of a CPU +will be irrelevant anyway. + +As for space, if CONFIG_FRONTSWAP is enabled AND a frontswap backend +registers, one bit is allocated for every swap page for every swap +device that is swapon'd. This is added to the EIGHT bits (which +was sixteen until about 2.6.34) that the kernel already allocates +for every swap page for every swap device that is swapon'd. (Hugh +Dickins has observed that frontswap could probably steal one of +the existing eight bits, but let's worry about that minor optimization +later.) For very large swap disks (which are rare) on a standard +4K pagesize, this is 1MB per 32GB swap. + +When swap pages are stored in transcendent memory instead of written +out to disk, there is a side effect that this may create more memory +pressure that can potentially outweigh the other advantages. A +backend, such as zcache, must implement policies to carefully (but +dynamically) manage memory limits to ensure this doesn't happen. + +3) OK, how about a quick overview of what this frontswap patch does + in terms that a kernel hacker can grok? + +Let's assume that a frontswap "backend" has registered during +kernel initialization; this registration indicates that this +frontswap backend has access to some "memory" that is not directly +accessible by the kernel. Exactly how much memory it provides is +entirely dynamic and random. + +Whenever a swap-device is swapon'd frontswap_init() is called, +passing the swap device number (aka "type") as a parameter. +This notifies frontswap to expect attempts to "store" swap pages +associated with that number. + +Whenever the swap subsystem is readying a page to write to a swap +device (c.f swap_writepage()), frontswap_store is called. Frontswap +consults with the frontswap backend and if the backend says it does NOT +have room, frontswap_store returns -1 and the kernel swaps the page +to the swap device as normal. Note that the response from the frontswap +backend is unpredictable to the kernel; it may choose to never accept a +page, it could accept every ninth page, or it might accept every +page. But if the backend does accept a page, the data from the page +has already been copied and associated with the type and offset, +and the backend guarantees the persistence of the data. In this case, +frontswap sets a bit in the "frontswap_map" for the swap device +corresponding to the page offset on the swap device to which it would +otherwise have written the data. + +When the swap subsystem needs to swap-in a page (swap_readpage()), +it first calls frontswap_load() which checks the frontswap_map to +see if the page was earlier accepted by the frontswap backend. If +it was, the page of data is filled from the frontswap backend and +the swap-in is complete. If not, the normal swap-in code is +executed to obtain the page of data from the real swap device. + +So every time the frontswap backend accepts a page, a swap device read +and (potentially) a swap device write are replaced by a "frontswap backend +store" and (possibly) a "frontswap backend loads", which are presumably much +faster. + +4) Can't frontswap be configured as a "special" swap device that is + just higher priority than any real swap device (e.g. like zswap, + or maybe swap-over-nbd/NFS)? + +No. First, the existing swap subsystem doesn't allow for any kind of +swap hierarchy. Perhaps it could be rewritten to accomodate a hierarchy, +but this would require fairly drastic changes. Even if it were +rewritten, the existing swap subsystem uses the block I/O layer which +assumes a swap device is fixed size and any page in it is linearly +addressable. Frontswap barely touches the existing swap subsystem, +and works around the constraints of the block I/O subsystem to provide +a great deal of flexibility and dynamicity. + +For example, the acceptance of any swap page by the frontswap backend is +entirely unpredictable. This is critical to the definition of frontswap +backends because it grants completely dynamic discretion to the +backend. In zcache, one cannot know a priori how compressible a page is. +"Poorly" compressible pages can be rejected, and "poorly" can itself be +defined dynamically depending on current memory constraints. + +Further, frontswap is entirely synchronous whereas a real swap +device is, by definition, asynchronous and uses block I/O. The +block I/O layer is not only unnecessary, but may perform "optimizations" +that are inappropriate for a RAM-oriented device