提交 4cc58a08 编写于 作者: J Jakub Kicinski

Merge tag 'for-net-next-2022-12-12' of...

Merge tag 'for-net-next-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next

Luiz Augusto von Dentz says:

====================
bluetooth-next pull request for net-next:

 - Add a new VID/PID 0489/e0f2 for MT7922
 - Add Realtek RTL8852BE support ID 0x0cb8:0xc559
 - Add a new PID/VID 13d3/3549 for RTL8822CU
 - Add support for broadcom BCM43430A0 & BCM43430A1
 - Add CONFIG_BT_HCIBTUSB_POLL_SYNC
 - Add CONFIG_BT_LE_L2CAP_ECRED
 - Add support for CYW4373A0
 - Add support for RTL8723DS
 - Add more device IDs for WCN6855
 - Add Broadcom BCM4377 family PCIe Bluetooth

* tag 'for-net-next-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next: (51 commits)
  Bluetooth: Wait for HCI_OP_WRITE_AUTH_PAYLOAD_TO to complete
  Bluetooth: ISO: Avoid circular locking dependency
  Bluetooth: RFCOMM: don't call kfree_skb() under spin_lock_irqsave()
  Bluetooth: hci_core: don't call kfree_skb() under spin_lock_irqsave()
  Bluetooth: hci_bcsp: don't call kfree_skb() under spin_lock_irqsave()
  Bluetooth: hci_h5: don't call kfree_skb() under spin_lock_irqsave()
  Bluetooth: hci_ll: don't call kfree_skb() under spin_lock_irqsave()
  Bluetooth: hci_qca: don't call kfree_skb() under spin_lock_irqsave()
  Bluetooth: btusb: don't call kfree_skb() under spin_lock_irqsave()
  Bluetooth: btintel: Fix missing free skb in btintel_setup_combined()
  Bluetooth: hci_conn: Fix crash on hci_create_cis_sync
  Bluetooth: btintel: Fix existing sparce warnings
  Bluetooth: btusb: Fix existing sparce warning
  Bluetooth: btusb: Fix new sparce warnings
  Bluetooth: btusb: Add a new PID/VID 13d3/3549 for RTL8822CU
  Bluetooth: btusb: Add Realtek RTL8852BE support ID 0x0cb8:0xc559
  dt-bindings: net: realtek-bluetooth: Add RTL8723DS
  Bluetooth: btusb: Add a new VID/PID 0489/e0f2 for MT7922
  dt-bindings: bluetooth: broadcom: add BCM43430A0 & BCM43430A1
  Bluetooth: hci_bcm4377: Fix missing pci_disable_device() on error in bcm4377_probe()
  ...
====================

Link: https://lore.kernel.org/r/20221212222322.1690780-1-luiz.dentz@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
The following properties are common to the Bluetooth controllers:
- local-bd-address: array of 6 bytes, specifies the BD address that was
uniquely assigned to the Bluetooth device, formatted with least significant
byte first (little-endian).
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/net/bluetooth/bluetooth-controller.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Bluetooth Controller Generic Binding
maintainers:
- Marcel Holtmann <marcel@holtmann.org>
- Johan Hedberg <johan.hedberg@gmail.com>
- Luiz Augusto von Dentz <luiz.dentz@gmail.com>
properties:
$nodename:
pattern: "^bluetooth(@.*)?$"
local-bd-address:
$ref: /schemas/types.yaml#/definitions/uint8-array
maxItems: 6
description:
Specifies the BD address that was uniquely assigned to the Bluetooth
device. Formatted with least significant byte first (little-endian), e.g.
in order to assign the address 00:11:22:33:44:55 this property must have
the value [55 44 33 22 11 00].
additionalProperties: true
...
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/net/bluetooth/brcm,bcm4377-bluetooth.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Broadcom BCM4377 family PCIe Bluetooth Chips
maintainers:
- Sven Peter <sven@svenpeter.dev>
description:
This binding describes Broadcom BCM4377 family PCIe-attached bluetooth chips
usually found in Apple machines. The Wi-Fi part of the chip is described in
bindings/net/wireless/brcm,bcm4329-fmac.yaml.
allOf:
- $ref: bluetooth-controller.yaml#
properties:
compatible:
enum:
- pci14e4,5fa0 # BCM4377
- pci14e4,5f69 # BCM4378
- pci14e4,5f71 # BCM4387
reg:
maxItems: 1
brcm,board-type:
$ref: /schemas/types.yaml#/definitions/string
description: Board type of the Bluetooth chip. This is used to decouple
the overall system board from the Bluetooth module and used to construct
firmware and calibration data filenames.
On Apple platforms, this should be the Apple module-instance codename
prefixed by "apple,", e.g. "apple,atlantisb".
pattern: '^apple,.*'
brcm,taurus-cal-blob:
$ref: /schemas/types.yaml#/definitions/uint8-array
description: A per-device calibration blob for the Bluetooth radio. This
should be filled in by the bootloader from platform configuration
data, if necessary, and will be uploaded to the device.
This blob is used if the chip stepping of the Bluetooth module does not
support beamforming.
brcm,taurus-bf-cal-blob:
$ref: /schemas/types.yaml#/definitions/uint8-array
description: A per-device calibration blob for the Bluetooth radio. This
should be filled in by the bootloader from platform configuration
data, if necessary, and will be uploaded to the device.
This blob is used if the chip stepping of the Bluetooth module supports
beamforming.
local-bd-address: true
required:
- compatible
- reg
- local-bd-address
- brcm,board-type
additionalProperties: false
examples:
- |
pcie@a0000000 {
#address-cells = <3>;
#size-cells = <2>;
reg = <0xa0000000 0x1000000>;
device_type = "pci";
ranges = <0x43000000 0x6 0xa0000000 0xa0000000 0x0 0x20000000>;
bluetooth@0,1 {
compatible = "pci14e4,5f69";
reg = <0x100 0x0 0x0 0x0 0x0>;
brcm,board-type = "apple,honshu";
/* To be filled by the bootloader */
local-bd-address = [00 00 00 00 00 00];
};
};
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause) # SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2 %YAML 1.2
--- ---
$id: http://devicetree.org/schemas/net/qualcomm-bluetooth.yaml# $id: http://devicetree.org/schemas/net/bluetooth/qualcomm-bluetooth.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml# $schema: http://devicetree.org/meta-schemas/core.yaml#
title: Qualcomm Bluetooth Chips title: Qualcomm Bluetooth Chips
...@@ -79,8 +79,7 @@ properties: ...@@ -79,8 +79,7 @@ properties:
firmware-name: firmware-name:
description: specify the name of nvm firmware to load description: specify the name of nvm firmware to load
local-bd-address: local-bd-address: true
description: see Documentation/devicetree/bindings/net/bluetooth.txt
required: required:
...@@ -89,6 +88,7 @@ required: ...@@ -89,6 +88,7 @@ required:
additionalProperties: false additionalProperties: false
allOf: allOf:
- $ref: bluetooth-controller.yaml#
- if: - if:
properties: properties:
compatible: compatible:
......
...@@ -19,11 +19,14 @@ properties: ...@@ -19,11 +19,14 @@ properties:
- brcm,bcm4329-bt - brcm,bcm4329-bt
- brcm,bcm4330-bt - brcm,bcm4330-bt
- brcm,bcm4334-bt - brcm,bcm4334-bt
- brcm,bcm43430a0-bt
- brcm,bcm43430a1-bt
- brcm,bcm43438-bt - brcm,bcm43438-bt
- brcm,bcm4345c5 - brcm,bcm4345c5
- brcm,bcm43540-bt - brcm,bcm43540-bt
- brcm,bcm4335a0 - brcm,bcm4335a0
- brcm,bcm4349-bt - brcm,bcm4349-bt
- cypress,cyw4373a0-bt
- infineon,cyw55572-bt - infineon,cyw55572-bt
shutdown-gpios: shutdown-gpios:
......
...@@ -20,6 +20,7 @@ properties: ...@@ -20,6 +20,7 @@ properties:
enum: enum:
- realtek,rtl8723bs-bt - realtek,rtl8723bs-bt
- realtek,rtl8723cs-bt - realtek,rtl8723cs-bt
- realtek,rtl8723ds-bt
- realtek,rtl8822cs-bt - realtek,rtl8822cs-bt
device-wake-gpios: device-wake-gpios:
......
...@@ -42,15 +42,13 @@ properties: ...@@ -42,15 +42,13 @@ properties:
bluetooth: bluetooth:
type: object type: object
additionalProperties: false additionalProperties: false
allOf:
- $ref: /schemas/net/bluetooth/bluetooth-controller.yaml#
properties: properties:
compatible: compatible:
const: qcom,wcnss-bt const: qcom,wcnss-bt
local-bd-address: local-bd-address: true
$ref: /schemas/types.yaml#/definitions/uint8-array
maxItems: 6
description:
See Documentation/devicetree/bindings/net/bluetooth.txt
required: required:
- compatible - compatible
......
...@@ -1903,6 +1903,7 @@ F: Documentation/devicetree/bindings/interrupt-controller/apple,* ...@@ -1903,6 +1903,7 @@ F: Documentation/devicetree/bindings/interrupt-controller/apple,*
F: Documentation/devicetree/bindings/iommu/apple,dart.yaml F: Documentation/devicetree/bindings/iommu/apple,dart.yaml
F: Documentation/devicetree/bindings/iommu/apple,sart.yaml F: Documentation/devicetree/bindings/iommu/apple,sart.yaml
F: Documentation/devicetree/bindings/mailbox/apple,mailbox.yaml F: Documentation/devicetree/bindings/mailbox/apple,mailbox.yaml
F: Documentation/devicetree/bindings/net/bluetooth/brcm,bcm4377-bluetooth.yaml
F: Documentation/devicetree/bindings/nvme/apple,nvme-ans.yaml F: Documentation/devicetree/bindings/nvme/apple,nvme-ans.yaml
F: Documentation/devicetree/bindings/nvmem/apple,efuses.yaml F: Documentation/devicetree/bindings/nvmem/apple,efuses.yaml
F: Documentation/devicetree/bindings/pci/apple,pcie.yaml F: Documentation/devicetree/bindings/pci/apple,pcie.yaml
...@@ -1910,6 +1911,7 @@ F: Documentation/devicetree/bindings/pinctrl/apple,pinctrl.yaml ...@@ -1910,6 +1911,7 @@ F: Documentation/devicetree/bindings/pinctrl/apple,pinctrl.yaml
F: Documentation/devicetree/bindings/power/apple* F: Documentation/devicetree/bindings/power/apple*
F: Documentation/devicetree/bindings/watchdog/apple,wdt.yaml F: Documentation/devicetree/bindings/watchdog/apple,wdt.yaml
F: arch/arm64/boot/dts/apple/ F: arch/arm64/boot/dts/apple/
F: drivers/bluetooth/hci_bcm4377.c
F: drivers/clk/clk-apple-nco.c F: drivers/clk/clk-apple-nco.c
F: drivers/dma/apple-admac.c F: drivers/dma/apple-admac.c
F: drivers/i2c/busses/i2c-pasemi-core.c F: drivers/i2c/busses/i2c-pasemi-core.c
......
...@@ -21,6 +21,10 @@ ...@@ -21,6 +21,10 @@
}; };
}; };
&bluetooth0 {
brcm,board-type = "apple,atlantisb";
};
&wifi0 { &wifi0 {
brcm,board-type = "apple,atlantisb"; brcm,board-type = "apple,atlantisb";
}; };
......
...@@ -17,6 +17,10 @@ ...@@ -17,6 +17,10 @@
model = "Apple MacBook Pro (13-inch, M1, 2020)"; model = "Apple MacBook Pro (13-inch, M1, 2020)";
}; };
&bluetooth0 {
brcm,board-type = "apple,honshu";
};
&wifi0 { &wifi0 {
brcm,board-type = "apple,honshu"; brcm,board-type = "apple,honshu";
}; };
......
...@@ -17,6 +17,10 @@ ...@@ -17,6 +17,10 @@
model = "Apple MacBook Air (M1, 2020)"; model = "Apple MacBook Air (M1, 2020)";
}; };
&bluetooth0 {
brcm,board-type = "apple,shikoku";
};
&wifi0 { &wifi0 {
brcm,board-type = "apple,shikoku"; brcm,board-type = "apple,shikoku";
}; };
......
...@@ -21,6 +21,10 @@ ...@@ -21,6 +21,10 @@
}; };
}; };
&bluetooth0 {
brcm,board-type = "apple,capri";
};
&wifi0 { &wifi0 {
brcm,board-type = "apple,capri"; brcm,board-type = "apple,capri";
}; };
......
...@@ -21,6 +21,10 @@ ...@@ -21,6 +21,10 @@
}; };
}; };
&bluetooth0 {
brcm,board-type = "apple,santorini";
};
&wifi0 { &wifi0 {
brcm,board-type = "apple,santorini"; brcm,board-type = "apple,santorini";
}; };
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
/ { / {
aliases { aliases {
bluetooth0 = &bluetooth0;
serial0 = &serial0; serial0 = &serial0;
serial2 = &serial2; serial2 = &serial2;
wifi0 = &wifi0; wifi0 = &wifi0;
...@@ -77,4 +78,11 @@ ...@@ -77,4 +78,11 @@
local-mac-address = [00 00 00 00 00 00]; local-mac-address = [00 00 00 00 00 00];
apple,antenna-sku = "XX"; apple,antenna-sku = "XX";
}; };
bluetooth0: bluetooth@0,1 {
compatible = "pci14e4,5f69";
reg = <0x10100 0x0 0x0 0x0 0x0>;
/* To be filled by the loader */
local-bd-address = [00 00 00 00 00 00];
};
}; };
...@@ -45,6 +45,17 @@ config BT_HCIBTUSB_AUTOSUSPEND ...@@ -45,6 +45,17 @@ config BT_HCIBTUSB_AUTOSUSPEND
This can be overridden by passing btusb.enable_autosuspend=[y|n] This can be overridden by passing btusb.enable_autosuspend=[y|n]
on the kernel commandline. on the kernel commandline.
config BT_HCIBTUSB_POLL_SYNC
bool "Enable USB poll_sync for Bluetooth USB devices by default"
depends on BT_HCIBTUSB
default y
help
poll_sync synchronizes the USB data and event endpoints by
prioritizing the later.
Say Y here to enable USB poll_sync for Bluetooth USB devices by
default.
config BT_HCIBTUSB_BCM config BT_HCIBTUSB_BCM
bool "Broadcom protocol support" bool "Broadcom protocol support"
depends on BT_HCIBTUSB depends on BT_HCIBTUSB
...@@ -274,6 +285,18 @@ config BT_HCIBCM203X ...@@ -274,6 +285,18 @@ config BT_HCIBCM203X
Say Y here to compile support for HCI BCM203x devices into the Say Y here to compile support for HCI BCM203x devices into the
kernel or say M to compile it as module (bcm203x). kernel or say M to compile it as module (bcm203x).
config BT_HCIBCM4377
tristate "HCI BCM4377/4378/4387 PCIe driver"
depends on PCI
select FW_LOADER
help
Support for Broadcom BCM4377/4378/4387 Bluetooth chipsets attached via
PCIe. These are usually found in Apple machines.
Say Y here to compile support for HCI BCM4377 family devices into the
kernel or say M to compile it as module (hci_bcm4377).
config BT_HCIBPA10X config BT_HCIBPA10X
tristate "HCI BPA10x USB driver" tristate "HCI BPA10x USB driver"
depends on USB depends on USB
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
obj-$(CONFIG_BT_HCIVHCI) += hci_vhci.o obj-$(CONFIG_BT_HCIVHCI) += hci_vhci.o
obj-$(CONFIG_BT_HCIUART) += hci_uart.o obj-$(CONFIG_BT_HCIUART) += hci_uart.o
obj-$(CONFIG_BT_HCIBCM203X) += bcm203x.o obj-$(CONFIG_BT_HCIBCM203X) += bcm203x.o
obj-$(CONFIG_BT_HCIBCM4377) += hci_bcm4377.o
obj-$(CONFIG_BT_HCIBPA10X) += bpa10x.o obj-$(CONFIG_BT_HCIBPA10X) += bpa10x.o
obj-$(CONFIG_BT_HCIBFUSB) += bfusb.o obj-$(CONFIG_BT_HCIBFUSB) += bfusb.o
obj-$(CONFIG_BT_HCIDTL1) += dtl1_cs.o obj-$(CONFIG_BT_HCIDTL1) += dtl1_cs.o
......
...@@ -26,7 +26,7 @@ ...@@ -26,7 +26,7 @@
#define CMD_WRITE_BOOT_PARAMS 0xfc0e #define CMD_WRITE_BOOT_PARAMS 0xfc0e
struct cmd_write_boot_params { struct cmd_write_boot_params {
u32 boot_addr; __le32 boot_addr;
u8 fw_build_num; u8 fw_build_num;
u8 fw_build_ww; u8 fw_build_ww;
u8 fw_build_yy; u8 fw_build_yy;
...@@ -1783,19 +1783,19 @@ static int btintel_get_fw_name(struct intel_version *ver, ...@@ -1783,19 +1783,19 @@ static int btintel_get_fw_name(struct intel_version *ver,
case 0x0b: /* SfP */ case 0x0b: /* SfP */
case 0x0c: /* WsP */ case 0x0c: /* WsP */
snprintf(fw_name, len, "intel/ibt-%u-%u.%s", snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
le16_to_cpu(ver->hw_variant), ver->hw_variant,
le16_to_cpu(params->dev_revid), le16_to_cpu(params->dev_revid),
suffix); suffix);
break; break;
case 0x11: /* JfP */ case 0x11: /* JfP */
case 0x12: /* ThP */ case 0x12: /* ThP */
case 0x13: /* HrP */ case 0x13: /* HrP */
case 0x14: /* CcP */ case 0x14: /* CcP */
snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s", snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
le16_to_cpu(ver->hw_variant), ver->hw_variant,
le16_to_cpu(ver->hw_revision), ver->hw_revision,
le16_to_cpu(ver->fw_revision), ver->fw_revision,
suffix); suffix);
break; break;
default: default:
return -EINVAL; return -EINVAL;
...@@ -2524,7 +2524,7 @@ static int btintel_setup_combined(struct hci_dev *hdev) ...@@ -2524,7 +2524,7 @@ static int btintel_setup_combined(struct hci_dev *hdev)
*/ */
err = btintel_read_version(hdev, &ver); err = btintel_read_version(hdev, &ver);
if (err) if (err)
return err; break;
/* Apply the device specific HCI quirks /* Apply the device specific HCI quirks
* *
...@@ -2566,7 +2566,8 @@ static int btintel_setup_combined(struct hci_dev *hdev) ...@@ -2566,7 +2566,8 @@ static int btintel_setup_combined(struct hci_dev *hdev)
default: default:
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
return -EINVAL; err = -EINVAL;
break;
} }
exit_error: exit_error:
......
...@@ -781,6 +781,13 @@ void btrtl_set_quirks(struct hci_dev *hdev, struct btrtl_device_info *btrtl_dev) ...@@ -781,6 +781,13 @@ void btrtl_set_quirks(struct hci_dev *hdev, struct btrtl_device_info *btrtl_dev)
case CHIP_ID_8852C: case CHIP_ID_8852C:
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
/* RTL8852C needs to transmit mSBC data continuously without
* the zero length of USB packets for the ALT 6 supported chips
*/
if (btrtl_dev->project_id == CHIP_ID_8852C)
btrealtek_set_flag(hdev, REALTEK_ALT6_CONTINUOUS_TX_CHIP);
hci_set_aosp_capable(hdev); hci_set_aosp_capable(hdev);
break; break;
default: default:
......
...@@ -47,6 +47,27 @@ struct rtl_vendor_config { ...@@ -47,6 +47,27 @@ struct rtl_vendor_config {
struct rtl_vendor_config_entry entry[]; struct rtl_vendor_config_entry entry[];
} __packed; } __packed;
enum {
REALTEK_ALT6_CONTINUOUS_TX_CHIP,
__REALTEK_NUM_FLAGS,
};
struct btrealtek_data {
DECLARE_BITMAP(flags, __REALTEK_NUM_FLAGS);
};
#define btrealtek_set_flag(hdev, nr) \
do { \
struct btrealtek_data *realtek = hci_get_priv((hdev)); \
set_bit((nr), realtek->flags); \
} while (0)
#define btrealtek_get_flag(hdev) \
(((struct btrealtek_data *)hci_get_priv(hdev))->flags)
#define btrealtek_test_flag(hdev, nr) test_bit((nr), btrealtek_get_flag(hdev))
#if IS_ENABLED(CONFIG_BT_RTL) #if IS_ENABLED(CONFIG_BT_RTL)
struct btrtl_device_info *btrtl_initialize(struct hci_dev *hdev, struct btrtl_device_info *btrtl_initialize(struct hci_dev *hdev,
......
