diff --git a/drivers/staging/vme/bridges/vme_ca91cx42.c b/drivers/staging/vme/bridges/vme_ca91cx42.c index 06bd793c52b5e82d100e0e855c89e2821d6db29f..4d745623211bbe815871cc856cb835bb3bb7e6f9 100644 --- a/drivers/staging/vme/bridges/vme_ca91cx42.c +++ b/drivers/staging/vme/bridges/vme_ca91cx42.c @@ -848,12 +848,57 @@ ssize_t ca91cx42_master_read(struct vme_master_resource *image, void *buf, size_t count, loff_t offset) { ssize_t retval; + void *addr = image->kern_base + offset; + unsigned int done = 0; + unsigned int count32; + + if (count == 0) + return 0; spin_lock(&(image->lock)); - memcpy_fromio(buf, image->kern_base + offset, (unsigned int)count); - retval = count; + /* The following code handles VME address alignment problem + * in order to assure the maximal data width cycle. + * We cannot use memcpy_xxx directly here because it + * may cut data transfer in 8-bits cycles, thus making + * D16 cycle impossible. + * From the other hand, the bridge itself assures that + * maximal configured data cycle is used and splits it + * automatically for non-aligned addresses. + */ + if ((int)addr & 0x1) { + *(u8 *)buf = ioread8(addr); + done += 1; + if (done == count) + goto out; + } + if ((int)addr & 0x2) { + if ((count - done) < 2) { + *(u8 *)(buf + done) = ioread8(addr + done); + done += 1; + goto out; + } else { + *(u16 *)(buf + done) = ioread16(addr + done); + done += 2; + } + } + count32 = (count - done) & ~0x3; + if (count32 > 0) { + memcpy_fromio(buf + done, addr + done, (unsigned int)count); + done += count32; + } + + if ((count - done) & 0x2) { + *(u16 *)(buf + done) = ioread16(addr + done); + done += 2; + } + if ((count - done) & 0x1) { + *(u8 *)(buf + done) = ioread8(addr + done); + done += 1; + } +out: + retval = count; spin_unlock(&(image->lock)); return retval; @@ -862,15 +907,54 @@ ssize_t ca91cx42_master_read(struct vme_master_resource *image, void *buf, ssize_t ca91cx42_master_write(struct vme_master_resource *image, void *buf, size_t count, loff_t offset) { - int retval = 0; + ssize_t retval; + void *addr = image->kern_base + offset; + unsigned int done = 0; + unsigned int count32; + + if (count == 0) + return 0; spin_lock(&(image->lock)); - memcpy_toio(image->kern_base + offset, buf, (unsigned int)count); + /* Here we apply for the same strategy we do in master_read + * function in order to assure D16 cycle when required. + */ + if ((int)addr & 0x1) { + iowrite8(*(u8 *)buf, addr); + done += 1; + if (done == count) + goto out; + } + if ((int)addr & 0x2) { + if ((count - done) < 2) { + iowrite8(*(u8 *)(buf + done), addr + done); + done += 1; + goto out; + } else { + iowrite16(*(u16 *)(buf + done), addr + done); + done += 2; + } + } + + count32 = (count - done) & ~0x3; + if (count32 > 0) { + memcpy_toio(addr + done, buf + done, count32); + done += count32; + } + + if ((count - done) & 0x2) { + iowrite16(*(u16 *)(buf + done), addr + done); + done += 2; + } + if ((count - done) & 0x1) { + iowrite8(*(u8 *)(buf + done), addr + done); + done += 1; + } +out: retval = count; spin_unlock(&(image->lock)); - return retval; }