提交 59dfa75e 编写于 作者: E Eric Tremblay 提交者: Guenter Roeck

hwmon: Add driver for Texas Instruments TMP512/513 sensor chips.

TI's TMP512/513 are I2C/SMBus system monitor chips. These chips
monitor the supply voltage, supply current, power consumption
and provide one local and up to three (TMP513) remote temperature sensors.

It has been tested using a TI TMP513 development kit (TMP513EVM)
Signed-off-by: NEric Tremblay <etremblay@distech-controls.com>
Link: https://lore.kernel.org/r/20191112223001.20844-3-etremblay@distech-controls.comSigned-off-by: NGuenter Roeck <linux@roeck-us.net>
上级 17fe2983
......@@ -155,6 +155,7 @@ Hardware Monitoring Kernel Drivers
tmp108
tmp401
tmp421
tmp513
tps40422
twl4030-madc-hwmon
ucd9000
......
.. SPDX-License-Identifier: GPL-2.0
Kernel driver tmp513
====================
Supported chips:
* Texas Instruments TMP512
Prefix: 'tmp512'
Datasheet: http://www.ti.com/lit/ds/symlink/tmp512.pdf
* Texas Instruments TMP513
Prefix: 'tmp513'
Datasheet: http://www.ti.com/lit/ds/symlink/tmp513.pdf
Authors:
Eric Tremblay <etremblay@distech-controls.com>
Description
-----------
This driver implements support for Texas Instruments TMP512, and TMP513.
The TMP512 (dual-channel) and TMP513 (triple-channel) are system monitors
that include remote sensors, a local temperature sensor, and a high-side current
shunt monitor. These system monitors have the capability of measuring remote
temperatures, on-chip temperatures, and system voltage/power/current
consumption.
The temperatures are measured in degrees Celsius with a range of
-40 to + 125 degrees with a resolution of 0.0625 degree C.
For hysteresis value, only the first channel is writable. Writing to it
will affect all other values since each channels are sharing the same
hysteresis value. The hysteresis is in degrees Celsius with a range of
0 to 127.5 degrees with a resolution of 0.5 degree.
The driver exports the temperature values via the following sysfs files:
**temp[1-4]_input**
**temp[1-4]_crit**
**temp[1-4]_crit_alarm**
**temp[1-4]_crit_hyst**
The driver read the shunt voltage from the chip and convert it to current.
The readable range depends on the "ti,pga-gain" property (default to 8) and the
shunt resistor value. The value resolution will be equal to 10uV/Rshunt.
The driver exports the shunt currents values via the following sysFs files:
**curr1_input**
**curr1_lcrit**
**curr1_lcrit_alarm**
**curr1_crit**
**curr1_crit_alarm**
The bus voltage range is read from the chip with a resolution of 4mV. The chip
can be configurable in two different range (32V or 16V) using the
ti,bus-range-microvolt property in the devicetree.
The driver exports the bus voltage values via the following sysFs files:
**in0_input**
**in0_lcrit**
**in0_lcrit_alarm**
**in0_crit**
**in0_crit_alarm**
The bus power and bus currents range and resolution depends on the calibration
register value. Those values are calculate by the hardware using those
formulas:
Current = (ShuntVoltage * CalibrationRegister) / 4096
Power = (Current * BusVoltage) / 5000
The driver exports the bus current and bus power values via the following
sysFs files:
**curr2_input**
**power1_input**
**power1_crit**
**power1_crit_alarm**
The calibration process follow the procedure of the datasheet (without overflow)
and depend on the shunt resistor value and the pga_gain value.
......@@ -16385,6 +16385,13 @@ S: Maintained
F: Documentation/hwmon/tmp401.rst
F: drivers/hwmon/tmp401.c
TMP513 HARDWARE MONITOR DRIVER
M: Eric Tremblay <etremblay@distech-controls.com>
L: linux-hwmon@vger.kernel.org
S: Maintained
F: Documentation/hwmon/tmp513.rst
F: drivers/hwmon/tmp513.c
TMPFS (SHMEM FILESYSTEM)
M: Hugh Dickins <hughd@google.com>
L: linux-mm@kvack.org
......
