diff --git a/Documentation/leds/ledtrig-transient.txt b/Documentation/leds/ledtrig-transient.txt new file mode 100644 index 0000000000000000000000000000000000000000..3bd38b487df173289d33c53b813248534060d14c --- /dev/null +++ b/Documentation/leds/ledtrig-transient.txt @@ -0,0 +1,152 @@ +LED Transient Trigger +===================== + +The leds timer trigger does not currently have an interface to activate +a one shot timer. The current support allows for setting two timers, one for +specifying how long a state to be on, and the second for how long the state +to be off. The delay_on value specifies the time period an LED should stay +in on state, followed by a delay_off value that specifies how long the LED +should stay in off state. The on and off cycle repeats until the trigger +gets deactivated. There is no provision for one time activation to implement +features that require an on or off state to be held just once and then stay in +the original state forever. + +Without one shot timer interface, user space can still use timer trigger to +set a timer to hold a state, however when user space application crashes or +goes away without deactivating the timer, the hardware will be left in that +state permanently. + +As a specific example of this use-case, let's look at vibrate feature on +phones. Vibrate function on phones is implemented using PWM pins on SoC or +PMIC. There is a need to activate one shot timer to control the vibrate +feature, to prevent user space crashes leaving the phone in vibrate mode +permanently causing the battery to drain. + +Transient trigger addresses the need for one shot timer activation. The +transient trigger can be enabled and disabled just like the other leds +triggers. + +When an led class device driver registers itself, it can specify all leds +triggers it supports and a default trigger. During registration, activation +routine for the default trigger gets called. During registration of an led +class device, the LED state does not change. + +When the driver unregisters, deactivation routine for the currently active +trigger will be called, and LED state is changed to LED_OFF. + +Driver suspend changes the LED state to LED_OFF and resume doesn't change +the state. Please note that there is no explicit interaction between the +suspend and resume actions and the currently enabled trigger. LED state +changes are suspended while the driver is in suspend state. Any timers +that are active at the time driver gets suspended, continue to run, without +being able to actually change the LED state. Once driver is resumed, triggers +start functioning again. + +LED state changes are controlled using brightness which is a common led +class device property. When brightness is set to 0 from user space via +echo 0 > brightness, it will result in deactivating the current trigger. + +Transient trigger uses standard register and unregister interfaces. During +trigger registration, for each led class device that specifies this trigger +as its default trigger, trigger activation routine will get called. During +registration, the LED state does not change, unless there is another trigger +active, in which case LED state changes to LED_OFF. + +During trigger unregistration, LED state gets changed to LED_OFF. + +Transient trigger activation routine doesn't change the LED state. It +creates its properties and does its initialization. Transient trigger +deactivation routine, will cancel any timer that is active before it cleans +up and removes the properties it created. It will restore the LED state to +non-transient state. When driver gets suspended, irrespective of the transient +state, the LED state changes to LED_OFF. + +Transient trigger can be enabled and disabled from user space on led class +devices, that support this trigger as shown below: + +echo transient > trigger +echo none > trigger + +NOTE: Add a new property trigger state to control the state. + +This trigger exports three properties, activate, state, and duration. When +transient trigger is activated these properties are set to default values. + +- duration allows setting timer value in msecs. The initial value is 0. +- activate allows activating and deactivating the timer specified by + duration as needed. The initial and default value is 0. This will allow + duration to be set after trigger activation. +- state allows user to specify a transient state to be held for the specified + duration. + + activate - one shot timer activate mechanism. + 1 when activated, 0 when deactivated. + default value is zero when transient trigger is enabled, + to allow duration to be set. + + activate state indicates a timer with a value of specified + duration running. + deactivated state indicates that there is no active timer + running. + + duration - one shot timer value. When activate is set, duration value + is used to start a timer that runs once. This value doesn't + get changed by the trigger unless user does a set via + echo new_value > duration + + state - transient state to be held. It has two values 0 or 1. 