提交 9fadeb14 编写于 作者: L Luke Wren 提交者: Zheng Zengkai

Add SMI driver

raspberrypi inclusion
category: feature
bugzilla: 50432

--------------------------------
Signed-off-by: NLuke Wren <wren6991@gmail.com>

MISC: bcm2835: smi: use clock manager and fix reload issues

Use clock manager instead of self-made clockmanager.

Also fix some error paths that showd up during development
(especially missing release of dma resources on rmmod)
Signed-off-by: NMartin Sperl <kernel@martin.sperl.org>

bcm2835_smi: re-add dereference to fix DMA transfers
Signed-off-by: NFang Yafen <yafen@iscas.ac.cn>
Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
上级 8aa5e67f
* Broadcom BCM2835 SMI character device driver.
SMI or secondary memory interface is a peripheral specific to certain Broadcom
SOCs, and is helpful for talking to things like parallel-interface displays
and NAND flashes (in fact, most things with a parallel register interface).
This driver adds a character device which provides a user-space interface to
an instance of the SMI driver.
Required properties:
- compatible: "brcm,bcm2835-smi-dev"
- smi_handle: a phandle to the smi node.
Optional properties:
- None.
* Broadcom BCM2835 SMI driver.
SMI or secondary memory interface is a peripheral specific to certain Broadcom
SOCs, and is helpful for talking to things like parallel-interface displays
and NAND flashes (in fact, most things with a parallel register interface).
Required properties:
- compatible: "brcm,bcm2835-smi"
- reg: Should contain location and length of SMI registers and SMI clkman regs
- interrupts: *the* SMI interrupt.
- pinctrl-names: should be "default".
- pinctrl-0: the phandle of the gpio pin node.
- brcm,smi-clock-source: the clock source for clkman
- brcm,smi-clock-divisor: the integer clock divisor for clkman
- dmas: the dma controller phandle and the DREQ number (4 on a 2835)
- dma-names: the name used by the driver to request its channel.
Should be "rx-tx".
Optional properties:
- None.
Examples:
8 data pin configuration:
smi: smi@7e600000 {
compatible = "brcm,bcm2835-smi";
reg = <0x7e600000 0x44>, <0x7e1010b0 0x8>;
interrupts = <2 16>;
pinctrl-names = "default";
pinctrl-0 = <&smi_pins>;
brcm,smi-clock-source = <6>;
brcm,smi-clock-divisor = <4>;
dmas = <&dma 4>;
dma-names = "rx-tx";
status = "okay";
};
smi_pins: smi_pins {
brcm,pins = <2 3 4 5 6 7 8 9 10 11 12 13 14 15>;
/* Alt 1: SMI */
brcm,function = <5 5 5 5 5 5 5 5 5 5 5 5 5 5>;
/* /CS, /WE and /OE are pulled high, as they are
generally active low signals */
brcm,pull = <2 2 2 2 2 2 0 0 0 0 0 0 0 0>;
};
......@@ -24,3 +24,12 @@ config BCM2835_DEVGPIOMEM
Provides users with root-free access to the GPIO registers
on the 2835. Calling mmap(/dev/gpiomem) will map the GPIO
register page to the user's pointer.
config BCM2835_SMI_DEV
tristate "Character device driver for BCM2835 Secondary Memory Interface"
depends on BCM2835_SMI
default m
help
This driver provides a character device interface (ioctl + read/write) to
Broadcom's Secondary Memory interface. The low-level functionality is provided
by the SMI driver itself.
obj-$(CONFIG_BCM2708_VCMEM) += vc_mem.o
obj-$(CONFIG_BCM2835_DEVGPIOMEM)+= bcm2835-gpiomem.o
obj-$(CONFIG_BCM2835_SMI_DEV) += bcm2835_smi_dev.o
/**
* Character device driver for Broadcom Secondary Memory Interface
*
* Written by Luke Wren <luke@raspberrypi.org>
* Copyright (c) 2015, Raspberry Pi (Trading) Ltd.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2, as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/broadcom/bcm2835_smi.h>
#define DEVICE_NAME "bcm2835-smi-dev"
#define DRIVER_NAME "smi-dev-bcm2835"
#define DEVICE_MINOR 0
static struct cdev bcm2835_smi_cdev;
static dev_t bcm2835_smi_devid;
static struct class *bcm2835_smi_class;
static struct device *bcm2835_smi_dev;
struct bcm2835_smi_dev_instance {
struct device *dev;
};
static struct bcm2835_smi_instance *smi_inst;
static struct bcm2835_smi_dev_instance *inst;
static const char *const ioctl_names[] = {
"READ_SETTINGS",
"WRITE_SETTINGS",
"ADDRESS"
};
/****************************************************************************
*
* SMI chardev file ops
*
***************************************************************************/
static long
bcm2835_smi_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long ret = 0;
dev_info(inst->dev, "serving ioctl...");
switch (cmd) {
case BCM2835_SMI_IOC_GET_SETTINGS:{
struct smi_settings *settings;
dev_info(inst->dev, "Reading SMI settings to user.");
settings = bcm2835_smi_get_settings_from_regs(smi_inst);
if (copy_to_user((void *)arg, settings,
sizeof(struct smi_settings)))
dev_err(inst->dev, "settings copy failed.");
break;
}
case BCM2835_SMI_IOC_WRITE_SETTINGS:{
struct smi_settings *settings;
dev_info(inst->dev, "Setting user's SMI settings.");
settings = bcm2835_smi_get_settings_from_regs(smi_inst);
if (copy_from_user(settings, (void *)arg,
sizeof(struct smi_settings)))
dev_err(inst->dev, "settings copy failed.");
else
bcm2835_smi_set_regs_from_settings(smi_inst);
break;
}
case BCM2835_SMI_IOC_ADDRESS:
dev_info(inst->dev, "SMI address set: 0x%02x", (int)arg);
bcm2835_smi_set_address(smi_inst, arg);
break;
default:
dev_err(inst->dev, "invalid ioctl cmd: %d", cmd);
ret = -ENOTTY;
break;
}
return ret;
}
static int bcm2835_smi_open(struct inode *inode, struct file *file)
{
int dev = iminor(inode);
dev_dbg(inst->dev, "SMI device opened.");
if (dev != DEVICE_MINOR) {
dev_err(inst->dev,
"bcm2835_smi_release: Unknown minor device: %d",
dev);
return -ENXIO;
}
return 0;
}
static int bcm2835_smi_release(struct inode *inode, struct file *file)
{
int dev = iminor(inode);
if (dev != DEVICE_MINOR) {
dev_err(inst->dev,
"bcm2835_smi_release: Unknown minor device %d", dev);
return -ENXIO;
}
return 0;
}
static ssize_t dma_bounce_user(
enum dma_transfer_direction dma_dir,
char __user *user_ptr,
size_t count,
struct bcm2835_smi_bounce_info *bounce)
{
int chunk_size;
int chunk_no = 0;
int count_left = count;
while (count_left) {
int rv;
void *buf;
/* Wait for current chunk to complete: */
if (down_timeout(&bounce->callback_sem,
msecs_to_jiffies(1000))) {
dev_err(inst->dev, "DMA bounce timed out");
count -= (count_left);
break;
}
if (bounce->callback_sem.count >= DMA_BOUNCE_BUFFER_COUNT - 1)
dev_err(inst->dev, "WARNING: Ring buffer overflow");
chunk_size = count_left > DMA_BOUNCE_BUFFER_SIZE ?
