提交 6efe2626 编写于 作者: X Xiongfeng Wang 提交者: Yang Yingliang

Revert "dm-crypt: modify dm-crypt to rely on IV generation templates"

hulk inclusion
category: bugfix
bugzilla: 31797
CVE: NA

------------------------

We come across a KASAN double-free issue which seems to be related with
this patch. Let's revert this patch for now.

This reverts commit 865258a05a1e141f8d77f347d34e056013cbf61f.
Signed-off-by: NXiongfeng Wang <wangxiongfeng2@huawei.com>
Reviewed-by: NZhangXiaoxu <zhangxiaoxu5@huawei.com>
Reviewed-by: NHou Tao <houtao1@huawei.com>
Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
上级 45a29c68
......@@ -126,14 +126,26 @@ struct dm_crypt_io {
struct dm_crypt_request {
struct convert_context *ctx;
struct scatterlist *sg_in;
struct scatterlist *sg_out;
struct scatterlist sg_in[4];
struct scatterlist sg_out[4];
u64 iv_sector;
};
struct crypt_config;
struct crypt_iv_operations {
int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
const char *opts);
void (*dtr)(struct crypt_config *cc);
int (*init)(struct crypt_config *cc);
int (*wipe)(struct crypt_config *cc);
int (*generator)(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq);
int (*post)(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq);
};
struct crypt_geniv_operations {
int (*ctr)(struct geniv_ctx *ctx);
void (*dtr)(struct geniv_ctx *ctx);
int (*init)(struct geniv_ctx *ctx);
......@@ -196,10 +208,18 @@ struct crypt_config {
struct task_struct *write_thread;
struct rb_root write_tree;
char *cipher;
char *cipher_string;
char *cipher_auth;
char *key_string;
const struct crypt_iv_operations *iv_gen_ops;
union {
struct iv_essiv_private essiv;
struct iv_benbi_private benbi;
struct iv_lmk_private lmk;
struct iv_tcw_private tcw;
} iv_gen_private;
u64 iv_offset;
unsigned int iv_size;
unsigned short int sector_size;
......@@ -208,10 +228,10 @@ struct crypt_config {
/* ESSIV: struct crypto_cipher *essiv_tfm */
void *iv_private;
union {
struct crypto_skcipher *tfm;
struct crypto_aead *tfm_aead;
struct crypto_skcipher **tfms;
struct crypto_aead **tfms_aead;
} cipher_tfm;
unsigned int tfms_count;
unsigned tfms_count;
unsigned long cipher_flags;
/*
......@@ -253,6 +273,7 @@ struct crypt_config {
struct bio_set bs;
struct mutex bio_alloc_lock;
u8 *authenc_key; /* space for keys in authenc() format (if used) */
u8 key[0];
};
......@@ -260,7 +281,6 @@ struct crypt_config {
#define MAX_TAG_SIZE 480
#define POOL_ENTRY_SIZE 512
#define SECTOR_MASK ((1 << SECTOR_SHIFT) - 1)
#define MAX_SG_LIST (BIO_MAX_PAGES * 8)
static DEFINE_SPINLOCK(dm_crypt_clients_lock);
static unsigned dm_crypt_clients_n = 0;
......@@ -270,7 +290,7 @@ static volatile unsigned long dm_crypt_pages_per_client;
static void clone_init(struct dm_crypt_io *, struct bio *);
static void kcryptd_queue_crypt(struct dm_crypt_io *io);
static struct scatterlist *crypt_get_sg_data(struct geniv_ctx *ctx,
static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
struct scatterlist *sg);
/*
......@@ -278,12 +298,12 @@ static struct scatterlist *crypt_get_sg_data(struct geniv_ctx *ctx,
*/
static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
{
return cc->cipher_tfm.tfm;
return cc->cipher_tfm.tfms[0];
}
static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
{
return cc->cipher_tfm.tfm_aead;
return cc->cipher_tfm.tfms_aead[0];
}
/* context of geniv tfm */
......@@ -311,7 +331,7 @@ struct geniv_ctx {
char *ciphermode;
unsigned long cipher_flags;
const struct crypt_iv_operations *iv_gen_ops;
const struct crypt_geniv_operations *iv_gen_ops;
union {
struct iv_essiv_private essiv;
struct iv_benbi_private benbi;
......@@ -385,41 +405,38 @@ struct geniv_ctx {
* http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
*/
static int crypt_iv_plain_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
memset(iv, 0, ctx->iv_size);
*(__le32 *)iv = cpu_to_le32(subreq->iv_sector & 0xffffffff);
memset(iv, 0, cc->iv_size);
*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
return 0;
}
static int crypt_iv_plain64_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
memset(iv, 0, ctx->iv_size);
*(__le64 *)iv = cpu_to_le64(subreq->iv_sector);
memset(iv, 0, cc->iv_size);
*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
return 0;
}
static int crypt_iv_plain64be_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
memset(iv, 0, ctx->iv_size);
memset(iv, 0, cc->iv_size);
/* iv_size is at least of size u64; usually it is 16 bytes */
*(__be64 *)&iv[ctx->iv_size - sizeof(u64)] = cpu_to_be64(subreq->iv_sector);
*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
return 0;
}
/* Initialise ESSIV - compute salt but no local memory allocations */
static int crypt_iv_essiv_init(struct geniv_ctx *ctx)
static int crypt_iv_essiv_init(struct crypt_config *cc)
{
struct iv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
SHASH_DESC_ON_STACK(desc, essiv->hash_tfm);
struct crypto_cipher *essiv_tfm;
int err;
......@@ -427,54 +444,65 @@ static int crypt_iv_essiv_init(struct geniv_ctx *ctx)
desc->tfm = essiv->hash_tfm;
desc->flags = 0;
err = crypto_shash_digest(desc, ctx->key, ctx->key_size, essiv->salt);
err = crypto_shash_digest(desc, cc->key, cc->key_size, essiv->salt);
shash_desc_zero(desc);
if (err)
return err;
essiv_tfm = ctx->iv_private;
essiv_tfm = cc->iv_private;
return crypto_cipher_setkey(essiv_tfm, essiv->salt,
err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
crypto_shash_digestsize(essiv->hash_tfm));
if (err)
return err;
return 0;
}
/* Wipe salt and reset key derived from volume key */
static int crypt_iv_essiv_wipe(struct geniv_ctx *ctx)
static int crypt_iv_essiv_wipe(struct crypt_config *cc)
{
struct iv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
unsigned int salt_size = crypto_shash_digestsize(essiv->hash_tfm);
struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
unsigned salt_size = crypto_shash_digestsize(essiv->hash_tfm);
struct crypto_cipher *essiv_tfm;
int r, err = 0;
memset(essiv->salt, 0, salt_size);
essiv_tfm = ctx->iv_private;
return crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
essiv_tfm = cc->iv_private;
r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
if (r)
err = r;
return err;
}
/* Allocate the cipher for ESSIV */
static struct crypto_cipher *alloc_essiv_cipher(struct geniv_ctx *ctx,
u8 *salt, unsigned int saltsize)
static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
struct dm_target *ti,
const u8 *salt,
unsigned int saltsize)
{
struct crypto_cipher *essiv_tfm;
int err;
/* Setup the essiv_tfm with the given salt */
essiv_tfm = crypto_alloc_cipher(ctx->cipher, 0, CRYPTO_ALG_ASYNC);
essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(essiv_tfm)) {
DMERR("Error allocating crypto tfm for ESSIV\n");