......@@ -1735,6 +1735,16 @@ config SENSORS_TMP421
This driver can also be built as a module. If so, the module
will be called tmp421.
config SENSORS_TMP513
tristate "Texas Instruments TMP513 and compatibles"
depends on I2C
help
If you say yes here you get support for Texas Instruments TMP512,
and TMP513 temperature and power supply sensor chips.
This driver can also be built as a module. If so, the module
will be called tmp513.
config SENSORS_VEXPRESS
tristate "Versatile Express"
depends on VEXPRESS_CONFIG
......
......@@ -169,6 +169,7 @@ obj-$(CONFIG_SENSORS_TMP103) += tmp103.o
obj-$(CONFIG_SENSORS_TMP108) += tmp108.o
obj-$(CONFIG_SENSORS_TMP401) += tmp401.o
obj-$(CONFIG_SENSORS_TMP421) += tmp421.o
obj-$(CONFIG_SENSORS_TMP513) += tmp513.o
obj-$(CONFIG_SENSORS_VEXPRESS) += vexpress-hwmon.o
obj-$(CONFIG_SENSORS_VIA_CPUTEMP)+= via-cputemp.o
obj-$(CONFIG_SENSORS_VIA686A) += via686a.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Texas Instruments TMP512, TMP513 power monitor chips
*
* TMP513:
* Thermal/Power Management with Triple Remote and
* Local Temperature Sensor and Current Shunt Monitor
* Datasheet: http://www.ti.com/lit/gpn/tmp513
*
* TMP512:
* Thermal/Power Management with Dual Remote
* and Local Temperature Sensor and Current Shunt Monitor
* Datasheet: http://www.ti.com/lit/gpn/tmp512
*
* Copyright (C) 2019 Eric Tremblay <etremblay@distech-controls.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*/
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/util_macros.h>
// Common register definition
#define TMP51X_SHUNT_CONFIG 0x00
#define TMP51X_TEMP_CONFIG 0x01
#define TMP51X_STATUS 0x02
#define TMP51X_SMBUS_ALERT 0x03
#define TMP51X_SHUNT_CURRENT_RESULT 0x04
#define TMP51X_BUS_VOLTAGE_RESULT 0x05
#define TMP51X_POWER_RESULT 0x06
#define TMP51X_BUS_CURRENT_RESULT 0x07
#define TMP51X_LOCAL_TEMP_RESULT 0x08
#define TMP51X_REMOTE_TEMP_RESULT_1 0x09
#define TMP51X_REMOTE_TEMP_RESULT_2 0x0A
#define TMP51X_SHUNT_CURRENT_H_LIMIT 0x0C
#define TMP51X_SHUNT_CURRENT_L_LIMIT 0x0D
#define TMP51X_BUS_VOLTAGE_H_LIMIT 0x0E
#define TMP51X_BUS_VOLTAGE_L_LIMIT 0x0F
#define TMP51X_POWER_LIMIT 0x10
#define TMP51X_LOCAL_TEMP_LIMIT 0x11
#define TMP51X_REMOTE_TEMP_LIMIT_1 0x12
#define TMP51X_REMOTE_TEMP_LIMIT_2 0x13
#define TMP51X_SHUNT_CALIBRATION 0x15
#define TMP51X_N_FACTOR_AND_HYST_1 0x16
#define TMP51X_N_FACTOR_2 0x17
#define TMP51X_MAN_ID_REG 0xFE
#define TMP51X_DEVICE_ID_REG 0xFF
// TMP513 specific register definition
#define TMP513_REMOTE_TEMP_RESULT_3 0x0B
#define TMP513_REMOTE_TEMP_LIMIT_3 0x14
