提交 86310cc4 编写于 作者: D David S. Miller

Merge tag 'linux-can-next-for-4.6-20160220' of...

Merge tag 'linux-can-next-for-4.6-20160220' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next

Marc Kleine-Budde says:

====================
pull-request: can-next 2016-02-20

this is a pull request of 9 patch for net-next/master.

The first 3 patches are from Damien Riegel, they add support for
Technologic Systems IP core to tje sja100 driver. The next patches 6 by
Marek Vasut (including one my me) first clean sort the CAN driver's
Kconfig and Makefiles and then add support for the IFI CANFD IP core.
====================
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
IFI CANFD controller
--------------------
Required properties:
- compatible: Should be "ifi,canfd-1.0"
- reg: Should contain CAN controller registers location and length
- interrupts: Should contain IRQ line for the CAN controller
Example:
canfd0: canfd@ff220000 {
compatible = "ifi,canfd-1.0";
reg = <0xff220000 0x00001000>;
interrupts = <0 43 0>;
};
......@@ -2,7 +2,7 @@ Memory mapped SJA1000 CAN controller from NXP (formerly Philips)
Required properties:
- compatible : should be "nxp,sja1000".
- compatible : should be one of "nxp,sja1000", "technologic,sja1000".
- reg : should specify the chip select, address offset and size required
to map the registers of the SJA1000. The size is usually 0x80.
......@@ -14,6 +14,7 @@ Optional properties:
- reg-io-width : Specify the size (in bytes) of the IO accesses that
should be performed on the device. Valid value is 1, 2 or 4.
This property is ignored for technologic version.
Default to 1 (8 bits).
- nxp,external-clock-frequency : Frequency of the external oscillator
......
......@@ -111,6 +111,7 @@ hp Hewlett Packard
i2se I2SE GmbH
ibm International Business Machines (IBM)
idt Integrated Device Technologies, Inc.
ifi Ingenieurburo Fur Ic-Technologie (I/F/I)
iom Iomega Corporation
img Imagination Technologies Ltd.
ingenic Ingenic Semiconductor
......
......@@ -70,13 +70,6 @@ config CAN_AT91
This is a driver for the SoC CAN controller in Atmel's AT91SAM9263
and AT91SAM9X5 processors.
config CAN_TI_HECC
depends on ARM
tristate "TI High End CAN Controller"
---help---
Driver for TI HECC (High End CAN Controller) module found on many
TI devices. The device specifications are available from www.ti.com
config CAN_BFIN
depends on BF534 || BF536 || BF537 || BF538 || BF539 || BF54x
tristate "Analog Devices Blackfin on-chip CAN"
......@@ -86,30 +79,12 @@ config CAN_BFIN
To compile this driver as a module, choose M here: the
module will be called bfin_can.
config CAN_JANZ_ICAN3
tristate "Janz VMOD-ICAN3 Intelligent CAN controller"
depends on MFD_JANZ_CMODIO
---help---
Driver for Janz VMOD-ICAN3 Intelligent CAN controller module, which
connects to a MODULbus carrier board.
This driver can also be built as a module. If so, the module will be
called janz-ican3.ko.
config CAN_FLEXCAN
tristate "Support for Freescale FLEXCAN based chips"
depends on ARM || PPC
---help---
Say Y here if you want to support for Freescale FlexCAN.
config PCH_CAN
tristate "Intel EG20T PCH CAN controller"
depends on PCI && (X86_32 || COMPILE_TEST)
---help---
This driver is for PCH CAN of Topcliff (Intel EG20T PCH) which
is an IOH for x86 embedded processor (Intel Atom E6xx series).
This driver can access CAN bus.
config CAN_GRCAN
tristate "Aeroflex Gaisler GRCAN and GRHCAN CAN devices"
depends on OF && HAS_DMA
......@@ -119,6 +94,16 @@ config CAN_GRCAN
endian syntheses of the cores would need some modifications on
the hardware level to work.
config CAN_JANZ_ICAN3
tristate "Janz VMOD-ICAN3 Intelligent CAN controller"
depends on MFD_JANZ_CMODIO
---help---
Driver for Janz VMOD-ICAN3 Intelligent CAN controller module, which
connects to a MODULbus carrier board.
This driver can also be built as a module. If so, the module will be
called janz-ican3.ko.
config CAN_RCAR
tristate "Renesas R-Car CAN controller"
depends on ARM
......@@ -139,6 +124,13 @@ config CAN_SUN4I
To compile this driver as a module, choose M here: the module will
be called sun4i_can.
config CAN_TI_HECC
depends on ARM
tristate "TI High End CAN Controller"
---help---
Driver for TI HECC (High End CAN Controller) module found on many
TI devices. The device specifications are available from www.ti.com
config CAN_XILINXCAN
tristate "Xilinx CAN"
depends on ARCH_ZYNQ || ARM64 || MICROBLAZE || COMPILE_TEST
......@@ -147,22 +139,24 @@ config CAN_XILINXCAN
Xilinx CAN driver. This driver supports both soft AXI CAN IP and
Zynq CANPS IP.
source "drivers/net/can/mscan/Kconfig"
source "drivers/net/can/sja1000/Kconfig"
config PCH_CAN
tristate "Intel EG20T PCH CAN controller"
depends on PCI && (X86_32 || COMPILE_TEST)
---help---
This driver is for PCH CAN of Topcliff (Intel EG20T PCH) which
is an IOH for x86 embedded processor (Intel Atom E6xx series).