ti->error = "Error allocating crypto tfm for ESSIV";
return essiv_tfm;
}
if (crypto_cipher_blocksize(essiv_tfm) != ctx->iv_size) {
DMERR("Block size of ESSIV cipher does "
"not match IV size of block cipher\n");
if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
ti->error = "Block size of ESSIV cipher does "
"not match IV size of block cipher";
crypto_free_cipher(essiv_tfm);
return ERR_PTR(-EINVAL);
}
err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
if (err) {
DMERR("Failed to set key for ESSIV cipher\n");
ti->error = "Failed to set key for ESSIV cipher";
crypto_free_cipher(essiv_tfm);
return ERR_PTR(err);
}
......@@ -482,10 +510,10 @@ static struct crypto_cipher *alloc_essiv_cipher(struct geniv_ctx *ctx,
return essiv_tfm;
}
static void crypt_iv_essiv_dtr(struct geniv_ctx *ctx)
static void crypt_iv_essiv_dtr(struct crypt_config *cc)
{
struct crypto_cipher *essiv_tfm;
struct iv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
crypto_free_shash(essiv->hash_tfm);
essiv->hash_tfm = NULL;
......@@ -493,51 +521,52 @@ static void crypt_iv_essiv_dtr(struct geniv_ctx *ctx)
kzfree(essiv->salt);
essiv->salt = NULL;
essiv_tfm = ctx->iv_private;
essiv_tfm = cc->iv_private;
if (essiv_tfm)
crypto_free_cipher(essiv_tfm);
ctx->iv_private = NULL;
cc->iv_private = NULL;
}
static int crypt_iv_essiv_ctr(struct geniv_ctx *ctx)
static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
const char *opts)
{
struct crypto_cipher *essiv_tfm = NULL;
struct crypto_shash *hash_tfm = NULL;
u8 *salt = NULL;
int err;
if (!ctx->ivopts) {
DMERR("Digest algorithm missing for ESSIV mode\n");
if (!opts) {
ti->error = "Digest algorithm missing for ESSIV mode";
return -EINVAL;
}
/* Allocate hash algorithm */
hash_tfm = crypto_alloc_shash(ctx->ivopts, 0, 0);
hash_tfm = crypto_alloc_shash(opts, 0, 0);
if (IS_ERR(hash_tfm)) {
DMERR("Error initializing ESSIV hash\n");
ti->error = "Error initializing ESSIV hash";
err = PTR_ERR(hash_tfm);
goto bad;
}
salt = kzalloc(crypto_shash_digestsize(hash_tfm), GFP_KERNEL);
if (!salt) {
DMERR("Error kmallocing salt storage in ESSIV\n");
ti->error = "Error kmallocing salt storage in ESSIV";
err = -ENOMEM;
goto bad;
}
ctx->iv_gen_private.essiv.salt = salt;
ctx->iv_gen_private.essiv.hash_tfm = hash_tfm;
cc->iv_gen_private.essiv.salt = salt;
cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
essiv_tfm = alloc_essiv_cipher(ctx, salt,
essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
crypto_shash_digestsize(hash_tfm));
if (IS_ERR(essiv_tfm)) {
crypt_iv_essiv_dtr(ctx);
crypt_iv_essiv_dtr(cc);
return PTR_ERR(essiv_tfm);
}
ctx->iv_private = essiv_tfm;
cc->iv_private = essiv_tfm;
return 0;
......@@ -548,72 +577,70 @@ static int crypt_iv_essiv_ctr(struct geniv_ctx *ctx)
return err;
}
static int crypt_iv_essiv_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
struct crypto_cipher *essiv_tfm = ctx->iv_private;
struct crypto_cipher *essiv_tfm = cc->iv_private;
memset(iv, 0, ctx->iv_size);
*(__le64 *)iv = cpu_to_le64(subreq->iv_sector);
memset(iv, 0, cc->iv_size);
*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
return 0;
}
static int crypt_iv_benbi_ctr(struct geniv_ctx *ctx)
static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
const char *opts)
{
unsigned int bs = crypto_skcipher_blocksize(ctx->tfms.tfms[0]);
unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
int log = ilog2(bs);
/* we need to calculate how far we must shift the sector count
* to get the cipher block count, we use this shift in _gen */
if (1 << log != bs) {
DMERR("cypher blocksize is not a power of 2\n");
ti->error = "cypher blocksize is not a power of 2";
return -EINVAL;
}
if (log > 9) {
DMERR("cypher blocksize is > 512\n");
ti->error = "cypher blocksize is > 512";
return -EINVAL;
}
ctx->iv_gen_private.benbi.shift = 9 - log;
cc->iv_gen_private.benbi.shift = 9 - log;
return 0;
}
static void crypt_iv_benbi_dtr(struct geniv_ctx *ctx)
static void crypt_iv_benbi_dtr(struct crypt_config *cc)
{
}
static int crypt_iv_benbi_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
__be64 val;
memset(iv, 0, ctx->iv_size - sizeof(u64)); /* rest is cleared below */
memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
val = cpu_to_be64(((u64)subreq->iv_sector << ctx->iv_gen_private.benbi.shift) + 1);
put_unaligned(val, (__be64 *)(iv + ctx->iv_size - sizeof(u64)));
val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
return 0;
}
static int crypt_iv_null_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
memset(iv, 0, ctx->iv_size);
memset(iv, 0, cc->iv_size);
return 0;
}
static void crypt_iv_lmk_dtr(struct geniv_ctx *ctx)
static void crypt_iv_lmk_dtr(struct crypt_config *cc)
{
struct iv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
crypto_free_shash(lmk->hash_tfm);
......@@ -623,54 +650,54 @@ static void crypt_iv_lmk_dtr(struct geniv_ctx *ctx)
lmk->seed = NULL;
}
static int crypt_iv_lmk_ctr(struct geniv_ctx *ctx)
static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
const char *opts)
{
struct iv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
if (ctx->sector_size != (1 << SECTOR_SHIFT)) {
DMERR("Unsupported sector size for LMK\n");
if (cc->sector_size != (1 << SECTOR_SHIFT)) {
ti->error = "Unsupported sector size for LMK";
return -EINVAL;
}
lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
if (IS_ERR(lmk->hash_tfm)) {
DMERR("Error initializing LMK hash, err=%ld\n",
PTR_ERR(lmk->hash_tfm));
ti->error = "Error initializing LMK hash";
return PTR_ERR(lmk->hash_tfm);
}
/* No seed in LMK version 2 */
if (ctx->key_parts == ctx->tfms_count) {
if (cc->key_parts == cc->tfms_count) {
lmk->seed = NULL;
return 0;
}
lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
if (!lmk->seed) {
crypt_iv_lmk_dtr(ctx);
DMERR("Error kmallocing seed storage in LMK\n");
crypt_iv_lmk_dtr(cc);
ti->error = "Error kmallocing seed storage in LMK";
return -ENOMEM;
}
return 0;
}
static int crypt_iv_lmk_init(struct geniv_ctx *ctx)
static int crypt_iv_lmk_init(struct crypt_config *cc)
{
struct iv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
int subkey_size = ctx->key_size / ctx->key_parts;
struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
int subkey_size = cc->key_size / cc->key_parts;
/* LMK seed is on the position of LMK_KEYS + 1 key */
if (lmk->seed)
memcpy(lmk->seed, ctx->key + (ctx->tfms_count * subkey_size),
memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
crypto_shash_digestsize(lmk->hash_tfm));
return 0;
}
static int crypt_iv_lmk_wipe(struct geniv_ctx *ctx)
static int crypt_iv_lmk_wipe(struct crypt_config *cc)
{
struct iv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
if (lmk->seed)
memset(lmk->seed, 0, LMK_SEED_SIZE);
