提交 43f66a6c 编写于 作者: J James Ketrenos 提交者: Jeff Garzik

Add ipw2200 wireless driver.

上级 2c86c275
Intel(R) PRO/Wireless 2915ABG Driver for Linux in support of:
Intel(R) PRO/Wireless 2200BG Network Connection
Intel(R) PRO/Wireless 2915ABG Network Connection
Note: The Intel(R) PRO/Wireless 2915ABG Driver for Linux and Intel(R)
PRO/Wireless 2200BG Driver for Linux is a unified driver that works on
both hardware adapters listed above. In this document the Intel(R)
PRO/Wireless 2915ABG Driver for Linux will be used to reference the
unified driver.
Copyright (C) 2004-2005, Intel Corporation
README.ipw2200
Version: 1.0.0
Date : January 31, 2005
Index
-----------------------------------------------
1. Introduction
1.1. Overview of features
1.2. Module parameters
1.3. Wireless Extension Private Methods
1.4. Sysfs Helper Files
2. About the Version Numbers
3. Support
4. License
1. Introduction
-----------------------------------------------
The following sections attempt to provide a brief introduction to using
the Intel(R) PRO/Wireless 2915ABG Driver for Linux.
This document is not meant to be a comprehensive manual on
understanding or using wireless technologies, but should be sufficient
to get you moving without wires on Linux.
For information on building and installing the driver, see the INSTALL
file.
1.1. Overview of Features
-----------------------------------------------
The current release (1.0.0) supports the following features:
+ BSS mode (Infrastructure, Managed)
+ IBSS mode (Ad-Hoc)
+ WEP (OPEN and SHARED KEY mode)
+ 802.1x EAP via wpa_supplicant and xsupplicant
+ Wireless Extension support
+ Full B and G rate support (2200 and 2915)
+ Full A rate support (2915 only)
+ Transmit power control
+ S state support (ACPI suspend/resume)
+ long/short preamble support
1.2. Command Line Parameters
-----------------------------------------------
Like many modules used in the Linux kernel, the Intel(R) PRO/Wireless
2915ABG Driver for Linux allows certain configuration options to be
provided as module parameters. The most common way to specify a module
parameter is via the command line.
The general form is:
% modprobe ipw2200 parameter=value
Where the supported parameter are:
associate
Set to 0 to disable the auto scan-and-associate functionality of the
driver. If disabled, the driver will not attempt to scan
for and associate to a network until it has been configured with
one or more properties for the target network, for example configuring
the network SSID. Default is 1 (auto-associate)
Example: % modprobe ipw2200 associate=0
auto_create
Set to 0 to disable the auto creation of an Ad-Hoc network
matching the channel and network name parameters provided.
Default is 1.
channel
channel number for association. The normal method for setting
the channel would be to use the standard wireless tools
(i.e. `iwconfig eth1 channel 10`), but it is useful sometimes
to set this while debugging. Channel 0 means 'ANY'
debug
If using a debug build, this is used to control the amount of debug
info is logged. See the 'dval' and 'load' script for more info on
how to use this (the dval and load scripts are provided as part
of the ipw2200 development snapshot releases available from the
SourceForge project at http://ipw2200.sf.net)
mode
Can be used to set the default mode of the adapter.
0 = Managed, 1 = Ad-Hoc
1.3. Wireless Extension Private Methods
-----------------------------------------------
As an interface designed to handle generic hardware, there are certain
capabilities not exposed through the normal Wireless Tool interface. As
such, a provision is provided for a driver to declare custom, or
private, methods. The Intel(R) PRO/Wireless 2915ABG Driver for Linux
defines several of these to configure various settings.
The general form of using the private wireless methods is:
% iwpriv $IFNAME method parameters
Where $IFNAME is the interface name the device is registered with
(typically eth1, customized via one of the various network interface
name managers, such as ifrename)
The supported private methods are:
get_mode
Can be used to report out which IEEE mode the driver is
configured to support. Example:
% iwpriv eth1 get_mode
eth1 get_mode:802.11bg (6)
set_mode
Can be used to configure which IEEE mode the driver will
support.
Usage:
% iwpriv eth1 set_mode {mode}
Where {mode} is a number in the range 1-7:
1 802.11a (2915 only)
2 802.11b
3 802.11ab (2915 only)
4 802.11g
5 802.11ag (2915 only)
6 802.11bg
7 802.11abg (2915 only)
get_preamble
Can be used to report configuration of preamble length.
set_preamble
Can be used to set the configuration of preamble length:
Usage:
% iwpriv eth1 set_preamble {mode}
Where {mode} is one of:
1 Long preamble only
0 Auto (long or short based on connection)
1.4. Sysfs Helper Files:
-----------------------------------------------
The Linux kernel provides a pseudo file system that can be used to
access various components of the operating system. The Intel(R)
PRO/Wireless 2915ABG Driver for Linux exposes several configuration
parameters through this mechanism.
An entry in the sysfs can support reading and/or writing. You can
typically query the contents of a sysfs entry through the use of cat,
and can set the contents via echo. For example:
% cat /sys/bus/pci/drivers/ipw2200/debug_level
Will report the current debug level of the driver's logging subsystem
(only available if CONFIG_IPW_DEBUG was configured when the driver was
built).
