提交 9078a3e1 编写于 作者: C Chris Mason 提交者: David Woodhouse

Btrfs: start of block group code

Signed-off-by: NChris Mason <chris.mason@oracle.com>
上级 f2458e1d
......@@ -239,6 +239,19 @@ struct btrfs_device_item {
__le64 device_id;
} __attribute__ ((__packed__));
/* tag for the radix tree of block groups in ram */
#define BTRFS_BLOCK_GROUP_DIRTY 0
#define BTRFS_BLOCK_GROUP_HINTS 8
#define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
struct btrfs_block_group_item {
__le64 used;
} __attribute__ ((__packed__));
struct btrfs_block_group_cache {
struct btrfs_key key;
struct btrfs_block_group_item item;
};
struct crypto_hash;
struct btrfs_fs_info {
struct btrfs_root *extent_root;
......@@ -249,6 +262,7 @@ struct btrfs_fs_info {
struct radix_tree_root pending_del_radix;
struct radix_tree_root pinned_radix;
struct radix_tree_root dev_radix;
struct radix_tree_root block_group_radix;
u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
int extent_tree_insert_nr;
......@@ -303,47 +317,65 @@ struct btrfs_root {
*/
#define BTRFS_INODE_ITEM_KEY 1
/* reserve 2-15 close to the inode for later flexibility */
/*
* dir items are the name -> inode pointers in a directory. There is one
* for every name in a directory.
*/
#define BTRFS_DIR_ITEM_KEY 2
#define BTRFS_DIR_INDEX_KEY 3
#define BTRFS_DIR_ITEM_KEY 16
#define BTRFS_DIR_INDEX_KEY 17
/*
* inline data is file data that fits in the btree.
* extent data is for file data
*/
#define BTRFS_INLINE_DATA_KEY 4
/*
* extent data is for data that can't fit in the btree. It points to
* a (hopefully) huge chunk of disk
*/
#define BTRFS_EXTENT_DATA_KEY 5
#define BTRFS_EXTENT_DATA_KEY 18
/*
* csum items have the checksums for data in the extents
*/
#define BTRFS_CSUM_ITEM_KEY 6
#define BTRFS_CSUM_ITEM_KEY 19
/* reserve 20-31 for other file stuff */
/*
* root items point to tree roots. There are typically in the root
* tree used by the super block to find all the other trees
*/
#define BTRFS_ROOT_ITEM_KEY 7
#define BTRFS_ROOT_ITEM_KEY 32
/*
* extent items are in the extent map tree. These record which blocks
* are used, and how many references there are to each block
*/
#define BTRFS_EXTENT_ITEM_KEY 8
#define BTRFS_EXTENT_ITEM_KEY 33
/*
* block groups give us hints into the extent allocation trees. Which
* blocks are free etc etc
*/
#define BTRFS_BLOCK_GROUP_ITEM_KEY 34
/*
* dev items list the devices that make up the FS
*/
#define BTRFS_DEV_ITEM_KEY 9
#define BTRFS_DEV_ITEM_KEY 35
/*
* string items are for debugging. They just store a short string of
* data in the FS
*/
#define BTRFS_STRING_ITEM_KEY 10
#define BTRFS_STRING_ITEM_KEY 253
static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
{
return le64_to_cpu(bi->used);
}
static inline void btrfs_set_block_group_used(struct
btrfs_block_group_item *bi,
u64 val)
{
bi->used = cpu_to_le64(val);
}
static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
{
......@@ -1037,6 +1069,10 @@ int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 blocknr, u64 num_blocks);
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_free_block_groups(struct btrfs_fs_info *info);
int btrfs_read_block_groups(struct btrfs_root *root);
/* ctree.c */
int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, u32 data_size);
......
......@@ -529,6 +529,7 @@ struct btrfs_root *open_ctree(struct super_block *sb)
init_bit_radix(&fs_info->pending_del_radix);
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
INIT_RADIX_TREE(&fs_info->dev_radix, GFP_NOFS);
INIT_RADIX_TREE(&fs_info->block_group_radix, GFP_KERNEL);
INIT_LIST_HEAD(&fs_info->trans_list);
sb_set_blocksize(sb, 4096);
fs_info->running_transaction = NULL;
......@@ -613,6 +614,8 @@ struct btrfs_root *open_ctree(struct super_block *sb)
BTRFS_EXTENT_TREE_OBJECTID, extent_root);
BUG_ON(ret);
btrfs_read_block_groups(extent_root);
fs_info->generation = btrfs_super_generation(disk_super) + 1;
memset(&fs_info->kobj, 0, sizeof(fs_info->kobj));
kobj_set_kset_s(fs_info, btrfs_subsys);
......@@ -741,6 +744,7 @@ int close_ctree(struct btrfs_root *root)
iput(fs_info->btree_inode);
free_dev_radix(fs_info);
btrfs_free_block_groups(root->fs_info);
del_fs_roots(fs_info);
kfree(fs_info->extent_root);
kfree(fs_info->tree_root);
......