#define TMP513_N_FACTOR_3 0x18
// Common attrs, and NULL
#define TMP51X_MANUFACTURER_ID 0x55FF
#define TMP512_DEVICE_ID 0x22FF
#define TMP513_DEVICE_ID 0x23FF
// Default config
#define TMP51X_SHUNT_CONFIG_DEFAULT 0x399F
#define TMP51X_SHUNT_VALUE_DEFAULT 1000
#define TMP51X_VBUS_RANGE_DEFAULT TMP51X_VBUS_RANGE_32V
#define TMP51X_PGA_DEFAULT 8
#define TMP51X_MAX_REGISTER_ADDR 0xFF
#define TMP512_TEMP_CONFIG_DEFAULT 0xBF80
#define TMP513_TEMP_CONFIG_DEFAULT 0xFF80
// Mask and shift
#define CURRENT_SENSE_VOLTAGE_320_MASK 0x1800
#define CURRENT_SENSE_VOLTAGE_160_MASK 0x1000
#define CURRENT_SENSE_VOLTAGE_80_MASK 0x0800
#define CURRENT_SENSE_VOLTAGE_40_MASK 0
#define TMP51X_BUS_VOLTAGE_MASK 0x2000
#define TMP51X_NFACTOR_MASK 0xFF00
#define TMP51X_HYST_MASK 0x00FF
#define TMP51X_BUS_VOLTAGE_SHIFT 3
#define TMP51X_TEMP_SHIFT 3
// Alarms
#define TMP51X_SHUNT_CURRENT_H_LIMIT_POS 15
#define TMP51X_SHUNT_CURRENT_L_LIMIT_POS 14
#define TMP51X_BUS_VOLTAGE_H_LIMIT_POS 13
#define TMP51X_BUS_VOLTAGE_L_LIMIT_POS 12
#define TMP51X_POWER_LIMIT_POS 11
#define TMP51X_LOCAL_TEMP_LIMIT_POS 10
#define TMP51X_REMOTE_TEMP_LIMIT_1_POS 9
#define TMP51X_REMOTE_TEMP_LIMIT_2_POS 8
#define TMP513_REMOTE_TEMP_LIMIT_3_POS 7
#define TMP51X_VBUS_RANGE_32V 32000000
#define TMP51X_VBUS_RANGE_16V 16000000
// Max and Min value
#define MAX_BUS_VOLTAGE_32_LIMIT 32764
#define MAX_BUS_VOLTAGE_16_LIMIT 16382
// Max possible value is -256 to +256 but datasheet indicated -40 to 125.
#define MAX_TEMP_LIMIT 125000
#define MIN_TEMP_LIMIT -40000
#define MAX_TEMP_HYST 127500
static const u8 TMP51X_TEMP_INPUT[4] = {
TMP51X_LOCAL_TEMP_RESULT,
TMP51X_REMOTE_TEMP_RESULT_1,
TMP51X_REMOTE_TEMP_RESULT_2,
TMP513_REMOTE_TEMP_RESULT_3
};
static const u8 TMP51X_TEMP_CRIT[4] = {
TMP51X_LOCAL_TEMP_LIMIT,
TMP51X_REMOTE_TEMP_LIMIT_1,
TMP51X_REMOTE_TEMP_LIMIT_2,
TMP513_REMOTE_TEMP_LIMIT_3
};
static const u8 TMP51X_TEMP_CRIT_ALARM[4] = {
TMP51X_LOCAL_TEMP_LIMIT_POS,
TMP51X_REMOTE_TEMP_LIMIT_1_POS,
TMP51X_REMOTE_TEMP_LIMIT_2_POS,
TMP513_REMOTE_TEMP_LIMIT_3_POS
};
static const u8 TMP51X_TEMP_CRIT_HYST[4] = {
TMP51X_N_FACTOR_AND_HYST_1,
TMP51X_N_FACTOR_AND_HYST_1,
TMP51X_N_FACTOR_AND_HYST_1,
TMP51X_N_FACTOR_AND_HYST_1
};
static const u8 TMP51X_CURR_INPUT[2] = {
TMP51X_SHUNT_CURRENT_RESULT,
TMP51X_BUS_CURRENT_RESULT
};
static struct regmap_config tmp51x_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.max_register = TMP51X_MAX_REGISTER_ADDR,
};
enum tmp51x_ids {
tmp512, tmp513
};
struct tmp51x_data {
u16 shunt_config;
u16 pga_gain;
u32 vbus_range_uvolt;
u16 temp_config;