DMA_BOUNCE_BUFFER_SIZE : count_left;
buf = bounce->buffer[chunk_no % DMA_BOUNCE_BUFFER_COUNT];
if (dma_dir == DMA_DEV_TO_MEM)
rv = copy_to_user(user_ptr, buf, chunk_size);
else
rv = copy_from_user(buf, user_ptr, chunk_size);
if (rv)
dev_err(inst->dev, "copy_*_user() failed!: %d", rv);
user_ptr += chunk_size;
count_left -= chunk_size;
chunk_no++;
}
return count;
}
static ssize_t
bcm2835_read_file(struct file *f, char __user *user_ptr,
size_t count, loff_t *offs)
{
int odd_bytes;
dev_dbg(inst->dev, "User reading %zu bytes from SMI.", count);
/* We don't want to DMA a number of bytes % 4 != 0 (32 bit FIFO) */
if (count > DMA_THRESHOLD_BYTES)
odd_bytes = count & 0x3;
else
odd_bytes = count;
count -= odd_bytes;
if (count) {
struct bcm2835_smi_bounce_info *bounce;
count = bcm2835_smi_user_dma(smi_inst,
DMA_DEV_TO_MEM, user_ptr, count,
&bounce);
if (count)
count = dma_bounce_user(DMA_DEV_TO_MEM, user_ptr,
count, bounce);
}
if (odd_bytes) {
/* Read from FIFO directly if not using DMA */
uint8_t buf[DMA_THRESHOLD_BYTES];
bcm2835_smi_read_buf(smi_inst, buf, odd_bytes);
if (copy_to_user(user_ptr, buf, odd_bytes))
dev_err(inst->dev, "copy_to_user() failed.");
count += odd_bytes;
}
return count;
}
static ssize_t
bcm2835_write_file(struct file *f, const char __user *user_ptr,
size_t count, loff_t *offs)
{
int odd_bytes;
dev_dbg(inst->dev, "User writing %zu bytes to SMI.", count);
if (count > DMA_THRESHOLD_BYTES)
odd_bytes = count & 0x3;
else
odd_bytes = count;
count -= odd_bytes;
if (count) {
struct bcm2835_smi_bounce_info *bounce;
count = bcm2835_smi_user_dma(smi_inst,
DMA_MEM_TO_DEV, (char __user *)user_ptr, count,
&bounce);
if (count)
count = dma_bounce_user(DMA_MEM_TO_DEV,
(char __user *)user_ptr,
count, bounce);
}
if (odd_bytes) {
uint8_t buf[DMA_THRESHOLD_BYTES];
if (copy_from_user(buf, user_ptr, odd_bytes))
dev_err(inst->dev, "copy_from_user() failed.");
else
bcm2835_smi_write_buf(smi_inst, buf, odd_bytes);
count += odd_bytes;
}
return count;
}
static const struct file_operations
bcm2835_smi_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = bcm2835_smi_ioctl,
.open = bcm2835_smi_open,
.release = bcm2835_smi_release,
.read = bcm2835_read_file,
.write = bcm2835_write_file,
};
/****************************************************************************
*
* bcm2835_smi_probe - called when the driver is loaded.
*
***************************************************************************/
static int bcm2835_smi_dev_probe(struct platform_device *pdev)
{
int err;
void *ptr_err;
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node, *smi_node;
if (!node) {
dev_err(dev, "No device tree node supplied!");
return -EINVAL;
}
smi_node = of_parse_phandle(node, "smi_handle", 0);
if (!smi_node) {
dev_err(dev, "No such property: smi_handle");
return -ENXIO;
}
smi_inst = bcm2835_smi_get(smi_node);
if (!smi_inst)
return -EPROBE_DEFER;
/* Allocate buffers and instance data */
inst = devm_kzalloc(dev, sizeof(*inst), GFP_KERNEL);
if (!inst)
return -ENOMEM;
inst->dev = dev;
/* Create character device entries */
err = alloc_chrdev_region(&bcm2835_smi_devid,
DEVICE_MINOR, 1, DEVICE_NAME);
if (err != 0) {
dev_err(inst->dev, "unable to allocate device number");
return -ENOMEM;
}
cdev_init(&bcm2835_smi_cdev, &bcm2835_smi_fops);
bcm2835_smi_cdev.owner = THIS_MODULE;
err = cdev_add(&bcm2835_smi_cdev, bcm2835_smi_devid, 1);
if (err != 0) {
dev_err(inst->dev, "unable to register device");
err = -ENOMEM;
goto failed_cdev_add;
}
/* Create sysfs entries */
bcm2835_smi_class = class_create(THIS_MODULE, DEVICE_NAME);
ptr_err = bcm2835_smi_class;
if (IS_ERR(ptr_err))
goto failed_class_create;
bcm2835_smi_dev = device_create(bcm2835_smi_class, NULL,
bcm2835_smi_devid, NULL,
"smi");
ptr_err = bcm2835_smi_dev;
if (IS_ERR(ptr_err))
goto failed_device_create;
dev_info(inst->dev, "initialised");
return 0;
failed_device_create:
class_destroy(bcm2835_smi_class);
failed_class_create:
cdev_del(&bcm2835_smi_cdev);
err = PTR_ERR(ptr_err);
failed_cdev_add:
unregister_chrdev_region(bcm2835_smi_devid, 1);
dev_err(dev, "could not load bcm2835_smi_dev");
return err;
}
/****************************************************************************
*
* bcm2835_smi_remove - called when the driver is unloaded.
*
***************************************************************************/
static int bcm2835_smi_dev_remove(struct platform_device *pdev)
{
device_destroy(bcm2835_smi_class, bcm2835_smi_devid);
class_destroy(bcm2835_smi_class);
cdev_del(&bcm2835_smi_cdev);
unregister_chrdev_region(bcm2835_smi_devid, 1);
dev_info(inst->dev, "SMI character dev removed - OK");
return 0;
}
/****************************************************************************
*
* Register the driver with device tree
*
***************************************************************************/
static const struct of_device_id bcm2835_smi_dev_of_match[] = {
{.compatible = "brcm,bcm2835-smi-dev",},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bcm2835_smi_dev_of_match);
static struct platform_driver bcm2835_smi_dev_driver = {
.probe = bcm2835_smi_dev_probe,
.remove = bcm2835_smi_dev_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = bcm2835_smi_dev_of_match,
},
};
module_platform_driver(bcm2835_smi_dev_driver);
MODULE_ALIAS("platform:smi-dev-bcm2835");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(
"Character device driver for BCM2835's secondary memory interface");
MODULE_AUTHOR("Luke Wren <luke@raspberrypi.org>");
......@@ -9,6 +9,14 @@ config SENSORS_LIS3LV02D
tristate
depends on INPUT
config BCM2835_SMI
tristate "Broadcom 283x Secondary Memory Interface driver"
depends on ARCH_BCM2835
default m
help
Driver for enabling and using Broadcom's Secondary/Slow Memory Interface.
Appears as /dev/bcm2835_smi. For ioctl interface see drivers/misc/bcm2835_smi.h
config AD525X_DPOT
tristate "Analog Devices Digital Potentiometers"
depends on (I2C || SPI) && SYSFS
......
......@@ -11,6 +11,7 @@ obj-$(CONFIG_AD525X_DPOT_SPI) += ad525x_dpot-spi.o
obj-$(CONFIG_INTEL_MID_PTI) += pti.o
obj-$(CONFIG_ATMEL_SSC) += atmel-ssc.o
obj-$(CONFIG_ATMEL_TCLIB) += atmel_tclib.o
obj-$(CONFIG_BCM2835_SMI) += bcm2835_smi.o
obj-$(CONFIG_DUMMY_IRQ) += dummy-irq.o
obj-$(CONFIG_ICS932S401) += ics932s401.o
obj-$(CONFIG_LKDTM) += lkdtm/
......