0 maps + to LED_OFF and 1 maps to LED_FULL. The specified state is + held for the duration of the one shot timer and then the + state gets changed to the non-transient state which is the + inverse of transient state. + If state = LED_FULL, when the timer runs out the state will + go back to LED_OFF. + If state = LED_OFF, when the timer runs out the state will + go back to LED_FULL. + Please note that current LED state is not checked prior to + changing the state to the specified state. + Driver could map these values to inverted depending on the + default states it defines for the LED in its brightness_set() + interface which is called from the led brightness_set() + interfaces to control the LED state. + +When timer expires activate goes back to deactivated state, duration is left +at the set value to be used when activate is set at a future time. This will +allow user app to set the time once and activate it to run it once for the +specified value as needed. When timer expires, state is restored to the +non-transient state which is the inverse of the transient state. + + echo 1 > activate - starts timer = duration when duration is not 0. + echo 0 > activate - cancels currently running timer. + echo n > duration - stores timer value to be used upon next + activate. Currently active timer if + any, continues to run for the specified time. + echo 0 > duration - stores timer value to be used upon next + activate. Currently active timer if any, + continues to run for the specified time. + echo 1 > state - stores desired transient state LED_FULL to be + held for the specified duration. + echo 0 > state - stores desired transient state LED_OFF to be + held for the specified duration. + +What is not supported: +====================== +- Timer activation is one shot and extending and/or shortening the timer + is not supported. + +Example use-case 1: + echo transient > trigger + echo n > duration + echo 1 > state +repeat the following step as needed: + echo 1 > activate - start timer = duration to run once + echo 1 > activate - start timer = duration to run once + echo none > trigger + +This trigger is intended to be used for for the following example use cases: + - Control of vibrate (phones, tablets etc.) hardware by user space app. + - Use of LED by user space app as activity indicator. + - Use of LED by user space app as a kind of watchdog indicator -- as + long as the app is alive, it can keep the LED illuminated, if it dies + the LED will be extinguished automatically. + - Use by any user space app that needs a transient GPIO output. diff --git a/drivers/leds/Kconfig b/drivers/leds/Kconfig index cede3397bb12ba3b50c157143767ebb02d28f07a..6b2e1e4fdeb8287bd8c93513b3152a3243e6a600 100644 --- a/drivers/leds/Kconfig +++ b/drivers/leds/Kconfig @@ -479,4 +479,12 @@ config LEDS_TRIGGER_DEFAULT_ON comment "iptables trigger is under Netfilter config (LED target)" depends on LEDS_TRIGGERS +config LEDS_TRIGGER_TRANSIENT + tristate "LED Transient Trigger" + depends on LEDS_TRIGGERS + help + This allows one time activation of a transient state on + GPIO/PWM based hadrware. + If unsure, say Y. + endif # NEW_LEDS diff --git a/drivers/leds/Makefile b/drivers/leds/Makefile index 900f9294bd8cbfca3d75b932f13bd18f38e142c1..4a4b96e8c3eb03a3dcc942eb9cbe7130483eb1b3 100644 --- a/drivers/leds/Makefile +++ b/drivers/leds/Makefile @@ -57,3 +57,4 @@ obj-$(CONFIG_LEDS_TRIGGER_HEARTBEAT) += ledtrig-heartbeat.o obj-$(CONFIG_LEDS_TRIGGER_BACKLIGHT) += ledtrig-backlight.o obj-$(CONFIG_LEDS_TRIGGER_GPIO) += ledtrig-gpio.o obj-$(CONFIG_LEDS_TRIGGER_DEFAULT_ON) += ledtrig-default-on.o +obj-$(CONFIG_LEDS_TRIGGER_TRANSIENT) += ledtrig-transient.o diff --git a/drivers/leds/ledtrig-transient.c b/drivers/leds/ledtrig-transient.c new file mode 100644 index 0000000000000000000000000000000000000000..83179f435e1e141884840941ce73d8d9cb4ce8f4 --- /dev/null +++ b/drivers/leds/ledtrig-transient.c @@ -0,0 +1,237 @@ +/* + * LED Kernel Transient Trigger + * + * Copyright (C) 2012 Shuah Khan + * + * Based on Richard Purdie's ledtrig-timer.c and Atsushi Nemoto's + * ledtrig-heartbeat.c + * Design and use-case input from Jonas Bonn and + * Neil Brown + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +/* + * Transient trigger allows one shot timer activation. Please refer to + * Documentation/leds/ledtrig-transient.txt for details +*/ + +#include +#include +#include +#include +#include +#include +#include +#include "leds.h" + +struct transient_trig_data { + int activate; + int state; + int restore_state; + unsigned long duration; + struct timer_list timer; +}; + +static void transient_timer_function(unsigned long data) +{ + struct led_classdev *led_cdev = (struct led_classdev *) data; + struct transient_trig_data *transient_data = led_cdev->trigger_data; + + transient_data->activate = 0; + led_set_brightness(led_cdev, transient_data->restore_state); +} + +static