including delaying +the write of some pages for a significant amount of time. Synchrony is +required to ensure the dynamicity of the backend and to avoid thorny race +conditions that would unnecessarily and greatly complicate frontswap +and/or the block I/O subsystem. That said, only the initial "store" +and "load" operations need be synchronous. A separate asynchronous thread +is free to manipulate the pages stored by frontswap. For example, +the "remotification" thread in RAMster uses standard asynchronous +kernel sockets to move compressed frontswap pages to a remote machine. +Similarly, a KVM guest-side implementation could do in-guest compression +and use "batched" hypercalls. + +In a virtualized environment, the dynamicity allows the hypervisor +(or host OS) to do "intelligent overcommit". For example, it can +choose to accept pages only until host-swapping might be imminent, +then force guests to do their own swapping. + +There is a downside to the transcendent memory specifications for +frontswap: Since any "store" might fail, there must always be a real +slot on a real swap device to swap the page. Thus frontswap must be +implemented as a "shadow" to every swapon'd device with the potential +capability of holding every page that the swap device might have held +and the possibility that it might hold no pages at all. This means +that frontswap cannot contain more pages than the total of swapon'd +swap devices. For example, if NO swap device is configured on some +installation, frontswap is useless. Swapless portable devices +can still use frontswap but a backend for such devices must configure +some kind of "ghost" swap device and ensure that it is never used. + +5) Why this weird definition about "duplicate stores"? If a page + has been previously successfully stored, can't it always be + successfully overwritten? + +Nearly always it can, but no, sometimes it cannot. Consider an example +where data is compressed and the original 4K page has been compressed +to 1K. Now an attempt is made to overwrite the page with data that +is non-compressible and so would take the entire 4K. But the backend +has no more space. In this case, the store must be rejected. Whenever +frontswap rejects a store that would overwrite, it also must invalidate +the old data and ensure that it is no longer accessible. Since the +swap subsystem then writes the new data to the read swap device, +this is the correct course of action to ensure coherency. + +6) What is frontswap_shrink for? + +When the (non-frontswap) swap subsystem swaps out a page to a real +swap device, that page is only taking up low-value pre-allocated disk +space. But if frontswap has placed a page in transcendent memory, that +page may be taking up valuable real estate. The frontswap_shrink +routine allows code outside of the swap subsystem to force pages out +of the memory managed by frontswap and back into kernel-addressable memory. +For example, in RAMster, a "suction driver" thread will attempt +to "repatriate" pages sent to a remote machine back to the local machine; +this is driven using the frontswap_shrink mechanism when memory pressure +subsides. + +7) Why does the frontswap patch create the new include file swapfile.h? + +The frontswap code depends on some swap-subsystem-internal data +structures that have, over the years, moved back and forth between +static and global. This seemed a reasonable compromise: Define +them as global but declare them in a new include file that isn't +included by the large number of source files that include swap.h. + +Dan Magenheimer, last updated April 9, 2012 diff --git a/MAINTAINERS b/MAINTAINERS index 55f0fda602ecc69d5242ca5181c002ab2a8dd983..6a52bb4a4fc759746daaca0c2dbf7436d0b75b2c 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -2930,6 +2930,13 @@ F: Documentation/power/freezing-of-tasks.txt F: include/linux/freezer.h F: kernel/freezer.c +FRONTSWAP API +M: Konrad Rzeszutek Wilk +L: linux-kernel@vger.kernel.org +S: Maintained +F: mm/frontswap.c +F: include/linux/frontswap.h + FS-CACHE: LOCAL CACHING FOR NETWORK FILESYSTEMS M: David Howells L: linux-cachefs@redhat.com diff --git a/drivers/staging/ramster/zcache-main.c b/drivers/staging/ramster/zcache-main.c index 4e7ef0e6b79c0f13bbb0c05d360a368ea9cb3cd9..d46764b5aaba07513dbf399be27a032b6eb1b702 100644 --- a/drivers/staging/ramster/zcache-main.c +++ b/drivers/staging/ramster/zcache-main.c @@ -3002,7 +3002,7 @@ static inline struct tmem_oid