/**
* Broadcom Secondary Memory Interface driver
*
* Written by Luke Wren <luke@raspberrypi.org>
* Copyright (c) 2015, Raspberry Pi (Trading) Ltd.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2, as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#define BCM2835_SMI_IMPLEMENTATION
#include <linux/broadcom/bcm2835_smi.h>
#define DRIVER_NAME "smi-bcm2835"
#define N_PAGES_FROM_BYTES(n) ((n + PAGE_SIZE-1) / PAGE_SIZE)
#define DMA_WRITE_TO_MEM true
#define DMA_READ_FROM_MEM false
struct bcm2835_smi_instance {
struct device *dev;
struct smi_settings settings;
__iomem void *smi_regs_ptr;
dma_addr_t smi_regs_busaddr;
struct dma_chan *dma_chan;
struct dma_slave_config dma_config;
struct bcm2835_smi_bounce_info bounce;
struct scatterlist buffer_sgl;
struct clk *clk;
/* Sometimes we are called into in an atomic context (e.g. by
JFFS2 + MTD) so we can't use a mutex */
spinlock_t transaction_lock;
};
/****************************************************************************
*
* SMI peripheral setup
*
***************************************************************************/
static inline void write_smi_reg(struct bcm2835_smi_instance *inst,
u32 val, unsigned reg)
{
writel(val, inst->smi_regs_ptr + reg);
}
static inline u32 read_smi_reg(struct bcm2835_smi_instance *inst, unsigned reg)
{
return readl(inst->smi_regs_ptr + reg);
}
/* Token-paste macro for e.g SMIDSR_RSTROBE -> value of SMIDSR_RSTROBE_MASK */
#define _CONCAT(x, y) x##y
#define CONCAT(x, y) _CONCAT(x, y)
#define SET_BIT_FIELD(dest, field, bits) ((dest) = \
((dest) & ~CONCAT(field, _MASK)) | (((bits) << CONCAT(field, _OFFS))& \
CONCAT(field, _MASK)))
#define GET_BIT_FIELD(src, field) (((src) & \
CONCAT(field, _MASK)) >> CONCAT(field, _OFFS))
static void smi_dump_context_labelled(struct bcm2835_smi_instance *inst,
const char *label)
{
dev_err(inst->dev, "SMI context dump: %s", label);
dev_err(inst->dev, "SMICS: 0x%08x", read_smi_reg(inst, SMICS));
dev_err(inst->dev, "SMIL: 0x%08x", read_smi_reg(inst, SMIL));
dev_err(inst->dev, "SMIDSR: 0x%08x", read_smi_reg(inst, SMIDSR0));
dev_err(inst->dev, "SMIDSW: 0x%08x", read_smi_reg(inst, SMIDSW0));
dev_err(inst->dev, "SMIDC: 0x%08x", read_smi_reg(inst, SMIDC));
dev_err(inst->dev, "SMIFD: 0x%08x", read_smi_reg(inst, SMIFD));
dev_err(inst->dev, " ");
}
static inline void smi_dump_context(struct bcm2835_smi_instance *inst)
{
smi_dump_context_labelled(inst, "");
}
static void smi_get_default_settings(struct bcm2835_smi_instance *inst)
{
struct smi_settings *settings = &inst->settings;
settings->data_width = SMI_WIDTH_16BIT;
settings->pack_data = true;
settings->read_setup_time = 1;
settings->read_hold_time = 1;
settings->read_pace_time = 1;
settings->read_strobe_time = 3;
settings->write_setup_time = settings->read_setup_time;
settings->write_hold_time = settings->read_hold_time;
settings->write_pace_time = settings->read_pace_time;
settings->write_strobe_time = settings->read_strobe_time;
settings->dma_enable = true;
settings->dma_passthrough_enable = false;
settings->dma_read_thresh = 0x01;
settings->dma_write_thresh = 0x3f;
settings->dma_panic_read_thresh = 0x20;
settings->dma_panic_write_thresh = 0x20;
}
void bcm2835_smi_set_regs_from_settings(struct bcm2835_smi_instance *inst)
{
struct smi_settings *settings = &inst->settings;
int smidsr_temp = 0, smidsw_temp = 0, smics_temp,
smidcs_temp, smidc_temp = 0;
spin_lock(&inst->transaction_lock);
/* temporarily disable the peripheral: */
smics_temp = read_smi_reg(inst, SMICS);
write_smi_reg(inst, 0, SMICS);
smidcs_temp = read_smi_reg(inst, SMIDCS);
write_smi_reg(inst, 0, SMIDCS);
if (settings->pack_data)
smics_temp |= SMICS_PXLDAT;
else
smics_temp &= ~SMICS_PXLDAT;
SET_BIT_FIELD(smidsr_temp, SMIDSR_RWIDTH, settings->data_width);
SET_BIT_FIELD(smidsr_temp, SMIDSR_RSETUP, settings->read_setup_time);
SET_BIT_FIELD(smidsr_temp, SMIDSR_RHOLD, settings->read_hold_time);
SET_BIT_FIELD(smidsr_temp, SMIDSR_RPACE, settings->read_pace_time);
SET_BIT_FIELD(smidsr_temp, SMIDSR_RSTROBE, settings->read_strobe_time);
write_smi_reg(inst, smidsr_temp, SMIDSR0);
SET_BIT_FIELD(smidsw_temp, SMIDSW_WWIDTH, settings->data_width);
if (settings->data_width == SMI_WIDTH_8BIT)
smidsw_temp |= SMIDSW_WSWAP;
else
smidsw_temp &= ~SMIDSW_WSWAP;
SET_BIT_FIELD(smidsw_temp, SMIDSW_WSETUP, settings->write_setup_time);
SET_BIT_FIELD(smidsw_temp, SMIDSW_WHOLD, settings->write_hold_time);
SET_BIT_FIELD(smidsw_temp, SMIDSW_WPACE, settings->write_pace_time);
SET_BIT_FIELD(smidsw_temp, SMIDSW_WSTROBE,
settings->write_strobe_time);
write_smi_reg(inst, smidsw_temp, SMIDSW0);
SET_BIT_FIELD(smidc_temp, SMIDC_REQR, settings->dma_read_thresh);
SET_BIT_FIELD(smidc_temp, SMIDC_REQW, settings->dma_write_thresh);
SET_BIT_FIELD(smidc_temp, SMIDC_PANICR,
settings->dma_panic_read_thresh);
SET_BIT_FIELD(smidc_temp, SMIDC_PANICW,
settings->dma_panic_write_thresh);
if (settings->dma_passthrough_enable) {
smidc_temp |= SMIDC_DMAP;
smidsr_temp |= SMIDSR_RDREQ;
write_smi_reg(inst, smidsr_temp, SMIDSR0);
smidsw_temp |= SMIDSW_WDREQ;
write_smi_reg(inst, smidsw_temp, SMIDSW0);
} else
smidc_temp &= ~SMIDC_DMAP;
if (settings->dma_enable)
smidc_temp |= SMIDC_DMAEN;
else
smidc_temp &= ~SMIDC_DMAEN;
write_smi_reg(inst, smidc_temp, SMIDC);
/* re-enable (if was previously enabled) */
write_smi_reg(inst, smics_temp, SMICS);
write_smi_reg(inst, smidcs_temp, SMIDCS);
spin_unlock(&inst->transaction_lock);
}
EXPORT_SYMBOL(bcm2835_smi_set_regs_from_settings);
struct smi_settings *bcm2835_smi_get_settings_from_regs
(struct bcm2835_smi_instance *inst)
{
struct smi_settings *settings = &inst->settings;
int smidsr, smidsw, smidc;
spin_lock(&inst->transaction_lock);
smidsr = read_smi_reg(inst, SMIDSR0);
smidsw = read_smi_reg(inst, SMIDSW0);
smidc = read_smi_reg(inst, SMIDC);
settings->pack_data = (read_smi_reg(inst, SMICS) & SMICS_PXLDAT) ?