...@@ -32,6 +32,7 @@ ...@@ -32,6 +32,7 @@
static bool disable_scofix; static bool disable_scofix;
static bool force_scofix; static bool force_scofix;
static bool enable_autosuspend = IS_ENABLED(CONFIG_BT_HCIBTUSB_AUTOSUSPEND); static bool enable_autosuspend = IS_ENABLED(CONFIG_BT_HCIBTUSB_AUTOSUSPEND);
static bool enable_poll_sync = IS_ENABLED(CONFIG_BT_HCIBTUSB_POLL_SYNC);
static bool reset = true; static bool reset = true;
static struct usb_driver btusb_driver; static struct usb_driver btusb_driver;
...@@ -316,6 +317,90 @@ static const struct usb_device_id blacklist_table[] = { ...@@ -316,6 +317,90 @@ static const struct usb_device_id blacklist_table[] = {
{ USB_DEVICE(0x0489, 0xe0d0), .driver_info = BTUSB_QCA_WCN6855 | { USB_DEVICE(0x0489, 0xe0d0), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH | BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES }, BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9108), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9109), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9208), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9209), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9308), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9408), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9508), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9509), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9608), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9609), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x10ab, 0x9f09), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x04ca, 0x3022), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0c7), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0c9), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0ca), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0cb), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0ce), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0de), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0df), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0e1), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0ea), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0ec), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x04ca, 0x3023), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x04ca, 0x3024), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x04ca, 0x3a22), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x04ca, 0x3a24), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x04ca, 0x3a26), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x04ca, 0x3a27), .driver_info = BTUSB_QCA_WCN6855 |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
/* QCA WCN785x chipset */ /* QCA WCN785x chipset */
{ USB_DEVICE(0x0cf3, 0xe700), .driver_info = BTUSB_QCA_WCN6855 | { USB_DEVICE(0x0cf3, 0xe700), .driver_info = BTUSB_QCA_WCN6855 |
...@@ -413,6 +498,10 @@ static const struct usb_device_id blacklist_table[] = { ...@@ -413,6 +498,10 @@ static const struct usb_device_id blacklist_table[] = {
{ USB_DEVICE(0x0bda, 0xc822), .driver_info = BTUSB_REALTEK | { USB_DEVICE(0x0bda, 0xc822), .driver_info = BTUSB_REALTEK |
BTUSB_WIDEBAND_SPEECH }, BTUSB_WIDEBAND_SPEECH },
/* Realtek 8822CU Bluetooth devices */
{ USB_DEVICE(0x13d3, 0x3549), .driver_info = BTUSB_REALTEK |
BTUSB_WIDEBAND_SPEECH },
/* Realtek 8852AE Bluetooth devices */ /* Realtek 8852AE Bluetooth devices */
{ USB_DEVICE(0x0bda, 0x2852), .driver_info = BTUSB_REALTEK | { USB_DEVICE(0x0bda, 0x2852), .driver_info = BTUSB_REALTEK |
BTUSB_WIDEBAND_SPEECH }, BTUSB_WIDEBAND_SPEECH },
...@@ -443,6 +532,10 @@ static const struct usb_device_id blacklist_table[] = { ...@@ -443,6 +532,10 @@ static const struct usb_device_id blacklist_table[] = {
{ USB_DEVICE(0x13d3, 0x3592), .driver_info = BTUSB_REALTEK | { USB_DEVICE(0x13d3, 0x3592), .driver_info = BTUSB_REALTEK |
BTUSB_WIDEBAND_SPEECH }, BTUSB_WIDEBAND_SPEECH },
/* Realtek 8852BE Bluetooth devices */
{ USB_DEVICE(0x0cb8, 0xc559), .driver_info = BTUSB_REALTEK |
BTUSB_WIDEBAND_SPEECH },
/* Realtek Bluetooth devices */ /* Realtek Bluetooth devices */
{ USB_VENDOR_AND_INTERFACE_INFO(0x0bda, 0xe0, 0x01, 0x01), { USB_VENDOR_AND_INTERFACE_INFO(0x0bda, 0xe0, 0x01, 0x01),
.driver_info = BTUSB_REALTEK }, .driver_info = BTUSB_REALTEK },
...@@ -511,6 +604,9 @@ static const struct usb_device_id blacklist_table[] = { ...@@ -511,6 +604,9 @@ static const struct usb_device_id blacklist_table[] = {
{ USB_DEVICE(0x0489, 0xe0e2), .driver_info = BTUSB_MEDIATEK | { USB_DEVICE(0x0489, 0xe0e2), .driver_info = BTUSB_MEDIATEK |
BTUSB_WIDEBAND_SPEECH | BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES }, BTUSB_VALID_LE_STATES },
{ USB_DEVICE(0x0489, 0xe0f2), .driver_info = BTUSB_MEDIATEK |
BTUSB_WIDEBAND_SPEECH |
BTUSB_VALID_LE_STATES },
/* Additional Realtek 8723AE Bluetooth devices */ /* Additional Realtek 8723AE Bluetooth devices */
{ USB_DEVICE(0x0930, 0x021d), .driver_info = BTUSB_REALTEK }, { USB_DEVICE(0x0930, 0x021d), .driver_info = BTUSB_REALTEK },
...@@ -543,6 +639,8 @@ static const struct usb_device_id blacklist_table[] = { ...@@ -543,6 +639,8 @@ static const struct usb_device_id blacklist_table[] = {
BTUSB_WIDEBAND_SPEECH }, BTUSB_WIDEBAND_SPEECH },
{ USB_DEVICE(0x7392, 0xc611), .driver_info = BTUSB_REALTEK | { USB_DEVICE(0x7392, 0xc611), .driver_info = BTUSB_REALTEK |
BTUSB_WIDEBAND_SPEECH }, BTUSB_WIDEBAND_SPEECH },
{ USB_DEVICE(0x2b89, 0x8761), .driver_info = BTUSB_REALTEK |
BTUSB_WIDEBAND_SPEECH },
/* Additional Realtek 8821AE Bluetooth devices */ /* Additional Realtek 8821AE Bluetooth devices */
{ USB_DEVICE(0x0b05, 0x17dc), .driver_info = BTUSB_REALTEK }, { USB_DEVICE(0x0b05, 0x17dc), .driver_info = BTUSB_REALTEK },
...@@ -632,6 +730,7 @@ static const struct dmi_system_id btusb_needs_reset_resume_table[] = { ...@@ -632,6 +730,7 @@ static const struct dmi_system_id btusb_needs_reset_resume_table[] = {
#define BTUSB_TX_WAIT_VND_EVT 13 #define BTUSB_TX_WAIT_VND_EVT 13
#define BTUSB_WAKEUP_AUTOSUSPEND 14 #define BTUSB_WAKEUP_AUTOSUSPEND 14
#define BTUSB_USE_ALT3_FOR_WBS 15 #define BTUSB_USE_ALT3_FOR_WBS 15
#define BTUSB_ALT6_CONTINUOUS_TX 16
struct btusb_data { struct btusb_data {
struct hci_dev *hdev; struct hci_dev *hdev;
...@@ -696,6 +795,28 @@ struct btusb_data { ...@@ -696,6 +795,28 @@ struct btusb_data {
unsigned cmd_timeout_cnt; unsigned cmd_timeout_cnt;
}; };
static void btusb_reset(struct hci_dev *hdev)
{
struct btusb_data *data;
int err;
if (hdev->reset) {
hdev->reset(hdev);
return;
}
data = hci_get_drvdata(hdev);
/* This is not an unbalanced PM reference since the device will reset */
err = usb_autopm_get_interface(data->intf);
if (err) {
bt_dev_err(hdev, "Failed usb_autopm_get_interface: %d", err);
return;
}
bt_dev_err(hdev, "Resetting usb device.");
usb_queue_reset_device(data->intf);
}
static void btusb_intel_cmd_timeout(struct hci_dev *hdev) static void btusb_intel_cmd_timeout(struct hci_dev *hdev)
{ {
struct btusb_data *data = hci_get_drvdata(hdev); struct btusb_data *data = hci_get_drvdata(hdev);
...@@ -705,7 +826,7 @@ static void btusb_intel_cmd_timeout(struct hci_dev *hdev) ...@@ -705,7 +826,7 @@ static void btusb_intel_cmd_timeout(struct hci_dev *hdev)
return; return;
if (!reset_gpio) { if (!reset_gpio) {
bt_dev_err(hdev, "No way to reset. Ignoring and continuing"); btusb_reset(hdev);
return; return;
} }
...@@ -736,7 +857,7 @@ static void btusb_rtl_cmd_timeout(struct hci_dev *hdev) ...@@ -736,7 +857,7 @@ static void btusb_rtl_cmd_timeout(struct hci_dev *hdev)
return; return;
if (!reset_gpio) { if (!reset_gpio) {
bt_dev_err(hdev, "No gpio to reset Realtek device, ignoring"); btusb_reset(hdev);
return; return;
} }
...@@ -761,7 +882,6 @@ static void btusb_qca_cmd_timeout(struct hci_dev *hdev) ...@@ -761,7 +882,6 @@ static void btusb_qca_cmd_timeout(struct hci_dev *hdev)
{ {
struct btusb_data *data = hci_get_drvdata(hdev); struct btusb_data *data = hci_get_drvdata(hdev);
struct gpio_desc *reset_gpio = data->reset_gpio; struct gpio_desc *reset_gpio = data->reset_gpio;
int err;
if (++data->cmd_timeout_cnt < 5) if (++data->cmd_timeout_cnt < 5)
return; return;
...@@ -787,13 +907,7 @@ static void btusb_qca_cmd_timeout(struct hci_dev *hdev) ...@@ -787,13 +907,7 @@ static void btusb_qca_cmd_timeout(struct hci_dev *hdev)
return; return;
} }
bt_dev_err(hdev, "Multiple cmd timeouts seen. Resetting usb device."); btusb_reset(hdev);
/* This is not an unbalanced PM reference since the device will reset */
err = usb_autopm_get_interface(data->intf);
if (!err)
usb_queue_reset_device(data->intf);
else
bt_dev_err(hdev, "Failed usb_autopm_get_interface with %d", err);
} }
static inline void btusb_free_frags(struct btusb_data *data) static inline void btusb_free_frags(struct btusb_data *data)
...@@ -802,13 +916,13 @@ static inline void btusb_free_frags(struct btusb_data *data) ...@@ -802,13 +916,13 @@ static inline void btusb_free_frags(struct btusb_data *data)
spin_lock_irqsave(&data->rxlock, flags); spin_lock_irqsave(&data->rxlock, flags);
kfree_skb(data->evt_skb); dev_kfree_skb_irq(data->evt_skb);
data->evt_skb = NULL; data->evt_skb = NULL;
kfree_skb(data->acl_skb); dev_kfree_skb_irq(data->acl_skb);
data->acl_skb = NULL; data->acl_skb = NULL;
kfree_skb(data->sco_skb); dev_kfree_skb_irq(data->sco_skb);
data->sco_skb = NULL; data->sco_skb = NULL;
spin_unlock_irqrestore(&data->rxlock, flags); spin_unlock_irqrestore(&data->rxlock, flags);
...@@ -962,6 +1076,34 @@ static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count) ...@@ -962,6 +1076,34 @@ static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count)
return err; return err;
} }
static bool btusb_validate_sco_handle(struct hci_dev *hdev,
struct hci_sco_hdr *hdr)
{
__u16 handle;
if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
// Can't validate, userspace controls everything.
return true;
/*
* USB isochronous transfers are not designed to be reliable and may
* lose fragments. When this happens, the next first fragment
* encountered might actually be a continuation fragment.
* Validate the handle to detect it and drop it, or else the upper
* layer will get garbage for a while.
*/
handle = hci_handle(__le16_to_cpu(hdr->handle));
switch (hci_conn_lookup_type(hdev, handle)) {
case SCO_LINK:
case ESCO_LINK:
return true;
default:
return false;
}
}
static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count) static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count)
{ {
struct sk_buff *skb; struct sk_buff *skb;
...@@ -994,9 +1136,12 @@ static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count) ...@@ -994,9 +1136,12 @@ static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count)
if (skb->len == HCI_SCO_HDR_SIZE) { if (skb->len == HCI_SCO_HDR_SIZE) {
/* Complete SCO header */ /* Complete SCO header */
hci_skb_expect(skb) = hci_sco_hdr(skb)->dlen; struct hci_sco_hdr *hdr = hci_sco_hdr(skb);
if (skb_tailroom(skb) < hci_skb_expect(skb)) { hci_skb_expect(skb) = hdr->dlen;
if (skb_tailroom(skb) < hci_skb_expect(skb) ||
!btusb_validate_sco_handle(data->hdev, hdr)) {
kfree_skb(skb); kfree_skb(skb);
skb = NULL; skb = NULL;
...@@ -1276,11 +1421,17 @@ static void btusb_isoc_complete(struct urb *urb) ...@@ -1276,11 +1421,17 @@ static void btusb_isoc_complete(struct urb *urb)
static inline void __fill_isoc_descriptor_msbc(struct urb *urb, int len, static inline void __fill_isoc_descriptor_msbc(struct urb *urb, int len,
int mtu, struct btusb_data *data) int mtu, struct btusb_data *data)
{ {
int i, offset = 0; int i = 0, offset = 0;
unsigned int interval; unsigned int interval;
BT_DBG("len %d mtu %d", len, mtu); BT_DBG("len %d mtu %d", len, mtu);
/* For mSBC ALT 6 settings some chips need to transmit the data
* continuously without the zero length of USB packets.
*/
if (test_bit(BTUSB_ALT6_CONTINUOUS_TX, &data->flags))
goto ignore_usb_alt6_packet_flow;
/* For mSBC ALT 6 setting the host will send the packet at continuous /* For mSBC ALT 6 setting the host will send the packet at continuous
* flow. As per core spec 5, vol 4, part B, table 2.1. For ALT setting * flow. As per core spec 5, vol 4, part B, table 2.1. For ALT setting
* 6 the HCI PACKET INTERVAL should be 7.5ms for every usb packets. * 6 the HCI PACKET INTERVAL should be 7.5ms for every usb packets.
...@@ -1300,6 +1451,7 @@ static inline void __fill_isoc_descriptor_msbc(struct urb *urb, int len, ...@@ -1300,6 +1451,7 @@ static inline void __fill_isoc_descriptor_msbc(struct urb *urb, int len,
urb->iso_frame_desc[i].length = offset; urb->iso_frame_desc[i].length = offset;
} }
ignore_usb_alt6_packet_flow:
if (len && i < BTUSB_MAX_ISOC_FRAMES) { if (len && i < BTUSB_MAX_ISOC_FRAMES) {
urb->iso_frame_desc[i].offset = offset; urb->iso_frame_desc[i].offset = offset;
urb->iso_frame_desc[i].length = len; urb->iso_frame_desc[i].length = len;
...@@ -1981,10 +2133,11 @@ static void btusb_work(struct work_struct *work) ...@@ -1981,10 +2133,11 @@ static void btusb_work(struct work_struct *work)
if (btusb_switch_alt_setting(hdev, new_alts) < 0) if (btusb_switch_alt_setting(hdev, new_alts) < 0)
bt_dev_err(hdev, "set USB alt:(%d) failed!", new_alts); bt_dev_err(hdev, "set USB alt:(%d) failed!", new_alts);
} else { } else {
clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
usb_kill_anchored_urbs(&data->isoc_anchor); usb_kill_anchored_urbs(&data->isoc_anchor);
__set_isoc_interface(hdev, 0); if (test_and_clear_bit(BTUSB_ISOC_RUNNING, &data->flags))
__set_isoc_interface(hdev, 0);
if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags)) if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags))
usb_autopm_put_interface(data->isoc ? data->isoc : data->intf); usb_autopm_put_interface(data->isoc ? data->isoc : data->intf);
} }
...@@ -2048,18 +2201,19 @@ static int btusb_setup_csr(struct hci_dev *hdev) ...@@ -2048,18 +2201,19 @@ static int btusb_setup_csr(struct hci_dev *hdev)
return err; return err;
} }
if (skb->len != sizeof(struct hci_rp_read_local_version)) { rp = skb_pull_data(skb, sizeof(*rp));
if (!rp) {
bt_dev_err(hdev, "CSR: Local version length mismatch"); bt_dev_err(hdev, "CSR: Local version length mismatch");
kfree_skb(skb); kfree_skb(skb);
return -EIO; return -EIO;
} }
rp = (struct hci_rp_read_local_version *)skb->data; bt_dev_info(hdev, "CSR: Setting up dongle with HCI ver=%u rev=%04x",
rp->hci_ver, le16_to_cpu(rp->hci_rev));
bt_dev_info(hdev, "CSR: Setting up dongle with HCI ver=%u rev=%04x; LMP ver=%u subver=%04x; manufacturer=%u", bt_dev_info(hdev, "LMP ver=%u subver=%04x; manufacturer=%u",
le16_to_cpu(rp->hci_ver), le16_to_cpu(rp->hci_rev), rp->lmp_ver, le16_to_cpu(rp->lmp_subver),
le16_to_cpu(rp->lmp_ver), le16_to_cpu(rp->lmp_subver), le16_to_cpu(rp->manufacturer));
le16_to_cpu(rp->manufacturer));
/* Detect a wide host of Chinese controllers that aren't CSR. /* Detect a wide host of Chinese controllers that aren't CSR.
* *
...@@ -2089,29 +2243,29 @@ static int btusb_setup_csr(struct hci_dev *hdev) ...@@ -2089,29 +2243,29 @@ static int btusb_setup_csr(struct hci_dev *hdev)
* third-party BT 4.0 dongle reuses it. * third-party BT 4.0 dongle reuses it.