......@@ -127,6 +127,105 @@ int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
return 0;
}
static int write_one_cache_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_block_group_cache *cache)
{
int ret;
int pending_ret;
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct btrfs_block_group_item *bi;
struct btrfs_key ins;
find_free_extent(trans, extent_root, 0, 0, (u64)-1, &ins);
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
BUG_ON(ret);
bi = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0],
struct btrfs_block_group_item);
memcpy(bi, &cache->item, sizeof(*bi));
mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(extent_root, path);
finish_current_insert(trans, extent_root);
pending_ret = del_pending_extents(trans, extent_root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
return 0;
}
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_group_cache *cache[8];
int ret;
int err = 0;
int werr = 0;
struct radix_tree_root *radix = &root->fs_info->block_group_radix;
int i;
struct btrfs_path *path;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while(1) {
ret = radix_tree_gang_lookup_tag(radix, (void **)cache,
0, ARRAY_SIZE(cache),
BTRFS_BLOCK_GROUP_DIRTY);
if (!ret)
break;
for (i = 0; i < ret; i++) {
radix_tree_tag_clear(radix, cache[i]->key.objectid +
cache[i]->key.offset - 1,
BTRFS_BLOCK_GROUP_DIRTY);
err = write_one_cache_group(trans, root,
path, cache[i]);
if (err)
werr = err;
}
}
btrfs_free_path(path);
return werr;
}
static int update_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 blocknr, u64 num, int alloc)
{
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
u64 total = num;
u64 old_val;
u64 block_in_group;
int ret;
while(total) {
ret = radix_tree_gang_lookup(&info->block_group_radix,
(void **)&cache, blocknr, 1);
if (!ret)
return -1;
block_in_group = blocknr - cache->key.objectid;
WARN_ON(block_in_group > cache->key.offset);
radix_tree_tag_set(&info->block_group_radix,
cache->key.objectid + cache->key.offset - 1,
BTRFS_BLOCK_GROUP_DIRTY);
old_val = btrfs_block_group_used(&cache->item);
num = min(total, cache->key.offset - block_in_group);
total -= num;
blocknr += num;
if (alloc)
old_val += num;
else
old_val -= num;
btrfs_set_block_group_used(&cache->item, old_val);
}
return 0;
}
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
btrfs_root *root)
{
......@@ -264,6 +363,8 @@ static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
ret = btrfs_del_item(trans, extent_root, path);
if (ret)
BUG();
ret = update_block_group(trans, root, blocknr, num_blocks, 0);
BUG_ON(ret);
}
btrfs_release_path(extent_root, path);
btrfs_free_path(path);
......@@ -365,21 +466,6 @@ static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
num_blocks = 1;
total_needed = min(level + 2, BTRFS_MAX_LEVEL) * 3;
}
if (info->last_insert.objectid == 0 && search_end == (u64)-1) {
struct btrfs_disk_key *last_key;
btrfs_init_path(path);
ins->objectid = (u64)-1;
ins->offset = (u64)-1;
ret = btrfs_search_slot(trans, root, ins, path, 0, 0);
if (ret < 0)
goto error;
BUG_ON(ret == 0);
if (path->slots[0] > 0)
path->slots[0]--;
l = btrfs_buffer_leaf(path->nodes[0]);
last_key = &l->items[path->slots[0]].key;
search_start = btrfs_disk_key_objectid(last_key);
}
if (info->last_insert.objectid > search_start)
search_start = info->last_insert.objectid;
......@@ -420,6 +506,8 @@ static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
goto check_pending;
}
btrfs_disk_key_to_cpu(&key, &l->items[slot].key);
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
goto next;
if (key.objectid >= search_start) {
if (start_found) {
if (last_block < search_start)
......@@ -434,6 +522,7 @@ static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
}
start_found = 1;
last_block = key.objectid + key.offset;
next:
path->slots[0]++;
}
// FIXME -ENOSPC
......@@ -498,7 +587,6 @@ static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
btrfs_free_path(path);
return ret;
}
/*
* finds a free extent and does all the dirty work required for allocation
* returns the key for the extent through ins, and a tree buffer for
......@@ -532,6 +620,9 @@ int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