This driver can access CAN bus.
source "drivers/net/can/c_can/Kconfig"
source "drivers/net/can/m_can/Kconfig"
source "drivers/net/can/cc770/Kconfig"
source "drivers/net/can/ifi_canfd/Kconfig"
source "drivers/net/can/m_can/Kconfig"
source "drivers/net/can/mscan/Kconfig"
source "drivers/net/can/sja1000/Kconfig"
source "drivers/net/can/softing/Kconfig"
source "drivers/net/can/spi/Kconfig"
source "drivers/net/can/usb/Kconfig"
source "drivers/net/can/softing/Kconfig"
endif
config CAN_DEBUG_DEVICES
......
......@@ -14,21 +14,22 @@ obj-y += spi/
obj-y += usb/
obj-y += softing/
obj-$(CONFIG_CAN_SJA1000) += sja1000/
obj-$(CONFIG_CAN_MSCAN) += mscan/
obj-$(CONFIG_CAN_C_CAN) += c_can/
obj-$(CONFIG_CAN_M_CAN) += m_can/
obj-$(CONFIG_CAN_CC770) += cc770/
obj-$(CONFIG_CAN_AT91) += at91_can.o
obj-$(CONFIG_CAN_TI_HECC) += ti_hecc.o
obj-$(CONFIG_CAN_BFIN) += bfin_can.o
obj-$(CONFIG_CAN_JANZ_ICAN3) += janz-ican3.o
obj-$(CONFIG_CAN_CC770) += cc770/
obj-$(CONFIG_CAN_C_CAN) += c_can/
obj-$(CONFIG_CAN_FLEXCAN) += flexcan.o
obj-$(CONFIG_PCH_CAN) += pch_can.o
obj-$(CONFIG_CAN_GRCAN) += grcan.o
obj-$(CONFIG_CAN_IFI_CANFD) += ifi_canfd/
obj-$(CONFIG_CAN_JANZ_ICAN3) += janz-ican3.o
obj-$(CONFIG_CAN_MSCAN) += mscan/
obj-$(CONFIG_CAN_M_CAN) += m_can/
obj-$(CONFIG_CAN_RCAR) += rcar_can.o
obj-$(CONFIG_CAN_SJA1000) += sja1000/
obj-$(CONFIG_CAN_SUN4I) += sun4i_can.o
obj-$(CONFIG_CAN_TI_HECC) += ti_hecc.o
obj-$(CONFIG_CAN_XILINXCAN) += xilinx_can.o
obj-$(CONFIG_PCH_CAN) += pch_can.o
subdir-ccflags-y += -D__CHECK_ENDIAN__
subdir-ccflags-$(CONFIG_CAN_DEBUG_DEVICES) += -DDEBUG
config CAN_IFI_CANFD
depends on HAS_IOMEM
tristate "IFI CAN_FD IP"
---help---
This driver adds support for the I/F/I CAN_FD soft IP block
connected to the "platform bus" (Linux abstraction for directly
to the processor attached devices). The CAN_FD is most often
synthesised into an FPGA or CPLD.
#
# Makefile for the IFI CANFD controller driver.
#
obj-$(CONFIG_CAN_IFI_CANFD) += ifi_canfd.o
/*
* CAN bus driver for IFI CANFD controller
*
* Copyright (C) 2016 Marek Vasut <marex@denx.de>
*
* Details about this controller can be found at
* http://www.ifi-pld.de/IP/CANFD/canfd.html
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/can/dev.h>
#define IFI_CANFD_STCMD 0x0
#define IFI_CANFD_STCMD_HARDRESET 0xDEADCAFD
#define IFI_CANFD_STCMD_ENABLE BIT(0)
#define IFI_CANFD_STCMD_ERROR_ACTIVE BIT(2)
#define IFI_CANFD_STCMD_ERROR_PASSIVE BIT(3)
#define IFI_CANFD_STCMD_BUSOFF BIT(4)
#define IFI_CANFD_STCMD_BUSMONITOR BIT(16)
#define IFI_CANFD_STCMD_LOOPBACK BIT(18)
#define IFI_CANFD_STCMD_DISABLE_CANFD BIT(24)
#define IFI_CANFD_STCMD_ENABLE_ISO BIT(25)
#define IFI_CANFD_STCMD_NORMAL_MODE ((u32)BIT(31))
#define IFI_CANFD_RXSTCMD 0x4
#define IFI_CANFD_RXSTCMD_REMOVE_MSG BIT(0)
#define IFI_CANFD_RXSTCMD_RESET BIT(7)
#define IFI_CANFD_RXSTCMD_EMPTY BIT(8)
#define IFI_CANFD_RXSTCMD_OVERFLOW BIT(13)
#define IFI_CANFD_TXSTCMD 0x8
#define IFI_CANFD_TXSTCMD_ADD_MSG BIT(0)
#define IFI_CANFD_TXSTCMD_HIGH_PRIO BIT(1)
#define IFI_CANFD_TXSTCMD_RESET BIT(7)
#define IFI_CANFD_TXSTCMD_EMPTY BIT(8)
#define IFI_CANFD_TXSTCMD_FULL BIT(12)
#define IFI_CANFD_TXSTCMD_OVERFLOW BIT(13)
#define IFI_CANFD_INTERRUPT 0xc
#define IFI_CANFD_INTERRUPT_ERROR_WARNING ((u32)BIT(1))
#define IFI_CANFD_INTERRUPT_TXFIFO_EMPTY BIT(16)
#define IFI_CANFD_INTERRUPT_TXFIFO_REMOVE BIT(22)
#define IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY BIT(24)
#define IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER BIT(25)
#define IFI_CANFD_INTERRUPT_SET_IRQ ((u32)BIT(31))
#define IFI_CANFD_IRQMASK 0x10
#define IFI_CANFD_IRQMASK_SET_ERR BIT(7)
#define IFI_CANFD_IRQMASK_SET_TS BIT(15)
#define IFI_CANFD_IRQMASK_TXFIFO_EMPTY BIT(16)
#define IFI_CANFD_IRQMASK_SET_TX BIT(23)
#define IFI_CANFD_IRQMASK_RXFIFO_NEMPTY BIT(24)