*/ */
else if (le16_to_cpu(rp->lmp_subver) <= 0x034e && else if (le16_to_cpu(rp->lmp_subver) <= 0x034e &&
le16_to_cpu(rp->hci_ver) > BLUETOOTH_VER_1_1) rp->hci_ver > BLUETOOTH_VER_1_1)
is_fake = true; is_fake = true;
else if (le16_to_cpu(rp->lmp_subver) <= 0x0529 && else if (le16_to_cpu(rp->lmp_subver) <= 0x0529 &&
le16_to_cpu(rp->hci_ver) > BLUETOOTH_VER_1_2) rp->hci_ver > BLUETOOTH_VER_1_2)
is_fake = true; is_fake = true;
else if (le16_to_cpu(rp->lmp_subver) <= 0x0c5c && else if (le16_to_cpu(rp->lmp_subver) <= 0x0c5c &&
le16_to_cpu(rp->hci_ver) > BLUETOOTH_VER_2_0) rp->hci_ver > BLUETOOTH_VER_2_0)
is_fake = true; is_fake = true;
else if (le16_to_cpu(rp->lmp_subver) <= 0x1899 && else if (le16_to_cpu(rp->lmp_subver) <= 0x1899 &&
le16_to_cpu(rp->hci_ver) > BLUETOOTH_VER_2_1) rp->hci_ver > BLUETOOTH_VER_2_1)
is_fake = true; is_fake = true;
else if (le16_to_cpu(rp->lmp_subver) <= 0x22bb && else if (le16_to_cpu(rp->lmp_subver) <= 0x22bb &&
le16_to_cpu(rp->hci_ver) > BLUETOOTH_VER_4_0) rp->hci_ver > BLUETOOTH_VER_4_0)
is_fake = true; is_fake = true;
/* Other clones which beat all the above checks */ /* Other clones which beat all the above checks */
else if (bcdDevice == 0x0134 && else if (bcdDevice == 0x0134 &&
le16_to_cpu(rp->lmp_subver) == 0x0c5c && le16_to_cpu(rp->lmp_subver) == 0x0c5c &&
le16_to_cpu(rp->hci_ver) == BLUETOOTH_VER_2_0) rp->hci_ver == BLUETOOTH_VER_2_0)
is_fake = true; is_fake = true;
if (is_fake) { if (is_fake) {
...@@ -2321,6 +2475,19 @@ static int btusb_send_frame_intel(struct hci_dev *hdev, struct sk_buff *skb) ...@@ -2321,6 +2475,19 @@ static int btusb_send_frame_intel(struct hci_dev *hdev, struct sk_buff *skb)
return -EILSEQ; return -EILSEQ;
} }
static int btusb_setup_realtek(struct hci_dev *hdev)
{
struct btusb_data *data = hci_get_drvdata(hdev);
int ret;
ret = btrtl_setup_realtek(hdev);
if (btrealtek_test_flag(data->hdev, REALTEK_ALT6_CONTINUOUS_TX_CHIP))
set_bit(BTUSB_ALT6_CONTINUOUS_TX, &data->flags);
return ret;
}
/* UHW CR mapping */ /* UHW CR mapping */
#define MTK_BT_MISC 0x70002510 #define MTK_BT_MISC 0x70002510
#define MTK_BT_SUBSYS_RST 0x70002610 #define MTK_BT_SUBSYS_RST 0x70002610
...@@ -3256,7 +3423,7 @@ static int btusb_setup_qca_load_rampatch(struct hci_dev *hdev, ...@@ -3256,7 +3423,7 @@ static int btusb_setup_qca_load_rampatch(struct hci_dev *hdev,
if (ver_rom & ~0xffffU) { if (ver_rom & ~0xffffU) {
rver_rom_high = le16_to_cpu(rver->rom_version_high); rver_rom_high = le16_to_cpu(rver->rom_version_high);
rver_rom = le32_to_cpu(rver_rom_high << 16 | rver_rom_low); rver_rom = rver_rom_high << 16 | rver_rom_low;
} else { } else {
rver_rom = rver_rom_low; rver_rom = rver_rom_low;
} }
...@@ -3761,6 +3928,9 @@ static int btusb_probe(struct usb_interface *intf, ...@@ -3761,6 +3928,9 @@ static int btusb_probe(struct usb_interface *intf,
/* Override the rx handlers */ /* Override the rx handlers */
data->recv_event = btusb_recv_event_intel; data->recv_event = btusb_recv_event_intel;
data->recv_bulk = btusb_recv_bulk_intel; data->recv_bulk = btusb_recv_bulk_intel;
} else if (id->driver_info & BTUSB_REALTEK) {
/* Allocate extra space for Realtek device */
priv_size += sizeof(struct btrealtek_data);
} }
data->recv_acl = hci_recv_frame; data->recv_acl = hci_recv_frame;
...@@ -3919,7 +4089,7 @@ static int btusb_probe(struct usb_interface *intf, ...@@ -3919,7 +4089,7 @@ static int btusb_probe(struct usb_interface *intf,
if (IS_ENABLED(CONFIG_BT_HCIBTUSB_RTL) && if (IS_ENABLED(CONFIG_BT_HCIBTUSB_RTL) &&
(id->driver_info & BTUSB_REALTEK)) { (id->driver_info & BTUSB_REALTEK)) {
hdev->setup = btrtl_setup_realtek; hdev->setup = btusb_setup_realtek;
hdev->shutdown = btrtl_shutdown_realtek; hdev->shutdown = btrtl_shutdown_realtek;
hdev->cmd_timeout = btusb_rtl_cmd_timeout; hdev->cmd_timeout = btusb_rtl_cmd_timeout;
...@@ -4004,6 +4174,8 @@ static int btusb_probe(struct usb_interface *intf, ...@@ -4004,6 +4174,8 @@ static int btusb_probe(struct usb_interface *intf,
if (enable_autosuspend) if (enable_autosuspend)
usb_enable_autosuspend(data->udev); usb_enable_autosuspend(data->udev);
data->poll_sync = enable_poll_sync;
err = hci_register_dev(hdev); err = hci_register_dev(hdev);
if (err < 0) if (err < 0)
goto out_free_dev; goto out_free_dev;
......
...@@ -53,11 +53,13 @@ ...@@ -53,11 +53,13 @@
* struct bcm_device_data - device specific data * struct bcm_device_data - device specific data
* @no_early_set_baudrate: Disallow set baudrate before driver setup() * @no_early_set_baudrate: Disallow set baudrate before driver setup()
* @drive_rts_on_open: drive RTS signal on ->open() when platform requires it * @drive_rts_on_open: drive RTS signal on ->open() when platform requires it
* @no_uart_clock_set: UART clock set command for >3Mbps mode is unavailable
* @max_autobaud_speed: max baudrate supported by device in autobaud mode * @max_autobaud_speed: max baudrate supported by device in autobaud mode
*/ */
struct bcm_device_data { struct bcm_device_data {
bool no_early_set_baudrate; bool no_early_set_baudrate;
bool drive_rts_on_open; bool drive_rts_on_open;
bool no_uart_clock_set;
u32 max_autobaud_speed; u32 max_autobaud_speed;
}; };
...@@ -100,6 +102,7 @@ struct bcm_device_data { ...@@ -100,6 +102,7 @@ struct bcm_device_data {
* @is_suspended: whether flow control is currently disabled * @is_suspended: whether flow control is currently disabled
* @no_early_set_baudrate: don't set_baudrate before setup() * @no_early_set_baudrate: don't set_baudrate before setup()
* @drive_rts_on_open: drive RTS signal on ->open() when platform requires it * @drive_rts_on_open: drive RTS signal on ->open() when platform requires it
* @no_uart_clock_set: UART clock set command for >3Mbps mode is unavailable
* @pcm_int_params: keep the initial PCM configuration * @pcm_int_params: keep the initial PCM configuration
* @use_autobaud_mode: start Bluetooth device in autobaud mode * @use_autobaud_mode: start Bluetooth device in autobaud mode
* @max_autobaud_speed: max baudrate supported by device in autobaud mode * @max_autobaud_speed: max baudrate supported by device in autobaud mode
...@@ -140,6 +143,7 @@ struct bcm_device { ...@@ -140,6 +143,7 @@ struct bcm_device {
#endif #endif
bool no_early_set_baudrate; bool no_early_set_baudrate;
bool drive_rts_on_open; bool drive_rts_on_open;
bool no_uart_clock_set;
bool use_autobaud_mode; bool use_autobaud_mode;
u8 pcm_int_params[5]; u8 pcm_int_params[5];
u32 max_autobaud_speed; u32 max_autobaud_speed;
...@@ -172,10 +176,11 @@ static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) ...@@ -172,10 +176,11 @@ static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
static int bcm_set_baudrate(struct hci_uart *hu, unsigned int speed) static int bcm_set_baudrate(struct hci_uart *hu, unsigned int speed)
{ {
struct hci_dev *hdev = hu->hdev; struct hci_dev *hdev = hu->hdev;
struct bcm_data *bcm = hu->priv;
struct sk_buff *skb; struct sk_buff *skb;
struct bcm_update_uart_baud_rate param; struct bcm_update_uart_baud_rate param;
if (speed > 3000000) { if (speed > 3000000 && !bcm->dev->no_uart_clock_set) {
struct bcm_write_uart_clock_setting clock; struct bcm_write_uart_clock_setting clock;
clock.type = BCM_UART_CLOCK_48MHZ; clock.type = BCM_UART_CLOCK_48MHZ;
...@@ -1529,6 +1534,7 @@ static int bcm_serdev_probe(struct serdev_device *serdev) ...@@ -1529,6 +1534,7 @@ static int bcm_serdev_probe(struct serdev_device *serdev)
bcmdev->max_autobaud_speed = data->max_autobaud_speed; bcmdev->max_autobaud_speed = data->max_autobaud_speed;
bcmdev->no_early_set_baudrate = data->no_early_set_baudrate; bcmdev->no_early_set_baudrate = data->no_early_set_baudrate;
bcmdev->drive_rts_on_open = data->drive_rts_on_open; bcmdev->drive_rts_on_open = data->drive_rts_on_open;
bcmdev->no_uart_clock_set = data->no_uart_clock_set;
} }
return hci_uart_register_device(&bcmdev->serdev_hu, &bcm_proto); return hci_uart_register_device(&bcmdev->serdev_hu, &bcm_proto);
...@@ -1550,6 +1556,10 @@ static struct bcm_device_data bcm43438_device_data = { ...@@ -1550,6 +1556,10 @@ static struct bcm_device_data bcm43438_device_data = {
.drive_rts_on_open = true, .drive_rts_on_open = true,
}; };
static struct bcm_device_data cyw4373a0_device_data = {
.no_uart_clock_set = true,
};
static struct bcm_device_data cyw55572_device_data = { static struct bcm_device_data cyw55572_device_data = {
.max_autobaud_speed = 921600, .max_autobaud_speed = 921600,
}; };
...@@ -1566,6 +1576,7 @@ static const struct of_device_id bcm_bluetooth_of_match[] = { ...@@ -1566,6 +1576,7 @@ static const struct of_device_id bcm_bluetooth_of_match[] = {
{ .compatible = "brcm,bcm4349-bt", .data = &bcm43438_device_data }, { .compatible = "brcm,bcm4349-bt", .data = &bcm43438_device_data },
{ .compatible = "brcm,bcm43540-bt", .data = &bcm4354_device_data }, { .compatible = "brcm,bcm43540-bt", .data = &bcm4354_device_data },
{ .compatible = "brcm,bcm4335a0" }, { .compatible = "brcm,bcm4335a0" },
{ .compatible = "cypress,cyw4373a0-bt", .data = &cyw4373a0_device_data },
{ .compatible = "infineon,cyw55572-bt", .data = &cyw55572_device_data }, { .compatible = "infineon,cyw55572-bt", .data = &cyw55572_device_data },
{ }, { },
}; };
......
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/*
* Bluetooth HCI driver for Broadcom 4377/4378/4387 devices attached via PCIe
*
* Copyright (C) The Asahi Linux Contributors
*/
#include <linux/async.h>
#include <linux/bitfield.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmi.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/printk.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
enum bcm4377_chip {
BCM4377 = 0,
BCM4378,
BCM4387,
};
#define BCM4377_DEVICE_ID 0x5fa0
#define BCM4378_DEVICE_ID 0x5f69
#define BCM4387_DEVICE_ID 0x5f71
#define BCM4377_TIMEOUT 1000
/*
* These devices only support DMA transactions inside a 32bit window
* (possibly to avoid 64 bit arithmetic). The window size cannot exceed
* 0xffffffff but is always aligned down to the previous 0x200 byte boundary
* which effectively limits the window to [start, start+0xfffffe00].
* We just limit the DMA window to [0, 0xfffffe00] to make sure we don't
* run into this limitation.
*/
#define BCM4377_DMA_MASK 0xfffffe00
#define BCM4377_PCIECFG_BAR0_WINDOW1 0x80
#define BCM4377_PCIECFG_BAR0_WINDOW2 0x70
#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1 0x74
#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW2 0x78
#define BCM4377_PCIECFG_BAR2_WINDOW 0x84
#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT 0x18011000
#define BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT 0x19000000
#define BCM4377_PCIECFG_SUBSYSTEM_CTRL 0x88
#define BCM4377_BAR0_FW_DOORBELL 0x140
#define BCM4377_BAR0_RTI_CONTROL 0x144
#define BCM4377_BAR0_SLEEP_CONTROL 0x150
#define BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE 0
#define BCM4377_BAR0_SLEEP_CONTROL_AWAKE 2
#define BCM4377_BAR0_SLEEP_CONTROL_QUIESCE 3
#define BCM4377_BAR0_DOORBELL 0x174
#define BCM4377_BAR0_DOORBELL_VALUE GENMASK(31, 16)
#define BCM4377_BAR0_DOORBELL_IDX GENMASK(15, 8)
#define BCM4377_BAR0_DOORBELL_RING BIT(5)
#define BCM4377_BAR0_HOST_WINDOW_LO 0x590
#define BCM4377_BAR0_HOST_WINDOW_HI 0x594
#define BCM4377_BAR0_HOST_WINDOW_SIZE 0x598
#define BCM4377_BAR2_BOOTSTAGE 0x200454
#define BCM4377_BAR2_FW_LO 0x200478
#define BCM4377_BAR2_FW_HI 0x20047c
#define BCM4377_BAR2_FW_SIZE 0x200480
#define BCM4377_BAR2_CONTEXT_ADDR_LO 0x20048c
#define BCM4377_BAR2_CONTEXT_ADDR_HI 0x200450
#define BCM4377_BAR2_RTI_STATUS 0x20045c
#define BCM4377_BAR2_RTI_WINDOW_LO 0x200494
#define BCM4377_BAR2_RTI_WINDOW_HI 0x200498
#define BCM4377_BAR2_RTI_WINDOW_SIZE 0x20049c
#define BCM4377_OTP_SIZE 0xe0
#define BCM4377_OTP_SYS_VENDOR 0x15
#define BCM4377_OTP_CIS 0x80
#define BCM4377_OTP_VENDOR_HDR 0x00000008
#define BCM4377_OTP_MAX_PARAM_LEN 16
#define BCM4377_N_TRANSFER_RINGS 9
#define BCM4377_N_COMPLETION_RINGS 6
#define BCM4377_MAX_RING_SIZE 256
#define BCM4377_MSGID_GENERATION GENMASK(15, 8)
#define BCM4377_MSGID_ID GENMASK(7, 0)
#define BCM4377_RING_N_ENTRIES 128
#define BCM4377_CONTROL_MSG_SIZE 0x34
#define BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE (4 * 0xff)
#define MAX_ACL_PAYLOAD_SIZE (HCI_MAX_FRAME_SIZE + HCI_ACL_HDR_SIZE)
#define MAX_SCO_PAYLOAD_SIZE (HCI_MAX_SCO_SIZE + HCI_SCO_HDR_SIZE)
#define MAX_EVENT_PAYLOAD_SIZE (HCI_MAX_EVENT_SIZE + HCI_EVENT_HDR_SIZE)
enum bcm4377_otp_params_type {
BCM4377_OTP_BOARD_PARAMS,
BCM4377_OTP_CHIP_PARAMS
};
enum bcm4377_transfer_ring_id {
BCM4377_XFER_RING_CONTROL = 0,
BCM4377_XFER_RING_HCI_H2D = 1,
BCM4377_XFER_RING_HCI_D2H = 2,
BCM4377_XFER_RING_SCO_H2D = 3,
BCM4377_XFER_RING_SCO_D2H = 4,
BCM4377_XFER_RING_ACL_H2D = 5,
BCM4377_XFER_RING_ACL_D2H = 6,
};
enum bcm4377_completion_ring_id {
BCM4377_ACK_RING_CONTROL = 0,
BCM4377_ACK_RING_HCI_ACL = 1,
BCM4377_EVENT_RING_HCI_ACL = 2,
BCM4377_ACK_RING_SCO = 3,
BCM4377_EVENT_RING_SCO = 4,
};
enum bcm4377_doorbell {
BCM4377_DOORBELL_CONTROL = 0,
BCM4377_DOORBELL_HCI_H2D = 1,
BCM4377_DOORBELL_HCI_D2H = 2,
BCM4377_DOORBELL_ACL_H2D = 3,
BCM4377_DOORBELL_ACL_D2H = 4,
BCM4377_DOORBELL_SCO = 6,
};
/*
* Transfer ring entry
*
* flags: Flags to indicate if the payload is appended or mapped
* len: Payload length
* payload: Optional payload DMA address
* id: Message id to recognize the answer in the completion ring entry
*/
struct bcm4377_xfer_ring_entry {
#define BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED BIT(0)
#define BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER BIT(1)
u8 flags;
__le16 len;
u8 _unk0;
__le64 payload;
__le16 id;
u8 _unk1[2];
} __packed;
static_assert(sizeof(struct bcm4377_xfer_ring_entry) == 0x10);
/*
* Completion ring entry
*
* flags: Flags to indicate if the payload is appended or mapped. If the payload
* is mapped it can be found in the buffer of the corresponding transfer
* ring message.
* ring_id: Transfer ring ID which required this message
* msg_id: Message ID specified in transfer ring entry
* len: Payload length
*/
struct bcm4377_completion_ring_entry {
u8 flags;
u8 _unk0;
__le16 ring_id;
__le16 msg_id;
__le32 len;
u8 _unk1[6];
} __packed;
static_assert(sizeof(struct bcm4377_completion_ring_entry) == 0x10);
enum bcm4377_control_message_type {
BCM4377_CONTROL_MSG_CREATE_XFER_RING = 1,
BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING = 2,
BCM4377_CONTROL_MSG_DESTROY_XFER_RING = 3,
BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING = 4,
};
/*
* Control message used to create a completion ring
*
* msg_type: Must be BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
* header_size: Unknown, but probably reserved space in front of the entry
* footer_size: Number of 32 bit words reserved for payloads after the entry
* id/id_again: Completion ring index
* ring_iova: DMA address of the ring buffer
* n_elements: Number of elements inside the ring buffer
* msi: MSI index, doesn't work for all rings though and should be zero
* intmod_delay: Unknown delay
* intmod_bytes: Unknown
*/
struct bcm4377_create_completion_ring_msg {
u8 msg_type;
u8 header_size;
u8 footer_size;
u8 _unk0;
__le16 id;
__le16 id_again;
__le64 ring_iova;
__le16 n_elements;
__le32 unk;
u8 _unk1[6];
__le16 msi;
__le16 intmod_delay;
__le32 intmod_bytes;
__le16 _unk2;
__le32 _unk3;
u8 _unk4[10];
} __packed;
static_assert(sizeof(struct bcm4377_create_completion_ring_msg) ==
BCM4377_CONTROL_MSG_SIZE);
/*
* Control ring message used to destroy a completion ring
*
* msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
* ring_id: Completion ring to be destroyed
*/
struct bcm4377_destroy_completion_ring_msg {
u8 msg_type;
u8 _pad0;
__le16 ring_id;
u8 _pad1[48];
} __packed;
static_assert(sizeof(struct bcm4377_destroy_completion_ring_msg) ==
BCM4377_CONTROL_MSG_SIZE);
/*
* Control message used to create a transfer ring
*
* msg_type: Must be BCM4377_CONTROL_MSG_CREATE_XFER_RING
* header_size: Number of 32 bit words reserved for unknown content before the
* entry
* footer_size: Number of 32 bit words reserved for payloads after the entry
* ring_id/ring_id_again: Transfer ring index
* ring_iova: DMA address of the ring buffer
* n_elements: Number of elements inside the ring buffer
* completion_ring_id: Completion ring index for acknowledgements and events
* doorbell: Doorbell index used to notify device of new entries
* flags: Transfer ring flags
* - virtual: set if there is no associated shared memory and only the
* corresponding completion ring is used
* - sync: only set for the SCO rings
*/
struct bcm4377_create_transfer_ring_msg {
u8 msg_type;
u8 header_size;
u8 footer_size;
u8 _unk0;
__le16 ring_id;
__le16 ring_id_again;
__le64 ring_iova;
u8 _unk1[8];
__le16 n_elements;
__le16 completion_ring_id;
__le16 doorbell;
#define BCM4377_XFER_RING_FLAG_VIRTUAL BIT(7)
#define BCM4377_XFER_RING_FLAG_SYNC BIT(8)
__le16 flags;
u8 _unk2[20];
} __packed;
static_assert(sizeof(struct bcm4377_create_transfer_ring_msg) ==
BCM4377_CONTROL_MSG_SIZE);
/*
* Control ring message used to destroy a transfer ring
*
* msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_XFER_RING
* ring_id: Transfer ring to be destroyed
*/
struct bcm4377_destroy_transfer_ring_msg {
u8 msg_type;
u8 _pad0;
__le16 ring_id;
u8 _pad1[48];
} __packed;
static_assert(sizeof(struct bcm4377_destroy_transfer_ring_msg) ==
BCM4377_CONTROL_MSG_SIZE);
/*
* "Converged IPC" context struct used to make the device aware of all other
* shared memory structures. A pointer to this structure is configured inside a
* MMIO register.
*
* version: Protocol version, must be 2.
* size: Size of this structure, must be 0x68.
* enabled_caps: Enabled capabilities. Unknown bitfield but should be 2.
* peripheral_info_addr: DMA address for a 0x20 buffer to which the device will
* write unknown contents
* {completion,xfer}_ring_{tails,heads}_addr: DMA pointers to ring heads/tails
* n_completion_rings: Number of completion rings, the firmware only works if
* this is set to BCM4377_N_COMPLETION_RINGS.
* n_xfer_rings: Number of transfer rings, the firmware only works if
* this is set to BCM4377_N_TRANSFER_RINGS.
