提交 6bfd0133 编写于 作者: Q Qu Wenruo 提交者: David Sterba

btrfs: raid56: switch scrub path to use a single function

This switch involves the following changes:

- Make finish_parity_scrub() only to submit the write bios
  It will no longer call rbio_orig_end_io(), and now it will
  return error.

- Add a new helper, recover_scrub_rbio(), to handle recovery
  It's just doing extra scrub related checks, and then call
  recover_sectors().

- Rename raid56_parity_scrub_stripe() to scrub_rbio()
- Rename scrub_parity_work() to scrub_rbio_work_locked()
  To follow the existing naming scheme.

- Delete unused functions
  Including:
  * finish_rmw()
  * raid_write_end_io()
  * raid56_bio_end_io()
  * __raid_recover_end_io()
Signed-off-by: NQu Wenruo <wqu@suse.com>
Signed-off-by: NDavid Sterba <dsterba@suse.com>
上级 cb3450b7
......@@ -64,7 +64,6 @@ struct sector_ptr {
unsigned int uptodate:8;
};
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
static void rmw_rbio_work(struct work_struct *work);
static void rmw_rbio_work_locked(struct work_struct *work);
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
......@@ -72,9 +71,8 @@ static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
int need_check);
static void scrub_parity_work(struct work_struct *work);
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
static void scrub_rbio_work_locked(struct work_struct *work);
static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
{
......@@ -819,7 +817,7 @@ static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
start_async_work(next, rmw_rbio_work_locked);
} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
steal_rbio(rbio, next);
start_async_work(next, scrub_parity_work);
start_async_work(next, scrub_rbio_work_locked);
}
goto done_nolock;
......@@ -880,35 +878,6 @@ static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
rbio_endio_bio_list(extra, err);
}
/*
* end io function used by finish_rmw. When we finally
* get here, we've written a full stripe
*/
static void raid_write_end_io(struct bio *bio)
{
struct btrfs_raid_bio *rbio = bio->bi_private;
blk_status_t err = bio->bi_status;
int max_errors;
if (err)
fail_bio_stripe(rbio, bio);
bio_put(bio);
if (!atomic_dec_and_test(&rbio->stripes_pending))
return;
err = BLK_STS_OK;
/* OK, we have read all the stripes we need to. */
max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
0 : rbio->bioc->max_errors;
if (atomic_read(&rbio->error) > max_errors)
err = BLK_STS_IOERR;
rbio_orig_end_io(rbio, err);
}
/*
* Get a sector pointer specified by its @stripe_nr and @sector_nr.
*
......@@ -1319,87 +1288,6 @@ static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
return -EIO;
}
/*
* this is called from one of two situations. We either
* have a full stripe from the higher layers, or we've read all
* the missing bits off disk.
*
* This will calculate the parity and then send down any
* changed blocks.
*/
static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
{
/* The total sector number inside the full stripe. */
/* Sector number inside a stripe. */
int sectornr;
struct bio_list bio_list;
struct bio *bio;
int ret;
bio_list_init(&bio_list);
/* We should have at least one data sector. */
ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
/* at this point we either have a full stripe,
* or we've read the full stripe from the drive.
* recalculate the parity and write the new results.
*
* We're not allowed to add any new bios to the
* bio list here, anyone else that wants to
* change this stripe needs to do their own rmw.
*/
spin_lock_irq(&rbio->bio_list_lock);
set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
spin_unlock_irq(&rbio->bio_list_lock);
atomic_set(&rbio->error, 0);
/*
* now that we've set rmw_locked, run through the
* bio list one last time and map the page pointers
*
* We don't cache full rbios because we're assuming
* the higher layers are unlikely to use this area of
* the disk again soon. If they do use it again,
* hopefully they will send another full bio.
*/
index_rbio_pages(rbio);
if (!rbio_is_full(rbio))
cache_rbio_pages(rbio);
else
clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
generate_pq_vertical(rbio, sectornr);
ret = rmw_assemble_write_bios(rbio, &bio_list);
if (ret < 0)
goto cleanup;
atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
while ((bio = bio_list_pop(&bio_list))) {
bio->bi_end_io = raid_write_end_io;
if (trace_raid56_write_stripe_enabled()) {
struct raid56_bio_trace_info trace_info = { 0 };
bio_get_trace_info(rbio, bio, &trace_info);