u32 nfactor[3];
u32 shunt_uohms;
u32 curr_lsb_ua;
u32 pwr_lsb_uw;
enum tmp51x_ids id;
struct regmap *regmap;
};
// Set the shift based on the gain 8=4, 4=3, 2=2, 1=1
static inline u8 tmp51x_get_pga_shift(struct tmp51x_data *data)
{
return 5 - ffs(data->pga_gain);
}
static int tmp51x_get_value(struct tmp51x_data *data, u8 reg, u8 pos,
unsigned int regval, long *val)
{
switch (reg) {
case TMP51X_STATUS:
*val = (regval >> pos) & 1;
break;
case TMP51X_SHUNT_CURRENT_RESULT:
case TMP51X_SHUNT_CURRENT_H_LIMIT:
case TMP51X_SHUNT_CURRENT_L_LIMIT:
/*
* The valus is read in voltage in the chip but reported as
* current to the user.
* 2's compliment number shifted by one to four depending
* on the pga gain setting. 1lsb = 10uV
*/
*val = sign_extend32(regval, 17 - tmp51x_get_pga_shift(data));
*val = DIV_ROUND_CLOSEST(*val * 10000, data->shunt_uohms);
break;
case TMP51X_BUS_VOLTAGE_RESULT:
case TMP51X_BUS_VOLTAGE_H_LIMIT:
case TMP51X_BUS_VOLTAGE_L_LIMIT:
// 1lsb = 4mV
*val = (regval >> TMP51X_BUS_VOLTAGE_SHIFT) * 4;
break;
case TMP51X_POWER_RESULT:
case TMP51X_POWER_LIMIT:
// Power = (current * BusVoltage) / 5000
*val = regval * data->pwr_lsb_uw;
break;
case TMP51X_BUS_CURRENT_RESULT:
// Current = (ShuntVoltage * CalibrationRegister) / 4096
*val = sign_extend32(regval, 16) * data->curr_lsb_ua;
*val = DIV_ROUND_CLOSEST(*val, 1000);
break;
case TMP51X_LOCAL_TEMP_RESULT:
case TMP51X_REMOTE_TEMP_RESULT_1:
case TMP51X_REMOTE_TEMP_RESULT_2:
case TMP513_REMOTE_TEMP_RESULT_3:
case TMP51X_LOCAL_TEMP_LIMIT:
case TMP51X_REMOTE_TEMP_LIMIT_1:
case TMP51X_REMOTE_TEMP_LIMIT_2:
case TMP513_REMOTE_TEMP_LIMIT_3:
// 1lsb = 0.0625 degrees centigrade
*val = sign_extend32(regval, 16) >> TMP51X_TEMP_SHIFT;
*val = DIV_ROUND_CLOSEST(*val * 625, 10);
break;
case TMP51X_N_FACTOR_AND_HYST_1:
// 1lsb = 0.5 degrees centigrade
*val = (regval & TMP51X_HYST_MASK) * 500;
break;
default:
// Programmer goofed
WARN_ON_ONCE(1);
*val = 0;
return -EOPNOTSUPP;
}
return 0;
}
static int tmp51x_set_value(struct tmp51x_data *data, u8 reg, long val)
{
int regval, max_val;
u32 mask = 0;
switch (reg) {
case TMP51X_SHUNT_CURRENT_H_LIMIT:
case TMP51X_SHUNT_CURRENT_L_LIMIT:
/*
* The user enter current value and we convert it to
* voltage. 1lsb = 10uV
*/
val = DIV_ROUND_CLOSEST(val * data->shunt_uohms, 10000);
max_val = U16_MAX >> tmp51x_get_pga_shift(data);
regval = clamp_val(val, -max_val, max_val);
break;
case TMP51X_BUS_VOLTAGE_H_LIMIT:
case TMP51X_BUS_VOLTAGE_L_LIMIT:
// 1lsb = 4mV
max_val = (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_32V) ?