You can set the debug level via:
% echo $VALUE > /sys/bus/pci/drivers/ipw2200/debug_level
Where $VALUE would be a number in the case of this sysfs entry. The
input to sysfs files does not have to be a number. For example, the
firmware loader used by hotplug utilizes sysfs entries for transferring
the firmware image from user space into the driver.
The Intel(R) PRO/Wireless 2915ABG Driver for Linux exposes sysfs entries
at two levels -- driver level, which apply to all instances of the
driver (in the event that there are more than one device installed) and
device level, which applies only to the single specific instance.
1.4.1 Driver Level Sysfs Helper Files
-----------------------------------------------
For the driver level files, look in /sys/bus/pci/drivers/ipw2200/
debug_level
This controls the same global as the 'debug' module parameter
1.4.2 Device Level Sysfs Helper Files
-----------------------------------------------
For the device level files, look in
/sys/bus/pci/drivers/ipw2200/{PCI-ID}/
For example:
/sys/bus/pci/drivers/ipw2200/0000:02:01.0
For the device level files, see /sys/bus/pci/[drivers/ipw2200:
rf_kill
read -
0 = RF kill not enabled (radio on)
1 = SW based RF kill active (radio off)
2 = HW based RF kill active (radio off)
3 = Both HW and SW RF kill active (radio off)
write -
0 = If SW based RF kill active, turn the radio back on
1 = If radio is on, activate SW based RF kill
NOTE: If you enable the SW based RF kill and then toggle the HW
based RF kill from ON -> OFF -> ON, the radio will NOT come back on
ucode
read-only access to the ucode version number
2. About the Version Numbers
-----------------------------------------------
Due to the nature of open source development projects, there are
frequently changes being incorporated that have not gone through
a complete validation process. These changes are incorporated into
development snapshot releases.
Releases are numbered with a three level scheme:
major.minor.development
Any version where the 'development' portion is 0 (for example
1.0.0, 1.1.0, etc.) indicates a stable version that will be made
available for kernel inclusion.
Any version where the 'development' portion is not a 0 (for
example 1.0.1, 1.1.5, etc.) indicates a development version that is
being made available for testing and cutting edge users. The stability
and functionality of the development releases are not know. We make
efforts to try and keep all snapshots reasonably stable, but due to the
frequency of their release, and the desire to get those releases
available as quickly as possible, unknown anomalies should be expected.
The major version number will be incremented when significant changes
are made to the driver. Currently, there are no major changes planned.
3. Support
-----------------------------------------------
For installation support of the 1.0.0 version, you can contact
http://supportmail.intel.com, or you can use the open source project
support.
For general information and support, go to:
http://ipw2200.sf.net/
4. License
-----------------------------------------------
Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
James P. Ketrenos <ipw2100-admin@linux.intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
...@@ -190,6 +190,58 @@ config IPW_DEBUG ...@@ -190,6 +190,58 @@ config IPW_DEBUG
If you are not trying to debug or develop the IPW2100 driver, you If you are not trying to debug or develop the IPW2100 driver, you
most likely want to say N here. most likely want to say N here.
config IPW2200
tristate "Intel PRO/Wireless 2200BG and 2915ABG Network Connection"
depends on NET_RADIO && PCI
select FW_LOADER
select IEEE80211
---help---
A driver for the Intel PRO/Wireless 2200BG and 2915ABG Network
Connection adapters.
See <file:Documentation/networking/README.ipw2200> for
information on the capabilities currently enabled in this
driver and for tips for debugging issues and problems.
In order to use this driver, you will need a firmware image for it.
You can obtain the firmware from
<http://ipw2200.sf.net/>. See the above referenced README.ipw2200
for information on where to install the firmare images.
You will also very likely need the Wireless Tools in order to
configure your card:
<http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html>.
If you want to compile the driver as a module ( = code which can be
inserted in and remvoed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ipw2200.ko.
config IPW_DEBUG
bool "Enable full debugging output in IPW2200 module."
depends on IPW2200
---help---
This option will enable debug tracing output for the IPW2200.
This will result in the kernel module being ~100k larger. You can
control which debug output is sent to the kernel log by setting the
value in
/sys/bus/pci/drivers/ipw2200/debug_level
This entry will only exist if this option is enabled.
To set a value, simply echo an 8-byte hex value to the same file:
% echo 0x00000FFO > /sys/bus/pci/drivers/ipw2200/debug_level
You can find the list of debug mask values in
drivers/net/wireless/ipw2200.h
If you are not trying to debug or develop the IPW2200 driver, you
most likely want to say N here.
config AIRO config AIRO
tristate "Cisco/Aironet 34X/35X/4500/4800 ISA and PCI cards" tristate "Cisco/Aironet 34X/35X/4500/4800 ISA and PCI cards"
depends on NET_RADIO && ISA && (PCI || BROKEN) depends on NET_RADIO && ISA && (PCI || BROKEN)
......
...@@ -4,6 +4,8 @@ ...@@ -4,6 +4,8 @@
obj-$(CONFIG_IPW2100) += ipw2100.o obj-$(CONFIG_IPW2100) += ipw2100.o
obj-$(CONFIG_IPW2200) += ipw2200.o
obj-$(CONFIG_STRIP) += strip.o obj-$(CONFIG_STRIP) += strip.o
obj-$(CONFIG_ARLAN) += arlan.o obj-$(CONFIG_ARLAN) += arlan.o
......
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册