......@@ -678,10 +705,11 @@ static int crypt_iv_lmk_wipe(struct geniv_ctx *ctx)
return 0;
}
static int crypt_iv_lmk_one(struct geniv_ctx *ctx, u8 *iv,
struct geniv_subreq *subreq, u8 *data)
static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq,
u8 *data)
{
struct iv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
struct md5_state md5state;
__le32 buf[4];
......@@ -706,8 +734,8 @@ static int crypt_iv_lmk_one(struct geniv_ctx *ctx, u8 *iv,
return r;
/* Sector is cropped to 56 bits here */
buf[0] = cpu_to_le32(subreq->iv_sector & 0xFFFFFFFF);
buf[1] = cpu_to_le32((((u64)subreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
buf[2] = cpu_to_le32(4024);
buf[3] = 0;
r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
......@@ -721,56 +749,54 @@ static int crypt_iv_lmk_one(struct geniv_ctx *ctx, u8 *iv,
for (i = 0; i < MD5_HASH_WORDS; i++)
__cpu_to_le32s(&md5state.hash[i]);
memcpy(iv, &md5state.hash, ctx->iv_size);
memcpy(iv, &md5state.hash, cc->iv_size);
return 0;
}
static int crypt_iv_lmk_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
struct scatterlist *sg;
u8 *src;
int r = 0;
if (rctx->is_write) {
sg = crypt_get_sg_data(ctx, subreq->sg_in);
if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
sg = crypt_get_sg_data(cc, dmreq->sg_in);
src = kmap_atomic(sg_page(sg));
r = crypt_iv_lmk_one(ctx, iv, subreq, src + sg->offset);
r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
kunmap_atomic(src);
} else
memset(iv, 0, ctx->iv_size);
memset(iv, 0, cc->iv_size);
return r;
}
static int crypt_iv_lmk_post(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
struct scatterlist *sg;
u8 *dst;
int r;
if (rctx->is_write)
if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
return 0;
sg = crypt_get_sg_data(ctx, subreq->sg_out);
sg = crypt_get_sg_data(cc, dmreq->sg_out);
dst = kmap_atomic(sg_page(sg));
r = crypt_iv_lmk_one(ctx, iv, subreq, dst + sg->offset);
r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
/* Tweak the first block of plaintext sector */
if (!r)
crypto_xor(dst + sg->offset, iv, ctx->iv_size);
crypto_xor(dst + sg->offset, iv, cc->iv_size);
kunmap_atomic(dst);
return r;
}
static void crypt_iv_tcw_dtr(struct geniv_ctx *ctx)
static void crypt_iv_tcw_dtr(struct crypt_config *cc)
{
struct iv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
kzfree(tcw->iv_seed);
tcw->iv_seed = NULL;
......@@ -782,66 +808,66 @@ static void crypt_iv_tcw_dtr(struct geniv_ctx *ctx)
tcw->crc32_tfm = NULL;
}
static int crypt_iv_tcw_ctr(struct geniv_ctx *ctx)
static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
const char *opts)
{
struct iv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
if (ctx->sector_size != (1 << SECTOR_SHIFT)) {
DMERR("Unsupported sector size for TCW\n");
if (cc->sector_size != (1 << SECTOR_SHIFT)) {
ti->error = "Unsupported sector size for TCW";
return -EINVAL;
}
if (ctx->key_size <= (ctx->iv_size + TCW_WHITENING_SIZE)) {
DMERR("Wrong key size (%d) for TCW. Choose a value > %d bytes\n",
ctx->key_size, ctx->iv_size + TCW_WHITENING_SIZE);
if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
ti->error = "Wrong key size for TCW";
return -EINVAL;
}
tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
if (IS_ERR(tcw->crc32_tfm)) {
DMERR("Error initializing CRC32 in TCW; err=%ld\n",
PTR_ERR(tcw->crc32_tfm));
ti->error = "Error initializing CRC32 in TCW";
return PTR_ERR(tcw->crc32_tfm);
}
tcw->iv_seed = kzalloc(ctx->iv_size, GFP_KERNEL);
tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
if (!tcw->iv_seed || !tcw->whitening) {
crypt_iv_tcw_dtr(ctx);
DMERR("Error allocating seed storage in TCW\n");
crypt_iv_tcw_dtr(cc);
ti->error = "Error allocating seed storage in TCW";
return -ENOMEM;
}
return 0;
}
static int crypt_iv_tcw_init(struct geniv_ctx *ctx)
static int crypt_iv_tcw_init(struct crypt_config *cc)
{
struct iv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
int key_offset = ctx->key_size - ctx->iv_size - TCW_WHITENING_SIZE;
struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
memcpy(tcw->iv_seed, &ctx->key[key_offset], ctx->iv_size);
memcpy(tcw->whitening, &ctx->key[key_offset + ctx->iv_size],
memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
TCW_WHITENING_SIZE);
return 0;
}
static int crypt_iv_tcw_wipe(struct geniv_ctx *ctx)
static int crypt_iv_tcw_wipe(struct crypt_config *cc)
{
struct iv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
memset(tcw->iv_seed, 0, ctx->iv_size);
memset(tcw->iv_seed, 0, cc->iv_size);
memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
return 0;
}
static int crypt_iv_tcw_whitening(struct geniv_ctx *ctx,
struct geniv_subreq *subreq, u8 *data)
static int crypt_iv_tcw_whitening(struct crypt_config *cc,
struct dm_crypt_request *dmreq,
u8 *data)
{
struct iv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
__le64 sector = cpu_to_le64(subreq->iv_sector);
struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
__le64 sector = cpu_to_le64(dmreq->iv_sector);
u8 buf[TCW_WHITENING_SIZE];
SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
int i, r;
......@@ -875,59 +901,56 @@ static int crypt_iv_tcw_whitening(struct geniv_ctx *ctx,
return r;
}
static int crypt_iv_tcw_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
struct scatterlist *sg;
struct iv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
__le64 sector = cpu_to_le64(subreq->iv_sector);
struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
__le64 sector = cpu_to_le64(dmreq->iv_sector);
u8 *src;
int r = 0;
/* Remove whitening from ciphertext */
if (!rctx->is_write) {
sg = crypt_get_sg_data(ctx, subreq->sg_in);
if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
sg = crypt_get_sg_data(cc, dmreq->sg_in);
src = kmap_atomic(sg_page(sg));
r = crypt_iv_tcw_whitening(ctx, subreq, src + sg->offset);
r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
kunmap_atomic(src);
}
/* Calculate IV */
crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
if (ctx->iv_size > 8)
if (cc->iv_size > 8)
crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
ctx->iv_size - 8);
cc->iv_size - 8);
return r;
}
static int crypt_iv_tcw_post(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
struct scatterlist *sg;
u8 *dst;
int r;
if (!rctx->is_write)
if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
return 0;
/* Apply whitening on ciphertext */
sg = crypt_get_sg_data(ctx, subreq->sg_out);
sg = crypt_get_sg_data(cc, dmreq->sg_out);
dst = kmap_atomic(sg_page(sg));
r = crypt_iv_tcw_whitening(ctx, subreq, dst + sg->offset);
r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
kunmap_atomic(dst);
return r;
}
static int crypt_iv_random_gen(struct geniv_ctx *ctx,
struct geniv_req_ctx *rctx,