true : false;
settings->data_width = GET_BIT_FIELD(smidsr, SMIDSR_RWIDTH);
settings->read_setup_time = GET_BIT_FIELD(smidsr, SMIDSR_RSETUP);
settings->read_hold_time = GET_BIT_FIELD(smidsr, SMIDSR_RHOLD);
settings->read_pace_time = GET_BIT_FIELD(smidsr, SMIDSR_RPACE);
settings->read_strobe_time = GET_BIT_FIELD(smidsr, SMIDSR_RSTROBE);
settings->write_setup_time = GET_BIT_FIELD(smidsw, SMIDSW_WSETUP);
settings->write_hold_time = GET_BIT_FIELD(smidsw, SMIDSW_WHOLD);
settings->write_pace_time = GET_BIT_FIELD(smidsw, SMIDSW_WPACE);
settings->write_strobe_time = GET_BIT_FIELD(smidsw, SMIDSW_WSTROBE);
settings->dma_read_thresh = GET_BIT_FIELD(smidc, SMIDC_REQR);
settings->dma_write_thresh = GET_BIT_FIELD(smidc, SMIDC_REQW);
settings->dma_panic_read_thresh = GET_BIT_FIELD(smidc, SMIDC_PANICR);
settings->dma_panic_write_thresh = GET_BIT_FIELD(smidc, SMIDC_PANICW);
settings->dma_passthrough_enable = (smidc & SMIDC_DMAP) ? true : false;
settings->dma_enable = (smidc & SMIDC_DMAEN) ? true : false;
spin_unlock(&inst->transaction_lock);
return settings;
}
EXPORT_SYMBOL(bcm2835_smi_get_settings_from_regs);
static inline void smi_set_address(struct bcm2835_smi_instance *inst,
unsigned int address)
{
int smia_temp = 0, smida_temp = 0;
SET_BIT_FIELD(smia_temp, SMIA_ADDR, address);
SET_BIT_FIELD(smida_temp, SMIDA_ADDR, address);
/* Write to both address registers - user doesn't care whether we're
doing programmed or direct transfers. */
write_smi_reg(inst, smia_temp, SMIA);
write_smi_reg(inst, smida_temp, SMIDA);
}
static void smi_setup_regs(struct bcm2835_smi_instance *inst)
{
dev_dbg(inst->dev, "Initialising SMI registers...");
/* Disable the peripheral if already enabled */
write_smi_reg(inst, 0, SMICS);
write_smi_reg(inst, 0, SMIDCS);
smi_get_default_settings(inst);
bcm2835_smi_set_regs_from_settings(inst);
smi_set_address(inst, 0);
write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_ENABLE, SMICS);
write_smi_reg(inst, read_smi_reg(inst, SMIDCS) | SMIDCS_ENABLE,
SMIDCS);
}
/****************************************************************************
*
* Low-level SMI access functions
* Other modules should use the exported higher-level functions e.g.
* bcm2835_smi_write_buf() unless they have a good reason to use these
*
***************************************************************************/
static inline uint32_t smi_read_single_word(struct bcm2835_smi_instance *inst)
{
int timeout = 0;
write_smi_reg(inst, SMIDCS_ENABLE, SMIDCS);
write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_START, SMIDCS);
/* Make sure things happen in the right order...*/
mb();
while (!(read_smi_reg(inst, SMIDCS) & SMIDCS_DONE) &&
++timeout < 10000)
;
if (timeout < 10000)
return read_smi_reg(inst, SMIDD);
dev_err(inst->dev,
"SMI direct read timed out (is the clock set up correctly?)");
return 0;
}
static inline void smi_write_single_word(struct bcm2835_smi_instance *inst,
uint32_t data)
{
int timeout = 0;
write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_WRITE, SMIDCS);
write_smi_reg(inst, data, SMIDD);
write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_WRITE | SMIDCS_START,
SMIDCS);
while (!(read_smi_reg(inst, SMIDCS) & SMIDCS_DONE) &&
++timeout < 10000)
;
if (timeout >= 10000)
dev_err(inst->dev,
"SMI direct write timed out (is the clock set up correctly?)");
}
/* Initiates a programmed read into the read FIFO. It is up to the caller to
* read data from the FIFO - either via paced DMA transfer,
* or polling SMICS_RXD to check whether data is available.
* SMICS_ACTIVE will go low upon completion. */
static void smi_init_programmed_read(struct bcm2835_smi_instance *inst,
int num_transfers)
{
int smics_temp;
/* Disable the peripheral: */
smics_temp = read_smi_reg(inst, SMICS) & ~(SMICS_ENABLE | SMICS_WRITE);
write_smi_reg(inst, smics_temp, SMICS);
while (read_smi_reg(inst, SMICS) & SMICS_ENABLE)
;
/* Program the transfer count: */
write_smi_reg(inst, num_transfers, SMIL);
/* re-enable and start: */
smics_temp |= SMICS_ENABLE;
write_smi_reg(inst, smics_temp, SMICS);
smics_temp |= SMICS_CLEAR;
/* Just to be certain: */
mb();
while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE)
;
write_smi_reg(inst, smics_temp, SMICS);
smics_temp |= SMICS_START;
write_smi_reg(inst, smics_temp, SMICS);
}
/* Initiates a programmed write sequence, using data from the write FIFO.
* It is up to the caller to initiate a DMA transfer before calling,
* or use another method to keep the write FIFO topped up.
* SMICS_ACTIVE will go low upon completion.
*/
static void smi_init_programmed_write(struct bcm2835_smi_instance *inst,
int num_transfers)
{
int smics_temp;
/* Disable the peripheral: */
smics_temp = read_smi_reg(inst, SMICS) & ~SMICS_ENABLE;
write_smi_reg(inst, smics_temp, SMICS);
while (read_smi_reg(inst, SMICS) & SMICS_ENABLE)
;
/* Program the transfer count: */
write_smi_reg(inst, num_transfers, SMIL);
/* setup, re-enable and start: */
smics_temp |= SMICS_WRITE | SMICS_ENABLE;
write_smi_reg(inst, smics_temp, SMICS);
smics_temp |= SMICS_START;
write_smi_reg(inst, smics_temp, SMICS);
}
/* Initiate a read and then poll FIFO for data, reading out as it appears. */
static void smi_read_fifo(struct bcm2835_smi_instance *inst,
uint32_t *dest, int n_bytes)
{
if (read_smi_reg(inst, SMICS) & SMICS_RXD) {
smi_dump_context_labelled(inst,
"WARNING: read FIFO not empty at start of read call.");
while (read_smi_reg(inst, SMICS))
;
}
/* Dispatch the read: */
if (inst->settings.data_width == SMI_WIDTH_8BIT)
smi_init_programmed_read(inst, n_bytes);
else if (inst->settings.data_width == SMI_WIDTH_16BIT)
smi_init_programmed_read(inst, n_bytes / 2);
else {
dev_err(inst->dev, "Unsupported data width for read.");
return;
}
/* Poll FIFO to keep it empty */
while (!(read_smi_reg(inst, SMICS) & SMICS_DONE))
if (read_smi_reg(inst, SMICS) & SMICS_RXD)
*dest++ = read_smi_reg(inst, SMID);
/* Ensure that the FIFO is emptied */
if (read_smi_reg(inst, SMICS) & SMICS_RXD) {
int fifo_count;
fifo_count = GET_BIT_FIELD(read_smi_reg(inst, SMIFD),
SMIFD_FCNT);
while (fifo_count--)
*dest++ = read_smi_reg(inst, SMID);
}
if (!(read_smi_reg(inst, SMICS) & SMICS_DONE))
smi_dump_context_labelled(inst,
"WARNING: transaction finished but done bit not set.");
if (read_smi_reg(inst, SMICS) & SMICS_RXD)
smi_dump_context_labelled(inst,
"WARNING: read FIFO not empty at end of read call.");
}
/* Initiate a write, and then keep the FIFO topped up. */
static void smi_write_fifo(struct bcm2835_smi_instance *inst,
uint32_t *src, int n_bytes)
{
int i, timeout = 0;
/* Empty FIFOs if not already so */
if (!(read_smi_reg(inst, SMICS) & SMICS_TXE)) {
smi_dump_context_labelled(inst,
"WARNING: write fifo not empty at start of write call.");
write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_CLEAR,
SMICS);
}
/* Initiate the transfer */
if (inst->settings.data_width == SMI_WIDTH_8BIT)
smi_init_programmed_write(inst, n_bytes);
else if (inst->settings.data_width == SMI_WIDTH_16BIT)
smi_init_programmed_write(inst, n_bytes / 2);
else {
dev_err(inst->dev, "Unsupported data width for write.");
return;
}
/* Fill the FIFO: */
for (i = 0; i < (n_bytes - 1) / 4 + 1; ++i) {
while (!(read_smi_reg(inst, SMICS) & SMICS_TXD))
;
write_smi_reg(inst, *src++, SMID);
}
/* Busy wait... */
while (!(read_smi_reg(inst, SMICS) & SMICS_DONE) && ++timeout <
1000000)
;
if (timeout >= 1000000)
smi_dump_context_labelled(inst,
"Timed out on write operation!");
if (!(read_smi_reg(inst, SMICS) & SMICS_TXE))
smi_dump_context_labelled(inst,
"WARNING: FIFO not empty at end of write operation.");
}
/****************************************************************************
*
* SMI DMA operations
*
***************************************************************************/
/* Disable SMI and put it into the correct direction before doing DMA setup.