* control_completion_ring_addr: Control completion ring buffer DMA address
* control_xfer_ring_addr: Control transfer ring buffer DMA address
* control_xfer_ring_n_entries: Number of control transfer ring entries
* control_completion_ring_n_entries: Number of control completion ring entries
* control_xfer_ring_doorbell: Control transfer ring doorbell
* control_completion_ring_doorbell: Control completion ring doorbell,
* must be set to 0xffff
* control_xfer_ring_msi: Control completion ring MSI index, must be 0
* control_completion_ring_msi: Control completion ring MSI index, must be 0.
* control_xfer_ring_header_size: Number of 32 bit words reserved in front of
* every control transfer ring entry
* control_xfer_ring_footer_size: Number of 32 bit words reserved after every
* control transfer ring entry
* control_completion_ring_header_size: Number of 32 bit words reserved in front
* of every control completion ring entry
* control_completion_ring_footer_size: Number of 32 bit words reserved after
* every control completion ring entry
* scratch_pad: Optional scratch pad DMA address
* scratch_pad_size: Scratch pad size
*/
struct bcm4377_context {
__le16 version;
__le16 size;
__le32 enabled_caps;
__le64 peripheral_info_addr;
/* ring heads and tails */
__le64 completion_ring_heads_addr;
__le64 xfer_ring_tails_addr;
__le64 completion_ring_tails_addr;
__le64 xfer_ring_heads_addr;
__le16 n_completion_rings;
__le16 n_xfer_rings;
/* control ring configuration */
__le64 control_completion_ring_addr;
__le64 control_xfer_ring_addr;
__le16 control_xfer_ring_n_entries;
__le16 control_completion_ring_n_entries;
__le16 control_xfer_ring_doorbell;
__le16 control_completion_ring_doorbell;
__le16 control_xfer_ring_msi;
__le16 control_completion_ring_msi;
u8 control_xfer_ring_header_size;
u8 control_xfer_ring_footer_size;
u8 control_completion_ring_header_size;
u8 control_completion_ring_footer_size;
__le16 _unk0;
__le16 _unk1;
__le64 scratch_pad;
__le32 scratch_pad_size;
__le32 _unk3;
} __packed;
static_assert(sizeof(struct bcm4377_context) == 0x68);
#define BCM4378_CALIBRATION_CHUNK_SIZE 0xe6
struct bcm4378_hci_send_calibration_cmd {
u8 unk;
__le16 blocks_left;
u8 data[BCM4378_CALIBRATION_CHUNK_SIZE];
} __packed;
#define BCM4378_PTB_CHUNK_SIZE 0xcf
struct bcm4378_hci_send_ptb_cmd {
__le16 blocks_left;
u8 data[BCM4378_PTB_CHUNK_SIZE];
} __packed;
/*
* Shared memory structure used to store the ring head and tail pointers.
*/
struct bcm4377_ring_state {
__le16 completion_ring_head[BCM4377_N_COMPLETION_RINGS];
__le16 completion_ring_tail[BCM4377_N_COMPLETION_RINGS];
__le16 xfer_ring_head[BCM4377_N_TRANSFER_RINGS];
__le16 xfer_ring_tail[BCM4377_N_TRANSFER_RINGS];
};
/*
* A transfer ring can be used in two configurations:
* 1) Send control or HCI messages to the device which are then acknowledged
* in the corresponding completion ring
* 2) Receiving HCI frames from the devices. In this case the transfer ring
* itself contains empty messages that are acknowledged once data is
* available from the device. If the payloads fit inside the footers
* of the completion ring the transfer ring can be configured to be
* virtual such that it has no ring buffer.
*
* ring_id: ring index hardcoded in the firmware
* doorbell: doorbell index to notify device of new entries
* payload_size: optional in-place payload size
* mapped_payload_size: optional out-of-place payload size
* completion_ring: index of corresponding completion ring
* n_entries: number of entries inside this ring
* generation: ring generation; incremented on hci_open to detect stale messages
* sync: set to true for SCO rings
* virtual: set to true if this ring has no entries and is just required to
* setup a corresponding completion ring for device->host messages
* d2h_buffers_only: set to true if this ring is only used to provide large
* buffers used by device->host messages in the completion
* ring
* allow_wait: allow to wait for messages to be acknowledged
* enabled: true once the ring has been created and can be used
* ring: ring buffer for entries (struct bcm4377_xfer_ring_entry)
* ring_dma: DMA address for ring entry buffer
* payloads: payload buffer for mapped_payload_size payloads
* payloads_dma:DMA address for payload buffer
* events: pointer to array of completions if waiting is allowed
* msgids: bitmap to keep track of used message ids
* lock: Spinlock to protect access to ring structurs used in the irq handler
*/
struct bcm4377_transfer_ring {
enum bcm4377_transfer_ring_id ring_id;
enum bcm4377_doorbell doorbell;
size_t payload_size;
size_t mapped_payload_size;
u8 completion_ring;
u16 n_entries;
u8 generation;
bool sync;
bool virtual;
bool d2h_buffers_only;
bool allow_wait;
bool enabled;
void *ring;
dma_addr_t ring_dma;
void *payloads;
dma_addr_t payloads_dma;
struct completion **events;
DECLARE_BITMAP(msgids, BCM4377_MAX_RING_SIZE);
spinlock_t lock;
};
/*
* A completion ring can be either used to either acknowledge messages sent in
* the corresponding transfer ring or to receive messages associated with the
* transfer ring. When used to receive messages the transfer ring either
* has no ring buffer and is only advanced ("virtual transfer ring") or it
* only contains empty DMA buffers to be used for the payloads.
*
* ring_id: completion ring id, hardcoded in firmware
* payload_size: optional payload size after each entry
* delay: unknown delay
* n_entries: number of entries in this ring
* enabled: true once the ring has been created and can be used
* ring: ring buffer for entries (struct bcm4377_completion_ring_entry)
* ring_dma: DMA address of ring buffer
* transfer_rings: bitmap of corresponding transfer ring ids
*/
struct bcm4377_completion_ring {
enum bcm4377_completion_ring_id ring_id;
u16 payload_size;
u16 delay;
u16 n_entries;
bool enabled;
void *ring;
dma_addr_t ring_dma;
unsigned long transfer_rings;
};
struct bcm4377_data;
/*
* Chip-specific configuration struct
*
* id: Chip id (e.g. 0x4377 for BCM4377)
* otp_offset: Offset to the start of the OTP inside BAR0
* bar0_window1: Backplane address mapped to the first window in BAR0
* bar0_window2: Backplane address mapped to the second window in BAR0
* bar0_core2_window2: Optional backplane address mapped to the second core's
* second window in BAR0
* has_bar0_core2_window2: Set to true if this chip requires the second core's
* second window to be configured
* clear_pciecfg_subsystem_ctrl_bit19: Set to true if bit 19 in the
* vendor-specific subsystem control
* register has to be cleared
* disable_aspm: Set to true if ASPM must be disabled due to hardware errata
* broken_ext_scan: Set to true if the chip erroneously claims to support
* extended scanning
* broken_mws_transport_config: Set to true if the chip erroneously claims to
* support MWS Transport Configuration
* send_calibration: Optional callback to send calibration data
* send_ptb: Callback to send "PTB" regulatory/calibration data
*/
struct bcm4377_hw {
unsigned int id;
u32 otp_offset;
u32 bar0_window1;
u32 bar0_window2;
u32 bar0_core2_window2;
unsigned long has_bar0_core2_window2 : 1;
unsigned long clear_pciecfg_subsystem_ctrl_bit19 : 1;
unsigned long disable_aspm : 1;
unsigned long broken_ext_scan : 1;
unsigned long broken_mws_transport_config : 1;
int (*send_calibration)(struct bcm4377_data *bcm4377);
int (*send_ptb)(struct bcm4377_data *bcm4377,
const struct firmware *fw);
};
static const struct bcm4377_hw bcm4377_hw_variants[];
static const struct dmi_system_id bcm4377_dmi_board_table[];
/*
* Private struct associated with each device containing global state
*
* pdev: Pointer to associated struct pci_dev
* hdev: Pointer to associated strucy hci_dev
* bar0: iomem pointing to BAR0
* bar1: iomem pointing to BAR2
* bootstage: Current value of the bootstage
* rti_status: Current "RTI" status value
* hw: Pointer to chip-specific struct bcm4377_hw
* taurus_cal_blob: "Taurus" calibration blob used for some chips
* taurus_cal_size: "Taurus" calibration blob size
* taurus_beamforming_cal_blob: "Taurus" beamforming calibration blob used for
* some chips
* taurus_beamforming_cal_size: "Taurus" beamforming calibration blob size
* stepping: Chip stepping read from OTP; used for firmware selection
* vendor: Antenna vendor read from OTP; used for firmware selection
* board_type: Board type from FDT or DMI match; used for firmware selection
* event: Event for changed bootstage or rti_status; used for booting firmware
* ctx: "Converged IPC" context
* ctx_dma: "Converged IPC" context DMA address
* ring_state: Shared memory buffer containing ring head and tail indexes
* ring_state_dma: DMA address for ring_state
* {control,hci_acl,sco}_ack_ring: Completion rings used to acknowledge messages
* {hci_acl,sco}_event_ring: Completion rings used for device->host messages
* control_h2d_ring: Transfer ring used for control messages
* {hci,sco,acl}_h2d_ring: Transfer ring used to transfer HCI frames
* {hci,sco,acl}_d2h_ring: Transfer ring used to receive HCI frames in the
* corresponding completion ring
*/
struct bcm4377_data {
struct pci_dev *pdev;
struct hci_dev *hdev;
void __iomem *bar0;
void __iomem *bar2;
u32 bootstage;
u32 rti_status;
const struct bcm4377_hw *hw;
const void *taurus_cal_blob;
int taurus_cal_size;
const void *taurus_beamforming_cal_blob;
int taurus_beamforming_cal_size;
char stepping[BCM4377_OTP_MAX_PARAM_LEN];
char vendor[BCM4377_OTP_MAX_PARAM_LEN];
const char *board_type;
struct completion event;
struct bcm4377_context *ctx;
dma_addr_t ctx_dma;
struct bcm4377_ring_state *ring_state;
dma_addr_t ring_state_dma;
/*
* The HCI and ACL rings have to be merged because this structure is
* hardcoded in the firmware.
*/
struct bcm4377_completion_ring control_ack_ring;
struct bcm4377_completion_ring hci_acl_ack_ring;
struct bcm4377_completion_ring hci_acl_event_ring;
struct bcm4377_completion_ring sco_ack_ring;
struct bcm4377_completion_ring sco_event_ring;
struct bcm4377_transfer_ring control_h2d_ring;
struct bcm4377_transfer_ring hci_h2d_ring;
struct bcm4377_transfer_ring hci_d2h_ring;
struct bcm4377_transfer_ring sco_h2d_ring;
struct bcm4377_transfer_ring sco_d2h_ring;
struct bcm4377_transfer_ring acl_h2d_ring;
struct bcm4377_transfer_ring acl_d2h_ring;
};
static void bcm4377_ring_doorbell(struct bcm4377_data *bcm4377, u8 doorbell,
u16 val)
{
u32 db = 0;
db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_VALUE, val);
db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_IDX, doorbell);
db |= BCM4377_BAR0_DOORBELL_RING;
dev_dbg(&bcm4377->pdev->dev, "write %d to doorbell #%d (0x%x)\n", val,
doorbell, db);
iowrite32(db, bcm4377->bar0 + BCM4377_BAR0_DOORBELL);
}
static int bcm4377_extract_msgid(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring,
u16 raw_msgid, u8 *msgid)
{
u8 generation = FIELD_GET(BCM4377_MSGID_GENERATION, raw_msgid);
*msgid = FIELD_GET(BCM4377_MSGID_ID, raw_msgid);
if (generation != ring->generation) {
dev_warn(
&bcm4377->pdev->dev,
"invalid message generation %d should be %d in entry for ring %d\n",
generation, ring->generation, ring->ring_id);
return -EINVAL;
}
if (*msgid >= ring->n_entries) {
dev_warn(&bcm4377->pdev->dev,
"invalid message id in entry for ring %d: %d > %d\n",
ring->ring_id, *msgid, ring->n_entries);
return -EINVAL;
}
return 0;
}
static void bcm4377_handle_event(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring,
u16 raw_msgid, u8 entry_flags, u8 type,
void *payload, size_t len)
{
struct sk_buff *skb;
u16 head;
u8 msgid;
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
if (!ring->enabled) {
dev_warn(&bcm4377->pdev->dev,
"event for disabled transfer ring %d\n",
ring->ring_id);
goto out;
}
if (ring->d2h_buffers_only &&
entry_flags & BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED) {
if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
goto out;
if (len > ring->mapped_payload_size) {
dev_warn(
&bcm4377->pdev->dev,
"invalid payload len in event for ring %d: %zu > %zu\n",
ring->ring_id, len, ring->mapped_payload_size);
goto out;
}
payload = ring->payloads + msgid * ring->mapped_payload_size;
}
skb = bt_skb_alloc(len, GFP_ATOMIC);
if (!skb)
goto out;
memcpy(skb_put(skb, len), payload, len);
hci_skb_pkt_type(skb) = type;
hci_recv_frame(bcm4377->hdev, skb);
out:
head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
head = (head + 1) % ring->n_entries;
bcm4377->ring_state->xfer_ring_head[ring->ring_id] = cpu_to_le16(head);
bcm4377_ring_doorbell(bcm4377, ring->doorbell, head);
spin_unlock_irqrestore(&ring->lock, flags);
}
static void bcm4377_handle_ack(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring,
u16 raw_msgid)
{
unsigned long flags;
u8 msgid;
spin_lock_irqsave(&ring->lock, flags);
if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
goto unlock;
if (!test_bit(msgid, ring->msgids)) {
dev_warn(
&bcm4377->pdev->dev,
"invalid message id in ack for ring %d: %d is not used\n",
ring->ring_id, msgid);
goto unlock;
}
if (ring->allow_wait && ring->events[msgid]) {
complete(ring->events[msgid]);
ring->events[msgid] = NULL;
}
bitmap_release_region(ring->msgids, msgid, ring->n_entries);
unlock:
spin_unlock_irqrestore(&ring->lock, flags);
}
static void bcm4377_handle_completion(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring,
u16 pos)
{
struct bcm4377_completion_ring_entry *entry;
u16 msg_id, transfer_ring;
size_t entry_size, data_len;
void *data;
if (pos >= ring->n_entries) {
dev_warn(&bcm4377->pdev->dev,
"invalid offset %d for completion ring %d\n", pos,
ring->ring_id);
return;
}
entry_size = sizeof(*entry) + ring->payload_size;
entry = ring->ring + pos * entry_size;
data = ring->ring + pos * entry_size + sizeof(*entry);
data_len = le32_to_cpu(entry->len);
msg_id = le16_to_cpu(entry->msg_id);
transfer_ring = le16_to_cpu(entry->ring_id);
if ((ring->transfer_rings & BIT(transfer_ring)) == 0) {
dev_warn(
&bcm4377->pdev->dev,
"invalid entry at offset %d for transfer ring %d in completion ring %d\n",
pos, transfer_ring, ring->ring_id);
return;
}
dev_dbg(&bcm4377->pdev->dev,
"entry in completion ring %d for transfer ring %d with msg_id %d\n",
ring->ring_id, transfer_ring, msg_id);
switch (transfer_ring) {
case BCM4377_XFER_RING_CONTROL:
bcm4377_handle_ack(bcm4377, &bcm4377->control_h2d_ring, msg_id);
break;
case BCM4377_XFER_RING_HCI_H2D:
bcm4377_handle_ack(bcm4377, &bcm4377->hci_h2d_ring, msg_id);
break;
case BCM4377_XFER_RING_SCO_H2D:
bcm4377_handle_ack(bcm4377, &bcm4377->sco_h2d_ring, msg_id);
break;
case BCM4377_XFER_RING_ACL_H2D:
bcm4377_handle_ack(bcm4377, &bcm4377->acl_h2d_ring, msg_id);
break;
case BCM4377_XFER_RING_HCI_D2H:
bcm4377_handle_event(bcm4377, &bcm4377->hci_d2h_ring, msg_id,
entry->flags, HCI_EVENT_PKT, data,
data_len);
break;
case BCM4377_XFER_RING_SCO_D2H:
bcm4377_handle_event(bcm4377, &bcm4377->sco_d2h_ring, msg_id,
entry->flags, HCI_SCODATA_PKT, data,
data_len);
break;
case BCM4377_XFER_RING_ACL_D2H:
bcm4377_handle_event(bcm4377, &bcm4377->acl_d2h_ring, msg_id,
entry->flags, HCI_ACLDATA_PKT, data,
data_len);
break;
default:
dev_warn(
&bcm4377->pdev->dev,
"entry in completion ring %d for unknown transfer ring %d with msg_id %d\n",
ring->ring_id, transfer_ring, msg_id);
}
}
static void bcm4377_poll_completion_ring(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring)
{
u16 tail;
__le16 *heads = bcm4377->ring_state->completion_ring_head;
__le16 *tails = bcm4377->ring_state->completion_ring_tail;
if (!ring->enabled)
return;
tail = le16_to_cpu(tails[ring->ring_id]);
dev_dbg(&bcm4377->pdev->dev,
"completion ring #%d: head: %d, tail: %d\n", ring->ring_id,
le16_to_cpu(heads[ring->ring_id]), tail);
while (tail != le16_to_cpu(READ_ONCE(heads[ring->ring_id]))) {
/*
* ensure the CPU doesn't speculate through the comparison.
* otherwise it might already read the (empty) queue entry
* before the updated head has been loaded and checked.
*/
dma_rmb();
bcm4377_handle_completion(bcm4377, ring, tail);
tail = (tail + 1) % ring->n_entries;
tails[ring->ring_id] = cpu_to_le16(tail);
}
}
static irqreturn_t bcm4377_irq(int irq, void *data)
{
struct bcm4377_data *bcm4377 = data;
u32 bootstage, rti_status;
bootstage = ioread32(bcm4377->bar2 + BCM4377_BAR2_BOOTSTAGE);
rti_status = ioread32(bcm4377->bar2 + BCM4377_BAR2_RTI_STATUS);
if (bootstage != bcm4377->bootstage ||
rti_status != bcm4377->rti_status) {
dev_dbg(&bcm4377->pdev->dev,
"bootstage = %d -> %d, rti state = %d -> %d\n",
bcm4377->bootstage, bootstage, bcm4377->rti_status,
rti_status);
complete(&bcm4377->event);
bcm4377->bootstage = bootstage;
bcm4377->rti_status = rti_status;
}
if (rti_status > 2)
dev_err(&bcm4377->pdev->dev, "RTI status is %d\n", rti_status);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->control_ack_ring);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_event_ring);
return IRQ_HANDLED;
}
static int bcm4377_enqueue(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring, void *data,
size_t len, bool wait)
{
unsigned long flags;
struct bcm4377_xfer_ring_entry *entry;
void *payload;
size_t offset;
u16 head, tail, new_head;
u16 raw_msgid;
int ret, msgid;
DECLARE_COMPLETION_ONSTACK(event);
if (len > ring->payload_size && len > ring->mapped_payload_size) {
dev_warn(
&bcm4377->pdev->dev,
"payload len %zu is too large for ring %d (max is %zu or %zu)\n",
len, ring->ring_id, ring->payload_size,
ring->mapped_payload_size);
return -EINVAL;
}
if (wait && !ring->allow_wait)
return -EINVAL;
if (ring->virtual)
return -EINVAL;
spin_lock_irqsave(&ring->lock, flags);
head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
tail = le16_to_cpu(bcm4377->ring_state->xfer_ring_tail[ring->ring_id]);
new_head = (head + 1) % ring->n_entries;
if (new_head == tail) {
dev_warn(&bcm4377->pdev->dev,
"can't send message because ring %d is full\n",
ring->ring_id);
ret = -EINVAL;
goto out;
}
msgid = bitmap_find_free_region(ring->msgids, ring->n_entries, 0);
if (msgid < 0) {
dev_warn(&bcm4377->pdev->dev,
"can't find message id for ring %d\n", ring->ring_id);
ret = -EINVAL;
goto out;
}
raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION, ring->generation);
raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, msgid);
offset = head * (sizeof(*entry) + ring->payload_size);
entry = ring->ring + offset;
memset(entry, 0, sizeof(*entry));
entry->id = cpu_to_le16(raw_msgid);
entry->len = cpu_to_le16(len);
if (len <= ring->payload_size) {
entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER;
payload = ring->ring + offset + sizeof(*entry);
} else {
entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
entry->payload = cpu_to_le64(ring->payloads_dma +
msgid * ring->mapped_payload_size);
payload = ring->payloads + msgid * ring->mapped_payload_size;
}
memcpy(payload, data, len);
if (wait)
ring->events[msgid] = &event;
/*
* The 4377 chips stop responding to any commands as soon as they
* have been idle for a while. Poking the sleep control register here
* makes them come alive again.