struct geniv_subreq *subreq, u8 *iv)
static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
struct dm_crypt_request *dmreq)
{
/* Used only for writes, there must be an additional space to store IV */
get_random_bytes(iv, ctx->iv_size);
get_random_bytes(iv, cc->iv_size);
return 0;
}
......@@ -1014,6 +1037,15 @@ static u8 *iv_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
crypto_skcipher_alignmask(crypto_skcipher_reqtfm(subreq->rctx->r.req)) + 1);
}
static const struct crypt_geniv_operations crypt_geniv_plain_ops;
static const struct crypt_geniv_operations crypt_geniv_plain64_ops;
static const struct crypt_geniv_operations crypt_geniv_essiv_ops;
static const struct crypt_geniv_operations crypt_geniv_benbi_ops;
static const struct crypt_geniv_operations crypt_geniv_null_ops;
static const struct crypt_geniv_operations crypt_geniv_lmk_ops;
static const struct crypt_geniv_operations crypt_geniv_tcw_ops;
static const struct crypt_geniv_operations crypt_geniv_random_ops;
static int geniv_init_iv(struct geniv_ctx *ctx)
{
int ret;
......@@ -1023,17 +1055,17 @@ static int geniv_init_iv(struct geniv_ctx *ctx)
if (ctx->ivmode == NULL)
ctx->iv_gen_ops = NULL;
else if (strcmp(ctx->ivmode, "plain") == 0)
ctx->iv_gen_ops = &crypt_iv_plain_ops;
ctx->iv_gen_ops = &crypt_geniv_plain_ops;
else if (strcmp(ctx->ivmode, "plain64") == 0)
ctx->iv_gen_ops = &crypt_iv_plain64_ops;
ctx->iv_gen_ops = &crypt_geniv_plain64_ops;
else if (strcmp(ctx->ivmode, "essiv") == 0)
ctx->iv_gen_ops = &crypt_iv_essiv_ops;
ctx->iv_gen_ops = &crypt_geniv_essiv_ops;
else if (strcmp(ctx->ivmode, "benbi") == 0)
ctx->iv_gen_ops = &crypt_iv_benbi_ops;
ctx->iv_gen_ops = &crypt_geniv_benbi_ops;
else if (strcmp(ctx->ivmode, "null") == 0)
ctx->iv_gen_ops = &crypt_iv_null_ops;
ctx->iv_gen_ops = &crypt_geniv_null_ops;
else if (strcmp(ctx->ivmode, "lmk") == 0) {
ctx->iv_gen_ops = &crypt_iv_lmk_ops;
ctx->iv_gen_ops = &crypt_geniv_lmk_ops;
/*
* Version 2 and 3 is recognised according
* to length of provided multi-key string.
......@@ -1045,11 +1077,11 @@ static int geniv_init_iv(struct geniv_ctx *ctx)
ctx->key_extra_size = ctx->key_size / ctx->key_parts;
}
} else if (strcmp(ctx->ivmode, "tcw") == 0) {
ctx->iv_gen_ops = &crypt_iv_tcw_ops;
ctx->iv_gen_ops = &crypt_geniv_tcw_ops;
ctx->key_parts += 2; /* IV + whitening */
ctx->key_extra_size = ctx->iv_size + TCW_WHITENING_SIZE;
} else if (strcmp(ctx->ivmode, "random") == 0) {
ctx->iv_gen_ops = &crypt_iv_random_ops;
ctx->iv_gen_ops = &crypt_geniv_random_ops;
/* Need storage space in integrity fields. */
ctx->integrity_iv_size = ctx->iv_size;
} else {
......@@ -2382,11 +2414,16 @@ static bool crypt_integrity_aead(struct crypt_config *cc)
return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
}
static bool crypt_integrity_hmac(struct crypt_config *cc)
{
return crypt_integrity_aead(cc) && cc->key_mac_size;
}
/* Get sg containing data */
static struct scatterlist *crypt_get_sg_data(struct geniv_ctx *ctx,
static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
struct scatterlist *sg)
{
if (unlikely(geniv_integrity_aead(ctx)))
if (unlikely(crypt_integrity_aead(cc)))
return &sg[2];
return sg;
......@@ -2491,6 +2528,221 @@ static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmre
return (void *)((char *)dmreq - cc->dmreq_start);
}
static u8 *iv_of_dmreq(struct crypt_config *cc,
struct dm_crypt_request *dmreq)
{
if (crypt_integrity_aead(cc))
return (u8 *)ALIGN((unsigned long)(dmreq + 1),
crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
else
return (u8 *)ALIGN((unsigned long)(dmreq + 1),
crypto_skcipher_alignmask(any_tfm(cc)) + 1);
}
static u8 *org_iv_of_dmreq(struct crypt_config *cc,
struct dm_crypt_request *dmreq)
{
return iv_of_dmreq(cc, dmreq) + cc->iv_size;
}
static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
struct dm_crypt_request *dmreq)
{
u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
return (uint64_t*) ptr;
}
static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
struct dm_crypt_request *dmreq)
{
u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
cc->iv_size + sizeof(uint64_t);
return (unsigned int*)ptr;
}
static void *tag_from_dmreq(struct crypt_config *cc,
struct dm_crypt_request *dmreq)
{
struct convert_context *ctx = dmreq->ctx;
struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
cc->on_disk_tag_size];
}
static void *iv_tag_from_dmreq(struct crypt_config *cc,
struct dm_crypt_request *dmreq)
{
return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
}
static int crypt_convert_block_aead(struct crypt_config *cc,
struct convert_context *ctx,
struct aead_request *req,
unsigned int tag_offset)
{
struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
struct dm_crypt_request *dmreq;
u8 *iv, *org_iv, *tag_iv, *tag;
uint64_t *sector;
int r = 0;
BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
/* Reject unexpected unaligned bio. */
if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
return -EIO;
dmreq = dmreq_of_req(cc, req);
dmreq->iv_sector = ctx->cc_sector;
if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
dmreq->iv_sector >>= cc->sector_shift;
dmreq->ctx = ctx;
*org_tag_of_dmreq(cc, dmreq) = tag_offset;
sector = org_sector_of_dmreq(cc, dmreq);
*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
iv = iv_of_dmreq(cc, dmreq);
org_iv = org_iv_of_dmreq(cc, dmreq);
tag = tag_from_dmreq(cc, dmreq);
tag_iv = iv_tag_from_dmreq(cc, dmreq);
/* AEAD request:
* |----- AAD -------|------ DATA -------|-- AUTH TAG --|
* | (authenticated) | (auth+encryption) | |
* | sector_LE | IV | sector in/out | tag in/out |
*/
sg_init_table(dmreq->sg_in, 4);
sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
sg_init_table(dmreq->sg_out, 4);
sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
if (cc->iv_gen_ops) {
/* For READs use IV stored in integrity metadata */
if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
memcpy(org_iv, tag_iv, cc->iv_size);
} else {
r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
if (r < 0)
return r;
/* Store generated IV in integrity metadata */
if (cc->integrity_iv_size)
memcpy(tag_iv, org_iv, cc->iv_size);
}
/* Working copy of IV, to be modified in crypto API */
memcpy(iv, org_iv, cc->iv_size);
}
aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
if (bio_data_dir(ctx->bio_in) == WRITE) {
aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
cc->sector_size, iv);
r = crypto_aead_encrypt(req);
if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
} else {
aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
cc->sector_size + cc->integrity_tag_size, iv);
r = crypto_aead_decrypt(req);
}
if (r == -EBADMSG)
DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