Stops spurious DREQs during setup. Peripheral is re-enabled by init_*() */
static void smi_disable(struct bcm2835_smi_instance *inst,
enum dma_transfer_direction direction)
{
int smics_temp = read_smi_reg(inst, SMICS) & ~SMICS_ENABLE;
if (direction == DMA_DEV_TO_MEM)
smics_temp &= ~SMICS_WRITE;
else
smics_temp |= SMICS_WRITE;
write_smi_reg(inst, smics_temp, SMICS);
while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE)
;
}
static struct scatterlist *smi_scatterlist_from_buffer(
struct bcm2835_smi_instance *inst,
dma_addr_t buf,
size_t len,
struct scatterlist *sg)
{
sg_init_table(sg, 1);
sg_dma_address(sg) = buf;
sg_dma_len(sg) = len;
return sg;
}
static void smi_dma_callback_user_copy(void *param)
{
/* Notify the bottom half that a chunk is ready for user copy */
struct bcm2835_smi_instance *inst =
(struct bcm2835_smi_instance *)param;
up(&inst->bounce.callback_sem);
}
/* Creates a descriptor, assigns the given callback, and submits the
descriptor to dmaengine. Does not block - can queue up multiple
descriptors and then wait for them all to complete.
sg_len is the number of control blocks, NOT the number of bytes.
dir can be DMA_MEM_TO_DEV or DMA_DEV_TO_MEM.
callback can be NULL - in this case it is not called. */
static inline struct dma_async_tx_descriptor *smi_dma_submit_sgl(
struct bcm2835_smi_instance *inst,
struct scatterlist *sgl,
size_t sg_len,
enum dma_transfer_direction dir,
dma_async_tx_callback callback)
{
struct dma_async_tx_descriptor *desc;
desc = dmaengine_prep_slave_sg(inst->dma_chan,
sgl,
sg_len,
dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK |
DMA_PREP_FENCE);
if (!desc) {
dev_err(inst->dev, "read_sgl: dma slave preparation failed!");
write_smi_reg(inst, read_smi_reg(inst, SMICS) & ~SMICS_ACTIVE,
SMICS);
while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE)
cpu_relax();
write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_ACTIVE,
SMICS);
return NULL;
}
desc->callback = callback;
desc->callback_param = inst;
if (dmaengine_submit(desc) < 0)
return NULL;
return desc;
}
/* NB this function blocks until the transfer is complete */
static void
smi_dma_read_sgl(struct bcm2835_smi_instance *inst,
struct scatterlist *sgl, size_t sg_len, size_t n_bytes)
{
struct dma_async_tx_descriptor *desc;
/* Disable SMI and set to read before dispatching DMA - if SMI is in
* write mode and TX fifo is empty, it will generate a DREQ which may
* cause the read DMA to complete before the SMI read command is even
* dispatched! We want to dispatch DMA before SMI read so that reading
* is gapless, for logic analyser.
*/
smi_disable(inst, DMA_DEV_TO_MEM);
desc = smi_dma_submit_sgl(inst, sgl, sg_len, DMA_DEV_TO_MEM, NULL);
dma_async_issue_pending(inst->dma_chan);
if (inst->settings.data_width == SMI_WIDTH_8BIT)
smi_init_programmed_read(inst, n_bytes);
else
smi_init_programmed_read(inst, n_bytes / 2);
if (dma_wait_for_async_tx(desc) == DMA_ERROR)
smi_dump_context_labelled(inst, "DMA timeout!");
}
static void
smi_dma_write_sgl(struct bcm2835_smi_instance *inst,
struct scatterlist *sgl, size_t sg_len, size_t n_bytes)
{
struct dma_async_tx_descriptor *desc;
if (inst->settings.data_width == SMI_WIDTH_8BIT)
smi_init_programmed_write(inst, n_bytes);
else
smi_init_programmed_write(inst, n_bytes / 2);
desc = smi_dma_submit_sgl(inst, sgl, sg_len, DMA_MEM_TO_DEV, NULL);
dma_async_issue_pending(inst->dma_chan);
if (dma_wait_for_async_tx(desc) == DMA_ERROR)
smi_dump_context_labelled(inst, "DMA timeout!");
else
/* Wait for SMI to finish our writes */
while (!(read_smi_reg(inst, SMICS) & SMICS_DONE))
cpu_relax();
}
ssize_t bcm2835_smi_user_dma(
struct bcm2835_smi_instance *inst,
enum dma_transfer_direction dma_dir,
char __user *user_ptr, size_t count,
struct bcm2835_smi_bounce_info **bounce)
{
int chunk_no = 0, chunk_size, count_left = count;
struct scatterlist *sgl;
void (*init_trans_func)(struct bcm2835_smi_instance *, int);
spin_lock(&inst->transaction_lock);
if (dma_dir == DMA_DEV_TO_MEM)
init_trans_func = smi_init_programmed_read;
else
init_trans_func = smi_init_programmed_write;
smi_disable(inst, dma_dir);
sema_init(&inst->bounce.callback_sem, 0);
if (bounce)
*bounce = &inst->bounce;
while (count_left) {
chunk_size = count_left > DMA_BOUNCE_BUFFER_SIZE ?