MAX_BUS_VOLTAGE_32_LIMIT : MAX_BUS_VOLTAGE_16_LIMIT;
val = clamp_val(DIV_ROUND_CLOSEST(val, 4), 0, max_val);
regval = val << TMP51X_BUS_VOLTAGE_SHIFT;
break;
case TMP51X_POWER_LIMIT:
regval = clamp_val(DIV_ROUND_CLOSEST(val, data->pwr_lsb_uw), 0,
U16_MAX);
break;
case TMP51X_LOCAL_TEMP_LIMIT:
case TMP51X_REMOTE_TEMP_LIMIT_1:
case TMP51X_REMOTE_TEMP_LIMIT_2:
case TMP513_REMOTE_TEMP_LIMIT_3:
// 1lsb = 0.0625 degrees centigrade
val = clamp_val(val, MIN_TEMP_LIMIT, MAX_TEMP_LIMIT);
regval = DIV_ROUND_CLOSEST(val * 10, 625) << TMP51X_TEMP_SHIFT;
break;
case TMP51X_N_FACTOR_AND_HYST_1:
// 1lsb = 0.5 degrees centigrade
val = clamp_val(val, 0, MAX_TEMP_HYST);
regval = DIV_ROUND_CLOSEST(val, 500);
mask = TMP51X_HYST_MASK;
break;
default:
// Programmer goofed
WARN_ON_ONCE(1);
return -EOPNOTSUPP;
}
if (mask == 0)
return regmap_write(data->regmap, reg, regval);
else
return regmap_update_bits(data->regmap, reg, mask, regval);
}
static u8 tmp51x_get_reg(enum hwmon_sensor_types type, u32 attr, int channel)
{
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
return TMP51X_TEMP_INPUT[channel];
case hwmon_temp_crit_alarm:
return TMP51X_STATUS;
case hwmon_temp_crit:
return TMP51X_TEMP_CRIT[channel];
case hwmon_temp_crit_hyst:
return TMP51X_TEMP_CRIT_HYST[channel];
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
return TMP51X_BUS_VOLTAGE_RESULT;
case hwmon_in_lcrit_alarm:
case hwmon_in_crit_alarm:
return TMP51X_STATUS;
case hwmon_in_lcrit:
return TMP51X_BUS_VOLTAGE_L_LIMIT;
case hwmon_in_crit:
return TMP51X_BUS_VOLTAGE_H_LIMIT;
}
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_input:
return TMP51X_CURR_INPUT[channel];
case hwmon_curr_lcrit_alarm:
case hwmon_curr_crit_alarm:
return TMP51X_STATUS;
case hwmon_curr_lcrit:
return TMP51X_SHUNT_CURRENT_L_LIMIT;
case hwmon_curr_crit:
return TMP51X_SHUNT_CURRENT_H_LIMIT;
}
break;
case hwmon_power:
switch (attr) {
case hwmon_power_input:
return TMP51X_POWER_RESULT;
case hwmon_power_crit_alarm:
return TMP51X_STATUS;
case hwmon_power_crit:
return TMP51X_POWER_LIMIT;
}
break;
default:
break;
}
return 0;
}
static u8 tmp51x_get_status_pos(enum hwmon_sensor_types type, u32 attr,
int channel)
{
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_crit_alarm:
return TMP51X_TEMP_CRIT_ALARM[channel];
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_lcrit_alarm:
return TMP51X_BUS_VOLTAGE_L_LIMIT_POS;
case hwmon_in_crit_alarm:
return TMP51X_BUS_VOLTAGE_H_LIMIT_POS;
}
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_lcrit_alarm:
return TMP51X_SHUNT_CURRENT_L_LIMIT_POS;
case hwmon_curr_crit_alarm:
return TMP51X_SHUNT_CURRENT_H_LIMIT_POS;
}
break;
case hwmon_power:
switch (attr) {
case hwmon_power_crit_alarm:
return TMP51X_POWER_LIMIT_POS;
}
break;
default:
break;
}
return 0;
}
static int tmp51x_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct tmp51x_data *data = dev_get_drvdata(dev);
int ret;
u32 regval;
u8 pos = 0, reg = 0;
reg = tmp51x_get_reg(type, attr, channel);
if (reg == 0)
return -EOPNOTSUPP;
if (reg == TMP51X_STATUS)
pos = tmp51x_get_status_pos(type, attr, channel);
ret = regmap_read(data->regmap, reg, &regval);
if (ret < 0)
return ret;
return tmp51x_get_value(data, reg, pos, regval, val);
}
static int tmp51x_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
u8 reg = 0;
reg = tmp51x_get_reg(type, attr, channel);
if (reg == 0)
return -EOPNOTSUPP;
return tmp51x_set_value(dev_get_drvdata(dev), reg, val);
}
static umode_t tmp51x_is_visible(const void *_data,
enum hwmon_sensor_types type, u32 attr,
int channel)
{
const struct tmp51x_data *data = _data;
switch (type) {
case hwmon_temp:
if (data->id == tmp512 && channel == 4)
return 0;
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_crit_alarm:
return 0444;
case hwmon_temp_crit:
return 0644;
case hwmon_temp_crit_hyst:
if (channel == 0)
return 0644;
return 0444;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
case hwmon_in_lcrit_alarm:
case hwmon_in_crit_alarm:
return 0444;
case hwmon_in_lcrit:
case hwmon_in_crit:
return 0644;
}
break;
case hwmon_curr:
if (!data->shunt_uohms)
return 0;
switch (attr) {
case hwmon_curr_input:
case hwmon_curr_lcrit_alarm:
case hwmon_curr_crit_alarm:
return 0444;
case hwmon_curr_lcrit:
case hwmon_curr_crit:
return 0644;
}
break;
case hwmon_power:
if (!data->shunt_uohms)
return 0;
switch (attr) {
case hwmon_power_input:
case hwmon_power_crit_alarm:
return 0444;
case hwmon_power_crit:
return 0644;
}
break;
default:
break;
}
return 0;
}
static const struct hwmon_channel_info *tmp51x_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM |
HWMON_T_CRIT_HYST),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LCRIT | HWMON_I_LCRIT_ALARM |
HWMON_I_CRIT | HWMON_I_CRIT_ALARM),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LCRIT | HWMON_C_LCRIT_ALARM |
HWMON_C_CRIT | HWMON_C_CRIT_ALARM,
HWMON_C_INPUT),
HWMON_CHANNEL_INFO(power,
HWMON_P_INPUT | HWMON_P_CRIT | HWMON_P_CRIT_ALARM),
NULL
};
static const struct hwmon_ops tmp51x_hwmon_ops = {
.is_visible = tmp51x_is_visible,
.read = tmp51x_read,
.write = tmp51x_write,
};
static const struct hwmon_chip_info tmp51x_chip_info = {
.ops = &tmp51x_hwmon_ops,
.info = tmp51x_info,
};
/*
* Calibrate the tmp51x following the datasheet method
*/
static int tmp51x_calibrate(struct tmp51x_data *data)
{
int vshunt_max = data->pga_gain * 40;
u64 max_curr_ma;
u32 div;
/*
* If shunt_uohms is equal to 0, the calibration should be set to 0.