ssize_t transient_activate_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + struct transient_trig_data *transient_data = led_cdev->trigger_data; + + return sprintf(buf, "%d\n", transient_data->activate); +} + +static ssize_t transient_activate_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + struct transient_trig_data *transient_data = led_cdev->trigger_data; + unsigned long state; + ssize_t ret; + + ret = kstrtoul(buf, 10, &state); + if (ret) + return ret; + + if (state != 1 && state != 0) + return -EINVAL; + + /* cancel the running timer */ + if (state == 0 && transient_data->activate == 1) { + del_timer(&transient_data->timer); + transient_data->activate = state; + led_set_brightness(led_cdev, transient_data->restore_state); + return size; + } + + /* start timer if there is no active timer */ + if (state == 1 && transient_data->activate == 0 && + transient_data->duration != 0) { + transient_data->activate = state; + led_set_brightness(led_cdev, transient_data->state); + transient_data->restore_state = + (transient_data->state == LED_FULL) ? LED_OFF : LED_FULL; + mod_timer(&transient_data->timer, + jiffies + transient_data->duration); + } + + /* state == 0 && transient_data->activate == 0 + timer is not active - just return */ + /* state == 1 && transient_data->activate == 1 + timer is already active - just return */ + + return size; +} + +static ssize_t transient_duration_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + struct transient_trig_data *transient_data = led_cdev->trigger_data; + + return sprintf(buf, "%lu\n", transient_data->duration); +} + +static ssize_t transient_duration_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + struct transient_trig_data *transient_data = led_cdev->trigger_data; + unsigned long state; + ssize_t ret; + + ret = kstrtoul(buf, 10, &state); + if (ret) + return ret; + + transient_data->duration = state; + return size; +} + +static ssize_t transient_state_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + struct transient_trig_data *transient_data = led_cdev->trigger_data; + int state; + + state = (transient_data->state == LED_FULL) ? 1 : 0; + return sprintf(buf, "%d\n", state); +} + +static ssize_t transient_state_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + struct transient_trig_data *transient_data = led_cdev->trigger_data; + unsigned long state; + ssize_t ret; + + ret = kstrtoul(buf, 10, &state); + if (ret) + return ret; + + if (state != 1 && state != 0) + return -EINVAL; + + transient_data->state = (state == 1) ? LED_FULL : LED_OFF; + return size; +} + +static DEVICE_ATTR(activate, 0644, transient_activate_show, + transient_activate_store); +static DEVICE_ATTR(duration, 0644, transient_duration_show, + transient_duration_store); +static DEVICE_ATTR(state, 0644, transient_state_show, transient_state_store); + +static void transient_trig_activate(struct led_classdev *led_cdev) +{ + int rc; + struct transient_trig_data *tdata; + + tdata = kzalloc(sizeof(struct transient_trig_data), GFP_KERNEL); + if (!tdata) { + dev_err(led_cdev->dev, + "unable to allocate transient trigger\n"); + return; + } + led_cdev->trigger_data = tdata; + + rc = device_create_file(led_cdev->dev, &dev_attr_activate); + if (rc) + goto err_out; + + rc = device_create_file(led_cdev->dev, &dev_attr_duration); + if (rc) + goto err_out_duration; + + rc = device_create_file(led_cdev->dev, &dev_attr_state); + if (rc) + goto err_out_state; + + setup_timer(&tdata->timer, transient_timer_function, + (unsigned long) led_cdev); + led_cdev->activated = true; + + return; + +err_out_state: + device_remove_file(led_cdev->dev, &dev_attr_duration); +err_out_duration: + device_remove_file(led_cdev->dev, &dev_attr_activate); +err_out: + dev_err(led_cdev->dev, "unable to register transient trigger\n"); + led_cdev->trigger_data = NULL; + kfree(tdata); +} + +static void transient_trig_deactivate(struct led_classdev *led_cdev) +{ + struct transient_trig_data *transient_data = led_cdev->trigger_data; + + if (led_cdev->activated) { + del_timer_sync(&transient_data->timer); + led_set_brightness(led_cdev, transient_data->restore_state); + device_remove_file(led_cdev->dev, &dev_attr_activate); + device_remove_file(led_cdev->dev, &dev_attr_duration); + device_remove_file(led_cdev->dev, &dev_attr_state); + led_cdev->trigger_data = NULL; + led_cdev->activated = false; + kfree(transient_data); + } +} + +static struct led_trigger transient_trigger = { + .name = "transient", + .activate = transient_trig_activate, + .deactivate = transient_trig_deactivate, +}; + +static int __init transient_trig_init(void) +{ + return led_trigger_register(&transient_trigger); +} + +static void __exit transient_trig_exit(void) +{ + led_trigger_unregister(&transient_trigger); +} + +module_init(transient_trig_init); +module_exit(transient_trig_exit); + +MODULE_AUTHOR("Shuah Khan "); +MODULE_DESCRIPTION("Transient LED trigger"); +MODULE_LICENSE("GPL");