oswiz(unsigned type, u32 ind) return oid; } -static int zcache_frontswap_put_page(unsigned type, pgoff_t offset, +static int zcache_frontswap_store(unsigned type, pgoff_t offset, struct page *page) { u64 ind64 = (u64)offset; @@ -3025,7 +3025,7 @@ static int zcache_frontswap_put_page(unsigned type, pgoff_t offset, /* returns 0 if the page was successfully gotten from frontswap, -1 if * was not present (should never happen!) */ -static int zcache_frontswap_get_page(unsigned type, pgoff_t offset, +static int zcache_frontswap_load(unsigned type, pgoff_t offset, struct page *page) { u64 ind64 = (u64)offset; @@ -3080,8 +3080,8 @@ static void zcache_frontswap_init(unsigned ignored) } static struct frontswap_ops zcache_frontswap_ops = { - .put_page = zcache_frontswap_put_page, - .get_page = zcache_frontswap_get_page, + .store = zcache_frontswap_store, + .load = zcache_frontswap_load, .invalidate_page = zcache_frontswap_flush_page, .invalidate_area = zcache_frontswap_flush_area, .init = zcache_frontswap_init diff --git a/drivers/staging/zcache/zcache-main.c b/drivers/staging/zcache/zcache-main.c index 2734dacacbaf3d19e29a4399f4fb4e50dc6d86d4..784c796b9848a12b6167150d3a94d20a086e68b8 100644 --- a/drivers/staging/zcache/zcache-main.c +++ b/drivers/staging/zcache/zcache-main.c @@ -1835,7 +1835,7 @@ static int zcache_frontswap_poolid = -1; * Swizzling increases objects per swaptype, increasing tmem concurrency * for heavy swaploads. Later, larger nr_cpus -> larger SWIZ_BITS * Setting SWIZ_BITS to 27 basically reconstructs the swap entry from - * frontswap_get_page(), but has side-effects. Hence using 8. + * frontswap_load(), but has side-effects. Hence using 8. */ #define SWIZ_BITS 8 #define SWIZ_MASK ((1 << SWIZ_BITS) - 1) @@ -1849,7 +1849,7 @@ static inline struct tmem_oid oswiz(unsigned type, u32 ind) return oid; } -static int zcache_frontswap_put_page(unsigned type, pgoff_t offset, +static int zcache_frontswap_store(unsigned type, pgoff_t offset, struct page *page) { u64 ind64 = (u64)offset; @@ -1870,7 +1870,7 @@ static int zcache_frontswap_put_page(unsigned type, pgoff_t offset, /* returns 0 if the page was successfully gotten from frontswap, -1 if * was not present (should never happen!) */ -static int zcache_frontswap_get_page(unsigned type, pgoff_t offset, +static int zcache_frontswap_load(unsigned type, pgoff_t offset, struct page *page) { u64 ind64 = (u64)offset; @@ -1919,8 +1919,8 @@ static void zcache_frontswap_init(unsigned ignored) } static struct frontswap_ops zcache_frontswap_ops = { - .put_page = zcache_frontswap_put_page, - .get_page = zcache_frontswap_get_page, + .store = zcache_frontswap_store, + .load = zcache_frontswap_load, .invalidate_page = zcache_frontswap_flush_page, .invalidate_area = zcache_frontswap_flush_area, .init = zcache_frontswap_init diff --git a/drivers/xen/tmem.c b/drivers/xen/tmem.c index dcb79521e6c8c256769c75295f90fb3444a8eaec..89f264c67420c2448f9fe029e8193fa438369ae8 100644 --- a/drivers/xen/tmem.c +++ b/drivers/xen/tmem.c @@ -269,7 +269,7 @@ static inline struct tmem_oid oswiz(unsigned type, u32 ind) } /* returns 0 if the page was successfully put into frontswap, -1 if not */ -static int tmem_frontswap_put_page(unsigned type, pgoff_t offset, +static int tmem_frontswap_store(unsigned type, pgoff_t offset, struct page *page) { u64 ind64 = (u64)offset; @@ -295,7 +295,7 @@ static int tmem_frontswap_put_page(unsigned type, pgoff_t offset, * returns 0 if the page was successfully gotten from frontswap, -1 if * was not present (should never happen!) */ -static int tmem_frontswap_get_page(unsigned type, pgoff_t offset, +static int tmem_frontswap_load(unsigned type, pgoff_t offset, struct page *page) { u64 ind64 = (u64)offset; @@ -362,8 +362,8 @@ static int __init no_frontswap(char *s) __setup("nofrontswap", no_frontswap); static struct frontswap_ops __initdata tmem_frontswap_ops = { - .put_page = tmem_frontswap_put_page, - .get_page = tmem_frontswap_get_page, + .store = tmem_frontswap_store, + .load = tmem_frontswap_load, .invalidate_page = tmem_frontswap_flush_page, .invalidate_area = tmem_frontswap_flush_area, .init = tmem_frontswap_init diff --git a/include/linux/frontswap.h b/include/linux/frontswap.h new file mode 100644 index 0000000000000000000000000000000000000000..0e4e2eec5c1db85f4a7d4340147ddbe3263f8bc6 --- /dev/null +++ b/include/linux/frontswap.h @@ -0,0 +1,127 @@ +#ifndef _LINUX_FRONTSWAP_H +#define _LINUX_FRONTSWAP_H + +#include +#include +#include + +struct frontswap_ops { + void (*init)(unsigned); + int (*store)(unsigned, pgoff_t, struct page *); + int (*load)(unsigned, pgoff_t, struct page *); + void (*invalidate_page)(unsigned, pgoff_t); + void (*invalidate_area)(unsigned); +}; + +extern bool frontswap_enabled; +extern struct frontswap_ops + frontswap_register_ops(struct frontswap_ops *ops); +extern void frontswap_shrink(unsigned long); +extern unsigned long frontswap_curr_pages(void); +extern void frontswap_writethrough(bool); + +extern void __frontswap_init(unsigned type); +extern int __frontswap_store(struct page *page); +extern int __frontswap_load(struct page *page); +extern void __frontswap_invalidate_page(unsigned, pgoff_t); +extern void __frontswap_invalidate_area(unsigned); + +#ifdef CONFIG_FRONTSWAP + +static inline bool frontswap_test(struct swap_info_struct *sis, pgoff_t offset) +{ + bool ret = false; + + if (frontswap_enabled && sis->frontswap_map) + ret = test_bit(offset, sis->frontswap_map); + return ret; +} + +static inline void frontswap_set(struct swap_info_struct *sis, pgoff_t offset) +{ + if (frontswap_enabled && sis->frontswap_map) + set_bit(offset, sis->frontswap_map); +} + +static inline void frontswap_clear(struct swap_info_struct *sis, pgoff_t offset) +{ + if (frontswap_enabled && sis->frontswap_map) + clear_bit(offset, sis->frontswap_map); +} + +static inline void frontswap_map_set(struct swap_info_struct *p, + unsigned long *map) +{ + p->frontswap_map = map; +} + +static inline unsigned long *frontswap_map_get(struct swap_info_struct *p) +{ + return p->frontswap_map; +} +#else +/* all inline routines become no-ops and all externs are ignored */ + +#define frontswap_enabled (0) + +static inline bool frontswap_test(struct swap_info_struct *sis, pgoff_t offset) +{ + return false; +} + +static inline void frontswap_set(struct swap_info_struct *sis, pgoff_t offset) +{ +} + +static inline void frontswap_clear(struct swap_info_struct *sis, pgoff_t offset) +{ +} + +static inline void frontswap_map_set(struct swap_info_struct *p, + unsigned long *map) +{ +} + +static inline unsigned long *frontswap_map_get(struct swap_info_struct *p) +{ + return NULL; +} +#endif + +static inline int frontswap_store(struct page *page) +{ + int ret = -1; + + if (frontswap_enabled) + ret = __frontswap_store(page); + return ret; +} + +static inline int frontswap_load(struct page *page) +{ + int ret = -1; + + if (frontswap_enabled) + ret = __frontswap_load(page); + return ret; +} + +static inline void frontswap_invalidate_page(unsigned type, pgoff_t offset) +{ + if (frontswap_enabled) + __frontswap_invalidate_page(type, offset); +} + +static inline void frontswap_invalidate_area(unsigned type) +{ + if (frontswap_enabled) + __frontswap_invalidate_area(type); +} + +static inline void frontswap_init(unsigned type) +{ + if (frontswap_enabled) + __frontswap_init(type); +} + +#endif /* _LINUX_FRONTSWAP_H */ diff --git a/include/linux/swap.h b/include/linux/swap.h index b6661933e252643956cf3e8d389267f535d49653..c84ec68eaec957b2e16a059b6feccde505f7f241 100644 --- a/include/linux/swap.h +++ b/include/linux/swap.h @@ -197,6 +197,10 @@ struct swap_info_struct { struct block_device *bdev; /* swap device or bdev of swap file */ struct file *swap_file; /* seldom referenced */ unsigned int old_block_size; /* seldom referenced */ +#ifdef CONFIG_FRONTSWAP + unsigned long *frontswap_map; /* frontswap in-use, one bit per page */ + atomic_t frontswap_pages; /* frontswap pages in-use counter */ +#endif }; struct swap_list_t { diff --git a/include/linux/swapfile.h b/include/linux/swapfile.h new file mode 100644 index 0000000000000000000000000000000000000000..e282624e8c10b0ab7bfcdd89e59875a760ec6f3c --- /dev/null +++ b/include/linux/swapfile.h @@ -0,0 +1,13 @@ +#ifndef _LINUX_SWAPFILE_H +#define _LINUX_SWAPFILE_H + +/* + * these were static in swapfile.c but frontswap.c needs them and we don't + * want to expose them to the dozens of source files that include swap.h + */ +extern spinlock_t swap_lock; +extern struct swap_list_t swap_list; +extern struct swap_info_struct *swap_info[]; +extern int try_to_unuse(unsigned int, bool, unsigned long); + +#endif /* _LINUX_SWAPFILE_H */ diff --git a/mm/Kconfig b/mm/Kconfig index b2176374b98e5e678ec93acda28cc0891d1c3717..82fed4eb2b6fe39cfd0476afe46e9589e02b386f 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -389,3 +389,20 @@ config CLEANCACHE in a negligible performance hit. If unsure, say Y to enable