#define IFI_CANFD_IRQMASK_SET_RX ((u32)BIT(31))
#define IFI_CANFD_TIME 0x14
#define IFI_CANFD_FTIME 0x18
#define IFI_CANFD_TIME_TIMEB_OFF 0
#define IFI_CANFD_TIME_TIMEA_OFF 8
#define IFI_CANFD_TIME_PRESCALE_OFF 16
#define IFI_CANFD_TIME_SJW_OFF_ISO 25
#define IFI_CANFD_TIME_SJW_OFF_BOSCH 28
#define IFI_CANFD_TIME_SET_SJW_BOSCH BIT(6)
#define IFI_CANFD_TIME_SET_TIMEB_BOSCH BIT(7)
#define IFI_CANFD_TIME_SET_PRESC_BOSCH BIT(14)
#define IFI_CANFD_TIME_SET_TIMEA_BOSCH BIT(15)
#define IFI_CANFD_TDELAY 0x1c
#define IFI_CANFD_ERROR 0x20
#define IFI_CANFD_ERROR_TX_OFFSET 0
#define IFI_CANFD_ERROR_TX_MASK 0xff
#define IFI_CANFD_ERROR_RX_OFFSET 16
#define IFI_CANFD_ERROR_RX_MASK 0xff
#define IFI_CANFD_ERRCNT 0x24
#define IFI_CANFD_SUSPEND 0x28
#define IFI_CANFD_REPEAT 0x2c
#define IFI_CANFD_TRAFFIC 0x30
#define IFI_CANFD_TSCONTROL 0x34
#define IFI_CANFD_TSC 0x38
#define IFI_CANFD_TST 0x3c
#define IFI_CANFD_RES1 0x40
#define IFI_CANFD_RES2 0x44
#define IFI_CANFD_PAR 0x48
#define IFI_CANFD_CANCLOCK 0x4c
#define IFI_CANFD_SYSCLOCK 0x50
#define IFI_CANFD_VER 0x54
#define IFI_CANFD_IP_ID 0x58
#define IFI_CANFD_IP_ID_VALUE 0xD073CAFD
#define IFI_CANFD_TEST 0x5c
#define IFI_CANFD_RXFIFO_TS_63_32 0x60
#define IFI_CANFD_RXFIFO_TS_31_0 0x64
#define IFI_CANFD_RXFIFO_DLC 0x68
#define IFI_CANFD_RXFIFO_DLC_DLC_OFFSET 0
#define IFI_CANFD_RXFIFO_DLC_DLC_MASK 0xf
#define IFI_CANFD_RXFIFO_DLC_RTR BIT(4)
#define IFI_CANFD_RXFIFO_DLC_EDL BIT(5)
#define IFI_CANFD_RXFIFO_DLC_BRS BIT(6)
#define IFI_CANFD_RXFIFO_DLC_ESI BIT(7)
#define IFI_CANFD_RXFIFO_DLC_OBJ_OFFSET 8
#define IFI_CANFD_RXFIFO_DLC_OBJ_MASK 0x1ff
#define IFI_CANFD_RXFIFO_DLC_FNR_OFFSET 24
#define IFI_CANFD_RXFIFO_DLC_FNR_MASK 0xff
#define IFI_CANFD_RXFIFO_ID 0x6c
#define IFI_CANFD_RXFIFO_ID_ID_OFFSET 0
#define IFI_CANFD_RXFIFO_ID_ID_STD_MASK 0x3ff
#define IFI_CANFD_RXFIFO_ID_ID_XTD_MASK 0x1fffffff
#define IFI_CANFD_RXFIFO_ID_IDE BIT(29)
#define IFI_CANFD_RXFIFO_DATA 0x70 /* 0x70..0xac */
#define IFI_CANFD_TXFIFO_SUSPEND_US 0xb0
#define IFI_CANFD_TXFIFO_REPEATCOUNT 0xb4
#define IFI_CANFD_TXFIFO_DLC 0xb8
#define IFI_CANFD_TXFIFO_DLC_DLC_OFFSET 0
#define IFI_CANFD_TXFIFO_DLC_DLC_MASK 0xf
#define IFI_CANFD_TXFIFO_DLC_RTR BIT(4)
#define IFI_CANFD_TXFIFO_DLC_EDL BIT(5)
#define IFI_CANFD_TXFIFO_DLC_BRS BIT(6)
#define IFI_CANFD_TXFIFO_DLC_FNR_OFFSET 24
#define IFI_CANFD_TXFIFO_DLC_FNR_MASK 0xff
#define IFI_CANFD_TXFIFO_ID 0xbc
#define IFI_CANFD_TXFIFO_ID_ID_OFFSET 0
#define IFI_CANFD_TXFIFO_ID_ID_STD_MASK 0x3ff
#define IFI_CANFD_TXFIFO_ID_ID_XTD_MASK 0x1fffffff
#define IFI_CANFD_TXFIFO_ID_IDE BIT(29)
#define IFI_CANFD_TXFIFO_DATA 0xc0 /* 0xb0..0xfc */
#define IFI_CANFD_FILTER_MASK(n) (0x800 + ((n) * 8) + 0)
#define IFI_CANFD_FILTER_MASK_EXT BIT(29)
#define IFI_CANFD_FILTER_MASK_EDL BIT(30)
#define IFI_CANFD_FILTER_MASK_VALID ((u32)BIT(31))
#define IFI_CANFD_FILTER_IDENT(n) (0x800 + ((n) * 8) + 4)
#define IFI_CANFD_FILTER_IDENT_IDE BIT(29)
#define IFI_CANFD_FILTER_IDENT_CANFD BIT(30)
#define IFI_CANFD_FILTER_IDENT_VALID ((u32)BIT(31))
/* IFI CANFD private data structure */
struct ifi_canfd_priv {
struct can_priv can; /* must be the first member */
struct napi_struct napi;
struct net_device *ndev;
void __iomem *base;
};
static void ifi_canfd_irq_enable(struct net_device *ndev, bool enable)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
u32 enirq = 0;
if (enable) {
enirq = IFI_CANFD_IRQMASK_TXFIFO_EMPTY |
IFI_CANFD_IRQMASK_RXFIFO_NEMPTY;
}
writel(IFI_CANFD_IRQMASK_SET_ERR |
IFI_CANFD_IRQMASK_SET_TS |
IFI_CANFD_IRQMASK_SET_TX |
IFI_CANFD_IRQMASK_SET_RX | enirq,
priv->base + IFI_CANFD_IRQMASK);
}
static void ifi_canfd_read_fifo(struct net_device *ndev)
{
struct net_device_stats *stats = &ndev->stats;
struct ifi_canfd_priv *priv = netdev_priv(ndev);
struct canfd_frame *cf;