(unsigned long long)le64_to_cpu(*sector));
if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
return r;
}
static int crypt_convert_block_skcipher(struct crypt_config *cc,
struct convert_context *ctx,
struct skcipher_request *req,
unsigned int tag_offset)
{
struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
struct scatterlist *sg_in, *sg_out;
struct dm_crypt_request *dmreq;
u8 *iv, *org_iv, *tag_iv;
uint64_t *sector;
int r = 0;
/* Reject unexpected unaligned bio. */
if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
return -EIO;
dmreq = dmreq_of_req(cc, req);
dmreq->iv_sector = ctx->cc_sector;
if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
dmreq->iv_sector >>= cc->sector_shift;
dmreq->ctx = ctx;
*org_tag_of_dmreq(cc, dmreq) = tag_offset;
iv = iv_of_dmreq(cc, dmreq);
org_iv = org_iv_of_dmreq(cc, dmreq);
tag_iv = iv_tag_from_dmreq(cc, dmreq);
sector = org_sector_of_dmreq(cc, dmreq);
*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
/* For skcipher we use only the first sg item */
sg_in = &dmreq->sg_in[0];
sg_out = &dmreq->sg_out[0];
sg_init_table(sg_in, 1);
sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
sg_init_table(sg_out, 1);
sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
if (cc->iv_gen_ops) {
/* For READs use IV stored in integrity metadata */
if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
memcpy(org_iv, tag_iv, cc->integrity_iv_size);
} else {
r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
if (r < 0)
return r;
/* Store generated IV in integrity metadata */
if (cc->integrity_iv_size)
memcpy(tag_iv, org_iv, cc->integrity_iv_size);
}
/* Working copy of IV, to be modified in crypto API */
memcpy(iv, org_iv, cc->iv_size);
}
skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
if (bio_data_dir(ctx->bio_in) == WRITE)
r = crypto_skcipher_encrypt(req);
else
r = crypto_skcipher_decrypt(req);
if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
return r;
}
static void kcryptd_async_done(struct crypto_async_request *async_req,
int error);
......@@ -2498,10 +2750,12 @@ static void kcryptd_async_done(struct crypto_async_request *async_req,
static void crypt_alloc_req_skcipher(struct crypt_config *cc,
struct convert_context *ctx)
{
unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
if (!ctx->r.req)
ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfm);
skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
/*
* Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
......@@ -2518,7 +2772,7 @@ static void crypt_alloc_req_aead(struct crypt_config *cc,
if (!ctx->r.req_aead)
ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfm_aead);
aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
/*
* Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
......@@ -2567,117 +2821,68 @@ static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_
/*
* Encrypt / decrypt data from one bio to another one (can be the same one)
*/
static blk_status_t crypt_convert_bio(struct crypt_config *cc,
static blk_status_t crypt_convert(struct crypt_config *cc,
struct convert_context *ctx)
{
unsigned int cryptlen, n1, n2, nents, i = 0, bytes = 0;
struct skcipher_request *req = NULL;
struct aead_request *req_aead = NULL;
struct dm_crypt_request *dmreq;
struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
struct geniv_req_info rinfo;
struct bio_vec bv_in, bv_out;
unsigned int tag_offset = 0;
unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
int r;
atomic_set(&ctx->cc_pending, 1);
crypt_alloc_req(cc, ctx);
if (crypt_integrity_aead(cc)) {
req_aead = ctx->r.req_aead;
dmreq = dmreq_of_req(cc, req_aead);
} else {
req = ctx->r.req;
dmreq = dmreq_of_req(cc, req);
}
n1 = bio_segments(ctx->bio_in);
n2 = bio_segments(ctx->bio_out);
nents = max(n1, n2);
nents = min((unsigned int)MAX_SG_LIST, nents);
cryptlen = ctx->iter_in.bi_size;
DMDEBUG("dm-crypt:%s: segments:[in=%u, out=%u] bi_size=%u\n",
bio_data_dir(ctx->bio_in) == WRITE ? "write" : "read",
n1, n2, cryptlen);
dmreq->sg_in = kcalloc(nents, sizeof(struct scatterlist), GFP_KERNEL);
dmreq->sg_out = kcalloc(nents, sizeof(struct scatterlist), GFP_KERNEL);
if (!dmreq->sg_in || !dmreq->sg_out) {
DMERR("dm-crypt: Failed to allocate scatterlist\n");
r = -ENOMEM;
return r;
}
dmreq->ctx = ctx;
sg_init_table(dmreq->sg_in, nents);
sg_init_table(dmreq->sg_out, nents);
while (ctx->iter_in.bi_size && ctx->iter_out.bi_size && i < nents) {
bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
sg_set_page(&dmreq->sg_in[i], bv_in.bv_page, bv_in.bv_len,
bv_in.bv_offset);
sg_set_page(&dmreq->sg_out[i], bv_out.bv_page, bv_out.bv_len,
bv_out.bv_offset);
bio_advance_iter(ctx->bio_in, &ctx->iter_in, bv_in.bv_len);
bio_advance_iter(ctx->bio_out, &ctx->iter_out, bv_out.bv_len);
bytes += bv_in.bv_len;
i++;
}
DMDEBUG("dm-crypt: Processed %u of %u bytes\n", bytes, cryptlen);
rinfo.cc_sector = ctx->cc_sector;
rinfo.nents = nents;
rinfo.integrity_metadata = io->integrity_metadata;
while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
crypt_alloc_req(cc, ctx);
atomic_inc(&ctx->cc_pending);
if (crypt_integrity_aead(cc)) {
aead_request_set_crypt(req_aead, dmreq->sg_in, dmreq->sg_out,
bytes, (u8 *)&rinfo);
if (bio_data_dir(ctx->bio_in) == WRITE)
r = crypto_aead_encrypt(req_aead);
else
r = crypto_aead_decrypt(req_aead);
} else {
skcipher_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
bytes, (u8 *)&rinfo);
if (bio_data_dir(ctx->bio_in) == WRITE)
r = crypto_skcipher_encrypt(req);
if (crypt_integrity_aead(cc))
r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
else
r = crypto_skcipher_decrypt(req);
}
r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
switch (r) {
/* The request was queued so wait. */
/*
* The request was queued by a crypto driver
* but the driver request queue is full, let's wait.
*/
case -EBUSY:
wait_for_completion(&ctx->restart);
reinit_completion(&ctx->restart);
/* fall through */
/*
* The request is queued and processed asynchronously,
* completion function kcryptd_async_done() is called.
* completion function kcryptd_async_done() will be called.
*/
case -EINPROGRESS:
ctx->r.req = NULL;
cond_resched();
return 0;
/* The requeest was already processed (synchronously). */
ctx->cc_sector += sector_step;
tag_offset++;
continue;
/*
* The request was already processed (synchronously).
*/
case 0:
atomic_dec(&ctx->cc_pending);
return 0;
/* There was a data integrity error. */
ctx->cc_sector += sector_step;
tag_offset++;
cond_resched();
continue;
/*
* There was a data integrity error.
*/
case -EBADMSG:
atomic_dec(&ctx->cc_pending);
return BLK_STS_PROTECTION;
/* There was an error while processing the request. */
/*
* There was an error while processing the request.
