提交 5c54f5b9 编写于 作者: J Johannes Weiner 提交者: Linus Torvalds

sched: loadavg: make calc_load_n() public

It's going to be used in a later patch. Keep the churn separate.

Link: http://lkml.kernel.org/r/20180828172258.3185-6-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org>
Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: NSuren Baghdasaryan <surenb@google.com>
Tested-by: NDaniel Drake <drake@endlessm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
上级 8508cf3f
......@@ -37,6 +37,9 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active)
return newload / FIXED_1;
}
extern unsigned long calc_load_n(unsigned long load, unsigned long exp,
unsigned long active, unsigned int n);
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
......
......@@ -91,6 +91,75 @@ long calc_load_fold_active(struct rq *this_rq, long adjust)
return delta;
}
/**
* fixed_power_int - compute: x^n, in O(log n) time
*
* @x: base of the power
* @frac_bits: fractional bits of @x
* @n: power to raise @x to.
*
* By exploiting the relation between the definition of the natural power
* function: x^n := x*x*...*x (x multiplied by itself for n times), and
* the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
* (where: n_i \elem {0, 1}, the binary vector representing n),
* we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
* of course trivially computable in O(log_2 n), the length of our binary
* vector.
*/
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
unsigned long result = 1UL << frac_bits;
if (n) {
for (;;) {
if (n & 1) {
result *= x;
result += 1UL << (frac_bits - 1);
result >>= frac_bits;
}
n >>= 1;
if (!n)
break;
x *= x;
x += 1UL << (frac_bits - 1);
x >>= frac_bits;
}
}
return result;
}
/*
* a1 = a0 * e + a * (1 - e)
*
* a2 = a1 * e + a * (1 - e)
* = (a0 * e + a * (1 - e)) * e + a * (1 - e)
* = a0 * e^2 + a * (1 - e) * (1 + e)
*
* a3 = a2 * e + a * (1 - e)
* = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
* = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
*
* ...
*
* an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
* = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
* = a0 * e^n + a * (1 - e^n)
*
* [1] application of the geometric series:
*
* n 1 - x^(n+1)
* S_n := \Sum x^i = -------------
* i=0 1 - x
*/
unsigned long
calc_load_n(unsigned long load, unsigned long exp,
unsigned long active, unsigned int n)
{
return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* Handle NO_HZ for the global load-average.
......@@ -210,75 +279,6 @@ static long calc_load_nohz_fold(void)
return delta;
}
/**
* fixed_power_int - compute: x^n, in O(log n) time
*
* @x: base of the power
* @frac_bits: fractional bits of @x
* @n: power to raise @x to.
*
* By exploiting the relation between the definition of the natural power
* function: x^n := x*x*...*x (x multiplied by itself for n times), and
* the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
* (where: n_i \elem {0, 1}, the binary vector representing n),
* we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
* of course trivially computable in O(log_2 n), the length of our binary
* vector.
*/
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
unsigned long result = 1UL << frac_bits;
if (n) {
for (;;) {
if (n & 1) {
result *= x;
result += 1UL << (frac_bits - 1);
result >>= frac_bits;
}
n >>= 1;
if (!n)
break;
x *= x;
x += 1UL << (frac_bits - 1);
x >>= frac_bits;
}
}
return result;
}
/*
* a1 = a0 * e + a * (1 - e)
*
* a2 = a1 * e + a * (1 - e)
* = (a0 * e + a * (1 - e)) * e + a * (1 - e)
* = a0 * e^2 + a * (1 - e) * (1 + e)
*
* a3 = a2 * e + a * (1 - e)
* = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
* = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
*
* ...
*
* an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
* = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
* = a0 * e^n + a * (1 - e^n)
*
* [1] application of the geometric series:
*
* n 1 - x^(n+1)
* S_n := \Sum x^i = -------------
* i=0 1 - x
*/
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
unsigned long active, unsigned int n)
{
return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}
/*
* NO_HZ can leave us missing all per-CPU ticks calling
* calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册