struct sk_buff *skb;
const u32 rx_irq_mask = IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY |
IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER;
u32 rxdlc, rxid;
u32 dlc, id;
int i;
rxdlc = readl(priv->base + IFI_CANFD_RXFIFO_DLC);
if (rxdlc & IFI_CANFD_RXFIFO_DLC_EDL)
skb = alloc_canfd_skb(ndev, &cf);
else
skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
if (!skb) {
stats->rx_dropped++;
return;
}
dlc = (rxdlc >> IFI_CANFD_RXFIFO_DLC_DLC_OFFSET) &
IFI_CANFD_RXFIFO_DLC_DLC_MASK;
if (rxdlc & IFI_CANFD_RXFIFO_DLC_EDL)
cf->len = can_dlc2len(dlc);
else
cf->len = get_can_dlc(dlc);
rxid = readl(priv->base + IFI_CANFD_RXFIFO_ID);
id = (rxid >> IFI_CANFD_RXFIFO_ID_ID_OFFSET);
if (id & IFI_CANFD_RXFIFO_ID_IDE)
id &= IFI_CANFD_RXFIFO_ID_ID_XTD_MASK;
else
id &= IFI_CANFD_RXFIFO_ID_ID_STD_MASK;
cf->can_id = id;
if (rxdlc & IFI_CANFD_RXFIFO_DLC_ESI) {
cf->flags |= CANFD_ESI;
netdev_dbg(ndev, "ESI Error\n");
}
if (!(rxdlc & IFI_CANFD_RXFIFO_DLC_EDL) &&
(rxdlc & IFI_CANFD_RXFIFO_DLC_RTR)) {
cf->can_id |= CAN_RTR_FLAG;
} else {
if (rxdlc & IFI_CANFD_RXFIFO_DLC_BRS)
cf->flags |= CANFD_BRS;
for (i = 0; i < cf->len; i += 4) {
*(u32 *)(cf->data + i) =
readl(priv->base + IFI_CANFD_RXFIFO_DATA + i);
}
}
/* Remove the packet from FIFO */
writel(IFI_CANFD_RXSTCMD_REMOVE_MSG, priv->base + IFI_CANFD_RXSTCMD);
writel(rx_irq_mask, priv->base + IFI_CANFD_INTERRUPT);
stats->rx_packets++;
stats->rx_bytes += cf->len;
netif_receive_skb(skb);
}
static int ifi_canfd_do_rx_poll(struct net_device *ndev, int quota)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
u32 pkts = 0;
u32 rxst;
rxst = readl(priv->base + IFI_CANFD_RXSTCMD);
if (rxst & IFI_CANFD_RXSTCMD_EMPTY) {
netdev_dbg(ndev, "No messages in RX FIFO\n");
return 0;
}
for (;;) {
if (rxst & IFI_CANFD_RXSTCMD_EMPTY)
break;
if (quota <= 0)
break;
ifi_canfd_read_fifo(ndev);
quota--;
pkts++;
rxst = readl(priv->base + IFI_CANFD_RXSTCMD);
}
if (pkts)
can_led_event(ndev, CAN_LED_EVENT_RX);
return pkts;
}
static int ifi_canfd_handle_lost_msg(struct net_device *ndev)
{
struct net_device_stats *stats = &ndev->stats;
struct sk_buff *skb;
struct can_frame *frame;
netdev_err(ndev, "RX FIFO overflow, message(s) lost.\n");
stats->rx_errors++;
stats->rx_over_errors++;
skb = alloc_can_err_skb(ndev, &frame);
if (unlikely(!skb))
return 0;
frame->can_id |= CAN_ERR_CRTL;
frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
netif_receive_skb(skb);
return 1;
}
static int ifi_canfd_get_berr_counter(const struct net_device *ndev,
struct can_berr_counter *bec)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
u32 err;
err = readl(priv->base + IFI_CANFD_ERROR);
bec->rxerr = (err >> IFI_CANFD_ERROR_RX_OFFSET) &
IFI_CANFD_ERROR_RX_MASK;
bec->txerr = (err >> IFI_CANFD_ERROR_TX_OFFSET) &
IFI_CANFD_ERROR_TX_MASK;
return 0;
}
static int ifi_canfd_handle_state_change(struct net_device *ndev,
enum can_state new_state)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
struct can_berr_counter bec;
switch (new_state) {
case CAN_STATE_ERROR_ACTIVE:
/* error warning state */
priv->can.can_stats.error_warning++;
priv->can.state = CAN_STATE_ERROR_WARNING;
break;
case CAN_STATE_ERROR_PASSIVE:
/* error passive state */
priv->can.can_stats.error_passive++;
priv->can.state = CAN_STATE_ERROR_PASSIVE;
break;
case CAN_STATE_BUS_OFF:
/* bus-off state */
priv->can.state = CAN_STATE_BUS_OFF;
ifi_canfd_irq_enable(ndev, 0);
priv->can.can_stats.bus_off++;
can_bus_off(ndev);
break;
default:
break;
}
/* propagate the error condition to the CAN stack */
skb = alloc_can_err_skb(ndev, &cf);
if (unlikely(!skb))
return 0;
ifi_canfd_get_berr_counter(ndev, &bec);
switch (new_state) {
case CAN_STATE_ERROR_ACTIVE:
/* error warning state */
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = (bec.txerr > bec.rxerr) ?