trace_raid56_write_stripe(rbio, bio, &trace_info);
}
submit_bio(bio);
}
return;
cleanup:
rbio_orig_end_io(rbio, BLK_STS_IOERR);
while ((bio = bio_list_pop(&bio_list)))
bio_put(bio);
}
/*
* helper to find the stripe number for a given bio. Used to figure out which
* stripe has failed. This expects the bio to correspond to a physical disk,
......@@ -1568,22 +1456,6 @@ static void submit_read_bios(struct btrfs_raid_bio *rbio,
}
}
static void raid56_bio_end_io(struct bio *bio)
{
struct btrfs_raid_bio *rbio = bio->bi_private;
if (bio->bi_status)
fail_bio_stripe(rbio, bio);
else
set_bio_pages_uptodate(rbio, bio);
bio_put(bio);
if (atomic_dec_and_test(&rbio->stripes_pending))
queue_work(rbio->bioc->fs_info->endio_raid56_workers,
&rbio->end_io_work);
}
static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list)
{
......@@ -1968,60 +1840,6 @@ static int recover_sectors(struct btrfs_raid_bio *rbio)
return ret;
}
/*
* all parity reconstruction happens here. We've read in everything
* we can find from the drives and this does the heavy lifting of
* sorting the good from the bad.
*/
static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
{
int ret;
ret = recover_sectors(rbio);
/*
* Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
* valid rbio which is consistent with ondisk content, thus such a
* valid rbio can be cached to avoid further disk reads.
*/
if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
/*
* - In case of two failures, where rbio->failb != -1:
*
* Do not cache this rbio since the above read reconstruction
* (raid6_datap_recov() or raid6_2data_recov()) may have
* changed some content of stripes which are not identical to
* on-disk content any more, otherwise, a later write/recover
* may steal stripe_pages from this rbio and end up with
* corruptions or rebuild failures.
*
* - In case of single failure, where rbio->failb == -1:
*
* Cache this rbio iff the above read reconstruction is
* executed without problems.
*/
if (!ret && rbio->failb < 0)
cache_rbio_pages(rbio);
else
clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
} else if (!ret) {
rbio->faila = -1;
rbio->failb = -1;
if (rbio->operation == BTRFS_RBIO_WRITE)
finish_rmw(rbio);
else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
finish_parity_scrub(rbio, 0);
else
BUG();
} else {
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}
}
static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list)
{
......@@ -2449,8 +2267,7 @@ static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
return 0;
}
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
int need_check)
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
{
struct btrfs_io_context *bioc = rbio->bioc;
const u32 sectorsize = bioc->fs_info->sectorsize;
......@@ -2493,7 +2310,7 @@ static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
p_sector.page = alloc_page(GFP_NOFS);
if (!p_sector.page)
goto cleanup;
return -ENOMEM;
p_sector.pgoff = 0;
p_sector.uptodate = 1;
......@@ -2503,7 +2320,7 @@ static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
if (!q_sector.page) {
__free_page(p_sector.page);
p_sector.page = NULL;
goto cleanup;
return -ENOMEM;
}
q_sector.pgoff = 0;
q_sector.uptodate = 1;
......@@ -2590,33 +2407,13 @@ static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
}
submit_write:
nr_data = bio_list_size(&bio_list);
if (!nr_data) {
/* Every parity is right */
rbio_orig_end_io(rbio, BLK_STS_OK);
return;
}
atomic_set(&rbio->stripes_pending, nr_data);
while ((bio = bio_list_pop(&bio_list))) {
bio->bi_end_io = raid_write_end_io;
if (trace_raid56_scrub_write_stripe_enabled()) {
struct raid56_bio_trace_info trace_info = { 0 };
bio_get_trace_info(rbio, bio, &trace_info);
trace_raid56_scrub_write_stripe(rbio, bio, &trace_info);
}
submit_bio(bio);
}
return;
submit_write_bios(rbio, &bio_list);
return 0;
cleanup:
rbio_orig_end_io(rbio, BLK_STS_IOERR);
while ((bio = bio_list_pop(&bio_list)))
bio_put(bio);
return ret;
}
static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
......@@ -2626,20 +2423,13 @@ static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
return 0;
}
/*
* While we're doing the parity check and repair, we could have errors
* in reading pages off the disk. This checks for errors and if we're
* not able to read the page it'll trigger parity reconstruction. The
* parity scrub will be finished after we've reconstructed the failed
* stripes
*/
static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
{
if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
goto cleanup;