*/
iowrite32(BCM4377_BAR0_SLEEP_CONTROL_AWAKE,
bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
dev_dbg(&bcm4377->pdev->dev,
"updating head for transfer queue #%d to %d\n", ring->ring_id,
new_head);
bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
cpu_to_le16(new_head);
if (!ring->sync)
bcm4377_ring_doorbell(bcm4377, ring->doorbell, new_head);
ret = 0;
out:
spin_unlock_irqrestore(&ring->lock, flags);
if (ret == 0 && wait) {
ret = wait_for_completion_interruptible_timeout(
&event, BCM4377_TIMEOUT);
if (ret == 0)
ret = -ETIMEDOUT;
else if (ret > 0)
ret = 0;
spin_lock_irqsave(&ring->lock, flags);
ring->events[msgid] = NULL;
spin_unlock_irqrestore(&ring->lock, flags);
}
return ret;
}
static int bcm4377_create_completion_ring(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring)
{
struct bcm4377_create_completion_ring_msg msg;
int ret;
if (ring->enabled) {
dev_warn(&bcm4377->pdev->dev,
"completion ring %d already enabled\n", ring->ring_id);
return 0;
}
memset(ring->ring, 0,
ring->n_entries * (sizeof(struct bcm4377_completion_ring_entry) +
ring->payload_size));
memset(&msg, 0, sizeof(msg));
msg.msg_type = BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING;
msg.id = cpu_to_le16(ring->ring_id);
msg.id_again = cpu_to_le16(ring->ring_id);
msg.ring_iova = cpu_to_le64(ring->ring_dma);
msg.n_elements = cpu_to_le16(ring->n_entries);
msg.intmod_bytes = cpu_to_le32(0xffffffff);
msg.unk = cpu_to_le32(0xffffffff);
msg.intmod_delay = cpu_to_le16(ring->delay);
msg.footer_size = ring->payload_size / 4;
ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
sizeof(msg), true);
if (!ret)
ring->enabled = true;
return ret;
}
static int bcm4377_destroy_completion_ring(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring)
{
struct bcm4377_destroy_completion_ring_msg msg;
int ret;
memset(&msg, 0, sizeof(msg));
msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING;
msg.ring_id = cpu_to_le16(ring->ring_id);
ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
sizeof(msg), true);
if (ret)
dev_warn(&bcm4377->pdev->dev,
"failed to destroy completion ring %d\n",
ring->ring_id);
ring->enabled = false;
return ret;
}
static int bcm4377_create_transfer_ring(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring)
{
struct bcm4377_create_transfer_ring_msg msg;
u16 flags = 0;
int ret, i;
unsigned long spinlock_flags;
if (ring->virtual)
flags |= BCM4377_XFER_RING_FLAG_VIRTUAL;
if (ring->sync)
flags |= BCM4377_XFER_RING_FLAG_SYNC;
spin_lock_irqsave(&ring->lock, spinlock_flags);
memset(&msg, 0, sizeof(msg));
msg.msg_type = BCM4377_CONTROL_MSG_CREATE_XFER_RING;
msg.ring_id = cpu_to_le16(ring->ring_id);
msg.ring_id_again = cpu_to_le16(ring->ring_id);
msg.ring_iova = cpu_to_le64(ring->ring_dma);
msg.n_elements = cpu_to_le16(ring->n_entries);
msg.completion_ring_id = cpu_to_le16(ring->completion_ring);
msg.doorbell = cpu_to_le16(ring->doorbell);
msg.flags = cpu_to_le16(flags);
msg.footer_size = ring->payload_size / 4;
bcm4377->ring_state->xfer_ring_head[ring->ring_id] = 0;
bcm4377->ring_state->xfer_ring_tail[ring->ring_id] = 0;
ring->generation++;
spin_unlock_irqrestore(&ring->lock, spinlock_flags);
ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
sizeof(msg), true);
spin_lock_irqsave(&ring->lock, spinlock_flags);
if (ring->d2h_buffers_only) {
for (i = 0; i < ring->n_entries; ++i) {
struct bcm4377_xfer_ring_entry *entry =
ring->ring + i * sizeof(*entry);
u16 raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION,
ring->generation);
raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, i);
memset(entry, 0, sizeof(*entry));
entry->id = cpu_to_le16(raw_msgid);
entry->len = cpu_to_le16(ring->mapped_payload_size);
entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
entry->payload =
cpu_to_le64(ring->payloads_dma +
i * ring->mapped_payload_size);
}
}
/*
* send some messages if this is a device->host ring to allow the device
* to reply by acknowledging them in the completion ring
*/
if (ring->virtual || ring->d2h_buffers_only) {
bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
cpu_to_le16(0xf);
bcm4377_ring_doorbell(bcm4377, ring->doorbell, 0xf);
}
ring->enabled = true;
spin_unlock_irqrestore(&ring->lock, spinlock_flags);
return ret;
}
static int bcm4377_destroy_transfer_ring(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring)
{
struct bcm4377_destroy_transfer_ring_msg msg;
int ret;
memset(&msg, 0, sizeof(msg));
msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_XFER_RING;
msg.ring_id = cpu_to_le16(ring->ring_id);
ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
sizeof(msg), true);
if (ret)
dev_warn(&bcm4377->pdev->dev,
"failed to destroy transfer ring %d\n", ring->ring_id);
ring->enabled = false;
return ret;
}
static int __bcm4378_send_calibration_chunk(struct bcm4377_data *bcm4377,
const void *data, size_t data_len,
u16 blocks_left)
{
struct bcm4378_hci_send_calibration_cmd cmd;
struct sk_buff *skb;
if (data_len > sizeof(cmd.data))
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.unk = 0x03;
cmd.blocks_left = cpu_to_le16(blocks_left);
memcpy(cmd.data, data, data_len);
skb = __hci_cmd_sync(bcm4377->hdev, 0xfd97, sizeof(cmd), &cmd,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
return 0;
}
static int __bcm4378_send_calibration(struct bcm4377_data *bcm4377,
const void *data, size_t data_size)
{
int ret;
size_t i, left, transfer_len;
size_t blocks =
DIV_ROUND_UP(data_size, (size_t)BCM4378_CALIBRATION_CHUNK_SIZE);
if (!data) {
dev_err(&bcm4377->pdev->dev,
"no calibration data available.\n");
return -ENOENT;
}
for (i = 0, left = data_size; i < blocks; ++i, left -= transfer_len) {
transfer_len =
min_t(size_t, left, BCM4378_CALIBRATION_CHUNK_SIZE);
ret = __bcm4378_send_calibration_chunk(
bcm4377, data + i * BCM4378_CALIBRATION_CHUNK_SIZE,
transfer_len, blocks - i - 1);
if (ret) {
dev_err(&bcm4377->pdev->dev,
"send calibration chunk failed with %d\n", ret);
return ret;
}
}
return 0;
}
static int bcm4378_send_calibration(struct bcm4377_data *bcm4377)
{
if ((strcmp(bcm4377->stepping, "b1") == 0) ||
strcmp(bcm4377->stepping, "b3") == 0)
return __bcm4378_send_calibration(
bcm4377, bcm4377->taurus_beamforming_cal_blob,
bcm4377->taurus_beamforming_cal_size);
else
return __bcm4378_send_calibration(bcm4377,
bcm4377->taurus_cal_blob,
bcm4377->taurus_cal_size);
}
static int bcm4387_send_calibration(struct bcm4377_data *bcm4377)
{
if (strcmp(bcm4377->stepping, "c2") == 0)
return __bcm4378_send_calibration(
bcm4377, bcm4377->taurus_beamforming_cal_blob,
bcm4377->taurus_beamforming_cal_size);
else
return __bcm4378_send_calibration(bcm4377,
bcm4377->taurus_cal_blob,
bcm4377->taurus_cal_size);
}
static const struct firmware *bcm4377_request_blob(struct bcm4377_data *bcm4377,
const char *suffix)
{
const struct firmware *fw;
char name0[64], name1[64];
int ret;
snprintf(name0, sizeof(name0), "brcm/brcmbt%04x%s-%s-%s.%s",
bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
bcm4377->vendor, suffix);
snprintf(name1, sizeof(name1), "brcm/brcmbt%04x%s-%s.%s",
bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
suffix);
dev_dbg(&bcm4377->pdev->dev, "Trying to load firmware: '%s' or '%s'\n",
name0, name1);
ret = firmware_request_nowarn(&fw, name0, &bcm4377->pdev->dev);
if (!ret)
return fw;
ret = firmware_request_nowarn(&fw, name1, &bcm4377->pdev->dev);
if (!ret)
return fw;
dev_err(&bcm4377->pdev->dev,
"Unable to load firmware; tried '%s' and '%s'\n", name0, name1);
return NULL;
}
static int bcm4377_send_ptb(struct bcm4377_data *bcm4377,
const struct firmware *fw)
{
struct sk_buff *skb;
skb = __hci_cmd_sync(bcm4377->hdev, 0xfd98, fw->size, fw->data,
HCI_INIT_TIMEOUT);
/*
* This command seems to always fail on more recent firmware versions
* (even in traces taken from the macOS driver). It's unclear why this
* happens but because the PTB file contains calibration and/or
* regulatory data and may be required on older firmware we still try to
* send it here just in case and just ignore if it fails.
*/
if (!IS_ERR(skb))
kfree_skb(skb);
return 0;
}
static int bcm4378_send_ptb_chunk(struct bcm4377_data *bcm4377,
const void *data, size_t data_len,
u16 blocks_left)
{
struct bcm4378_hci_send_ptb_cmd cmd;
struct sk_buff *skb;
if (data_len > BCM4378_PTB_CHUNK_SIZE)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.blocks_left = cpu_to_le16(blocks_left);
memcpy(cmd.data, data, data_len);
skb = __hci_cmd_sync(bcm4377->hdev, 0xfe0d, sizeof(cmd), &cmd,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
return 0;
}
static int bcm4378_send_ptb(struct bcm4377_data *bcm4377,
const struct firmware *fw)
{
size_t chunks = DIV_ROUND_UP(fw->size, (size_t)BCM4378_PTB_CHUNK_SIZE);
size_t i, left, transfer_len;
int ret;
for (i = 0, left = fw->size; i < chunks; ++i, left -= transfer_len) {
transfer_len = min_t(size_t, left, BCM4378_PTB_CHUNK_SIZE);
dev_dbg(&bcm4377->pdev->dev, "sending ptb chunk %zu/%zu\n",
i + 1, chunks);
ret = bcm4378_send_ptb_chunk(
bcm4377, fw->data + i * BCM4378_PTB_CHUNK_SIZE,
transfer_len, chunks - i - 1);
if (ret) {
dev_err(&bcm4377->pdev->dev,
"sending ptb chunk %zu failed (%d)", i, ret);
return ret;
}
}
return 0;
}
static int bcm4377_hci_open(struct hci_dev *hdev)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
int ret;
dev_dbg(&bcm4377->pdev->dev, "creating rings\n");
ret = bcm4377_create_completion_ring(bcm4377,
&bcm4377->hci_acl_ack_ring);
if (ret)
return ret;
ret = bcm4377_create_completion_ring(bcm4377,
&bcm4377->hci_acl_event_ring);
if (ret)
goto destroy_hci_acl_ack;
ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
if (ret)
goto destroy_hci_acl_event;
ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_event_ring);
if (ret)
goto destroy_sco_ack;
dev_dbg(&bcm4377->pdev->dev,
"all completion rings successfully created!\n");
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
if (ret)
goto destroy_sco_event;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
if (ret)
goto destroy_hci_h2d;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
if (ret)
goto destroy_hci_d2h;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
if (ret)
goto destroy_sco_h2d;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
if (ret)
goto destroy_sco_d2h;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
if (ret)
goto destroy_acl_h2d;
dev_dbg(&bcm4377->pdev->dev,
"all transfer rings successfully created!\n");
return 0;
destroy_acl_h2d:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
destroy_sco_d2h:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
destroy_sco_h2d:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
destroy_hci_d2h:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
destroy_hci_h2d:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
destroy_sco_event:
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
destroy_sco_ack:
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
destroy_hci_acl_event:
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
destroy_hci_acl_ack:
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
dev_err(&bcm4377->pdev->dev, "Creating rings failed with %d\n", ret);
return ret;
}
static int bcm4377_hci_close(struct hci_dev *hdev)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
dev_dbg(&bcm4377->pdev->dev, "destroying rings in hci_close\n");
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
return 0;
}
static bool bcm4377_is_valid_bdaddr(struct bcm4377_data *bcm4377,
bdaddr_t *addr)
{
if (addr->b[0] != 0x93)
return true;
if (addr->b[1] != 0x76)
return true;
if (addr->b[2] != 0x00)
return true;
if (addr->b[4] != (bcm4377->hw->id & 0xff))
return true;
if (addr->b[5] != (bcm4377->hw->id >> 8))
return true;
return false;
}
static int bcm4377_check_bdaddr(struct bcm4377_data *bcm4377)
{
struct hci_rp_read_bd_addr *bda;
struct sk_buff *skb;
skb = __hci_cmd_sync(bcm4377->hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
int err = PTR_ERR(skb);
dev_err(&bcm4377->pdev->dev, "HCI_OP_READ_BD_ADDR failed (%d)",
err);
return err;
}
if (skb->len != sizeof(*bda)) {
dev_err(&bcm4377->pdev->dev,
"HCI_OP_READ_BD_ADDR reply length invalid");
kfree_skb(skb);
return -EIO;
}
bda = (struct hci_rp_read_bd_addr *)skb->data;
if (!bcm4377_is_valid_bdaddr(bcm4377, &bda->bdaddr))
set_bit(HCI_QUIRK_INVALID_BDADDR, &bcm4377->hdev->quirks);
kfree_skb(skb);
return 0;
}
static int bcm4377_hci_setup(struct hci_dev *hdev)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
const struct firmware *fw;
int ret;
if (bcm4377->hw->send_calibration) {
ret = bcm4377->hw->send_calibration(bcm4377);
if (ret)
return ret;
}
fw = bcm4377_request_blob(bcm4377, "ptb");
if (!fw) {
dev_err(&bcm4377->pdev->dev, "failed to load PTB data");
return -ENOENT;
}
ret = bcm4377->hw->send_ptb(bcm4377, fw);
release_firmware(fw);
if (ret)
return ret;
return bcm4377_check_bdaddr(bcm4377);
}
static int bcm4377_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
struct bcm4377_transfer_ring *ring;
int ret;
switch (hci_skb_pkt_type(skb)) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
ring = &bcm4377->hci_h2d_ring;
break;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
ring = &bcm4377->acl_h2d_ring;
break;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;
ring = &bcm4377->sco_h2d_ring;
break;
default:
return -EILSEQ;
}
ret = bcm4377_enqueue(bcm4377, ring, skb->data, skb->len, false);
if (ret < 0) {
hdev->stat.err_tx++;
return ret;
}
hdev->stat.byte_tx += skb->len;
kfree_skb(skb);
return ret;
}
static int bcm4377_hci_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
struct sk_buff *skb;
int err;
skb = __hci_cmd_sync(hdev, 0xfc01, 6, bdaddr, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
dev_err(&bcm4377->pdev->dev,
"Change address command failed (%d)", err);
return err;
}
kfree_skb(skb);
return 0;
}
static int bcm4377_alloc_transfer_ring(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring)
{
size_t entry_size;
spin_lock_init(&ring->lock);
ring->payload_size = ALIGN(ring->payload_size, 4);
ring->mapped_payload_size = ALIGN(ring->mapped_payload_size, 4);
if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
return -EINVAL;
if (ring->n_entries > BCM4377_MAX_RING_SIZE)
return -EINVAL;
if (ring->virtual && ring->allow_wait)
return -EINVAL;
if (ring->d2h_buffers_only) {
if (ring->virtual)
return -EINVAL;
if (ring->payload_size)
return -EINVAL;
if (!ring->mapped_payload_size)
return -EINVAL;
}
if (ring->virtual)
return 0;
entry_size =
ring->payload_size + sizeof(struct bcm4377_xfer_ring_entry);
ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
ring->n_entries * entry_size,
&ring->ring_dma, GFP_KERNEL);
if (!ring->ring)
return -ENOMEM;
if (ring->allow_wait) {
ring->events = devm_kcalloc(&bcm4377->pdev->dev,
ring->n_entries,
sizeof(*ring->events), GFP_KERNEL);
if (!ring->events)
return -ENOMEM;
}
if (ring->mapped_payload_size) {
ring->payloads = dmam_alloc_coherent(
&bcm4377->pdev->dev,
ring->n_entries * ring->mapped_payload_size,
&ring->payloads_dma, GFP_KERNEL);
if (!ring->payloads)
return -ENOMEM;
}
return 0;
}
static int bcm4377_alloc_completion_ring(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring)
{
size_t entry_size;
ring->payload_size = ALIGN(ring->payload_size, 4);
if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
return -EINVAL;
if (ring->n_entries > BCM4377_MAX_RING_SIZE)
return -EINVAL;
entry_size = ring->payload_size +
sizeof(struct bcm4377_completion_ring_entry);
ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
ring->n_entries * entry_size,
&ring->ring_dma, GFP_KERNEL);
if (!ring->ring)
return -ENOMEM;
return 0;
}
static int bcm4377_init_context(struct bcm4377_data *bcm4377)
{
struct device *dev = &bcm4377->pdev->dev;
dma_addr_t peripheral_info_dma;
bcm4377->ctx = dmam_alloc_coherent(dev, sizeof(*bcm4377->ctx),
&bcm4377->ctx_dma, GFP_KERNEL);
if (!bcm4377->ctx)
return -ENOMEM;
memset(bcm4377->ctx, 0, sizeof(*bcm4377->ctx));
bcm4377->ring_state =
dmam_alloc_coherent(dev, sizeof(*bcm4377->ring_state),
&bcm4377->ring_state_dma, GFP_KERNEL);
if (!bcm4377->ring_state)
return -ENOMEM;
memset(bcm4377->ring_state, 0, sizeof(*bcm4377->ring_state));
bcm4377->ctx->version = cpu_to_le16(1);
bcm4377->ctx->size = cpu_to_le16(sizeof(*bcm4377->ctx));
bcm4377->ctx->enabled_caps = cpu_to_le32(2);
/*
* The BT device will write 0x20 bytes of data to this buffer but
* the exact contents are unknown. It only needs to exist for BT
* to work such that we can just allocate and then ignore it.
*/
if (!dmam_alloc_coherent(&bcm4377->pdev->dev, 0x20,
&peripheral_info_dma, GFP_KERNEL))
return -ENOMEM;
bcm4377->ctx->peripheral_info_addr = cpu_to_le64(peripheral_info_dma);
bcm4377->ctx->xfer_ring_heads_addr = cpu_to_le64(
bcm4377->ring_state_dma +
offsetof(struct bcm4377_ring_state, xfer_ring_head));
bcm4377->ctx->xfer_ring_tails_addr = cpu_to_le64(
bcm4377->ring_state_dma +
offsetof(struct bcm4377_ring_state, xfer_ring_tail));
bcm4377->ctx->completion_ring_heads_addr = cpu_to_le64(
bcm4377->ring_state_dma +
offsetof(struct bcm4377_ring_state, completion_ring_head));
bcm4377->ctx->completion_ring_tails_addr = cpu_to_le64(
bcm4377->ring_state_dma +
offsetof(struct bcm4377_ring_state, completion_ring_tail));
bcm4377->ctx->n_completion_rings =
cpu_to_le16(BCM4377_N_COMPLETION_RINGS);
bcm4377->ctx->n_xfer_rings = cpu_to_le16(BCM4377_N_TRANSFER_RINGS);
bcm4377->ctx->control_completion_ring_addr =
cpu_to_le64(bcm4377->control_ack_ring.ring_dma);
bcm4377->ctx->control_completion_ring_n_entries =
cpu_to_le16(bcm4377->control_ack_ring.n_entries);
bcm4377->ctx->control_completion_ring_doorbell = cpu_to_le16(0xffff);
bcm4377->ctx->control_completion_ring_msi = 0;
bcm4377->ctx->control_completion_ring_header_size = 0;
bcm4377->ctx->control_completion_ring_footer_size = 0;
bcm4377->ctx->control_xfer_ring_addr =
cpu_to_le64(bcm4377->control_h2d_ring.ring_dma);
bcm4377->ctx->control_xfer_ring_n_entries =
cpu_to_le16(bcm4377->control_h2d_ring.n_entries);
bcm4377->ctx->control_xfer_ring_doorbell =
cpu_to_le16(bcm4377->control_h2d_ring.doorbell);
bcm4377->ctx->control_xfer_ring_msi = 0;
bcm4377->ctx->control_xfer_ring_header_size = 0;
bcm4377->ctx->control_xfer_ring_footer_size =
bcm4377->control_h2d_ring.payload_size / 4;
dev_dbg(&bcm4377->pdev->dev, "context initialized at IOVA %pad",
&bcm4377->ctx_dma);
return 0;
}
static int bcm4377_prepare_rings(struct bcm4377_data *bcm4377)
{
int ret;
/*
* Even though many of these settings appear to be configurable
* when sending the "create ring" messages most of these are
* actually hardcoded in some (and quite possibly all) firmware versions
* and changing them on the host has no effect.