DMA_BOUNCE_BUFFER_SIZE : count_left;
if (chunk_size == DMA_BOUNCE_BUFFER_SIZE) {
sgl =
&inst->bounce.sgl[chunk_no % DMA_BOUNCE_BUFFER_COUNT];
} else {
sgl = smi_scatterlist_from_buffer(
inst,
inst->bounce.phys[
chunk_no % DMA_BOUNCE_BUFFER_COUNT],
chunk_size,
&inst->buffer_sgl);
}
if (!smi_dma_submit_sgl(inst, sgl, 1, dma_dir,
smi_dma_callback_user_copy
)) {
dev_err(inst->dev, "sgl submit failed");
count = 0;
goto out;
}
count_left -= chunk_size;
chunk_no++;
}
dma_async_issue_pending(inst->dma_chan);
if (inst->settings.data_width == SMI_WIDTH_8BIT)
init_trans_func(inst, count);
else if (inst->settings.data_width == SMI_WIDTH_16BIT)
init_trans_func(inst, count / 2);
out:
spin_unlock(&inst->transaction_lock);
return count;
}
EXPORT_SYMBOL(bcm2835_smi_user_dma);
/****************************************************************************
*
* High level buffer transfer functions - for use by other drivers
*
***************************************************************************/
/* Buffer must be physically contiguous - i.e. kmalloc, not vmalloc! */
void bcm2835_smi_write_buf(
struct bcm2835_smi_instance *inst,
const void *buf, size_t n_bytes)
{
int odd_bytes = n_bytes & 0x3;
n_bytes -= odd_bytes;
spin_lock(&inst->transaction_lock);
if (n_bytes > DMA_THRESHOLD_BYTES) {
dma_addr_t phy_addr = dma_map_single(
inst->dev,
(void *)buf,
n_bytes,
DMA_MEM_TO_DEV);
struct scatterlist *sgl =
smi_scatterlist_from_buffer(inst, phy_addr, n_bytes,
&inst->buffer_sgl);
if (!sgl) {
smi_dump_context_labelled(inst,
"Error: could not create scatterlist for write!");
goto out;
}
smi_dma_write_sgl(inst, sgl, 1, n_bytes);
dma_unmap_single
(inst->dev, phy_addr, n_bytes, DMA_MEM_TO_DEV);
} else if (n_bytes) {
smi_write_fifo(inst, (uint32_t *) buf, n_bytes);
}
buf += n_bytes;
if (inst->settings.data_width == SMI_WIDTH_8BIT) {
while (odd_bytes--)
smi_write_single_word(inst, *(uint8_t *) (buf++));
} else {
while (odd_bytes >= 2) {
smi_write_single_word(inst, *(uint16_t *)buf);
buf += 2;
odd_bytes -= 2;
}
if (odd_bytes) {
/* Reading an odd number of bytes on a 16 bit bus is
a user bug. It's kinder to fail early and tell them
than to e.g. transparently give them the bottom byte
of a 16 bit transfer. */
dev_err(inst->dev,
"WARNING: odd number of bytes specified for wide transfer.");
dev_err(inst->dev,
"At least one byte dropped as a result.");
dump_stack();
}
}
out:
spin_unlock(&inst->transaction_lock);
}
EXPORT_SYMBOL(bcm2835_smi_write_buf);
void bcm2835_smi_read_buf(struct bcm2835_smi_instance *inst,
void *buf, size_t n_bytes)
{
/* SMI is inherently 32-bit, which causes surprising amounts of mess
for bytes % 4 != 0. Easiest to avoid this mess altogether
by handling remainder separately. */
int odd_bytes = n_bytes & 0x3;
spin_lock(&inst->transaction_lock);
n_bytes -= odd_bytes;
if (n_bytes > DMA_THRESHOLD_BYTES) {
dma_addr_t phy_addr = dma_map_single(inst->dev,
buf, n_bytes,
DMA_DEV_TO_MEM);
struct scatterlist *sgl = smi_scatterlist_from_buffer(
inst, phy_addr, n_bytes,
&inst->buffer_sgl);
if (!sgl) {
smi_dump_context_labelled(inst,
"Error: could not create scatterlist for read!");
goto out;
}
smi_dma_read_sgl(inst, sgl, 1, n_bytes);
dma_unmap_single(inst->dev, phy_addr, n_bytes, DMA_DEV_TO_MEM);
} else if (n_bytes) {
smi_read_fifo(inst, (uint32_t *)buf, n_bytes);
}
buf += n_bytes;
if (inst->settings.data_width == SMI_WIDTH_8BIT) {
while (odd_bytes--)
*((uint8_t *) (buf++)) = smi_read_single_word(inst);
} else {
while (odd_bytes >= 2) {
*(uint16_t *) buf = smi_read_single_word(inst);
buf += 2;
odd_bytes -= 2;
}
if (odd_bytes) {
dev_err(inst->dev,
"WARNING: odd number of bytes specified for wide transfer.");
dev_err(inst->dev,
"At least one byte dropped as a result.");
dump_stack();
}
}
out:
spin_unlock(&inst->transaction_lock);
}
EXPORT_SYMBOL(bcm2835_smi_read_buf);
void bcm2835_smi_set_address(struct bcm2835_smi_instance *inst,
unsigned int address)
{
spin_lock(&inst->transaction_lock);
smi_set_address(inst, address);
spin_unlock(&inst->transaction_lock);
}
EXPORT_SYMBOL(bcm2835_smi_set_address);
struct bcm2835_smi_instance *bcm2835_smi_get(struct device_node *node)
{
struct platform_device *pdev;
if (!node)
return NULL;
pdev = of_find_device_by_node(node);
if (!pdev)
return NULL;
return platform_get_drvdata(pdev);
}
EXPORT_SYMBOL(bcm2835_smi_get);
/****************************************************************************
*
* bcm2835_smi_probe - called when the driver is loaded.
*
***************************************************************************/
static int bcm2835_smi_dma_setup(struct bcm2835_smi_instance *inst)
{
int i, rv = 0;
inst->dma_chan = dma_request_slave_channel(inst->dev, "rx-tx");
inst->dma_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
inst->dma_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
inst->dma_config.src_addr = inst->smi_regs_busaddr + SMID;
inst->dma_config.dst_addr = inst->dma_config.src_addr;
/* Direction unimportant - always overridden by prep_slave_sg */
inst->dma_config.direction = DMA_DEV_TO_MEM;
dmaengine_slave_config(inst->dma_chan, &inst->dma_config);
/* Alloc and map bounce buffers */
for (i = 0; i < DMA_BOUNCE_BUFFER_COUNT; ++i) {
inst->bounce.buffer[i] =
dmam_alloc_coherent(inst->dev, DMA_BOUNCE_BUFFER_SIZE,
&inst->bounce.phys[i],
GFP_KERNEL);
if (!inst->bounce.buffer[i]) {
dev_err(inst->dev, "Could not allocate buffer!");
rv = -ENOMEM;
break;
}
smi_scatterlist_from_buffer(
inst,
inst->bounce.phys[i],
DMA_BOUNCE_BUFFER_SIZE,
&inst->bounce.sgl[i]
);
}
return rv;
}
static int bcm2835_smi_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct resource *ioresource;
struct bcm2835_smi_instance *inst;
const __be32 *addr;
/* We require device tree support */
if (!node)
return -EINVAL;
/* Allocate buffers and instance data */
inst = devm_kzalloc(dev, sizeof(struct bcm2835_smi_instance),
GFP_KERNEL);
if (!inst)
return -ENOMEM;
inst->dev = dev;
spin_lock_init(&inst->transaction_lock);
ioresource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
inst->smi_regs_ptr = devm_ioremap_resource(dev, ioresource);
if (IS_ERR(inst->smi_regs_ptr)) {
err = PTR_ERR(inst->smi_regs_ptr);
goto err;
}
addr = of_get_address(node, 0, NULL, NULL);
inst->smi_regs_busaddr = be32_to_cpu(*addr);
err = bcm2835_smi_dma_setup(inst);
if (err)
goto err;
/* request clock */
inst->clk = devm_clk_get(dev, NULL);
if (!inst->clk)
goto err;
clk_prepare_enable(inst->clk);
/* Finally, do peripheral setup */
smi_setup_regs(inst);
platform_set_drvdata(pdev, inst);
dev_info(inst->dev, "initialised");
return 0;
err:
kfree(inst);
return err;
}
/****************************************************************************
*
* bcm2835_smi_remove - called when the driver is unloaded.
*
***************************************************************************/
static int bcm2835_smi_remove(struct platform_device *pdev)
{
struct bcm2835_smi_instance *inst = platform_get_drvdata(pdev);
struct device *dev = inst->dev;
dmaengine_terminate_all(inst->dma_chan);
dma_release_channel(inst->dma_chan);
clk_disable_unprepare(inst->clk);
dev_info(dev, "SMI device removed - OK");
return 0;
}
/****************************************************************************
*
* Register the driver with device tree
*
***************************************************************************/
static const struct of_device_id bcm2835_smi_of_match[] = {
{.compatible = "brcm,bcm2835-smi",},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bcm2835_smi_of_match);
static struct platform_driver bcm2835_smi_driver = {
.probe = bcm2835_smi_probe,
.remove = bcm2835_smi_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = bcm2835_smi_of_match,
},
};
module_platform_driver(bcm2835_smi_driver);
MODULE_ALIAS("platform:smi-bcm2835");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Device driver for BCM2835's secondary memory interface");
MODULE_AUTHOR("Luke Wren <luke@raspberrypi.org>");
/**
* Declarations and definitions for Broadcom's Secondary Memory Interface
*
* Written by Luke Wren <luke@raspberrypi.org>
* Copyright (c) 2015, Raspberry Pi (Trading) Ltd.