ins->objectid = info->extent_tree_prealloc[nr];
info->extent_tree_insert[info->extent_tree_insert_nr++] =
ins->objectid;
ret = update_block_group(trans, root,
ins->objectid, ins->offset, 1);
BUG_ON(ret);
return 0;
}
/* do the real allocation */
......@@ -558,6 +649,7 @@ int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
return ret;
if (pending_ret)
return pending_ret;
ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
return 0;
}
......@@ -578,6 +670,7 @@ struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
BUG();
return NULL;
}
BUG_ON(ret);
buf = btrfs_find_create_tree_block(root, ins.objectid);
set_buffer_uptodate(buf);
return buf;
......@@ -758,3 +851,82 @@ int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
btrfs_free_path(path);
return ret;
}
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
int ret;
struct btrfs_block_group_cache *cache[8];
int i;
while(1) {
ret = radix_tree_gang_lookup(&info->block_group_radix,
(void **)cache, 0,
ARRAY_SIZE(cache));
if (!ret)
break;
for (i = 0; i < ret; i++) {
radix_tree_delete(&info->block_group_radix,
cache[i]->key.objectid +
cache[i]->key.offset - 1);
kfree(cache[i]);
}
}
return 0;
}
int btrfs_read_block_groups(struct btrfs_root *root)
{
struct btrfs_path *path;
int ret;
int err = 0;
struct btrfs_block_group_item *bi;
struct btrfs_block_group_cache *cache;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_leaf *leaf;
u64 group_size_blocks = BTRFS_BLOCK_GROUP_SIZE / root->blocksize;
root = root->fs_info->extent_root;
key.objectid = 0;
key.offset = group_size_blocks;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while(1) {
ret = btrfs_search_slot(NULL, root->fs_info->extent_root,
&key, path, 0, 0);
if (ret != 0) {
err = ret;
break;
}
leaf = btrfs_buffer_leaf(path->nodes[0]);
btrfs_disk_key_to_cpu(&found_key,
&leaf->items[path->slots[0]].key);
cache = kmalloc(sizeof(*cache), GFP_NOFS);
if (!cache) {
err = -1;
break;
}
bi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_block_group_item);
memcpy(&cache->item, bi, sizeof(*bi));
memcpy(&cache->key, &found_key, sizeof(found_key));
key.objectid = found_key.objectid + found_key.offset;
btrfs_release_path(root, path);
ret = radix_tree_insert(&root->fs_info->block_group_radix,
found_key.objectid +
found_key.offset - 1,
(void *)cache);
BUG_ON(ret);
if (key.objectid >=
btrfs_super_total_blocks(root->fs_info->disk_super))
break;
}
btrfs_free_path(path);
return 0;
}
......@@ -11,6 +11,7 @@ void btrfs_print_leaf(struct btrfs_root *root, struct btrfs_leaf *l)
struct btrfs_root_item *ri;
struct btrfs_dir_item *di;
struct btrfs_inode_item *ii;
struct btrfs_block_group_item *bi;
u32 type;
printk("leaf %Lu total ptrs %d free space %d\n",
......@@ -53,6 +54,12 @@ void btrfs_print_leaf(struct btrfs_root *root, struct btrfs_leaf *l)
printk("\t\textent data refs %u\n",
btrfs_extent_refs(ei));
break;
case BTRFS_BLOCK_GROUP_ITEM_KEY:
bi = btrfs_item_ptr(l, i,
struct btrfs_block_group_item);
printk("\t\tblock group used %Lu\n",
btrfs_block_group_used(bi));
break;
case BTRFS_STRING_ITEM_KEY:
printk("\t\titem data %.*s\n", btrfs_item_size(item),
btrfs_leaf_data(l) + btrfs_item_offset(item));
......
......@@ -377,7 +377,6 @@ static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
if (btrfs_disk_key_objectid(found_key) != inode->i_ino)
break;
if (btrfs_disk_key_type(found_key) != BTRFS_CSUM_ITEM_KEY &&
btrfs_disk_key_type(found_key) != BTRFS_INLINE_DATA_KEY &&
btrfs_disk_key_type(found_key) != BTRFS_EXTENT_DATA_KEY)
break;
if (btrfs_disk_key_offset(found_key) < inode->i_size)
......
......@@ -125,6 +125,7 @@ int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
btrfs_set_super_device_root(fs_info->disk_super,
bh_blocknr(dev_root->node));
}
btrfs_write_dirty_block_groups(trans, extent_root);
while(1) {
old_extent_block = btrfs_root_blocknr(&extent_root->root_item);
if (old_extent_block == bh_blocknr(extent_root->node))
......@@ -135,6 +136,7 @@ int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
&extent_root->root_key,
&extent_root->root_item);
BUG_ON(ret);
btrfs_write_dirty_block_groups(trans, extent_root);
}
return 0;
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册