cleancache + +config FRONTSWAP + bool "Enable frontswap to cache swap pages if tmem is present" + depends on SWAP + default n + help + Frontswap is so named because it can be thought of as the opposite + of a "backing" store for a swap device. The data is stored into + "transcendent memory", memory that is not directly accessible or + addressable by the kernel and is of unknown and possibly + time-varying size. When space in transcendent memory is available, + a significant swap I/O reduction may be achieved. When none is + available, all frontswap calls are reduced to a single pointer- + compare-against-NULL resulting in a negligible performance hit + and swap data is stored as normal on the matching swap device. + + If unsure, say Y to enable frontswap. diff --git a/mm/Makefile b/mm/Makefile index a156285ce88d9a19e529b54b8836efac559b7af7..2e2fbbefb99fa94c97be13aa8fa71da823455409 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -29,6 +29,7 @@ obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o obj-$(CONFIG_BOUNCE) += bounce.o obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o +obj-$(CONFIG_FRONTSWAP) += frontswap.o obj-$(CONFIG_HAS_DMA) += dmapool.o obj-$(CONFIG_HUGETLBFS) += hugetlb.o obj-$(CONFIG_NUMA) += mempolicy.o diff --git a/mm/frontswap.c b/mm/frontswap.c new file mode 100644 index 0000000000000000000000000000000000000000..e25025574a024af071c387511cea2460fd566dec --- /dev/null +++ b/mm/frontswap.c @@ -0,0 +1,314 @@ +/* + * Frontswap frontend + * + * This code provides the generic "frontend" layer to call a matching + * "backend" driver implementation of frontswap. See + * Documentation/vm/frontswap.txt for more information. + * + * Copyright (C) 2009-2012 Oracle Corp. All rights reserved. + * Author: Dan Magenheimer + * + * This work is licensed under the terms of the GNU GPL, version 2. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * frontswap_ops is set by frontswap_register_ops to contain the pointers + * to the frontswap "backend" implementation functions. + */ +static struct frontswap_ops frontswap_ops __read_mostly; + +/* + * This global enablement flag reduces overhead on systems where frontswap_ops + * has not been registered, so is preferred to the slower alternative: a + * function call that checks a non-global. + */ +bool frontswap_enabled __read_mostly; +EXPORT_SYMBOL(frontswap_enabled); + +/* + * If enabled, frontswap_store will return failure even on success. As + * a result, the swap subsystem will always write the page to swap, in + * effect converting frontswap into a writethrough cache. In this mode, + * there is no direct reduction in swap writes, but a frontswap backend + * can unilaterally "reclaim" any pages in use with no data loss, thus + * providing increases control over maximum memory usage due to frontswap. + */ +static bool frontswap_writethrough_enabled __read_mostly; + +#ifdef CONFIG_DEBUG_FS +/* + * Counters available via /sys/kernel/debug/frontswap (if debugfs is + * properly configured). These are for information only so are not protected + * against increment races. + */ +static u64 frontswap_loads; +static u64 frontswap_succ_stores; +static u64 frontswap_failed_stores; +static u64 frontswap_invalidates; + +static inline void inc_frontswap_loads(void) { + frontswap_loads++; +} +static inline void inc_frontswap_succ_stores(void) { + frontswap_succ_stores++; +} +static inline void inc_frontswap_failed_stores(void) { + frontswap_failed_stores++; +} +static inline void inc_frontswap_invalidates(void) { + frontswap_invalidates++; +} +#else +static inline void inc_frontswap_loads(void) { } +static inline void inc_frontswap_succ_stores(void) { } +static inline void inc_frontswap_failed_stores(void) { } +static inline void inc_frontswap_invalidates(void) { } +#endif +/* + * Register operations for frontswap, returning previous thus allowing + * detection of multiple backends and possible nesting. + */ +struct frontswap_ops frontswap_register_ops(struct frontswap_ops *ops) +{ + struct frontswap_ops old = frontswap_ops; + + frontswap_ops = *ops; + frontswap_enabled = true; + return old; +} +EXPORT_SYMBOL(frontswap_register_ops); + +/* + * Enable/disable frontswap writethrough (see above). + */ +void frontswap_writethrough(bool enable) +{ + frontswap_writethrough_enabled = enable; +} +EXPORT_SYMBOL(frontswap_writethrough); + +/* + * Called when a swap device is swapon'd. + */ +void __frontswap_init(unsigned type) +{ + struct