CAN_ERR_CRTL_TX_WARNING :
CAN_ERR_CRTL_RX_WARNING;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
break;
case CAN_STATE_ERROR_PASSIVE:
/* error passive state */
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
if (bec.txerr > 127)
cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
break;
case CAN_STATE_BUS_OFF:
/* bus-off state */
cf->can_id |= CAN_ERR_BUSOFF;
break;
default:
break;
}
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
return 1;
}
static int ifi_canfd_handle_state_errors(struct net_device *ndev, u32 stcmd)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
int work_done = 0;
u32 isr;
/*
* The ErrWarn condition is a little special, since the bit is
* located in the INTERRUPT register instead of STCMD register.
*/
isr = readl(priv->base + IFI_CANFD_INTERRUPT);
if ((isr & IFI_CANFD_INTERRUPT_ERROR_WARNING) &&
(priv->can.state != CAN_STATE_ERROR_WARNING)) {
/* Clear the interrupt */
writel(IFI_CANFD_INTERRUPT_ERROR_WARNING,
priv->base + IFI_CANFD_INTERRUPT);
netdev_dbg(ndev, "Error, entered warning state\n");
work_done += ifi_canfd_handle_state_change(ndev,
CAN_STATE_ERROR_WARNING);
}
if ((stcmd & IFI_CANFD_STCMD_ERROR_PASSIVE) &&
(priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
netdev_dbg(ndev, "Error, entered passive state\n");
work_done += ifi_canfd_handle_state_change(ndev,
CAN_STATE_ERROR_PASSIVE);
}
if ((stcmd & IFI_CANFD_STCMD_BUSOFF) &&
(priv->can.state != CAN_STATE_BUS_OFF)) {
netdev_dbg(ndev, "Error, entered bus-off state\n");
work_done += ifi_canfd_handle_state_change(ndev,
CAN_STATE_BUS_OFF);
}
return work_done;
}
static int ifi_canfd_poll(struct napi_struct *napi, int quota)
{
struct net_device *ndev = napi->dev;
struct ifi_canfd_priv *priv = netdev_priv(ndev);
const u32 stcmd_state_mask = IFI_CANFD_STCMD_ERROR_PASSIVE |
IFI_CANFD_STCMD_BUSOFF;
int work_done = 0;
u32 stcmd = readl(priv->base + IFI_CANFD_STCMD);
u32 rxstcmd = readl(priv->base + IFI_CANFD_STCMD);
/* Handle bus state changes */
if ((stcmd & stcmd_state_mask) ||
((stcmd & IFI_CANFD_STCMD_ERROR_ACTIVE) == 0))
work_done += ifi_canfd_handle_state_errors(ndev, stcmd);
/* Handle lost messages on RX */
if (rxstcmd & IFI_CANFD_RXSTCMD_OVERFLOW)
work_done += ifi_canfd_handle_lost_msg(ndev);
/* Handle normal messages on RX */
if (!(rxstcmd & IFI_CANFD_RXSTCMD_EMPTY))
work_done += ifi_canfd_do_rx_poll(ndev, quota - work_done);
if (work_done < quota) {
napi_complete(napi);
ifi_canfd_irq_enable(ndev, 1);
}
return work_done;
}
static irqreturn_t ifi_canfd_isr(int irq, void *dev_id)
{
struct net_device *ndev = (struct net_device *)dev_id;
struct ifi_canfd_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
const u32 rx_irq_mask = IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY |
IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER;
const u32 tx_irq_mask = IFI_CANFD_INTERRUPT_TXFIFO_EMPTY |
IFI_CANFD_INTERRUPT_TXFIFO_REMOVE;
const u32 clr_irq_mask = ~(IFI_CANFD_INTERRUPT_SET_IRQ |
IFI_CANFD_INTERRUPT_ERROR_WARNING);
u32 isr;
isr = readl(priv->base + IFI_CANFD_INTERRUPT);
/* No interrupt */
if (isr == 0)
return IRQ_NONE;
/* Clear all pending interrupts but ErrWarn */
writel(clr_irq_mask, priv->base + IFI_CANFD_INTERRUPT);
/* RX IRQ, start NAPI */
if (isr & rx_irq_mask) {
ifi_canfd_irq_enable(ndev, 0);
napi_schedule(&priv->napi);
}
/* TX IRQ */
if (isr & tx_irq_mask) {
stats->tx_bytes += can_get_echo_skb(ndev, 0);
stats->tx_packets++;
can_led_event(ndev, CAN_LED_EVENT_TX);
netif_wake_queue(ndev);
}
return IRQ_HANDLED;
}
static const struct can_bittiming_const ifi_canfd_bittiming_const = {
.name = KBUILD_MODNAME,
.tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
.tseg1_max = 64,
.tseg2_min = 1, /* Time segment 2 = phase_seg2 */
.tseg2_max = 16,
.sjw_max = 16,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
static const struct can_bittiming_const ifi_canfd_data_bittiming_const = {
.name = KBUILD_MODNAME,
.tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
.tseg1_max = 16,
.tseg2_min = 1, /* Time segment 2 = phase_seg2 */
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 32,
.brp_inc = 1,
};
static void ifi_canfd_set_bittiming(struct net_device *ndev)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