*/
default:
atomic_dec(&ctx->cc_pending);
return BLK_STS_IOERR;
}
}
return 0;
}
static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
......@@ -2786,24 +2991,14 @@ static void crypt_dec_pending(struct dm_crypt_io *io)
{
struct crypt_config *cc = io->cc;
struct bio *base_bio = io->base_bio;
struct dm_crypt_request *dmreq;
blk_status_t error = io->error;
if (!atomic_dec_and_test(&io->io_pending))
return;
if (io->ctx.r.req) {
if (io->ctx.r.req)
crypt_free_req(cc, io->ctx.r.req, base_bio);
if (crypt_integrity_aead(cc))
dmreq = dmreq_of_req(cc, io->ctx.r.req_aead);
else
dmreq = dmreq_of_req(cc, io->ctx.r.req);
DMDEBUG("dm-crypt: Freeing scatterlists [sync]\n");
kfree(dmreq->sg_in);
kfree(dmreq->sg_out);
}
if (unlikely(io->integrity_metadata_from_pool))
mempool_free(io->integrity_metadata, &io->cc->tag_pool);
else
......@@ -3045,7 +3240,7 @@ static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
sector += bio_sectors(clone);
crypt_inc_pending(io);
r = crypt_convert_bio(cc, &io->ctx);
r = crypt_convert(cc, &io->ctx);
if (r)
io->error = r;
crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
......@@ -3075,7 +3270,7 @@ static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
io->sector);
r = crypt_convert_bio(cc, &io->ctx);
r = crypt_convert(cc, &io->ctx);
if (r)
io->error = r;
......@@ -3103,16 +3298,16 @@ static void kcryptd_async_done(struct crypto_async_request *async_req,
return;
}
if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
if (error == -EBADMSG) {
DMERR("INTEGRITY AEAD ERROR\n");
DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
(unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
io->error = BLK_STS_PROTECTION;
} else if (error < 0)
io->error = BLK_STS_IOERR;
DMDEBUG("dm-crypt: Freeing scatterlists and request struct [async]\n");
kfree(dmreq->sg_in);
kfree(dmreq->sg_out);
crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
if (!atomic_dec_and_test(&ctx->cc_pending))
......@@ -3142,78 +3337,144 @@ static void kcryptd_queue_crypt(struct dm_crypt_io *io)
queue_work(cc->crypt_queue, &io->work);
}
static void crypt_free_tfm(struct crypt_config *cc)
static void crypt_free_tfms_aead(struct crypt_config *cc)
{
if (crypt_integrity_aead(cc)) {
if (!cc->cipher_tfm.tfm_aead)
if (!cc->cipher_tfm.tfms_aead)
return;
if (cc->cipher_tfm.tfm_aead && !IS_ERR(cc->cipher_tfm.tfm_aead)) {
crypto_free_aead(cc->cipher_tfm.tfm_aead);
cc->cipher_tfm.tfm_aead = NULL;
if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
cc->cipher_tfm.tfms_aead[0] = NULL;
}
} else {
if (!cc->cipher_tfm.tfm)
kfree(cc->cipher_tfm.tfms_aead);
cc->cipher_tfm.tfms_aead = NULL;
}
static void crypt_free_tfms_skcipher(struct crypt_config *cc)
{
unsigned i;
if (!cc->cipher_tfm.tfms)
return;
if (cc->cipher_tfm.tfm && !IS_ERR(cc->cipher_tfm.tfm)) {
crypto_free_skcipher(cc->cipher_tfm.tfm);
cc->cipher_tfm.tfm = NULL;
}
for (i = 0; i < cc->tfms_count; i++)
if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
cc->cipher_tfm.tfms[i] = NULL;
}
kfree(cc->cipher_tfm.tfms);
cc->cipher_tfm.tfms = NULL;
}
static int crypt_alloc_tfm(struct crypt_config *cc, char *ciphermode)
static void crypt_free_tfms(struct crypt_config *cc)
{
if (crypt_integrity_aead(cc))
crypt_free_tfms_aead(cc);
else
crypt_free_tfms_skcipher(cc);
}
static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
{
unsigned i;
int err;
if (crypt_integrity_aead(cc)) {
cc->cipher_tfm.tfm_aead = crypto_alloc_aead(ciphermode, 0, 0);
if (IS_ERR(cc->cipher_tfm.tfm_aead)) {
err = PTR_ERR(cc->cipher_tfm.tfm_aead);
crypt_free_tfm(cc);
cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
sizeof(struct crypto_skcipher *),
GFP_KERNEL);
if (!cc->cipher_tfm.tfms)
return -ENOMEM;
for (i = 0; i < cc->tfms_count; i++) {
cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
if (IS_ERR(cc->cipher_tfm.tfms[i])) {
err = PTR_ERR(cc->cipher_tfm.tfms[i]);
crypt_free_tfms(cc);
return err;
}
} else {
cc->cipher_tfm.tfm = crypto_alloc_skcipher(ciphermode, 0, 0);
if (IS_ERR(cc->cipher_tfm.tfm)) {
err = PTR_ERR(cc->cipher_tfm.tfm);
crypt_free_tfm(cc);
return err;
}
return 0;
}
static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
{
int err;
cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
if (!cc->cipher_tfm.tfms)
return -ENOMEM;
cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
crypt_free_tfms(cc);
return err;
}
return 0;
}
static void init_key_info(struct crypt_config *cc, enum setkey_op keyop,
char *ivopts, struct geniv_key_info *kinfo)
static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
{
kinfo->keyop = keyop;
kinfo->tfms_count = cc->tfms_count;
kinfo->key = cc->key;
kinfo->cipher_flags = cc->cipher_flags;
kinfo->ivopts = ivopts;
kinfo->iv_offset = cc->iv_offset;
kinfo->sector_size = cc->sector_size;
kinfo->key_size = cc->key_size;
kinfo->key_parts = cc->key_parts;
kinfo->key_mac_size = cc->key_mac_size;
kinfo->on_disk_tag_size = cc->on_disk_tag_size;
if (crypt_integrity_aead(cc))
return crypt_alloc_tfms_aead(cc, ciphermode);
else
return crypt_alloc_tfms_skcipher(cc, ciphermode);
}
static int crypt_setkey(struct crypt_config *cc, enum setkey_op keyop,
char *ivopts)
static unsigned crypt_subkey_size(struct crypt_config *cc)
{
int r = 0;
struct geniv_key_info kinfo;
return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
}
init_key_info(cc, keyop, ivopts, &kinfo);
static unsigned crypt_authenckey_size(struct crypt_config *cc)
{
return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
}
if (crypt_integrity_aead(cc))
r = crypto_aead_setkey(cc->cipher_tfm.tfm_aead, (u8 *)&kinfo, sizeof(kinfo));
static void crypt_copy_authenckey(char *p, const void *key,
unsigned enckeylen, unsigned authkeylen);
static int crypt_setkey(struct crypt_config *cc)
{
unsigned subkey_size;
int err = 0, i, r;
/* Ignore extra keys (which are used for IV etc) */
subkey_size = crypt_subkey_size(cc);
if (crypt_integrity_hmac(cc)) {
if (subkey_size < cc->key_mac_size)
return -EINVAL;
crypt_copy_authenckey(cc->authenc_key, cc->key,
subkey_size - cc->key_mac_size,
cc->key_mac_size);
}
for (i = 0; i < cc->tfms_count; i++) {
if (crypt_integrity_hmac(cc))
r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
cc->authenc_key, crypt_authenckey_size(cc));