* Specifically, this applies to at least the doorbells, the transfer
* and completion ring ids and their mapping (e.g. both HCI and ACL
* entries will always be queued in completion rings 1 and 2 no matter
* what we configure here).
*/
bcm4377->control_ack_ring.ring_id = BCM4377_ACK_RING_CONTROL;
bcm4377->control_ack_ring.n_entries = 32;
bcm4377->control_ack_ring.transfer_rings =
BIT(BCM4377_XFER_RING_CONTROL);
bcm4377->hci_acl_ack_ring.ring_id = BCM4377_ACK_RING_HCI_ACL;
bcm4377->hci_acl_ack_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
bcm4377->hci_acl_ack_ring.transfer_rings =
BIT(BCM4377_XFER_RING_HCI_H2D) | BIT(BCM4377_XFER_RING_ACL_H2D);
bcm4377->hci_acl_ack_ring.delay = 1000;
/*
* A payload size of MAX_EVENT_PAYLOAD_SIZE is enough here since large
* ACL packets will be transmitted inside buffers mapped via
* acl_d2h_ring anyway.
*/
bcm4377->hci_acl_event_ring.ring_id = BCM4377_EVENT_RING_HCI_ACL;
bcm4377->hci_acl_event_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
bcm4377->hci_acl_event_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
bcm4377->hci_acl_event_ring.transfer_rings =
BIT(BCM4377_XFER_RING_HCI_D2H) | BIT(BCM4377_XFER_RING_ACL_D2H);
bcm4377->hci_acl_event_ring.delay = 1000;
bcm4377->sco_ack_ring.ring_id = BCM4377_ACK_RING_SCO;
bcm4377->sco_ack_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->sco_ack_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_H2D);
bcm4377->sco_event_ring.ring_id = BCM4377_EVENT_RING_SCO;
bcm4377->sco_event_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
bcm4377->sco_event_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->sco_event_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_D2H);
bcm4377->control_h2d_ring.ring_id = BCM4377_XFER_RING_CONTROL;
bcm4377->control_h2d_ring.doorbell = BCM4377_DOORBELL_CONTROL;
bcm4377->control_h2d_ring.payload_size = BCM4377_CONTROL_MSG_SIZE;
bcm4377->control_h2d_ring.completion_ring = BCM4377_ACK_RING_CONTROL;
bcm4377->control_h2d_ring.allow_wait = true;
bcm4377->control_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->hci_h2d_ring.ring_id = BCM4377_XFER_RING_HCI_H2D;
bcm4377->hci_h2d_ring.doorbell = BCM4377_DOORBELL_HCI_H2D;
bcm4377->hci_h2d_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
bcm4377->hci_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
bcm4377->hci_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->hci_d2h_ring.ring_id = BCM4377_XFER_RING_HCI_D2H;
bcm4377->hci_d2h_ring.doorbell = BCM4377_DOORBELL_HCI_D2H;
bcm4377->hci_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
bcm4377->hci_d2h_ring.virtual = true;
bcm4377->hci_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->sco_h2d_ring.ring_id = BCM4377_XFER_RING_SCO_H2D;
bcm4377->sco_h2d_ring.doorbell = BCM4377_DOORBELL_SCO;
bcm4377->sco_h2d_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
bcm4377->sco_h2d_ring.completion_ring = BCM4377_ACK_RING_SCO;
bcm4377->sco_h2d_ring.sync = true;
bcm4377->sco_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->sco_d2h_ring.ring_id = BCM4377_XFER_RING_SCO_D2H;
bcm4377->sco_d2h_ring.doorbell = BCM4377_DOORBELL_SCO;
bcm4377->sco_d2h_ring.completion_ring = BCM4377_EVENT_RING_SCO;
bcm4377->sco_d2h_ring.virtual = true;
bcm4377->sco_d2h_ring.sync = true;
bcm4377->sco_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
/*
* This ring has to use mapped_payload_size because the largest ACL
* packet doesn't fit inside the largest possible footer
*/
bcm4377->acl_h2d_ring.ring_id = BCM4377_XFER_RING_ACL_H2D;
bcm4377->acl_h2d_ring.doorbell = BCM4377_DOORBELL_ACL_H2D;
bcm4377->acl_h2d_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
bcm4377->acl_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
bcm4377->acl_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
/*
* This ring only contains empty buffers to be used by incoming
* ACL packets that do not fit inside the footer of hci_acl_event_ring
*/
bcm4377->acl_d2h_ring.ring_id = BCM4377_XFER_RING_ACL_D2H;
bcm4377->acl_d2h_ring.doorbell = BCM4377_DOORBELL_ACL_D2H;
bcm4377->acl_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
bcm4377->acl_d2h_ring.d2h_buffers_only = true;
bcm4377->acl_d2h_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
bcm4377->acl_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
/*
* no need for any cleanup since this is only called from _probe
* and only devres-managed allocations are used
*/
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->control_h2d_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377,
&bcm4377->control_ack_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377,
&bcm4377->hci_acl_ack_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377,
&bcm4377->hci_acl_event_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_event_ring);
if (ret)
return ret;
dev_dbg(&bcm4377->pdev->dev, "all rings allocated and prepared\n");
return 0;
}
static int bcm4377_boot(struct bcm4377_data *bcm4377)
{
const struct firmware *fw;
void *bfr;
dma_addr_t fw_dma;
int ret = 0;
u32 bootstage, rti_status;
bootstage = ioread32(bcm4377->bar2 + BCM4377_BAR2_BOOTSTAGE);
rti_status = ioread32(bcm4377->bar2 + BCM4377_BAR2_RTI_STATUS);
if (bootstage != 0) {
dev_err(&bcm4377->pdev->dev, "bootstage is %d and not 0\n",
bootstage);
return -EINVAL;
}
if (rti_status != 0) {
dev_err(&bcm4377->pdev->dev, "RTI status is %d and not 0\n",
rti_status);
return -EINVAL;
}
fw = bcm4377_request_blob(bcm4377, "bin");
if (!fw) {
dev_err(&bcm4377->pdev->dev, "Failed to load firmware\n");
return -ENOENT;
}
bfr = dma_alloc_coherent(&bcm4377->pdev->dev, fw->size, &fw_dma,
GFP_KERNEL);
if (!bfr) {
ret = -ENOMEM;
goto out_release_fw;
}
memcpy(bfr, fw->data, fw->size);
iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_LO);
iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_HI);
iowrite32(BCM4377_DMA_MASK,
bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_SIZE);
iowrite32(lower_32_bits(fw_dma), bcm4377->bar2 + BCM4377_BAR2_FW_LO);
iowrite32(upper_32_bits(fw_dma), bcm4377->bar2 + BCM4377_BAR2_FW_HI);
iowrite32(fw->size, bcm4377->bar2 + BCM4377_BAR2_FW_SIZE);
iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_FW_DOORBELL);
dev_dbg(&bcm4377->pdev->dev, "waiting for firmware to boot\n");
ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
BCM4377_TIMEOUT);
if (ret == 0) {
ret = -ETIMEDOUT;
goto out_dma_free;
} else if (ret < 0) {
goto out_dma_free;
}
if (bcm4377->bootstage != 2) {
dev_err(&bcm4377->pdev->dev, "boostage %d != 2\n",
bcm4377->bootstage);
ret = -ENXIO;
goto out_dma_free;
}
dev_dbg(&bcm4377->pdev->dev, "firmware has booted (stage = %x)\n",
bcm4377->bootstage);
ret = 0;
out_dma_free:
dma_free_coherent(&bcm4377->pdev->dev, fw->size, bfr, fw_dma);
out_release_fw:
release_firmware(fw);
return ret;
}
static int bcm4377_setup_rti(struct bcm4377_data *bcm4377)
{
int ret;
dev_dbg(&bcm4377->pdev->dev, "starting RTI\n");
iowrite32(1, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
BCM4377_TIMEOUT);
if (ret == 0) {
dev_err(&bcm4377->pdev->dev,
"timed out while waiting for RTI to transition to state 1");
return -ETIMEDOUT;
} else if (ret < 0) {
return ret;
}
if (bcm4377->rti_status != 1) {
dev_err(&bcm4377->pdev->dev, "RTI did not ack state 1 (%d)\n",
bcm4377->rti_status);
return -ENODEV;
}
dev_dbg(&bcm4377->pdev->dev, "RTI is in state 1\n");
/* allow access to the entire IOVA space again */
iowrite32(0, bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_LO);
iowrite32(0, bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_HI);
iowrite32(BCM4377_DMA_MASK,
bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_SIZE);
/* setup "Converged IPC" context */
iowrite32(lower_32_bits(bcm4377->ctx_dma),
bcm4377->bar2 + BCM4377_BAR2_CONTEXT_ADDR_LO);
iowrite32(upper_32_bits(bcm4377->ctx_dma),
bcm4377->bar2 + BCM4377_BAR2_CONTEXT_ADDR_HI);
iowrite32(2, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
BCM4377_TIMEOUT);
if (ret == 0) {
dev_err(&bcm4377->pdev->dev,
"timed out while waiting for RTI to transition to state 2");
return -ETIMEDOUT;
} else if (ret < 0) {
return ret;
}
if (bcm4377->rti_status != 2) {
dev_err(&bcm4377->pdev->dev, "RTI did not ack state 2 (%d)\n",
bcm4377->rti_status);
return -ENODEV;
}
dev_dbg(&bcm4377->pdev->dev,
"RTI is in state 2; control ring is ready\n");
bcm4377->control_ack_ring.enabled = true;
return 0;
}
static int bcm4377_parse_otp_board_params(struct bcm4377_data *bcm4377,
char tag, const char *val, size_t len)
{
if (tag != 'V')
return 0;
if (len >= sizeof(bcm4377->vendor))
return -EINVAL;
strscpy(bcm4377->vendor, val, len + 1);
return 0;
}
static int bcm4377_parse_otp_chip_params(struct bcm4377_data *bcm4377, char tag,
const char *val, size_t len)
{
size_t idx = 0;
if (tag != 's')
return 0;
if (len >= sizeof(bcm4377->stepping))
return -EINVAL;
while (len != 0) {
bcm4377->stepping[idx] = tolower(val[idx]);
if (val[idx] == '\0')
return 0;
idx++;
len--;
}
bcm4377->stepping[idx] = '\0';
return 0;
}
static int bcm4377_parse_otp_str(struct bcm4377_data *bcm4377, const u8 *str,
enum bcm4377_otp_params_type type)
{
const char *p;
int ret;
p = skip_spaces(str);
while (*p) {
char tag = *p++;
const char *end;
size_t len;
if (*p++ != '=') /* implicit NUL check */
return -EINVAL;
/* *p might be NUL here, if so end == p and len == 0 */
end = strchrnul(p, ' ');
len = end - p;
/* leave 1 byte for NUL in destination string */
if (len > (BCM4377_OTP_MAX_PARAM_LEN - 1))
return -EINVAL;
switch (type) {
case BCM4377_OTP_BOARD_PARAMS:
ret = bcm4377_parse_otp_board_params(bcm4377, tag, p,
len);
break;
case BCM4377_OTP_CHIP_PARAMS:
ret = bcm4377_parse_otp_chip_params(bcm4377, tag, p,
len);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
return ret;
/* Skip to next arg, if any */
p = skip_spaces(end);
}
return 0;
}
static int bcm4377_parse_otp_sys_vendor(struct bcm4377_data *bcm4377, u8 *otp,
size_t size)
{
int idx = 4;
const char *chip_params;
const char *board_params;
int ret;
/* 4-byte header and two empty strings */
if (size < 6)
return -EINVAL;
if (get_unaligned_le32(otp) != BCM4377_OTP_VENDOR_HDR)
return -EINVAL;
chip_params = &otp[idx];
/* Skip first string, including terminator */
idx += strnlen(chip_params, size - idx) + 1;
if (idx >= size)
return -EINVAL;
board_params = &otp[idx];
/* Skip to terminator of second string */
idx += strnlen(board_params, size - idx);
if (idx >= size)
return -EINVAL;
/* At this point both strings are guaranteed NUL-terminated */
dev_dbg(&bcm4377->pdev->dev,
"OTP: chip_params='%s' board_params='%s'\n", chip_params,
board_params);
ret = bcm4377_parse_otp_str(bcm4377, chip_params,
BCM4377_OTP_CHIP_PARAMS);
if (ret)
return ret;
ret = bcm4377_parse_otp_str(bcm4377, board_params,
BCM4377_OTP_BOARD_PARAMS);
if (ret)
return ret;
if (!bcm4377->stepping[0] || !bcm4377->vendor[0])
return -EINVAL;
dev_dbg(&bcm4377->pdev->dev, "OTP: stepping=%s, vendor=%s\n",
bcm4377->stepping, bcm4377->vendor);
return 0;
}
static int bcm4377_parse_otp(struct bcm4377_data *bcm4377)
{
u8 *otp;
int i;
int ret = -ENOENT;
otp = kzalloc(BCM4377_OTP_SIZE, GFP_KERNEL);
if (!otp)
return -ENOMEM;
for (i = 0; i < BCM4377_OTP_SIZE; ++i)
otp[i] = ioread8(bcm4377->bar0 + bcm4377->hw->otp_offset + i);
i = 0;
while (i < (BCM4377_OTP_SIZE - 1)) {
u8 type = otp[i];
u8 length = otp[i + 1];
if (type == 0)
break;
if ((i + 2 + length) > BCM4377_OTP_SIZE)
break;
switch (type) {
case BCM4377_OTP_SYS_VENDOR:
dev_dbg(&bcm4377->pdev->dev,
"OTP @ 0x%x (%d): SYS_VENDOR", i, length);
ret = bcm4377_parse_otp_sys_vendor(bcm4377, &otp[i + 2],
length);
break;
case BCM4377_OTP_CIS:
dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): CIS", i,
length);
break;
default:
dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): unknown",
i, length);
break;
}
i += 2 + length;
}
kfree(otp);
return ret;
}
static int bcm4377_init_cfg(struct bcm4377_data *bcm4377)
{
int ret;
u32 ctrl;
ret = pci_write_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_BAR0_WINDOW1,
bcm4377->hw->bar0_window1);
if (ret)
return ret;
ret = pci_write_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_BAR0_WINDOW2,
bcm4377->hw->bar0_window2);
if (ret)
return ret;
ret = pci_write_config_dword(
bcm4377->pdev, BCM4377_PCIECFG_BAR0_CORE2_WINDOW1,
BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT);
if (ret)
return ret;
if (bcm4377->hw->has_bar0_core2_window2) {
ret = pci_write_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_BAR0_CORE2_WINDOW2,
bcm4377->hw->bar0_core2_window2);
if (ret)
return ret;
}
ret = pci_write_config_dword(bcm4377->pdev, BCM4377_PCIECFG_BAR2_WINDOW,
BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT);
if (ret)
return ret;
ret = pci_read_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_SUBSYSTEM_CTRL, &ctrl);
if (ret)
return ret;
if (bcm4377->hw->clear_pciecfg_subsystem_ctrl_bit19)
ctrl &= ~BIT(19);
ctrl |= BIT(16);
return pci_write_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_SUBSYSTEM_CTRL, ctrl);
}
static int bcm4377_probe_dmi(struct bcm4377_data *bcm4377)
{
const struct dmi_system_id *board_type_dmi_id;
board_type_dmi_id = dmi_first_match(bcm4377_dmi_board_table);
if (board_type_dmi_id && board_type_dmi_id->driver_data) {
bcm4377->board_type = board_type_dmi_id->driver_data;
dev_dbg(&bcm4377->pdev->dev,
"found board type via DMI match: %s\n",
bcm4377->board_type);
}
return 0;
}
static int bcm4377_probe_of(struct bcm4377_data *bcm4377)
{
struct device_node *np = bcm4377->pdev->dev.of_node;
int ret;
if (!np)
return 0;
ret = of_property_read_string(np, "brcm,board-type",
&bcm4377->board_type);
if (ret) {
dev_err(&bcm4377->pdev->dev, "no brcm,board-type property\n");
return ret;
}
bcm4377->taurus_beamforming_cal_blob =
of_get_property(np, "brcm,taurus-bf-cal-blob",
&bcm4377->taurus_beamforming_cal_size);
if (!bcm4377->taurus_beamforming_cal_blob) {
dev_err(&bcm4377->pdev->dev,
"no brcm,taurus-bf-cal-blob property\n");
return -ENOENT;
}
bcm4377->taurus_cal_blob = of_get_property(np, "brcm,taurus-cal-blob",
&bcm4377->taurus_cal_size);
if (!bcm4377->taurus_cal_blob) {
dev_err(&bcm4377->pdev->dev,
"no brcm,taurus-cal-blob property\n");
return -ENOENT;
}
return 0;
}
static void bcm4377_disable_aspm(struct bcm4377_data *bcm4377)
{
pci_disable_link_state(bcm4377->pdev,
PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1);
/*
* pci_disable_link_state can fail if either CONFIG_PCIEASPM is disabled
* or if the BIOS hasn't handed over control to us. We must *always*
* disable ASPM for this device due to hardware errata though.
*/
pcie_capability_clear_word(bcm4377->pdev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_ASPMC);
}
static void bcm4377_pci_free_irq_vectors(void *data)
{
pci_free_irq_vectors(data);
}
static void bcm4377_hci_free_dev(void *data)
{
hci_free_dev(data);
}
static void bcm4377_hci_unregister_dev(void *data)
{
hci_unregister_dev(data);
}
static int bcm4377_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct bcm4377_data *bcm4377;
struct hci_dev *hdev;
int ret, irq;
ret = dma_set_mask_and_coherent(&pdev->dev, BCM4377_DMA_MASK);
if (ret)
return ret;
bcm4377 = devm_kzalloc(&pdev->dev, sizeof(*bcm4377), GFP_KERNEL);
if (!bcm4377)
return -ENOMEM;
bcm4377->pdev = pdev;
bcm4377->hw = &bcm4377_hw_variants[id->driver_data];
init_completion(&bcm4377->event);
ret = bcm4377_prepare_rings(bcm4377);
if (ret)
return ret;
ret = bcm4377_init_context(bcm4377);
if (ret)
return ret;
ret = bcm4377_probe_dmi(bcm4377);
if (ret)
return ret;
ret = bcm4377_probe_of(bcm4377);
if (ret)
return ret;
if (!bcm4377->board_type) {
dev_err(&pdev->dev, "unable to determine board type\n");
return -ENODEV;
}
if (bcm4377->hw->disable_aspm)
bcm4377_disable_aspm(bcm4377);
ret = pci_reset_function_locked(pdev);
if (ret)
dev_warn(
&pdev->dev,
"function level reset failed with %d; trying to continue anyway\n",
ret);
/*
* If this number is too low and we try to access any BAR too
* early the device will crash. Experiments have shown that
* approximately 50 msec is the minimum amount we have to wait.
* Let's double that to be safe.
*/
msleep(100);
ret = pcim_enable_device(pdev);
if (ret)
return ret;
pci_set_master(pdev);
ret = bcm4377_init_cfg(bcm4377);
if (ret)
return ret;
bcm4377->bar0 = pcim_iomap(pdev, 0, 0);
if (!bcm4377->bar0)
return -EBUSY;
bcm4377->bar2 = pcim_iomap(pdev, 2, 0);
if (!bcm4377->bar2)
return -EBUSY;
ret = bcm4377_parse_otp(bcm4377);
if (ret) {
dev_err(&pdev->dev, "Reading OTP failed with %d\n", ret);
return ret;
}
/*
* Legacy interrupts result in an IRQ storm because we don't know where
* the interrupt mask and status registers for these chips are.