swap_info_struct *sis = swap_info[type]; + + BUG_ON(sis == NULL); + if (sis->frontswap_map == NULL) + return; + if (frontswap_enabled) + (*frontswap_ops.init)(type); +} +EXPORT_SYMBOL(__frontswap_init); + +/* + * "Store" data from a page to frontswap and associate it with the page's + * swaptype and offset. Page must be locked and in the swap cache. + * If frontswap already contains a page with matching swaptype and + * offset, the frontswap implmentation may either overwrite the data and + * return success or invalidate the page from frontswap and return failure. + */ +int __frontswap_store(struct page *page) +{ + int ret = -1, dup = 0; + swp_entry_t entry = { .val = page_private(page), }; + int type = swp_type(entry); + struct swap_info_struct *sis = swap_info[type]; + pgoff_t offset = swp_offset(entry); + + BUG_ON(!PageLocked(page)); + BUG_ON(sis == NULL); + if (frontswap_test(sis, offset)) + dup = 1; + ret = (*frontswap_ops.store)(type, offset, page); + if (ret == 0) { + frontswap_set(sis, offset); + inc_frontswap_succ_stores(); + if (!dup) + atomic_inc(&sis->frontswap_pages); + } else if (dup) { + /* + failed dup always results in automatic invalidate of + the (older) page from frontswap + */ + frontswap_clear(sis, offset); + atomic_dec(&sis->frontswap_pages); + inc_frontswap_failed_stores(); + } else + inc_frontswap_failed_stores(); + if (frontswap_writethrough_enabled) + /* report failure so swap also writes to swap device */ + ret = -1; + return ret; +} +EXPORT_SYMBOL(__frontswap_store); + +/* + * "Get" data from frontswap associated with swaptype and offset that were + * specified when the data was put to frontswap and use it to fill the + * specified page with data. Page must be locked and in the swap cache. + */ +int __frontswap_load(struct page *page) +{ + int ret = -1; + swp_entry_t entry = { .val = page_private(page), }; + int type = swp_type(entry); + struct swap_info_struct *sis = swap_info[type]; + pgoff_t offset = swp_offset(entry); + + BUG_ON(!PageLocked(page)); + BUG_ON(sis == NULL); + if (frontswap_test(sis, offset)) + ret = (*frontswap_ops.load)(type, offset, page); + if (ret == 0) + inc_frontswap_loads(); + return ret; +} +EXPORT_SYMBOL(__frontswap_load); + +/* + * Invalidate any data from frontswap associated with the specified swaptype + * and offset so that a subsequent "get" will fail. + */ +void __frontswap_invalidate_page(unsigned type, pgoff_t offset) +{ + struct swap_info_struct *sis = swap_info[type]; + + BUG_ON(sis == NULL); + if (frontswap_test(sis, offset)) { + (*frontswap_ops.invalidate_page)(type, offset); + atomic_dec(&sis->frontswap_pages); + frontswap_clear(sis, offset); + inc_frontswap_invalidates(); + } +} +EXPORT_SYMBOL(__frontswap_invalidate_page); + +/* + * Invalidate all data from frontswap associated with all offsets for the + * specified swaptype. + */ +void __frontswap_invalidate_area(unsigned type) +{ + struct swap_info_struct *sis = swap_info[type]; + + BUG_ON(sis == NULL); + if (sis->frontswap_map == NULL) + return; + (*frontswap_ops.invalidate_area)(type); + atomic_set(&sis->frontswap_pages, 0); + memset(sis->frontswap_map, 0, sis->max / sizeof(long)); +} +EXPORT_SYMBOL(__frontswap_invalidate_area); + +/* + * Frontswap, like a true swap device, may unnecessarily retain pages + * under certain circumstances; "shrink" frontswap is essentially a + * "partial swapoff" and works by calling try_to_unuse to attempt to + * unuse enough frontswap pages to attempt to -- subject to memory + * constraints -- reduce the number of pages in frontswap to the + * number given in the parameter target_pages. + */ +void frontswap_shrink(unsigned long target_pages) +{ + struct swap_info_struct *si = NULL; + int si_frontswap_pages; + unsigned long total_pages = 0, total_pages_to_unuse; + unsigned long pages = 0, pages_to_unuse = 0; + int type; + bool locked = false; + + /* + * we don't want to hold swap_lock while doing a very + * lengthy try_to_unuse, but swap_list may change + * so restart scan from swap_list.head each time + */ + spin_lock(&swap_lock); + locked = true; + total_pages = 0; + for (type = swap_list.head; type >= 0; type = si->next) { + si = swap_info[type]; + total_pages += atomic_read(&si->frontswap_pages); + } + if (total_pages <= target_pages) + goto out; + total_pages_to_unuse = total_pages - target_pages; + for (type = swap_list.head; type >= 0; type = si->next) { + si = swap_info[type]; + si_frontswap_pages = atomic_read(&si->frontswap_pages); + if (total_pages_to_unuse < si_frontswap_pages) + pages = pages_to_unuse = total_pages_to_unuse; + else { + pages = si_frontswap_pages; + pages_to_unuse = 0; /* unuse all */ + } + /* ensure there is enough RAM to fetch pages from frontswap */ + if (security_vm_enough_memory_mm(current->mm, pages)) + continue; + vm_unacct_memory(pages); + break; + } + if (type < 0) + goto out; + locked = false; + spin_unlock(&swap_lock); + try_to_unuse(type, true, pages_to_unuse); +out: + if (locked) + spin_unlock(&swap_lock); + return; +} +EXPORT_SYMBOL(frontswap_shrink); + +/* + * Count and return the number of frontswap pages across all + * swap devices. This is exported so that backend drivers can + * determine current usage without reading debugfs. + */ +unsigned long frontswap_curr_pages(void) +{ + int type; + unsigned long totalpages = 0; + struct swap_info_struct *si = NULL; + + spin_lock(&swap_lock); + for (type = swap_list.head; type >= 0; type = si->next) { + si = swap_info[type]; + totalpages += atomic_read(&si->frontswap_pages); + } + spin_unlock(&swap_lock); + return totalpages; +} +EXPORT_SYMBOL(frontswap_curr_pages); + +static int __init init_frontswap(void) +{ +#ifdef CONFIG_DEBUG_FS + struct dentry *root = debugfs_create_dir("frontswap", NULL); + if (root == NULL) + return -ENXIO; + debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads); + debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores); + debugfs_create_u64("failed_stores", S_IRUGO, root, + &frontswap_failed_stores); + debugfs_create_u64("invalidates", S_IRUGO, + root, &frontswap_invalidates); +#endif + return 0; +} + +module_init(init_frontswap); diff --git a/mm/page_io.c b/mm/page_io.c index dc76b4d0611ecb59fd85d89a78896c792443a62f..34f02923744c921fa2d990ec68f220a698049362 100644 --- a/mm/page_io.c +++ b/mm/page_io.c @@ -18,6 +18,7 @@ #include #include #include +#include #include static struct bio *get_swap_bio(gfp_t gfp_flags, @@ -98,6 +99,12 @@ int swap_writepage(struct page *page, struct writeback_control *wbc) unlock_page(page); goto out; } + if (frontswap_store(page) == 0) { + set_page_writeback(page); + unlock_page(page); + end_page_writeback(page); + goto out; + } bio = get_swap_bio(GFP_NOIO, page, end_swap_bio_write); if (bio == NULL) { set_page_dirty(page); @@ -122,6 +129,11 @@ int swap_readpage(struct page *page) VM_BUG_ON(!PageLocked(page)); VM_BUG_ON(PageUptodate(page)); + if (frontswap_load(page) == 0) { + SetPageUptodate(page); + unlock_page(page); + goto out; + } bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read); if (bio == NULL) { unlock_page(page); diff --git a/mm/swapfile.c b/mm/swapfile.c index 457b10baef59414f591fb0bfab2b54619c5209b0..de5bc51c4a66aa8d24fa14ee5e3dbe5542999c18 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c @@ -31,6 +31,8 @@ #include #include #include +#include +#include #include #include @@ -42,7 +44,7 @@ static bool swap_count_continued(struct swap_info_struct *, pgoff_t, static void free_swap_count_continuations(struct swap_info_struct *); static sector_t map_swap_entry(swp_entry_t, struct block_device**); -static DEFINE_SPINLOCK(swap_lock); +DEFINE_SPINLOCK(swap_lock); static unsigned int nr_swapfiles; long nr_swap_pages; long total_swap_pages; @@ -53,9 +55,9 @@ static const char Unused_file[] = "Unused swap file entry "; static const char Bad_offset[] = "Bad swap offset entry "; static const char Unused_offset[] = "Unused swap offset entry "; -static struct swap_list_t swap_list = {-1, -1}; +struct swap_list_t swap_list = {-1, -1}; -static struct swap_info_struct *swap_info[MAX_SWAPFILES]; +struct swap_info_struct *swap_info[MAX_SWAPFILES]; static DEFINE_MUTEX(swapon_mutex); @@ -556,6 +558,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p, swap_list.next = p->type; nr_swap_pages++; p->inuse_pages--; + frontswap_invalidate_page(p->type, offset); if ((p->flags & SWP_BLKDEV) && disk->fops->swap_slot_free_notify) disk->fops->swap_slot_free_notify(p->bdev, offset); @@ -985,11 +988,12 @@ static int unuse_mm(struct mm_struct *mm, } /* - * Scan swap_map from current position to next entry still in use. + * Scan swap_map (or frontswap_map if frontswap parameter is true) + * from current position to next entry still in use. * Recycle to start on reaching the end, returning 0 when empty. */ static unsigned int find_next_to_unuse(struct swap_info_struct *si, - unsigned int prev) + unsigned int prev, bool frontswap) { unsigned int max = si->max; unsigned int