const struct can_bittiming *bt = &priv->can.bittiming;
const struct can_bittiming *dbt = &priv->can.data_bittiming;
u16 brp, sjw, tseg1, tseg2;
u32 noniso_arg = 0;
u32 time_off;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) {
noniso_arg = IFI_CANFD_TIME_SET_TIMEB_BOSCH |
IFI_CANFD_TIME_SET_TIMEA_BOSCH |
IFI_CANFD_TIME_SET_PRESC_BOSCH |
IFI_CANFD_TIME_SET_SJW_BOSCH;
time_off = IFI_CANFD_TIME_SJW_OFF_BOSCH;
} else {
time_off = IFI_CANFD_TIME_SJW_OFF_ISO;
}
/* Configure bit timing */
brp = bt->brp - 1;
sjw = bt->sjw - 1;
tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
tseg2 = bt->phase_seg2 - 1;
writel((tseg2 << IFI_CANFD_TIME_TIMEB_OFF) |
(tseg1 << IFI_CANFD_TIME_TIMEA_OFF) |
(brp << IFI_CANFD_TIME_PRESCALE_OFF) |
(sjw << time_off),
priv->base + IFI_CANFD_TIME);
/* Configure data bit timing */
brp = dbt->brp - 1;
sjw = dbt->sjw - 1;
tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
tseg2 = dbt->phase_seg2 - 1;
writel((tseg2 << IFI_CANFD_TIME_TIMEB_OFF) |
(tseg1 << IFI_CANFD_TIME_TIMEA_OFF) |
(brp << IFI_CANFD_TIME_PRESCALE_OFF) |
(sjw << time_off) |
noniso_arg,
priv->base + IFI_CANFD_FTIME);
}
static void ifi_canfd_set_filter(struct net_device *ndev, const u32 id,
const u32 mask, const u32 ident)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
writel(mask, priv->base + IFI_CANFD_FILTER_MASK(id));
writel(ident, priv->base + IFI_CANFD_FILTER_IDENT(id));
}
static void ifi_canfd_set_filters(struct net_device *ndev)
{
/* Receive all CAN frames (standard ID) */
ifi_canfd_set_filter(ndev, 0,
IFI_CANFD_FILTER_MASK_VALID |
IFI_CANFD_FILTER_MASK_EXT,
IFI_CANFD_FILTER_IDENT_VALID);
/* Receive all CAN frames (extended ID) */
ifi_canfd_set_filter(ndev, 1,
IFI_CANFD_FILTER_MASK_VALID |
IFI_CANFD_FILTER_MASK_EXT,
IFI_CANFD_FILTER_IDENT_VALID |
IFI_CANFD_FILTER_IDENT_IDE);
/* Receive all CANFD frames */
ifi_canfd_set_filter(ndev, 2,
IFI_CANFD_FILTER_MASK_VALID |
IFI_CANFD_FILTER_MASK_EDL |
IFI_CANFD_FILTER_MASK_EXT,
IFI_CANFD_FILTER_IDENT_VALID |
IFI_CANFD_FILTER_IDENT_CANFD |
IFI_CANFD_FILTER_IDENT_IDE);
}
static void ifi_canfd_start(struct net_device *ndev)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
u32 stcmd;
/* Reset the IP */
writel(IFI_CANFD_STCMD_HARDRESET, priv->base + IFI_CANFD_STCMD);
writel(0, priv->base + IFI_CANFD_STCMD);
ifi_canfd_set_bittiming(ndev);
ifi_canfd_set_filters(ndev);
/* Reset FIFOs */
writel(IFI_CANFD_RXSTCMD_RESET, priv->base + IFI_CANFD_RXSTCMD);
writel(0, priv->base + IFI_CANFD_RXSTCMD);
writel(IFI_CANFD_TXSTCMD_RESET, priv->base + IFI_CANFD_TXSTCMD);
writel(0, priv->base + IFI_CANFD_TXSTCMD);
/* Repeat transmission until successful */
writel(0, priv->base + IFI_CANFD_REPEAT);
writel(0, priv->base + IFI_CANFD_SUSPEND);
/* Clear all pending interrupts */
writel((u32)(~IFI_CANFD_INTERRUPT_SET_IRQ),
priv->base + IFI_CANFD_INTERRUPT);
stcmd = IFI_CANFD_STCMD_ENABLE | IFI_CANFD_STCMD_NORMAL_MODE;
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
stcmd |= IFI_CANFD_STCMD_BUSMONITOR;
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
stcmd |= IFI_CANFD_STCMD_LOOPBACK;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
stcmd |= IFI_CANFD_STCMD_ENABLE_ISO;
if (!(priv->can.ctrlmode & (CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO)))
stcmd |= IFI_CANFD_STCMD_DISABLE_CANFD;
priv->can.state = CAN_STATE_ERROR_ACTIVE;
ifi_canfd_irq_enable(ndev, 1);
/* Enable controller */
writel(stcmd, priv->base + IFI_CANFD_STCMD);
}
static void ifi_canfd_stop(struct net_device *ndev)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
/* Reset the IP */
writel(IFI_CANFD_STCMD_HARDRESET, priv->base + IFI_CANFD_STCMD);
/* Mask all interrupts */
writel(~0, priv->base + IFI_CANFD_IRQMASK);
/* Clear all pending interrupts */
writel((u32)(~IFI_CANFD_INTERRUPT_SET_IRQ),
priv->base + IFI_CANFD_INTERRUPT);
/* Set the state as STOPPED */
priv->can.state = CAN_STATE_STOPPED;
}
static int ifi_canfd_set_mode(struct net_device *ndev, enum can_mode mode)
{
switch (mode) {
case CAN_MODE_START:
ifi_canfd_start(ndev);
netif_wake_queue(ndev);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int ifi_canfd_open(struct net_device *ndev)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
int ret;
ret = open_candev(ndev);