else if (crypt_integrity_aead(cc))
r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
cc->key + (i * subkey_size),
subkey_size);
else
r = crypto_skcipher_setkey(cc->cipher_tfm.tfm, (u8 *)&kinfo, sizeof(kinfo));
r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
cc->key + (i * subkey_size),
subkey_size);
if (r)
err = r;
}
return r;
if (crypt_integrity_hmac(cc))
memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
return err;
}
#ifdef CONFIG_KEYS
......@@ -3226,9 +3487,7 @@ static bool contains_whitespace(const char *str)
return false;
}
static int crypt_set_keyring_key(struct crypt_config *cc,
const char *key_string,
enum setkey_op keyop, char *ivopts)
static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
{
char *new_key_string, *key_desc;
int ret;
......@@ -3289,7 +3548,7 @@ static int crypt_set_keyring_key(struct crypt_config *cc,
/* clear the flag since following operations may invalidate previously valid key */
clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
ret = crypt_setkey(cc, keyop, ivopts);
ret = crypt_setkey(cc);
if (!ret) {
set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
......@@ -3326,9 +3585,7 @@ static int get_key_size(char **key_string)
#else
static int crypt_set_keyring_key(struct crypt_config *cc,
const char *key_string,
enum setkey_op keyop, char *ivopts)
static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
{
return -EINVAL;
}
......@@ -3340,8 +3597,7 @@ static int get_key_size(char **key_string)
#endif
static int crypt_set_key(struct crypt_config *cc, enum setkey_op keyop,
char *key, char *ivopts)
static int crypt_set_key(struct crypt_config *cc, char *key)
{
int r = -EINVAL;
int key_string_len = strlen(key);
......@@ -3352,7 +3608,7 @@ static int crypt_set_key(struct crypt_config *cc, enum setkey_op keyop,
/* ':' means the key is in kernel keyring, short-circuit normal key processing */
if (key[0] == ':') {
r = crypt_set_keyring_key(cc, key + 1, keyop, ivopts);
r = crypt_set_keyring_key(cc, key + 1);
goto out;
}
......@@ -3367,7 +3623,7 @@ static int crypt_set_key(struct crypt_config *cc, enum setkey_op keyop,
if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
goto out;
r = crypt_setkey(cc, keyop, ivopts);
r = crypt_setkey(cc);
if (!r)
set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
......@@ -3378,17 +3634,6 @@ static int crypt_set_key(struct crypt_config *cc, enum setkey_op keyop,
return r;
}
static int crypt_init_key(struct dm_target *ti, char *key, char *ivopts)
{
struct crypt_config *cc = ti->private;
int ret;
ret = crypt_set_key(cc, SETKEY_OP_INIT, key, ivopts);
if (ret < 0)
ti->error = "Error decoding and setting key";
return ret;
}
static int crypt_wipe_key(struct crypt_config *cc)
{
int r;
......@@ -3397,7 +3642,7 @@ static int crypt_wipe_key(struct crypt_config *cc)
get_random_bytes(&cc->key, cc->key_size);
kzfree(cc->key_string);
cc->key_string = NULL;
r = crypt_setkey(cc, SETKEY_OP_WIPE, NULL);
r = crypt_setkey(cc);
memset(&cc->key, 0, cc->key_size * sizeof(u8));
return r;
......@@ -3457,7 +3702,7 @@ static void crypt_dtr(struct dm_target *ti)
if (cc->crypt_queue)
destroy_workqueue(cc->crypt_queue);
crypt_free_tfm(cc);
crypt_free_tfms(cc);
bioset_exit(&cc->bs);
......@@ -3468,12 +3713,17 @@ static void crypt_dtr(struct dm_target *ti)
WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
percpu_counter_destroy(&cc->n_allocated_pages);
if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
cc->iv_gen_ops->dtr(cc);
if (cc->dev)
dm_put_device(ti, cc->dev);
kzfree(cc->cipher);
kzfree(cc->cipher_string);
kzfree(cc->key_string);
kzfree(cc->cipher_auth);
kzfree(cc->authenc_key);
mutex_destroy(&cc->bio_alloc_lock);
......@@ -3487,32 +3737,6 @@ static void crypt_dtr(struct dm_target *ti)
spin_unlock(&dm_crypt_clients_lock);
}
static int get_iv_size_by_name(struct crypt_config *cc, char *alg_name)
{
unsigned int iv_size;
struct crypto_aead *tfm_aead;
struct crypto_skcipher *tfm;
if (crypt_integrity_aead(cc)) {
tfm_aead = crypto_alloc_aead(alg_name, 0, 0);
if (IS_ERR(tfm_aead))
return -ENOMEM;
iv_size = crypto_aead_ivsize(tfm_aead);
crypto_free_aead(tfm_aead);
} else {
tfm = crypto_alloc_skcipher(alg_name, 0, 0);
if (IS_ERR(tfm))
return -ENOMEM;
iv_size = crypto_skcipher_ivsize(tfm);
crypto_free_skcipher(tfm);
}
return iv_size;
}
static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
{
struct crypt_config *cc = ti->private;
......@@ -3526,15 +3750,100 @@ static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
/* at least a 64 bit sector number should fit in our buffer */
cc->iv_size = max(cc->iv_size,
(unsigned int)(sizeof(u64) / sizeof(u8)));
if (strcmp(ivmode, "random") == 0) {
else if (ivmode) {
DMWARN("Selected cipher does not support IVs");
ivmode = NULL;
}
/* Choose ivmode, see comments at iv code. */
if (ivmode == NULL)
cc->iv_gen_ops = NULL;
else if (strcmp(ivmode, "plain") == 0)
cc->iv_gen_ops = &crypt_iv_plain_ops;
else if (strcmp(ivmode, "plain64") == 0)
cc->iv_gen_ops = &crypt_iv_plain64_ops;
else if (strcmp(ivmode, "plain64be") == 0)
cc->iv_gen_ops = &crypt_iv_plain64be_ops;
else if (strcmp(ivmode, "essiv") == 0)
cc->iv_gen_ops = &crypt_iv_essiv_ops;
else if (strcmp(ivmode, "benbi") == 0)
cc->iv_gen_ops = &crypt_iv_benbi_ops;
else if (strcmp(ivmode, "null") == 0)
cc->iv_gen_ops = &crypt_iv_null_ops;
else if (strcmp(ivmode, "lmk") == 0) {
cc->iv_gen_ops = &crypt_iv_lmk_ops;
/*
* Version 2 and 3 is recognised according
* to length of provided multi-key string.
* If present (version 3), last key is used as IV seed.
* All keys (including IV seed) are always the same size.
*/
if (cc->key_size % cc->key_parts) {
cc->key_parts++;
cc->key_extra_size = cc->key_size / cc->key_parts;
}
} else if (strcmp(ivmode, "tcw") == 0) {
cc->iv_gen_ops = &crypt_iv_tcw_ops;
cc->key_parts += 2; /* IV + whitening */
cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
} else if (strcmp(ivmode, "random") == 0) {
cc->iv_gen_ops = &crypt_iv_random_ops;
/* Need storage space in integrity fields. */
cc->integrity_iv_size = cc->iv_size;
} else {
ti->error = "Invalid IV mode";
return -EINVAL;
}
return 0;
}
/*
* Workaround to parse cipher algorithm from crypto API spec.
* The cc->cipher is currently used only in ESSIV.