* Copyright (c) 2010-2012 Broadcom. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2, as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef BCM2835_SMI_H
#define BCM2835_SMI_H
#include <linux/ioctl.h>
#ifndef __KERNEL__
#include <stdint.h>
#include <stdbool.h>
#endif
#define BCM2835_SMI_IOC_MAGIC 0x1
#define BCM2835_SMI_INVALID_HANDLE (~0)
/* IOCTLs 0x100...0x1ff are not device-specific - we can use them */
#define BCM2835_SMI_IOC_GET_SETTINGS _IO(BCM2835_SMI_IOC_MAGIC, 0)
#define BCM2835_SMI_IOC_WRITE_SETTINGS _IO(BCM2835_SMI_IOC_MAGIC, 1)
#define BCM2835_SMI_IOC_ADDRESS _IO(BCM2835_SMI_IOC_MAGIC, 2)
#define BCM2835_SMI_IOC_MAX 2
#define SMI_WIDTH_8BIT 0
#define SMI_WIDTH_16BIT 1
#define SMI_WIDTH_9BIT 2
#define SMI_WIDTH_18BIT 3
/* max number of bytes where DMA will not be used */
#define DMA_THRESHOLD_BYTES 128
#define DMA_BOUNCE_BUFFER_SIZE (1024 * 1024 / 2)
#define DMA_BOUNCE_BUFFER_COUNT 3
struct smi_settings {
int data_width;
/* Whether or not to pack multiple SMI transfers into a
single 32 bit FIFO word */
bool pack_data;
/* Timing for reads (writes the same but for WE)
*
* OE ----------+ +--------------------
* | |
* +----------+
* SD -<==============================>-----------
* SA -<=========================================>-
* <-setup-> <-strobe -> <-hold -> <- pace ->
*/
int read_setup_time;
int read_hold_time;
int read_pace_time;
int read_strobe_time;
int write_setup_time;
int write_hold_time;
int write_pace_time;
int write_strobe_time;
bool dma_enable; /* DREQs */
bool dma_passthrough_enable; /* External DREQs */
int dma_read_thresh;
int dma_write_thresh;
int dma_panic_read_thresh;
int dma_panic_write_thresh;
};
/****************************************************************************
*
* Declare exported SMI functions
*
***************************************************************************/
#ifdef __KERNEL__
#include <linux/dmaengine.h> /* for enum dma_transfer_direction */
#include <linux/of.h>
#include <linux/semaphore.h>
struct bcm2835_smi_instance;
struct bcm2835_smi_bounce_info {
struct semaphore callback_sem;
void *buffer[DMA_BOUNCE_BUFFER_COUNT];
dma_addr_t phys[DMA_BOUNCE_BUFFER_COUNT];
struct scatterlist sgl[DMA_BOUNCE_BUFFER_COUNT];
};
void bcm2835_smi_set_regs_from_settings(struct bcm2835_smi_instance *);
struct smi_settings *bcm2835_smi_get_settings_from_regs(
struct bcm2835_smi_instance *inst);
void bcm2835_smi_write_buf(
struct bcm2835_smi_instance *inst,
const void *buf,
size_t n_bytes);
void bcm2835_smi_read_buf(
struct bcm2835_smi_instance *inst,
void *buf,
size_t n_bytes);
void bcm2835_smi_set_address(struct bcm2835_smi_instance *inst,
unsigned int address);
ssize_t bcm2835_smi_user_dma(
struct bcm2835_smi_instance *inst,
enum dma_transfer_direction dma_dir,
char __user *user_ptr,
size_t count,
struct bcm2835_smi_bounce_info **bounce);
struct bcm2835_smi_instance *bcm2835_smi_get(struct device_node *node);
#endif /* __KERNEL__ */
/****************************************************************
*
* Implementation-only declarations
*
****************************************************************/
#ifdef BCM2835_SMI_IMPLEMENTATION
/* Clock manager registers for SMI clock: */
#define CM_SMI_BASE_ADDRESS ((BCM2708_PERI_BASE) + 0x1010b0)
/* Clock manager "password" to protect registers from spurious writes */
#define CM_PWD (0x5a << 24)
#define CM_SMI_CTL 0x00
#define CM_SMI_DIV 0x04
#define CM_SMI_CTL_FLIP (1 << 8)
#define CM_SMI_CTL_BUSY (1 << 7)
#define CM_SMI_CTL_KILL (1 << 5)
#define CM_SMI_CTL_ENAB (1 << 4)
#define CM_SMI_CTL_SRC_MASK (0xf)
#define CM_SMI_CTL_SRC_OFFS (0)
#define CM_SMI_DIV_DIVI_MASK (0xf << 12)
#define CM_SMI_DIV_DIVI_OFFS (12)
#define CM_SMI_DIV_DIVF_MASK (0xff << 4)
#define CM_SMI_DIV_DIVF_OFFS (4)
/* SMI register mapping:*/
#define SMI_BASE_ADDRESS ((BCM2708_PERI_BASE) + 0x600000)
#define SMICS 0x00 /* control + status register */
#define SMIL 0x04 /* length/count (n external txfers) */
#define SMIA 0x08 /* address register */
#define SMID 0x0c /* data register */
#define SMIDSR0 0x10 /* device 0 read settings */
#define SMIDSW0 0x14 /* device 0 write settings */
#define SMIDSR1 0x18 /* device 1 read settings */
#define SMIDSW1 0x1c /* device 1 write settings */
#define SMIDSR2 0x20 /* device 2 read settings */
#define SMIDSW2 0x24 /* device 2 write settings */
#define SMIDSR3 0x28 /* device 3 read settings */
#define SMIDSW3 0x2c /* device 3 write settings */
#define SMIDC 0x30 /* DMA control registers */
#define SMIDCS 0x34 /* direct control/status register */
#define SMIDA 0x38 /* direct address register */
#define SMIDD 0x3c /* direct data registers */
#define SMIFD 0x40 /* FIFO debug register */
/* Control and Status register bits:
* SMICS_RXF : RX fifo full: 1 when RX fifo is full
* SMICS_TXE : TX fifo empty: 1 when empty.
* SMICS_RXD : RX fifo contains data: 1 when there is data.
* SMICS_TXD : TX fifo can accept data: 1 when true.
* SMICS_RXR : RX fifo needs reading: 1 when fifo more than 3/4 full, or
* when "DONE" and fifo not emptied.
* SMICS_TXW : TX fifo needs writing: 1 when less than 1/4 full.
* SMICS_AFERR : AXI FIFO error: 1 when fifo read when empty or written
* when full. Write 1 to clear.
* SMICS_EDREQ : 1 when external DREQ received.
* SMICS_PXLDAT : Pixel data: write 1 to enable pixel transfer modes.
* SMICS_SETERR : 1 if there was an error writing to setup regs (e.g.
* tx was in progress). Write 1 to clear.
* SMICS_PVMODE : Set to 1 to enable pixel valve mode.
* SMICS_INTR : Set to 1 to enable interrupt on RX.
* SMICS_INTT : Set to 1 to enable interrupt on TX.
* SMICS_INTD : Set to 1 to enable interrupt on DONE condition.
* SMICS_TEEN : Tear effect mode enabled: Programmed transfers will wait
* for a TE trigger before writing.
* SMICS_PAD1 : Padding settings for external transfers. For writes: the
* number of bytes initially written to the TX fifo that
* SMICS_PAD0 : should be ignored. For reads: the number of bytes that will
* be read before the data, and should be dropped.
* SMICS_WRITE : Transfer direction: 1 = write to external device, 0 = read
* SMICS_CLEAR : Write 1 to clear the FIFOs.
* SMICS_START : Write 1 to start the programmed transfer.
* SMICS_ACTIVE : Reads as 1 when a programmed transfer is underway.
* SMICS_DONE : Reads as 1 when transfer finished. For RX, not set until
* FIFO emptied.
* SMICS_ENABLE : Set to 1 to enable the SMI peripheral, 0 to disable.