i = prev; @@ -1015,6 +1019,12 @@ static unsigned int find_next_to_unuse(struct swap_info_struct *si, prev = 0; i = 1; } + if (frontswap) { + if (frontswap_test(si, i)) + break; + else + continue; + } count = si->swap_map[i]; if (count && swap_count(count) != SWAP_MAP_BAD) break; @@ -1026,8 +1036,12 @@ static unsigned int find_next_to_unuse(struct swap_info_struct *si, * We completely avoid races by reading each swap page in advance, * and then search for the process using it. All the necessary * page table adjustments can then be made atomically. + * + * if the boolean frontswap is true, only unuse pages_to_unuse pages; + * pages_to_unuse==0 means all pages; ignored if frontswap is false */ -static int try_to_unuse(unsigned int type) +int try_to_unuse(unsigned int type, bool frontswap, + unsigned long pages_to_unuse) { struct swap_info_struct *si = swap_info[type]; struct mm_struct *start_mm; @@ -1060,7 +1074,7 @@ static int try_to_unuse(unsigned int type) * one pass through swap_map is enough, but not necessarily: * there are races when an instance of an entry might be missed. */ - while ((i = find_next_to_unuse(si, i)) != 0) { + while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { if (signal_pending(current)) { retval = -EINTR; break; @@ -1227,6 +1241,10 @@ static int try_to_unuse(unsigned int type) * interactive performance. */ cond_resched(); + if (frontswap && pages_to_unuse > 0) { + if (!--pages_to_unuse) + break; + } } mmput(start_mm); @@ -1486,7 +1504,8 @@ static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) } static void enable_swap_info(struct swap_info_struct *p, int prio, - unsigned char *swap_map) + unsigned char *swap_map, + unsigned long *frontswap_map) { int i, prev; @@ -1496,6 +1515,7 @@ static void enable_swap_info(struct swap_info_struct *p, int prio, else p->prio = --least_priority; p->swap_map = swap_map; + frontswap_map_set(p, frontswap_map); p->flags |= SWP_WRITEOK; nr_swap_pages += p->pages; total_swap_pages += p->pages; @@ -1512,6 +1532,7 @@ static void enable_swap_info(struct swap_info_struct *p, int prio, swap_list.head = swap_list.next = p->type; else swap_info[prev]->next = p->type; + frontswap_init(p->type); spin_unlock(&swap_lock); } @@ -1585,7 +1606,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) spin_unlock(&swap_lock); oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); - err = try_to_unuse(type); + err = try_to_unuse(type, false, 0); /* force all pages to be unused */ compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); if (err) { @@ -1596,7 +1617,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) * sys_swapoff for this swap_info_struct at this point. */ /* re-insert swap space back into swap_list */ - enable_swap_info(p, p->prio, p->swap_map); + enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p)); goto out_dput; } @@ -1622,9 +1643,11 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) swap_map = p->swap_map; p->swap_map = NULL; p->flags = 0; + frontswap_invalidate_area(type); spin_unlock(&swap_lock); mutex_unlock(&swapon_mutex); vfree(swap_map); + vfree(frontswap_map_get(p)); /* Destroy swap account informatin */ swap_cgroup_swapoff(type); @@ -1988,6 +2011,7 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) sector_t span; unsigned long maxpages; unsigned char *swap_map = NULL; + unsigned long *frontswap_map = NULL; struct page *page = NULL; struct inode *inode = NULL; @@ -2071,6 +2095,9 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) error = nr_extents; goto bad_swap; } + /* frontswap enabled? set up bit-per-page map for frontswap */ + if (frontswap_enabled) + frontswap_map = vzalloc(maxpages / sizeof(long)); if (p->bdev) { if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { @@ -2086,14 +2113,15 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) if (swap_flags & SWAP_FLAG_PREFER) prio = (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; - enable_swap_info(p, prio, swap_map); + enable_swap_info(p, prio, swap_map, frontswap_map); printk(KERN_INFO "Adding %uk swap on %s. " - "Priority:%d extents:%d across:%lluk %s%s\n", + "Priority:%d extents:%d across:%lluk %s%s%s\n", p->pages<<(PAGE_SHIFT-10), name, p->prio, nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), (p->flags & SWP_SOLIDSTATE) ? "SS" : "", - (p->flags & SWP_DISCARDABLE) ? "D" : ""); + (p->flags & SWP_DISCARDABLE) ? "D" : "", + (frontswap_map) ? "FS" : ""); mutex_unlock(&swapon_mutex); atomic_inc(&proc_poll_event);