if (ret) {
netdev_err(ndev, "Failed to open CAN device\n");
return ret;
}
/* Register interrupt handler */
ret = request_irq(ndev->irq, ifi_canfd_isr, IRQF_SHARED,
ndev->name, ndev);
if (ret < 0) {
netdev_err(ndev, "Failed to request interrupt\n");
goto err_irq;
}
ifi_canfd_start(ndev);
can_led_event(ndev, CAN_LED_EVENT_OPEN);
napi_enable(&priv->napi);
netif_start_queue(ndev);
return 0;
err_irq:
close_candev(ndev);
return ret;
}
static int ifi_canfd_close(struct net_device *ndev)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->napi);
ifi_canfd_stop(ndev);
free_irq(ndev->irq, ndev);
close_candev(ndev);
can_led_event(ndev, CAN_LED_EVENT_STOP);
return 0;
}
static netdev_tx_t ifi_canfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct ifi_canfd_priv *priv = netdev_priv(ndev);
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
u32 txst, txid;
u32 txdlc = 0;
int i;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
/* Check if the TX buffer is full */
txst = readl(priv->base + IFI_CANFD_TXSTCMD);
if (txst & IFI_CANFD_TXSTCMD_FULL) {
netif_stop_queue(ndev);
netdev_err(ndev, "BUG! TX FIFO full when queue awake!\n");
return NETDEV_TX_BUSY;
}
netif_stop_queue(ndev);
if (cf->can_id & CAN_EFF_FLAG) {
txid = cf->can_id & CAN_EFF_MASK;
txid |= IFI_CANFD_TXFIFO_ID_IDE;
} else {
txid = cf->can_id & CAN_SFF_MASK;
}
if (priv->can.ctrlmode & (CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO)) {
if (can_is_canfd_skb(skb)) {
txdlc |= IFI_CANFD_TXFIFO_DLC_EDL;
if (cf->flags & CANFD_BRS)
txdlc |= IFI_CANFD_TXFIFO_DLC_BRS;
}
}
if (cf->can_id & CAN_RTR_FLAG)
txdlc |= IFI_CANFD_TXFIFO_DLC_RTR;
/* message ram configuration */
writel(txid, priv->base + IFI_CANFD_TXFIFO_ID);
writel(txdlc, priv->base + IFI_CANFD_TXFIFO_DLC);
for (i = 0; i < cf->len; i += 4) {
writel(*(u32 *)(cf->data + i),
priv->base + IFI_CANFD_TXFIFO_DATA + i);
}
writel(0, priv->base + IFI_CANFD_TXFIFO_REPEATCOUNT);
writel(0, priv->base + IFI_CANFD_TXFIFO_SUSPEND_US);
can_put_echo_skb(skb, ndev, 0);
/* Start the transmission */
writel(IFI_CANFD_TXSTCMD_ADD_MSG, priv->base + IFI_CANFD_TXSTCMD);
return NETDEV_TX_OK;
}
static const struct net_device_ops ifi_canfd_netdev_ops = {
.ndo_open = ifi_canfd_open,
.ndo_stop = ifi_canfd_close,
.ndo_start_xmit = ifi_canfd_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static int ifi_canfd_plat_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *ndev;
struct ifi_canfd_priv *priv;
struct resource *res;
void __iomem *addr;
int irq, ret;
u32 id;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
addr = devm_ioremap_resource(dev, res);
irq = platform_get_irq(pdev, 0);
if (IS_ERR(addr) || irq < 0)
return -EINVAL;
id = readl(addr + IFI_CANFD_IP_ID);
if (id != IFI_CANFD_IP_ID_VALUE) {
dev_err(dev, "This block is not IFI CANFD, id=%08x\n", id);
return -EINVAL;
}
ndev = alloc_candev(sizeof(*priv), 1);
if (!ndev)
return -ENOMEM;
ndev->irq = irq;
ndev->flags |= IFF_ECHO; /* we support local echo */
ndev->netdev_ops = &ifi_canfd_netdev_ops;
priv = netdev_priv(ndev);
priv->ndev = ndev;
priv->base = addr;
netif_napi_add(ndev, &priv->napi, ifi_canfd_poll, 64);
priv->can.state = CAN_STATE_STOPPED;
priv->can.clock.freq = readl(addr + IFI_CANFD_SYSCLOCK);
priv->can.bittiming_const = &ifi_canfd_bittiming_const;
priv->can.data_bittiming_const = &ifi_canfd_data_bittiming_const;
priv->can.do_set_mode = ifi_canfd_set_mode;
priv->can.do_get_berr_counter = ifi_canfd_get_berr_counter;
/* IFI CANFD can do both Bosch FD and ISO FD */
priv->can.ctrlmode = CAN_CTRLMODE_FD;
/* IFI CANFD can do both Bosch FD and ISO FD */
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_FD |
CAN_CTRLMODE_FD_NON_ISO;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, dev);
ret = register_candev(ndev);
if (ret) {
dev_err(dev, "Failed to register (ret=%d)\n", ret);
goto err_reg;
}
devm_can_led_init(ndev);
dev_info(dev, "Driver registered: regs=%p, irq=%d, clock=%d\n",
priv->base, ndev->irq, priv->can.clock.freq);
return 0;
err_reg:
free_candev(ndev);
return ret;
}
static int ifi_canfd_plat_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
unregister_candev(ndev);
platform_set_drvdata(pdev, NULL);
free_candev(ndev);
return 0;
}
static const struct of_device_id ifi_canfd_of_table[] = {