*/
#define SMICS_RXF (1 << 31)
#define SMICS_TXE (1 << 30)
#define SMICS_RXD (1 << 29)
#define SMICS_TXD (1 << 28)
#define SMICS_RXR (1 << 27)
#define SMICS_TXW (1 << 26)
#define SMICS_AFERR (1 << 25)
#define SMICS_EDREQ (1 << 15)
#define SMICS_PXLDAT (1 << 14)
#define SMICS_SETERR (1 << 13)
#define SMICS_PVMODE (1 << 12)
#define SMICS_INTR (1 << 11)
#define SMICS_INTT (1 << 10)
#define SMICS_INTD (1 << 9)
#define SMICS_TEEN (1 << 8)
#define SMICS_PAD1 (1 << 7)
#define SMICS_PAD0 (1 << 6)
#define SMICS_WRITE (1 << 5)
#define SMICS_CLEAR (1 << 4)
#define SMICS_START (1 << 3)
#define SMICS_ACTIVE (1 << 2)
#define SMICS_DONE (1 << 1)
#define SMICS_ENABLE (1 << 0)
/* Address register bits: */
#define SMIA_DEVICE_MASK ((1 << 9) | (1 << 8))
#define SMIA_DEVICE_OFFS (8)
#define SMIA_ADDR_MASK (0x3f) /* bits 5 -> 0 */
#define SMIA_ADDR_OFFS (0)
/* DMA control register bits:
* SMIDC_DMAEN : DMA enable: set 1: DMA requests will be issued.
* SMIDC_DMAP : DMA passthrough: when set to 0, top two data pins are used by
* SMI as usual. When set to 1, the top two pins are used for
* external DREQs: pin 16 read request, 17 write.
* SMIDC_PANIC* : Threshold at which DMA will panic during read/write.
* SMIDC_REQ* : Threshold at which DMA will generate a DREQ.
*/
#define SMIDC_DMAEN (1 << 28)
#define SMIDC_DMAP (1 << 24)
#define SMIDC_PANICR_MASK (0x3f << 18)
#define SMIDC_PANICR_OFFS (18)
#define SMIDC_PANICW_MASK (0x3f << 12)
#define SMIDC_PANICW_OFFS (12)
#define SMIDC_REQR_MASK (0x3f << 6)
#define SMIDC_REQR_OFFS (6)
#define SMIDC_REQW_MASK (0x3f)
#define SMIDC_REQW_OFFS (0)
/* Device settings register bits: same for all 4 (or 3?) device register sets.
* Device read settings:
* SMIDSR_RWIDTH : Read transfer width. 00 = 8bit, 01 = 16bit,
* 10 = 18bit, 11 = 9bit.
* SMIDSR_RSETUP : Read setup time: number of core cycles between chip
* select/address and read strobe. Min 1, max 64.
* SMIDSR_MODE68 : 1 for System 68 mode (i.e. enable + direction pins,
* rather than OE + WE pin)
* SMIDSR_FSETUP : If set to 1, setup time only applies to first
* transfer after address change.
* SMIDSR_RHOLD : Number of core cycles between read strobe going
* inactive and CS/address going inactive. Min 1, max 64
* SMIDSR_RPACEALL : When set to 1, this device's RPACE value will always
* be used for the next transaction, even if it is not
* to this device.
* SMIDSR_RPACE : Number of core cycles spent waiting between CS
* deassert and start of next transfer. Min 1, max 128
* SMIDSR_RDREQ : 1 = use external DMA request on SD16 to pace reads
* from device. Must also set DMAP in SMICS.
* SMIDSR_RSTROBE : Number of cycles to assert the read strobe.
* min 1, max 128.
*/
#define SMIDSR_RWIDTH_MASK ((1<<31)|(1<<30))
#define SMIDSR_RWIDTH_OFFS (30)
#define SMIDSR_RSETUP_MASK (0x3f << 24)
#define SMIDSR_RSETUP_OFFS (24)
#define SMIDSR_MODE68 (1 << 23)
#define SMIDSR_FSETUP (1 << 22)
#define SMIDSR_RHOLD_MASK (0x3f << 16)
#define SMIDSR_RHOLD_OFFS (16)
#define SMIDSR_RPACEALL (1 << 15)
#define SMIDSR_RPACE_MASK (0x7f << 8)
#define SMIDSR_RPACE_OFFS (8)
#define SMIDSR_RDREQ (1 << 7)
#define SMIDSR_RSTROBE_MASK (0x7f)
#define SMIDSR_RSTROBE_OFFS (0)
/* Device write settings:
* SMIDSW_WWIDTH : Write transfer width. 00 = 8bit, 01 = 16bit,
* 10= 18bit, 11 = 9bit.
* SMIDSW_WSETUP : Number of cycles between CS assert and write strobe.
* Min 1, max 64.
* SMIDSW_WFORMAT : Pixel format of input. 0 = 16bit RGB 565,
* 1 = 32bit RGBA 8888
* SMIDSW_WSWAP : 1 = swap pixel data bits. (Use with SMICS_PXLDAT)
* SMIDSW_WHOLD : Time between WE deassert and CS deassert. 1 to 64
* SMIDSW_WPACEALL : 1: this device's WPACE will be used for the next
* transfer, regardless of that transfer's device.
* SMIDSW_WPACE : Cycles between CS deassert and next CS assert.
* Min 1, max 128
* SMIDSW_WDREQ : Use external DREQ on pin 17 to pace writes. DMAP must
* be set in SMICS.
* SMIDSW_WSTROBE : Number of cycles to assert the write strobe.
* Min 1, max 128
*/
#define SMIDSW_WWIDTH_MASK ((1<<31)|(1<<30))
#define SMIDSW_WWIDTH_OFFS (30)
#define SMIDSW_WSETUP_MASK (0x3f << 24)
#define SMIDSW_WSETUP_OFFS (24)
#define SMIDSW_WFORMAT (1 << 23)
#define SMIDSW_WSWAP (1 << 22)
#define SMIDSW_WHOLD_MASK (0x3f << 16)
#define SMIDSW_WHOLD_OFFS (16)
#define SMIDSW_WPACEALL (1 << 15)
#define SMIDSW_WPACE_MASK (0x7f << 8)
#define SMIDSW_WPACE_OFFS (8)
#define SMIDSW_WDREQ (1 << 7)
#define SMIDSW_WSTROBE_MASK (0x7f)
#define SMIDSW_WSTROBE_OFFS (0)
/* Direct transfer control + status register
* SMIDCS_WRITE : Direction of transfer: 1 -> write, 0 -> read
* SMIDCS_DONE : 1 when a transfer has finished. Write 1 to clear.
* SMIDCS_START : Write 1 to start a transfer, if one is not already underway.
* SMIDCE_ENABLE: Write 1 to enable SMI in direct mode.
*/
#define SMIDCS_WRITE (1 << 3)
#define SMIDCS_DONE (1 << 2)
#define SMIDCS_START (1 << 1)
#define SMIDCS_ENABLE (1 << 0)
/* Direct transfer address register
* SMIDA_DEVICE : Indicates which of the device settings banks should be used.
* SMIDA_ADDR : The value to be asserted on the address pins.
*/
#define SMIDA_DEVICE_MASK ((1<<9)|(1<<8))
#define SMIDA_DEVICE_OFFS (8)
#define SMIDA_ADDR_MASK (0x3f)
#define SMIDA_ADDR_OFFS (0)
/* FIFO debug register
* SMIFD_FLVL : The high-tide mark of FIFO count during the most recent txfer
* SMIFD_FCNT : The current FIFO count.
*/
#define SMIFD_FLVL_MASK (0x3f << 8)
#define SMIFD_FLVL_OFFS (8)
#define SMIFD_FCNT_MASK (0x3f)
#define SMIFD_FCNT_OFFS (0)
#endif /* BCM2835_SMI_IMPLEMENTATION */
#endif /* BCM2835_SMI_H */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册