if (rbio->faila >= 0 || rbio->failb >= 0) {
int dfail = 0, failp = -1;
int ret;
/* No error case should be already handled by the caller. */
ASSERT(rbio->faila >= 0 || rbio->failb >= 0);
if (is_data_stripe(rbio, rbio->faila))
dfail++;
......@@ -2657,16 +2447,14 @@ static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
* (In the case of RAID5, we can not repair anything)
*/
if (dfail > rbio->bioc->max_errors - 1)
goto cleanup;
return -EIO;
/*
* If all data is good, only parity is correctly, just
* repair the parity.
*/
if (dfail == 0) {
finish_parity_scrub(rbio, 0);
return;
}
if (dfail == 0)
return 0;
/*
* Here means we got one corrupted data stripe and one
......@@ -2675,36 +2463,11 @@ static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
* the data, or we can not repair the data stripe.
*/
if (failp != rbio->scrubp)
goto cleanup;
__raid_recover_end_io(rbio);
} else {
finish_parity_scrub(rbio, 1);
}
return;
cleanup:
rbio_orig_end_io(rbio, BLK_STS_IOERR);
}
/*
* end io for the read phase of the rmw cycle. All the bios here are physical
* stripe bios we've read from the disk so we can recalculate the parity of the
* stripe.
*
* This will usually kick off finish_rmw once all the bios are read in, but it
* may trigger parity reconstruction if we had any errors along the way
*/
static void raid56_parity_scrub_end_io_work(struct work_struct *work)
{
struct btrfs_raid_bio *rbio =
container_of(work, struct btrfs_raid_bio, end_io_work);
return -EIO;
/*
* This will normally call finish_rmw to start our write, but if there
* are any failed stripes we'll reconstruct from parity first
*/
validate_rbio_for_parity_scrub(rbio);
/* We have some corrupted sectors, need to repair them. */
ret = recover_sectors(rbio);
return ret;
}
static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio,
......@@ -2756,9 +2519,9 @@ static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio,
return ret;
}
static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
static int scrub_rbio(struct btrfs_raid_bio *rbio)
{
int bios_to_read = 0;
bool need_check = false;
struct bio_list bio_list;
int ret;
struct bio *bio;
......@@ -2774,61 +2537,59 @@ static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
if (ret < 0)
goto cleanup;
bios_to_read = bio_list_size(&bio_list);
if (!bios_to_read) {
submit_read_bios(rbio, &bio_list);
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
if (atomic_read(&rbio->error) > rbio->bioc->max_errors) {
ret = -EIO;
goto cleanup;
}
/*
* this can happen if others have merged with
* us, it means there is nothing left to read.
* But if there are missing devices it may not be
* safe to do the full stripe write yet.
* No error during read, can finish the scrub and need to verify the
* P/Q sectors;
*/
if (atomic_read(&rbio->error) == 0) {
need_check = true;
goto finish;
}
/* We have some failures, need to recover the failed sectors first. */
ret = recover_scrub_rbio(rbio);
if (ret < 0)
goto cleanup;
finish:
/*
* The bioc may be freed once we submit the last bio. Make sure not to
* touch it after that.
* We have every sector properly prepared. Can finish the scrub
* and writeback the good content.
*/
atomic_set(&rbio->stripes_pending, bios_to_read);
INIT_WORK(&rbio->end_io_work, raid56_parity_scrub_end_io_work);
while ((bio = bio_list_pop(&bio_list))) {
bio->bi_end_io = raid56_bio_end_io;
if (trace_raid56_scrub_read_enabled()) {
struct raid56_bio_trace_info trace_info = { 0 };
bio_get_trace_info(rbio, bio, &trace_info);
trace_raid56_scrub_read(rbio, bio, &trace_info);
}
submit_bio(bio);
}
/* the actual write will happen once the reads are done */
return;
ret = finish_parity_scrub(rbio, need_check);
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
ret = -EIO;
return ret;
cleanup:
rbio_orig_end_io(rbio, BLK_STS_IOERR);
while ((bio = bio_list_pop(&bio_list)))
bio_put(bio);
return;
finish:
validate_rbio_for_parity_scrub(rbio);
return ret;
}
static void scrub_parity_work(struct work_struct *work)
static void scrub_rbio_work_locked(struct work_struct *work)
{
struct btrfs_raid_bio *rbio;
int ret;
rbio = container_of(work, struct btrfs_raid_bio, work);
raid56_parity_scrub_stripe(rbio);
ret = scrub_rbio(rbio);
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}
void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
if (!lock_stripe_add(rbio))
start_async_work(rbio, scrub_parity_work);
start_async_work(rbio, scrub_rbio_work_locked);
}
/* The following code is used for dev replace of a missing RAID 5/6 device. */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册