* This should be probably done by crypto-api calls (once available...)
*/
static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
{
const char *alg_name = NULL;
char *start, *end;
if (crypt_integrity_aead(cc)) {
alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
if (!alg_name)
return -EINVAL;
if (crypt_integrity_hmac(cc)) {
alg_name = strchr(alg_name, ',');
if (!alg_name)
return -EINVAL;
}
alg_name++;
} else {
alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
if (!alg_name)
return -EINVAL;
}
start = strchr(alg_name, '(');
end = strchr(alg_name, ')');
if (!start && !end) {
cc->cipher = kstrdup(alg_name, GFP_KERNEL);
return cc->cipher ? 0 : -ENOMEM;
}
if (!start || !end || ++start >= end)
return -EINVAL;
cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
if (!cc->cipher)
return -ENOMEM;
strncpy(cc->cipher, start, end - start);
return 0;
}
/*
* Workaround to parse HMAC algorithm from AEAD crypto API spec.
* The HMAC is needed to calculate tag size (HMAC digest size).
......@@ -3567,6 +3876,10 @@ static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
cc->key_mac_size = crypto_ahash_digestsize(mac);
crypto_free_ahash(mac);
cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
if (!cc->authenc_key)
return -ENOMEM;
return 0;
}
......@@ -3575,7 +3888,6 @@ static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key
{
struct crypt_config *cc = ti->private;
char *tmp, *cipher_api;
char cipher_name[CRYPTO_MAX_ALG_NAME];
int ret = -EINVAL;
cc->tfms_count = 1;
......@@ -3606,29 +3918,8 @@ static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key
cc->key_parts = cc->tfms_count;
if (!*ivmode)
*ivmode = "null";
/*
* For those ciphers which do not support IVs, but input ivmode is not
* NULL, use "null" as ivmode compulsively.
*/
cc->iv_size = get_iv_size_by_name(cc, cipher_api);
if (cc->iv_size < 0)
return -ENOMEM;
if (!cc->iv_size && ivmode) {
DMWARN("Selected cipher does not support IVs");
*ivmode = "null";
}
/* Allocate cipher */
ret = snprintf(cipher_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
*ivmode, cipher_api);
if (ret < 0) {
ti->error = "Cannot allocate cipher strings";
return -ENOMEM;
}
ret = crypt_alloc_tfm(cc, cipher_name);
ret = crypt_alloc_tfms(cc, cipher_api);
if (ret < 0) {
ti->error = "Error allocating crypto tfm";
return ret;
......@@ -3645,6 +3936,12 @@ static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key
} else
cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
ret = crypt_ctr_blkdev_cipher(cc);
if (ret < 0) {
ti->error = "Cannot allocate cipher string";
return -ENOMEM;
}
return 0;
}
......@@ -3679,6 +3976,10 @@ static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key
}
cc->key_parts = cc->tfms_count;
cc->cipher = kstrdup(cipher, GFP_KERNEL);
if (!cc->cipher)
goto bad_mem;
chainmode = strsep(&tmp, "-");
*ivmode = strsep(&tmp, ":");
*ivopts = tmp;
......@@ -3701,35 +4002,15 @@ static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key
if (!cipher_api)
goto bad_mem;
/* For those ciphers which do not support IVs,
* use the 'null' template cipher
*/
if (!*ivmode)
*ivmode = "null";
/*
* For those ciphers which do not support IVs, but input ivmode is not
* NULL, use "null" as ivmode compulsively.
*/
ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
"%s(%s)", chainmode, cipher);
cc->iv_size = get_iv_size_by_name(cc, cipher_api);
if (cc->iv_size < 0)
return -ENOMEM;
if (!cc->iv_size && ivmode) {
DMWARN("Selected cipher does not support IVs");
*ivmode = "null";
}
ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
"%s(%s(%s))", *ivmode, chainmode, cipher);
if (ret < 0) {
kfree(cipher_api);
goto bad_mem;
}
/* Allocate cipher */
ret = crypt_alloc_tfm(cc, cipher_api);
ret = crypt_alloc_tfms(cc, cipher_api);
if (ret < 0) {
ti->error = "Error allocating crypto tfm";
kfree(cipher_api);
......@@ -3768,12 +4049,30 @@ static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
return ret;
/* Initialize and set key */
ret = crypt_init_key(ti, key, ivopts);
ret = crypt_set_key(cc, key);
if (ret < 0) {
ti->error = "Error decoding and setting key";
return ret;
}
/* Allocate IV */
if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
if (ret < 0) {
ti->error = "Error creating IV";
return ret;
}
}
/* Initialize IV (set keys for ESSIV etc) */
if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
ret = cc->iv_gen_ops->init(cc);
if (ret < 0) {
ti->error = "Error initialising IV";
return ret;
}
}
/* wipe the kernel key payload copy */
if (cc->key_string)
memset(cc->key, 0, cc->key_size * sizeof(u8));
......@@ -3867,7 +4166,7 @@ static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
unsigned int align_mask;
unsigned long long tmpll;
int ret;
size_t additional_req_size;
size_t iv_size_padding, additional_req_size;
char dummy;
if (argc < 5) {
......@@ -3923,7 +4222,25 @@ static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
}
cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
additional_req_size = sizeof(struct dm_crypt_request);
if (align_mask < CRYPTO_MINALIGN) {
/* Allocate the padding exactly */
iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
& align_mask;
} else {
/*
* If the cipher requires greater alignment than kmalloc
* alignment, we don't know the exact position of the
* initialization vector. We must assume worst case.
*/
iv_size_padding = align_mask;
}
/* ...| IV + padding | original IV | original sec. number | bio tag offset | */
additional_req_size = sizeof(struct dm_crypt_request) +
iv_size_padding + cc->iv_size +
cc->iv_size +
sizeof(uint64_t) +
sizeof(unsigned int);
ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
if (ret) {
......@@ -4200,13 +4517,22 @@ static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
return -EINVAL;
}
ret = crypt_set_key(cc, SETKEY_OP_SET, argv[2], NULL);
ret = crypt_set_key(cc, argv[2]);
if (ret)
return ret;
if (cc->iv_gen_ops && cc->iv_gen_ops->init)
ret = cc->iv_gen_ops->init(cc);
/* wipe the kernel key payload copy */
if (cc->key_string)
memset(cc->key, 0, cc->key_size * sizeof(u8));
return ret;
}
if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
ret = cc->iv_gen_ops->wipe(cc);
if (ret)
return ret;
}
return crypt_wipe_key(cc);
}
}
......@@ -4245,7 +4571,7 @@ static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
static struct target_type crypt_target = {
.name = "crypt",
.version = {1, 19, 1},
.version = {1, 18, 1},
.module = THIS_MODULE,
.ctr = crypt_ctr,
.dtr = crypt_dtr,
......@@ -4263,12 +4589,6 @@ static int __init dm_crypt_init(void)
{
int r;
r = crypto_register_templates(geniv_tmpl, ARRAY_SIZE(geniv_tmpl));
if (r) {
DMERR("register template failed %d", r);
return r;
}
r = dm_register_target(&crypt_target);
if (r < 0)
DMERR("register failed %d", r);
......@@ -4279,7 +4599,6 @@ static int __init dm_crypt_init(void)
static void __exit dm_crypt_exit(void)
{
dm_unregister_target(&crypt_target);
crypto_unregister_templates(geniv_tmpl, ARRAY_SIZE(geniv_tmpl));
}
module_init(dm_crypt_init);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册