* The consequence will be that the current and power measurement engine
* of the sensor will not work. Temperature and voltage sensing will
* continue to work.
*/
if (data->shunt_uohms == 0)
return regmap_write(data->regmap, TMP51X_SHUNT_CALIBRATION, 0);
max_curr_ma = DIV_ROUND_CLOSEST_ULL(vshunt_max * 1000 * 1000,
data->shunt_uohms);
/*
* Calculate the minimal bit resolution for the current and the power.
* Those values will be used during register interpretation.
*/
data->curr_lsb_ua = DIV_ROUND_CLOSEST_ULL(max_curr_ma * 1000, 32767);
data->pwr_lsb_uw = 20 * data->curr_lsb_ua;
div = DIV_ROUND_CLOSEST_ULL(data->curr_lsb_ua * data->shunt_uohms,
1000 * 1000);
return regmap_write(data->regmap, TMP51X_SHUNT_CALIBRATION,
DIV_ROUND_CLOSEST(40960, div));
}
/*
* Initialize the configuration and calibration registers.
*/
static int tmp51x_init(struct tmp51x_data *data)
{
unsigned int regval;
int ret = regmap_write(data->regmap, TMP51X_SHUNT_CONFIG,
data->shunt_config);
if (ret < 0)
return ret;
ret = regmap_write(data->regmap, TMP51X_TEMP_CONFIG, data->temp_config);
if (ret < 0)
return ret;
// nFactor configuration
ret = regmap_update_bits(data->regmap, TMP51X_N_FACTOR_AND_HYST_1,
TMP51X_NFACTOR_MASK, data->nfactor[0] << 8);
if (ret < 0)
return ret;
ret = regmap_write(data->regmap, TMP51X_N_FACTOR_2,
data->nfactor[1] << 8);
if (ret < 0)
return ret;
if (data->id == tmp513) {
ret = regmap_write(data->regmap, TMP513_N_FACTOR_3,
data->nfactor[2] << 8);
if (ret < 0)
return ret;
}
ret = tmp51x_calibrate(data);
if (ret < 0)
return ret;
// Read the status register before using as the datasheet propose
return regmap_read(data->regmap, TMP51X_STATUS, &regval);
}
static const struct i2c_device_id tmp51x_id[] = {
{ "tmp512", tmp512 },
{ "tmp513", tmp513 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tmp51x_id);
static const struct of_device_id tmp51x_of_match[] = {
{
.compatible = "ti,tmp512",
.data = (void *)tmp512
},
{
.compatible = "ti,tmp513",
.data = (void *)tmp513
},
{ },
};
MODULE_DEVICE_TABLE(of, tmp51x_of_match);
static int tmp51x_vbus_range_to_reg(struct device *dev,
struct tmp51x_data *data)
{
if (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_32V) {
data->shunt_config |= TMP51X_BUS_VOLTAGE_MASK;
} else if (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_16V) {
data->shunt_config &= ~TMP51X_BUS_VOLTAGE_MASK;
} else {
dev_err(dev, "ti,bus-range-microvolt is invalid: %u\n",
data->vbus_range_uvolt);
return -EINVAL;
}
return 0;
}
static int tmp51x_pga_gain_to_reg(struct device *dev, struct tmp51x_data *data)
{
if (data->pga_gain == 8) {
data->shunt_config |= CURRENT_SENSE_VOLTAGE_320_MASK;
} else if (data->pga_gain == 4) {
data->shunt_config |= CURRENT_SENSE_VOLTAGE_160_MASK;
} else if (data->pga_gain == 2) {
data->shunt_config |= CURRENT_SENSE_VOLTAGE_80_MASK;
} else if (data->pga_gain == 1) {
data->shunt_config |= CURRENT_SENSE_VOLTAGE_40_MASK;
} else {