* MSIs are acked automatically instead.
*/
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
if (ret < 0)
return -ENODEV;
ret = devm_add_action_or_reset(&pdev->dev, bcm4377_pci_free_irq_vectors,
pdev);
if (ret)
return ret;
irq = pci_irq_vector(pdev, 0);
if (irq <= 0)
return -ENODEV;
ret = devm_request_irq(&pdev->dev, irq, bcm4377_irq, 0, "bcm4377",
bcm4377);
if (ret)
return ret;
hdev = hci_alloc_dev();
if (!hdev)
return -ENOMEM;
ret = devm_add_action_or_reset(&pdev->dev, bcm4377_hci_free_dev, hdev);
if (ret)
return ret;
bcm4377->hdev = hdev;
hdev->bus = HCI_PCI;
hdev->dev_type = HCI_PRIMARY;
hdev->open = bcm4377_hci_open;
hdev->close = bcm4377_hci_close;
hdev->send = bcm4377_hci_send_frame;
hdev->set_bdaddr = bcm4377_hci_set_bdaddr;
hdev->setup = bcm4377_hci_setup;
set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
if (bcm4377->hw->broken_mws_transport_config)
set_bit(HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG, &hdev->quirks);
if (bcm4377->hw->broken_ext_scan)
set_bit(HCI_QUIRK_BROKEN_EXT_SCAN, &hdev->quirks);
pci_set_drvdata(pdev, bcm4377);
hci_set_drvdata(hdev, bcm4377);
SET_HCIDEV_DEV(hdev, &pdev->dev);
ret = bcm4377_boot(bcm4377);
if (ret)
return ret;
ret = bcm4377_setup_rti(bcm4377);
if (ret)
return ret;
ret = hci_register_dev(hdev);
if (ret)
return ret;
return devm_add_action_or_reset(&pdev->dev, bcm4377_hci_unregister_dev,
hdev);
}
static int bcm4377_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
int ret;
ret = hci_suspend_dev(bcm4377->hdev);
if (ret)
return ret;
iowrite32(BCM4377_BAR0_SLEEP_CONTROL_QUIESCE,
bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
return 0;
}
static int bcm4377_resume(struct pci_dev *pdev)
{
struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
iowrite32(BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE,
bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
return hci_resume_dev(bcm4377->hdev);
}
static const struct dmi_system_id bcm4377_dmi_board_table[] = {
{
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookAir9,1"),
},
.driver_data = "apple,formosa",
},
{
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro15,4"),
},
.driver_data = "apple,formosa",
},
{
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro16,3"),
},
.driver_data = "apple,formosa",
},
{}
};
static const struct bcm4377_hw bcm4377_hw_variants[] = {
[BCM4377] = {
.id = 0x4377,
.otp_offset = 0x4120,
.bar0_window1 = 0x1800b000,
.bar0_window2 = 0x1810c000,
.disable_aspm = true,
.broken_ext_scan = true,
.send_ptb = bcm4377_send_ptb,
},
[BCM4378] = {
.id = 0x4378,
.otp_offset = 0x4120,
.bar0_window1 = 0x18002000,
.bar0_window2 = 0x1810a000,
.bar0_core2_window2 = 0x18107000,
.has_bar0_core2_window2 = true,
.broken_mws_transport_config = true,
.send_calibration = bcm4378_send_calibration,
.send_ptb = bcm4378_send_ptb,
},
[BCM4387] = {
.id = 0x4387,
.otp_offset = 0x413c,
.bar0_window1 = 0x18002000,
.bar0_window2 = 0x18109000,
.bar0_core2_window2 = 0x18106000,
.has_bar0_core2_window2 = true,
.clear_pciecfg_subsystem_ctrl_bit19 = true,
.broken_mws_transport_config = true,
.send_calibration = bcm4387_send_calibration,
.send_ptb = bcm4378_send_ptb,
},
};
#define BCM4377_DEVID_ENTRY(id) \
{ \
PCI_VENDOR_ID_BROADCOM, BCM##id##_DEVICE_ID, PCI_ANY_ID, \
PCI_ANY_ID, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \
BCM##id \
}
static const struct pci_device_id bcm4377_devid_table[] = {
BCM4377_DEVID_ENTRY(4377),
BCM4377_DEVID_ENTRY(4378),
BCM4377_DEVID_ENTRY(4387),
{},
};
MODULE_DEVICE_TABLE(pci, bcm4377_devid_table);
static struct pci_driver bcm4377_pci_driver = {
.name = "hci_bcm4377",
.id_table = bcm4377_devid_table,
.probe = bcm4377_probe,
.suspend = bcm4377_suspend,
.resume = bcm4377_resume,
};
module_pci_driver(bcm4377_pci_driver);
MODULE_AUTHOR("Sven Peter <sven@svenpeter.dev>");
MODULE_DESCRIPTION("Bluetooth support for Broadcom 4377/4378/4387 devices");
MODULE_LICENSE("Dual MIT/GPL");
MODULE_FIRMWARE("brcm/brcmbt4377*.bin");
MODULE_FIRMWARE("brcm/brcmbt4377*.ptb");
MODULE_FIRMWARE("brcm/brcmbt4378*.bin");
MODULE_FIRMWARE("brcm/brcmbt4378*.ptb");
MODULE_FIRMWARE("brcm/brcmbt4387*.bin");
MODULE_FIRMWARE("brcm/brcmbt4387*.ptb");
...@@ -378,7 +378,7 @@ static void bcsp_pkt_cull(struct bcsp_struct *bcsp) ...@@ -378,7 +378,7 @@ static void bcsp_pkt_cull(struct bcsp_struct *bcsp)
i++; i++;
__skb_unlink(skb, &bcsp->unack); __skb_unlink(skb, &bcsp->unack);
kfree_skb(skb); dev_kfree_skb_irq(skb);
} }
if (skb_queue_empty(&bcsp->unack)) if (skb_queue_empty(&bcsp->unack))
......
...@@ -313,7 +313,7 @@ static void h5_pkt_cull(struct h5 *h5) ...@@ -313,7 +313,7 @@ static void h5_pkt_cull(struct h5 *h5)
break; break;
__skb_unlink(skb, &h5->unack); __skb_unlink(skb, &h5->unack);
kfree_skb(skb); dev_kfree_skb_irq(skb);
} }
if (skb_queue_empty(&h5->unack)) if (skb_queue_empty(&h5->unack))
......
...@@ -345,7 +345,7 @@ static int ll_enqueue(struct hci_uart *hu, struct sk_buff *skb) ...@@ -345,7 +345,7 @@ static int ll_enqueue(struct hci_uart *hu, struct sk_buff *skb)
default: default:
BT_ERR("illegal hcill state: %ld (losing packet)", BT_ERR("illegal hcill state: %ld (losing packet)",
ll->hcill_state); ll->hcill_state);
kfree_skb(skb); dev_kfree_skb_irq(skb);
break; break;
} }
......
...@@ -912,7 +912,7 @@ static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) ...@@ -912,7 +912,7 @@ static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
default: default:
BT_ERR("Illegal tx state: %d (losing packet)", BT_ERR("Illegal tx state: %d (losing packet)",
qca->tx_ibs_state); qca->tx_ibs_state);
kfree_skb(skb); dev_kfree_skb_irq(skb);
break; break;
} }
...@@ -1765,7 +1765,8 @@ static int qca_setup(struct hci_uart *hu) ...@@ -1765,7 +1765,8 @@ static int qca_setup(struct hci_uart *hu)
qca_debugfs_init(hdev); qca_debugfs_init(hdev);
hu->hdev->hw_error = qca_hw_error; hu->hdev->hw_error = qca_hw_error;
hu->hdev->cmd_timeout = qca_cmd_timeout; hu->hdev->cmd_timeout = qca_cmd_timeout;
hu->hdev->wakeup = qca_wakeup; if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
hu->hdev->wakeup = qca_wakeup;
} else if (ret == -ENOENT) { } else if (ret == -ENOENT) {
/* No patch/nvm-config found, run with original fw/config */ /* No patch/nvm-config found, run with original fw/config */
set_bit(QCA_ROM_FW, &qca->flags); set_bit(QCA_ROM_FW, &qca->flags);
......
...@@ -50,8 +50,11 @@ static int virtbt_add_inbuf(struct virtio_bluetooth *vbt) ...@@ -50,8 +50,11 @@ static int virtbt_add_inbuf(struct virtio_bluetooth *vbt)
static int virtbt_open(struct hci_dev *hdev) static int virtbt_open(struct hci_dev *hdev)
{ {
struct virtio_bluetooth *vbt = hci_get_drvdata(hdev); return 0;
}
static int virtbt_open_vdev(struct virtio_bluetooth *vbt)
{
if (virtbt_add_inbuf(vbt) < 0) if (virtbt_add_inbuf(vbt) < 0)
return -EIO; return -EIO;
...@@ -61,7 +64,11 @@ static int virtbt_open(struct hci_dev *hdev) ...@@ -61,7 +64,11 @@ static int virtbt_open(struct hci_dev *hdev)
static int virtbt_close(struct hci_dev *hdev) static int virtbt_close(struct hci_dev *hdev)
{ {
struct virtio_bluetooth *vbt = hci_get_drvdata(hdev); return 0;
}
static int virtbt_close_vdev(struct virtio_bluetooth *vbt)
{
int i; int i;
cancel_work_sync(&vbt->rx); cancel_work_sync(&vbt->rx);
...@@ -306,7 +313,12 @@ static int virtbt_probe(struct virtio_device *vdev) ...@@ -306,7 +313,12 @@ static int virtbt_probe(struct virtio_device *vdev)
if (virtio_has_feature(vdev, VIRTIO_BT_F_VND_HCI)) { if (virtio_has_feature(vdev, VIRTIO_BT_F_VND_HCI)) {
__u16 vendor; __u16 vendor;
virtio_cread(vdev, struct virtio_bt_config, vendor, &vendor); if (virtio_has_feature(vdev, VIRTIO_BT_F_CONFIG_V2))
virtio_cread(vdev, struct virtio_bt_config_v2,
vendor, &vendor);
else
virtio_cread(vdev, struct virtio_bt_config,
vendor, &vendor);
switch (vendor) { switch (vendor) {
case VIRTIO_BT_CONFIG_VENDOR_ZEPHYR: case VIRTIO_BT_CONFIG_VENDOR_ZEPHYR:
...@@ -339,8 +351,12 @@ static int virtbt_probe(struct virtio_device *vdev) ...@@ -339,8 +351,12 @@ static int virtbt_probe(struct virtio_device *vdev)
if (virtio_has_feature(vdev, VIRTIO_BT_F_MSFT_EXT)) { if (virtio_has_feature(vdev, VIRTIO_BT_F_MSFT_EXT)) {
__u16 msft_opcode; __u16 msft_opcode;
virtio_cread(vdev, struct virtio_bt_config, if (virtio_has_feature(vdev, VIRTIO_BT_F_CONFIG_V2))
msft_opcode, &msft_opcode); virtio_cread(vdev, struct virtio_bt_config_v2,
msft_opcode, &msft_opcode);
else
virtio_cread(vdev, struct virtio_bt_config,
msft_opcode, &msft_opcode);
hci_set_msft_opcode(hdev, msft_opcode); hci_set_msft_opcode(hdev, msft_opcode);
} }
...@@ -354,8 +370,15 @@ static int virtbt_probe(struct virtio_device *vdev) ...@@ -354,8 +370,15 @@ static int virtbt_probe(struct virtio_device *vdev)
goto failed; goto failed;
} }
virtio_device_ready(vdev);
err = virtbt_open_vdev(vbt);
if (err)
goto open_failed;
return 0; return 0;
open_failed:
hci_free_dev(hdev);
failed: failed:
vdev->config->del_vqs(vdev); vdev->config->del_vqs(vdev);
return err; return err;
...@@ -368,6 +391,7 @@ static void virtbt_remove(struct virtio_device *vdev) ...@@ -368,6 +391,7 @@ static void virtbt_remove(struct virtio_device *vdev)
hci_unregister_dev(hdev); hci_unregister_dev(hdev);
virtio_reset_device(vdev); virtio_reset_device(vdev);
virtbt_close_vdev(vbt);
hci_free_dev(hdev); hci_free_dev(hdev);
vbt->hdev = NULL; vbt->hdev = NULL;
...@@ -387,6 +411,7 @@ static const unsigned int virtbt_features[] = { ...@@ -387,6 +411,7 @@ static const unsigned int virtbt_features[] = {
VIRTIO_BT_F_VND_HCI, VIRTIO_BT_F_VND_HCI,
VIRTIO_BT_F_MSFT_EXT, VIRTIO_BT_F_MSFT_EXT,
VIRTIO_BT_F_AOSP_EXT, VIRTIO_BT_F_AOSP_EXT,
VIRTIO_BT_F_CONFIG_V2,
}; };
static struct virtio_driver virtbt_driver = { static struct virtio_driver virtbt_driver = {
......
...@@ -274,6 +274,26 @@ enum { ...@@ -274,6 +274,26 @@ enum {
* during the hdev->setup vendor callback. * during the hdev->setup vendor callback.
*/ */
HCI_QUIRK_BROKEN_ENHANCED_SETUP_SYNC_CONN, HCI_QUIRK_BROKEN_ENHANCED_SETUP_SYNC_CONN,
/*
* When this quirk is set, the HCI_OP_LE_SET_EXT_SCAN_ENABLE command is
* disabled. This is required for some Broadcom controllers which
* erroneously claim to support extended scanning.
*
* This quirk can be set before hci_register_dev is called or
* during the hdev->setup vendor callback.
*/
HCI_QUIRK_BROKEN_EXT_SCAN,
/*
* When this quirk is set, the HCI_OP_GET_MWS_TRANSPORT_CONFIG command is
* disabled. This is required for some Broadcom controllers which
* erroneously claim to support MWS Transport Layer Configuration.
*
* This quirk can be set before hci_register_dev is called or
* during the hdev->setup vendor callback.
*/
HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG,
}; };
/* HCI device flags */ /* HCI device flags */
...@@ -2590,6 +2610,7 @@ struct hci_ev_le_conn_complete { ...@@ -2590,6 +2610,7 @@ struct hci_ev_le_conn_complete {
#define LE_EXT_ADV_DIRECT_IND 0x0004 #define LE_EXT_ADV_DIRECT_IND 0x0004
#define LE_EXT_ADV_SCAN_RSP 0x0008 #define LE_EXT_ADV_SCAN_RSP 0x0008
#define LE_EXT_ADV_LEGACY_PDU 0x0010 #define LE_EXT_ADV_LEGACY_PDU 0x0010
#define LE_EXT_ADV_EVT_TYPE_MASK 0x007f
#define ADDR_LE_DEV_PUBLIC 0x00 #define ADDR_LE_DEV_PUBLIC 0x00
#define ADDR_LE_DEV_RANDOM 0x01 #define ADDR_LE_DEV_RANDOM 0x01
......
...@@ -659,6 +659,7 @@ struct hci_dev { ...@@ -659,6 +659,7 @@ struct hci_dev {
int (*set_diag)(struct hci_dev *hdev, bool enable); int (*set_diag)(struct hci_dev *hdev, bool enable);
int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
void (*cmd_timeout)(struct hci_dev *hdev); void (*cmd_timeout)(struct hci_dev *hdev);
void (*reset)(struct hci_dev *hdev);
bool (*wakeup)(struct hci_dev *hdev); bool (*wakeup)(struct hci_dev *hdev);
int (*set_quality_report)(struct hci_dev *hdev, bool enable); int (*set_quality_report)(struct hci_dev *hdev, bool enable);
int (*get_data_path_id)(struct hci_dev *hdev, __u8 *data_path); int (*get_data_path_id)(struct hci_dev *hdev, __u8 *data_path);
...@@ -1689,7 +1690,9 @@ void hci_conn_del_sysfs(struct hci_conn *conn); ...@@ -1689,7 +1690,9 @@ void hci_conn_del_sysfs(struct hci_conn *conn);
/* Use ext scanning if set ext scan param and ext scan enable is supported */ /* Use ext scanning if set ext scan param and ext scan enable is supported */
#define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \
((dev)->commands[37] & 0x40)) ((dev)->commands[37] & 0x40) && \
!test_bit(HCI_QUIRK_BROKEN_EXT_SCAN, &(dev)->quirks))
/* Use ext create connection if command is supported */ /* Use ext create connection if command is supported */
#define use_ext_conn(dev) ((dev)->commands[37] & 0x80) #define use_ext_conn(dev) ((dev)->commands[37] & 0x80)
...@@ -1717,6 +1720,9 @@ void hci_conn_del_sysfs(struct hci_conn *conn); ...@@ -1717,6 +1720,9 @@ void hci_conn_del_sysfs(struct hci_conn *conn);
((dev)->le_features[3] & HCI_LE_CIS_PERIPHERAL) ((dev)->le_features[3] & HCI_LE_CIS_PERIPHERAL)
#define bis_capable(dev) ((dev)->le_features[3] & HCI_LE_ISO_BROADCASTER) #define bis_capable(dev) ((dev)->le_features[3] & HCI_LE_ISO_BROADCASTER)
#define mws_transport_config_capable(dev) (((dev)->commands[30] & 0x08) && \
(!test_bit(HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG, &(dev)->quirks)))
/* ----- HCI protocols ----- */ /* ----- HCI protocols ----- */
#define HCI_PROTO_DEFER 0x01 #define HCI_PROTO_DEFER 0x01
......
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
#define VIRTIO_BT_F_VND_HCI 0 /* Indicates vendor command support */ #define VIRTIO_BT_F_VND_HCI 0 /* Indicates vendor command support */
#define VIRTIO_BT_F_MSFT_EXT 1 /* Indicates MSFT vendor support */ #define VIRTIO_BT_F_MSFT_EXT 1 /* Indicates MSFT vendor support */
#define VIRTIO_BT_F_AOSP_EXT 2 /* Indicates AOSP vendor support */ #define VIRTIO_BT_F_AOSP_EXT 2 /* Indicates AOSP vendor support */
#define VIRTIO_BT_F_CONFIG_V2 3 /* Use second version configuration */
enum virtio_bt_config_type { enum virtio_bt_config_type {
VIRTIO_BT_CONFIG_TYPE_PRIMARY = 0, VIRTIO_BT_CONFIG_TYPE_PRIMARY = 0,
...@@ -28,4 +29,11 @@ struct virtio_bt_config { ...@@ -28,4 +29,11 @@ struct virtio_bt_config {
__u16 msft_opcode; __u16 msft_opcode;
} __attribute__((packed)); } __attribute__((packed));
struct virtio_bt_config_v2 {
__u8 type;
__u8 alignment;
__u16 vendor;
__u16 msft_opcode;
};
#endif /* _UAPI_LINUX_VIRTIO_BT_H */ #endif /* _UAPI_LINUX_VIRTIO_BT_H */
...@@ -78,6 +78,17 @@ config BT_LE ...@@ -78,6 +78,17 @@ config BT_LE
Bluetooth Low Energy includes support low-energy physical Bluetooth Low Energy includes support low-energy physical
layer available with Bluetooth version 4.0 or later. layer available with Bluetooth version 4.0 or later.
config BT_LE_L2CAP_ECRED
bool "Bluetooth L2CAP Enhanced Credit Flow Control"
depends on BT_LE
default y
help
Bluetooth Low Energy L2CAP Enhanced Credit Flow Control available with
Bluetooth version 5.2 or later.
This can be overridden by passing bluetooth.enable_ecred=[1|0]
on the kernel commandline.
config BT_6LOWPAN config BT_6LOWPAN
tristate "Bluetooth 6LoWPAN support" tristate "Bluetooth 6LoWPAN support"
depends on BT_LE && 6LOWPAN depends on BT_LE && 6LOWPAN
......