{ .compatible = "ifi,canfd-1.0", .data = NULL },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, ifi_canfd_of_table);
static struct platform_driver ifi_canfd_plat_driver = {
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = ifi_canfd_of_table,
},
.probe = ifi_canfd_plat_probe,
.remove = ifi_canfd_plat_remove,
};
module_platform_driver(ifi_canfd_plat_driver);
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for IFI CANFD controller");
......@@ -27,6 +27,7 @@
#include <linux/can/platform/sja1000.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include "sja1000.h"
......@@ -40,6 +41,15 @@ MODULE_DESCRIPTION("Socket-CAN driver for SJA1000 on the platform bus");
MODULE_ALIAS("platform:" DRV_NAME);
MODULE_LICENSE("GPL v2");
struct sja1000_of_data {
size_t priv_sz;
int (*init)(struct sja1000_priv *priv, struct device_node *of);
};
struct technologic_priv {
spinlock_t io_lock;
};
static u8 sp_read_reg8(const struct sja1000_priv *priv, int reg)
{
return ioread8(priv->reg_base + reg);
......@@ -70,6 +80,43 @@ static void sp_write_reg32(const struct sja1000_priv *priv, int reg, u8 val)
iowrite8(val, priv->reg_base + reg * 4);
}
static u8 sp_technologic_read_reg16(const struct sja1000_priv *priv, int reg)
{
struct technologic_priv *tp = priv->priv;
unsigned long flags;
u8 val;
spin_lock_irqsave(&tp->io_lock, flags);
iowrite16(reg, priv->reg_base + 0);
val = ioread16(priv->reg_base + 2);
spin_unlock_irqrestore(&tp->io_lock, flags);
return val;
}
static void sp_technologic_write_reg16(const struct sja1000_priv *priv,
int reg, u8 val)
{
struct technologic_priv *tp = priv->priv;
unsigned long flags;
spin_lock_irqsave(&tp->io_lock, flags);
iowrite16(reg, priv->reg_base + 0);
iowrite16(val, priv->reg_base + 2);
spin_unlock_irqrestore(&tp->io_lock, flags);
}
static int sp_technologic_init(struct sja1000_priv *priv, struct device_node *of)
{
struct technologic_priv *tp = priv->priv;
priv->read_reg = sp_technologic_read_reg16;
priv->write_reg = sp_technologic_write_reg16;
spin_lock_init(&tp->io_lock);
return 0;
}
static void sp_populate(struct sja1000_priv *priv,
struct sja1000_platform_data *pdata,
unsigned long resource_mem_flags)
......@@ -154,6 +201,18 @@ static void sp_populate_of(struct sja1000_priv *priv, struct device_node *of)
priv->cdr |= CDR_CBP; /* default */
}
static struct sja1000_of_data technologic_data = {
.priv_sz = sizeof(struct technologic_priv),
.init = sp_technologic_init,
};
static const struct of_device_id sp_of_table[] = {
{ .compatible = "nxp,sja1000", .data = NULL, },
{ .compatible = "technologic,sja1000", .data = &technologic_data, },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, sp_of_table);
static int sp_probe(struct platform_device *pdev)
{
int err, irq = 0;
......@@ -163,6 +222,9 @@ static int sp_probe(struct platform_device *pdev)
struct resource *res_mem, *res_irq = NULL;
struct sja1000_platform_data *pdata;
struct device_node *of = pdev->dev.of_node;
const struct of_device_id *of_id;
const struct sja1000_of_data *of_data = NULL;
size_t priv_sz = 0;
pdata = dev_get_platdata(&pdev->dev);
if (!pdata && !of) {
......@@ -191,7 +253,13 @@ static int sp_probe(struct platform_device *pdev)
if (!irq && !res_irq)
return -ENODEV;
dev = alloc_sja1000dev(0);
of_id = of_match_device(sp_of_table, &pdev->dev);
if (of_id && of_id->data) {
of_data = of_id->data;
priv_sz = of_data->priv_sz;
}
dev = alloc_sja1000dev(priv_sz);
if (!dev)
return -ENOMEM;
priv = netdev_priv(dev);
......@@ -208,10 +276,17 @@ static int sp_probe(struct platform_device *pdev)
dev->irq = irq;
priv->reg_base = addr;
if (of)
if (of) {
sp_populate_of(priv, of);
else
if (of_data && of_data->init) {
err = of_data->init(priv, of);
if (err)
goto exit_free;
}
} else {
sp_populate(priv, pdata, res_mem->flags);
}
platform_set_drvdata(pdev, dev);
SET_NETDEV_DEV(dev, &pdev->dev);
......@@ -242,12 +317,6 @@ static int sp_remove(struct platform_device *pdev)
return 0;
}
static const struct of_device_id sp_of_table[] = {
{.compatible = "nxp,sja1000"},
{},
};
MODULE_DEVICE_TABLE(of, sp_of_table);
static struct platform_driver sp_driver = {
.probe = sp_probe,
.remove = sp_remove,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册