dev_err(dev, "ti,pga-gain is invalid: %u\n", data->pga_gain);
return -EINVAL;
}
return 0;
}
static int tmp51x_read_properties(struct device *dev, struct tmp51x_data *data)
{
int ret;
u32 nfactor[3];
u32 val;
ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms", &val);
data->shunt_uohms = (ret >= 0) ? val : TMP51X_SHUNT_VALUE_DEFAULT;
ret = device_property_read_u32(dev, "ti,bus-range-microvolt", &val);
data->vbus_range_uvolt = (ret >= 0) ? val : TMP51X_VBUS_RANGE_DEFAULT;
ret = tmp51x_vbus_range_to_reg(dev, data);
if (ret < 0)
return ret;
ret = device_property_read_u32(dev, "ti,pga-gain", &val);
data->pga_gain = (ret >= 0) ? val : TMP51X_PGA_DEFAULT;
ret = tmp51x_pga_gain_to_reg(dev, data);
if (ret < 0)
return ret;
ret = device_property_read_u32_array(dev, "ti,nfactor", nfactor,
(data->id == tmp513) ? 3 : 2);
if (ret >= 0)
memcpy(data->nfactor, nfactor, (data->id == tmp513) ? 3 : 2);
// Check if shunt value is compatible with pga-gain
if (data->shunt_uohms > data->pga_gain * 40 * 1000 * 1000) {
dev_err(dev, "shunt-resistor: %u too big for pga_gain: %u\n",
data->shunt_uohms, data->pga_gain);
return -EINVAL;
}
return 0;
}
static void tmp51x_use_default(struct tmp51x_data *data)
{
data->vbus_range_uvolt = TMP51X_VBUS_RANGE_DEFAULT;
data->pga_gain = TMP51X_PGA_DEFAULT;
data->shunt_uohms = TMP51X_SHUNT_VALUE_DEFAULT;
}
static int tmp51x_configure(struct device *dev, struct tmp51x_data *data)
{
data->shunt_config = TMP51X_SHUNT_CONFIG_DEFAULT;
data->temp_config = (data->id == tmp513) ?
TMP513_TEMP_CONFIG_DEFAULT : TMP512_TEMP_CONFIG_DEFAULT;
if (dev->of_node)
return tmp51x_read_properties(dev, data);
tmp51x_use_default(data);
return 0;
}
static int tmp51x_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct tmp51x_data *data;
struct device *hwmon_dev;
int ret;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
if (client->dev.of_node)
data->id = (enum tmp51x_ids)device_get_match_data(&client->dev);
else
data->id = id->driver_data;
ret = tmp51x_configure(dev, data);
if (ret < 0) {
dev_err(dev, "error configuring the device: %d\n", ret);
return ret;
}
data->regmap = devm_regmap_init_i2c(client, &tmp51x_regmap_config);
if (IS_ERR(data->regmap)) {
dev_err(dev, "failed to allocate register map\n");
return PTR_ERR(data->regmap);
}
ret = tmp51x_init(data);
if (ret < 0) {
dev_err(dev, "error configuring the device: %d\n", ret);
return -ENODEV;
}
hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
data,
&tmp51x_chip_info,
NULL);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
dev_dbg(dev, "power monitor %s\n", id->name);
return 0;
}
static struct i2c_driver tmp51x_driver = {
.driver = {
.name = "tmp51x",
.of_match_table = of_match_ptr(tmp51x_of_match),
},
.probe = tmp51x_probe,
.id_table = tmp51x_id,
};
module_i2c_driver(tmp51x_driver);
MODULE_AUTHOR("Eric Tremblay <etremblay@distechcontrols.com>");
MODULE_DESCRIPTION("tmp51x driver");
MODULE_LICENSE("GPL");
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册