...@@ -824,11 +824,10 @@ static int hci_le_terminate_big(struct hci_dev *hdev, u8 big, u8 bis) ...@@ -824,11 +824,10 @@ static int hci_le_terminate_big(struct hci_dev *hdev, u8 big, u8 bis)
bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", big, bis); bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", big, bis);
d = kmalloc(sizeof(*d), GFP_KERNEL); d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d) if (!d)
return -ENOMEM; return -ENOMEM;
memset(d, 0, sizeof(*d));
d->big = big; d->big = big;
d->bis = bis; d->bis = bis;
...@@ -861,11 +860,10 @@ static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, u16 sync_handle) ...@@ -861,11 +860,10 @@ static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, u16 sync_handle)
bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, sync_handle); bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, sync_handle);
d = kmalloc(sizeof(*d), GFP_KERNEL); d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d) if (!d)
return -ENOMEM; return -ENOMEM;
memset(d, 0, sizeof(*d));
d->big = big; d->big = big;
d->sync_handle = sync_handle; d->sync_handle = sync_handle;
...@@ -1881,7 +1879,7 @@ static int hci_create_cis_sync(struct hci_dev *hdev, void *data) ...@@ -1881,7 +1879,7 @@ static int hci_create_cis_sync(struct hci_dev *hdev, void *data)
continue; continue;
/* Check if all CIS(s) belonging to a CIG are ready */ /* Check if all CIS(s) belonging to a CIG are ready */
if (conn->link->state != BT_CONNECTED || if (!conn->link || conn->link->state != BT_CONNECTED ||
conn->state != BT_CONNECT) { conn->state != BT_CONNECT) {
cmd.cp.num_cis = 0; cmd.cp.num_cis = 0;
break; break;
...@@ -2046,19 +2044,12 @@ int hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst, __u8 dst_type, ...@@ -2046,19 +2044,12 @@ int hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst, __u8 dst_type,
if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC)) if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC))
return -EBUSY; return -EBUSY;
cp = kmalloc(sizeof(*cp), GFP_KERNEL); cp = kzalloc(sizeof(*cp), GFP_KERNEL);
if (!cp) { if (!cp) {
hci_dev_clear_flag(hdev, HCI_PA_SYNC); hci_dev_clear_flag(hdev, HCI_PA_SYNC);
return -ENOMEM; return -ENOMEM;
} }
/* Convert from ISO socket address type to HCI address type */
if (dst_type == BDADDR_LE_PUBLIC)
dst_type = ADDR_LE_DEV_PUBLIC;
else
dst_type = ADDR_LE_DEV_RANDOM;
memset(cp, 0, sizeof(*cp));
cp->sid = sid; cp->sid = sid;
cp->addr_type = dst_type; cp->addr_type = dst_type;
bacpy(&cp->addr, dst); bacpy(&cp->addr, dst);
......
...@@ -2660,7 +2660,7 @@ int hci_register_dev(struct hci_dev *hdev) ...@@ -2660,7 +2660,7 @@ int hci_register_dev(struct hci_dev *hdev)
error = hci_register_suspend_notifier(hdev); error = hci_register_suspend_notifier(hdev);
if (error) if (error)
goto err_wqueue; BT_WARN("register suspend notifier failed error:%d\n", error);
queue_work(hdev->req_workqueue, &hdev->power_on); queue_work(hdev->req_workqueue, &hdev->power_on);
...@@ -3985,7 +3985,7 @@ void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, ...@@ -3985,7 +3985,7 @@ void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
*req_complete_skb = bt_cb(skb)->hci.req_complete_skb; *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
else else
*req_complete = bt_cb(skb)->hci.req_complete; *req_complete = bt_cb(skb)->hci.req_complete;
kfree_skb(skb); dev_kfree_skb_irq(skb);
} }
spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
} }
......
...@@ -757,7 +757,7 @@ static ssize_t force_static_address_write(struct file *file, ...@@ -757,7 +757,7 @@ static ssize_t force_static_address_write(struct file *file,
bool enable; bool enable;
int err; int err;
if (test_bit(HCI_UP, &hdev->flags)) if (hdev_is_powered(hdev))
return -EBUSY; return -EBUSY;
err = kstrtobool_from_user(user_buf, count, &enable); err = kstrtobool_from_user(user_buf, count, &enable);
......
...@@ -801,9 +801,6 @@ static u8 hci_cc_write_auth_payload_timeout(struct hci_dev *hdev, void *data, ...@@ -801,9 +801,6 @@ static u8 hci_cc_write_auth_payload_timeout(struct hci_dev *hdev, void *data,
bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); bt_dev_dbg(hdev, "status 0x%2.2x", rp->status);
if (rp->status)
return rp->status;
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO); sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO);
if (!sent) if (!sent)
return rp->status; return rp->status;
...@@ -811,9 +808,17 @@ static u8 hci_cc_write_auth_payload_timeout(struct hci_dev *hdev, void *data, ...@@ -811,9 +808,17 @@ static u8 hci_cc_write_auth_payload_timeout(struct hci_dev *hdev, void *data,
hci_dev_lock(hdev); hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
if (conn) if (!conn) {
rp->status = 0xff;
goto unlock;
}
if (!rp->status)
conn->auth_payload_timeout = get_unaligned_le16(sent + 2); conn->auth_payload_timeout = get_unaligned_le16(sent + 2);
hci_encrypt_cfm(conn, 0);
unlock:
hci_dev_unlock(hdev); hci_dev_unlock(hdev);
return rp->status; return rp->status;
...@@ -3680,8 +3685,13 @@ static void hci_encrypt_change_evt(struct hci_dev *hdev, void *data, ...@@ -3680,8 +3685,13 @@ static void hci_encrypt_change_evt(struct hci_dev *hdev, void *data,
cp.handle = cpu_to_le16(conn->handle); cp.handle = cpu_to_le16(conn->handle);
cp.timeout = cpu_to_le16(hdev->auth_payload_timeout); cp.timeout = cpu_to_le16(hdev->auth_payload_timeout);
hci_send_cmd(conn->hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO, if (hci_send_cmd(conn->hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO,
sizeof(cp), &cp); sizeof(cp), &cp)) {
bt_dev_err(hdev, "write auth payload timeout failed");
goto notify;
}
goto unlock;
} }
notify: notify:
...@@ -6494,7 +6504,7 @@ static void hci_le_ext_adv_report_evt(struct hci_dev *hdev, void *data, ...@@ -6494,7 +6504,7 @@ static void hci_le_ext_adv_report_evt(struct hci_dev *hdev, void *data,
info->length)) info->length))
break; break;
evt_type = __le16_to_cpu(info->type); evt_type = __le16_to_cpu(info->type) & LE_EXT_ADV_EVT_TYPE_MASK;
legacy_evt_type = ext_evt_type_to_legacy(hdev, evt_type); legacy_evt_type = ext_evt_type_to_legacy(hdev, evt_type);
if (legacy_evt_type != LE_ADV_INVALID) { if (legacy_evt_type != LE_ADV_INVALID) {
process_adv_report(hdev, legacy_evt_type, &info->bdaddr, process_adv_report(hdev, legacy_evt_type, &info->bdaddr,
......
...@@ -3055,6 +3055,7 @@ int hci_update_name_sync(struct hci_dev *hdev) ...@@ -3055,6 +3055,7 @@ int hci_update_name_sync(struct hci_dev *hdev)
* Enable Authentication * Enable Authentication
* lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
* Set Name -> Set EIR) * Set Name -> Set EIR)
* HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
*/ */
int hci_powered_update_sync(struct hci_dev *hdev) int hci_powered_update_sync(struct hci_dev *hdev)
{ {
...@@ -3094,6 +3095,23 @@ int hci_powered_update_sync(struct hci_dev *hdev) ...@@ -3094,6 +3095,23 @@ int hci_powered_update_sync(struct hci_dev *hdev)
hci_update_eir_sync(hdev); hci_update_eir_sync(hdev);
} }
/* If forcing static address is in use or there is no public
* address use the static address as random address (but skip
* the HCI command if the current random address is already the
* static one.
*
* In case BR/EDR has been disabled on a dual-mode controller
* and a static address has been configured, then use that
* address instead of the public BR/EDR address.
*/
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
(!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
if (bacmp(&hdev->static_addr, BDADDR_ANY))
return hci_set_random_addr_sync(hdev,
&hdev->static_addr);
}
return 0; return 0;
} }
...@@ -4261,7 +4279,7 @@ static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) ...@@ -4261,7 +4279,7 @@ static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
/* Get MWS transport configuration if the HCI command is supported */ /* Get MWS transport configuration if the HCI command is supported */
static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
{ {
if (!(hdev->commands[30] & 0x08)) if (!mws_transport_config_capable(hdev))
return 0; return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
...@@ -4703,6 +4721,7 @@ int hci_dev_open_sync(struct hci_dev *hdev) ...@@ -4703,6 +4721,7 @@ int hci_dev_open_sync(struct hci_dev *hdev)
hdev->flush(hdev); hdev->flush(hdev);
if (hdev->sent_cmd) { if (hdev->sent_cmd) {
cancel_delayed_work_sync(&hdev->cmd_timer);
kfree_skb(hdev->sent_cmd); kfree_skb(hdev->sent_cmd);
hdev->sent_cmd = NULL; hdev->sent_cmd = NULL;
} }
......
...@@ -261,36 +261,42 @@ static int iso_connect_bis(struct sock *sk) ...@@ -261,36 +261,42 @@ static int iso_connect_bis(struct sock *sk)
if (!bis_capable(hdev)) { if (!bis_capable(hdev)) {
err = -EOPNOTSUPP; err = -EOPNOTSUPP;
goto done; goto unlock;
} }
/* Fail if out PHYs are marked as disabled */ /* Fail if out PHYs are marked as disabled */
if (!iso_pi(sk)->qos.out.phy) { if (!iso_pi(sk)->qos.out.phy) {
err = -EINVAL; err = -EINVAL;
goto done; goto unlock;
} }
hcon = hci_connect_bis(hdev, &iso_pi(sk)->dst, iso_pi(sk)->dst_type, hcon = hci_connect_bis(hdev, &iso_pi(sk)->dst,
le_addr_type(iso_pi(sk)->dst_type),
&iso_pi(sk)->qos, iso_pi(sk)->base_len, &iso_pi(sk)->qos, iso_pi(sk)->base_len,
iso_pi(sk)->base); iso_pi(sk)->base);
if (IS_ERR(hcon)) { if (IS_ERR(hcon)) {
err = PTR_ERR(hcon); err = PTR_ERR(hcon);
goto done; goto unlock;
} }
conn = iso_conn_add(hcon); conn = iso_conn_add(hcon);
if (!conn) { if (!conn) {
hci_conn_drop(hcon); hci_conn_drop(hcon);
err = -ENOMEM; err = -ENOMEM;
goto done; goto unlock;
} }
hci_dev_unlock(hdev);
hci_dev_put(hdev);
lock_sock(sk);
/* Update source addr of the socket */ /* Update source addr of the socket */
bacpy(&iso_pi(sk)->src, &hcon->src); bacpy(&iso_pi(sk)->src, &hcon->src);
err = iso_chan_add(conn, sk, NULL); err = iso_chan_add(conn, sk, NULL);
if (err) if (err)
goto done; goto release;
if (hcon->state == BT_CONNECTED) { if (hcon->state == BT_CONNECTED) {
iso_sock_clear_timer(sk); iso_sock_clear_timer(sk);
...@@ -300,7 +306,11 @@ static int iso_connect_bis(struct sock *sk) ...@@ -300,7 +306,11 @@ static int iso_connect_bis(struct sock *sk)
iso_sock_set_timer(sk, sk->sk_sndtimeo); iso_sock_set_timer(sk, sk->sk_sndtimeo);
} }
done: release:
release_sock(sk);
return err;
unlock:
hci_dev_unlock(hdev); hci_dev_unlock(hdev);
hci_dev_put(hdev); hci_dev_put(hdev);
return err; return err;
...@@ -324,13 +334,13 @@ static int iso_connect_cis(struct sock *sk) ...@@ -324,13 +334,13 @@ static int iso_connect_cis(struct sock *sk)
if (!cis_central_capable(hdev)) { if (!cis_central_capable(hdev)) {
err = -EOPNOTSUPP; err = -EOPNOTSUPP;
goto done; goto unlock;
} }
/* Fail if either PHYs are marked as disabled */ /* Fail if either PHYs are marked as disabled */
if (!iso_pi(sk)->qos.in.phy && !iso_pi(sk)->qos.out.phy) { if (!iso_pi(sk)->qos.in.phy && !iso_pi(sk)->qos.out.phy) {
err = -EINVAL; err = -EINVAL;
goto done; goto unlock;
} }
/* Just bind if DEFER_SETUP has been set */ /* Just bind if DEFER_SETUP has been set */
...@@ -340,7 +350,7 @@ static int iso_connect_cis(struct sock *sk) ...@@ -340,7 +350,7 @@ static int iso_connect_cis(struct sock *sk)
&iso_pi(sk)->qos); &iso_pi(sk)->qos);
if (IS_ERR(hcon)) { if (IS_ERR(hcon)) {
err = PTR_ERR(hcon); err = PTR_ERR(hcon);
goto done; goto unlock;
} }
} else { } else {
hcon = hci_connect_cis(hdev, &iso_pi(sk)->dst, hcon = hci_connect_cis(hdev, &iso_pi(sk)->dst,
...@@ -348,7 +358,7 @@ static int iso_connect_cis(struct sock *sk) ...@@ -348,7 +358,7 @@ static int iso_connect_cis(struct sock *sk)
&iso_pi(sk)->qos); &iso_pi(sk)->qos);
if (IS_ERR(hcon)) { if (IS_ERR(hcon)) {
err = PTR_ERR(hcon); err = PTR_ERR(hcon);
goto done; goto unlock;
} }
} }
...@@ -356,15 +366,20 @@ static int iso_connect_cis(struct sock *sk) ...@@ -356,15 +366,20 @@ static int iso_connect_cis(struct sock *sk)
if (!conn) { if (!conn) {
hci_conn_drop(hcon); hci_conn_drop(hcon);
err = -ENOMEM; err = -ENOMEM;
goto done; goto unlock;
} }
hci_dev_unlock(hdev);
hci_dev_put(hdev);
lock_sock(sk);
/* Update source addr of the socket */ /* Update source addr of the socket */
bacpy(&iso_pi(sk)->src, &hcon->src); bacpy(&iso_pi(sk)->src, &hcon->src);
err = iso_chan_add(conn, sk, NULL); err = iso_chan_add(conn, sk, NULL);
if (err) if (err)
goto done; goto release;
if (hcon->state == BT_CONNECTED) { if (hcon->state == BT_CONNECTED) {
iso_sock_clear_timer(sk); iso_sock_clear_timer(sk);
...@@ -377,7 +392,11 @@ static int iso_connect_cis(struct sock *sk) ...@@ -377,7 +392,11 @@ static int iso_connect_cis(struct sock *sk)
iso_sock_set_timer(sk, sk->sk_sndtimeo); iso_sock_set_timer(sk, sk->sk_sndtimeo);
} }
done: release:
release_sock(sk);
return err;
unlock:
hci_dev_unlock(hdev); hci_dev_unlock(hdev);
hci_dev_put(hdev); hci_dev_put(hdev);
return err; return err;
...@@ -831,20 +850,23 @@ static int iso_sock_connect(struct socket *sock, struct sockaddr *addr, ...@@ -831,20 +850,23 @@ static int iso_sock_connect(struct socket *sock, struct sockaddr *addr,
bacpy(&iso_pi(sk)->dst, &sa->iso_bdaddr); bacpy(&iso_pi(sk)->dst, &sa->iso_bdaddr);
iso_pi(sk)->dst_type = sa->iso_bdaddr_type; iso_pi(sk)->dst_type = sa->iso_bdaddr_type;
release_sock(sk);
if (bacmp(&iso_pi(sk)->dst, BDADDR_ANY)) if (bacmp(&iso_pi(sk)->dst, BDADDR_ANY))
err = iso_connect_cis(sk); err = iso_connect_cis(sk);
else else
err = iso_connect_bis(sk); err = iso_connect_bis(sk);
if (err) if (err)
goto done; return err;
lock_sock(sk);
if (!test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) { if (!test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) {
err = bt_sock_wait_state(sk, BT_CONNECTED, err = bt_sock_wait_state(sk, BT_CONNECTED,
sock_sndtimeo(sk, flags & O_NONBLOCK)); sock_sndtimeo(sk, flags & O_NONBLOCK));
} }
done:
release_sock(sk); release_sock(sk);
return err; return err;
} }
...@@ -875,7 +897,8 @@ static int iso_listen_bis(struct sock *sk) ...@@ -875,7 +897,8 @@ static int iso_listen_bis(struct sock *sk)
hci_dev_lock(hdev); hci_dev_lock(hdev);
err = hci_pa_create_sync(hdev, &iso_pi(sk)->dst, iso_pi(sk)->dst_type, err = hci_pa_create_sync(hdev, &iso_pi(sk)->dst,
le_addr_type(iso_pi(sk)->dst_type),
iso_pi(sk)->bc_sid); iso_pi(sk)->bc_sid);
hci_dev_unlock(hdev); hci_dev_unlock(hdev);
...@@ -1099,28 +1122,22 @@ static int iso_sock_recvmsg(struct socket *sock, struct msghdr *msg, ...@@ -1099,28 +1122,22 @@ static int iso_sock_recvmsg(struct socket *sock, struct msghdr *msg,
{ {
struct sock *sk = sock->sk; struct sock *sk = sock->sk;
struct iso_pinfo *pi = iso_pi(sk); struct iso_pinfo *pi = iso_pi(sk);
int err;
BT_DBG("sk %p", sk); BT_DBG("sk %p", sk);
lock_sock(sk);
if (test_and_clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) { if (test_and_clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) {
switch (sk->sk_state) { switch (sk->sk_state) {
case BT_CONNECT2: case BT_CONNECT2:
lock_sock(sk);
iso_conn_defer_accept(pi->conn->hcon); iso_conn_defer_accept(pi->conn->hcon);
sk->sk_state = BT_CONFIG; sk->sk_state = BT_CONFIG;
release_sock(sk); release_sock(sk);
return 0; return 0;
case BT_CONNECT: case BT_CONNECT:
err = iso_connect_cis(sk); return iso_connect_cis(sk);
release_sock(sk);
return err;
} }
} }
release_sock(sk);
return bt_sock_recvmsg(sock, msg, len, flags); return bt_sock_recvmsg(sock, msg, len, flags);
} }
......
...@@ -45,7 +45,7 @@ ...@@ -45,7 +45,7 @@
#define LE_FLOWCTL_MAX_CREDITS 65535 #define LE_FLOWCTL_MAX_CREDITS 65535
bool disable_ertm; bool disable_ertm;
bool enable_ecred; bool enable_ecred = IS_ENABLED(CONFIG_BT_LE_L2CAP_ECRED);
static u32 l2cap_feat_mask = L2CAP_FEAT_FIXED_CHAN | L2CAP_FEAT_UCD; static u32 l2cap_feat_mask = L2CAP_FEAT_FIXED_CHAN | L2CAP_FEAT_UCD;
......
...@@ -170,7 +170,7 @@ __u8 bt_status(int err) ...@@ -170,7 +170,7 @@ __u8 bt_status(int err)
case -EMLINK: case -EMLINK:
return 0x09; return 0x09;
case EALREADY: case -EALREADY:
return 0x0b; return 0x0b;
case -EBUSY: case -EBUSY:
...@@ -191,7 +191,7 @@ __u8 bt_status(int err) ...@@ -191,7 +191,7 @@ __u8 bt_status(int err)
case -ECONNABORTED: case -ECONNABORTED:
return 0x16; return 0x16;
case ELOOP: case -ELOOP:
return 0x17; return 0x17;
case -EPROTONOSUPPORT: case -EPROTONOSUPPORT:
......
...@@ -8859,7 +8859,7 @@ static int add_ext_adv_params(struct sock *sk, struct hci_dev *hdev, ...@@ -8859,7 +8859,7 @@ static int add_ext_adv_params(struct sock *sk, struct hci_dev *hdev,
* extra parameters we don't know about will be ignored in this request. * extra parameters we don't know about will be ignored in this request.
*/ */
if (data_len < MGMT_ADD_EXT_ADV_PARAMS_MIN_SIZE) if (data_len < MGMT_ADD_EXT_ADV_PARAMS_MIN_SIZE)
return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS,
MGMT_STATUS_INVALID_PARAMS); MGMT_STATUS_INVALID_PARAMS);
flags = __le32_to_cpu(cp->flags); flags = __le32_to_cpu(cp->flags);
......
...@@ -590,7 +590,7 @@ int rfcomm_dlc_send(struct rfcomm_dlc *d, struct sk_buff *skb) ...@@ -590,7 +590,7 @@ int rfcomm_dlc_send(struct rfcomm_dlc *d, struct sk_buff *skb)
ret = rfcomm_dlc_send_frag(d, frag); ret = rfcomm_dlc_send_frag(d, frag);
if (ret < 0) { if (ret < 0) {
kfree_skb(frag); dev_kfree_skb_irq(frag);
goto unlock; goto unlock;
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册