diff --git a/include/linux/writeback.h b/include/linux/writeback.h index 80adf3d88d9dc98fc962fdd0785268915ea72598..3148db1296a2939cc8f973d50177c477e9848b87 100644 --- a/include/linux/writeback.h +++ b/include/linux/writeback.h @@ -7,6 +7,7 @@ #include #include #include +#include DECLARE_PER_CPU(int, dirty_throttle_leaks); @@ -86,6 +87,36 @@ struct writeback_control { unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ }; +/* + * A wb_domain represents a domain that wb's (bdi_writeback's) belong to + * and are measured against each other in. There always is one global + * domain, global_wb_domain, that every wb in the system is a member of. + * This allows measuring the relative bandwidth of each wb to distribute + * dirtyable memory accordingly. + */ +struct wb_domain { + /* + * Scale the writeback cache size proportional to the relative + * writeout speed. + * + * We do this by keeping a floating proportion between BDIs, based + * on page writeback completions [end_page_writeback()]. Those + * devices that write out pages fastest will get the larger share, + * while the slower will get a smaller share. + * + * We use page writeout completions because we are interested in + * getting rid of dirty pages. Having them written out is the + * primary goal. + * + * We introduce a concept of time, a period over which we measure + * these events, because demand can/will vary over time. The length + * of this period itself is measured in page writeback completions. + */ + struct fprop_global completions; + struct timer_list period_timer; /* timer for aging of completions */ + unsigned long period_time; +}; + /* * fs/fs-writeback.c */ @@ -120,6 +151,7 @@ static inline void laptop_sync_completion(void) { } #endif void throttle_vm_writeout(gfp_t gfp_mask); bool zone_dirty_ok(struct zone *zone); +int wb_domain_init(struct wb_domain *dom, gfp_t gfp); extern unsigned long global_dirty_limit; diff --git a/mm/page-writeback.c b/mm/page-writeback.c index bebdd41b8d8e6c723969067ce14059c10e9aeb5f..08e1737edb393a79d77ab2d7f6a285978c32ee44 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -124,29 +124,7 @@ EXPORT_SYMBOL(laptop_mode); unsigned long global_dirty_limit; -/* - * Scale the writeback cache size proportional to the relative writeout speeds. - * - * We do this by keeping a floating proportion between BDIs, based on page - * writeback completions [end_page_writeback()]. Those devices that write out - * pages fastest will get the larger share, while the slower will get a smaller - * share. - * - * We use page writeout completions because we are interested in getting rid of - * dirty pages. Having them written out is the primary goal. - * - * We introduce a concept of time, a period over which we measure these events, - * because demand can/will vary over time. The length of this period itself is - * measured in page writeback completions. - * - */ -static struct fprop_global writeout_completions; - -static void writeout_period(unsigned long t); -/* Timer for aging of writeout_completions */ -static struct timer_list writeout_period_timer = - TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); -static unsigned long writeout_period_time = 0; +static struct wb_domain global_wb_domain; /* * Length of period for aging writeout fractions of bdis. This is an @@ -433,24 +411,26 @@ static unsigned long wp_next_time(unsigned long cur_time) } /* - * Increment the BDI's writeout completion count and the global writeout + * Increment the wb's writeout completion count and the global writeout * completion count. Called from test_clear_page_writeback(). */ static inline void __wb_writeout_inc(struct bdi_writeback *wb) { + struct wb_domain *dom = &global_wb_domain; + __inc_wb_stat(wb, WB_WRITTEN); - __fprop_inc_percpu_max(&writeout_completions, &wb->completions, + __fprop_inc_percpu_max(&dom->completions, &wb->completions, wb->bdi->max_prop_frac); /* First event after period switching was turned off? */ - if (!unlikely(writeout_period_time)) { + if (!unlikely(dom->period_time)) { /* * We can race with other __bdi_writeout_inc calls here but * it does not cause any harm since the resulting time when * timer will fire and what is in writeout_period_time will be * roughly the same. */ - writeout_period_time = wp_next_time(jiffies); - mod_timer(&writeout_period_timer, writeout_period_time); + dom->period_time = wp_next_time(jiffies); + mod_timer(&dom->period_timer, dom->period_time); } } @@ -464,38 +444,38 @@ void wb_writeout_inc(struct bdi_writeback *wb) } EXPORT_SYMBOL_GPL(wb_writeout_inc); -/* - * Obtain an accurate fraction of the BDI's portion. - */ -static void wb_writeout_fraction(struct bdi_writeback *wb, - long *numerator, long *denominator) -{ - fprop_fraction_percpu(&writeout_completions, &wb->completions, - numerator, denominator); -} - /* * On idle system, we can be called long after we scheduled because we use * deferred timers so count with missed periods. */ static void writeout_period(unsigned long t) { - int miss_periods = (jiffies - writeout_period_time) / + struct wb_domain *dom = (void *)t; + int miss_periods = (jiffies - dom->period_time) / VM_COMPLETIONS_PERIOD_LEN; - if (fprop_new_period(&writeout_completions, miss_periods + 1)) { - writeout_period_time = wp_next_time(writeout_period_time + + if (fprop_new_period(&dom->completions, miss_periods + 1)) { + dom->period_time = wp_next_time(dom->period_time + miss_periods * VM_COMPLETIONS_PERIOD_LEN); - mod_timer(&writeout_period_timer, writeout_period_time); + mod_timer(&dom->period_timer, dom->period_time); } else { /* * Aging has zeroed all fractions. Stop wasting CPU on period * updates. */ - writeout_period_time = 0; + dom->period_time = 0; } } +int wb_domain_init(struct wb_domain *dom, gfp_t gfp) +{ + memset(dom, 0, sizeof(*dom)); + init_timer_deferrable(&dom->period_timer); + dom->period_timer.function = writeout_period; + dom->period_timer.data = (unsigned long)dom; + return fprop_global_init(&dom->completions, gfp); +} + /* * bdi_min_ratio keeps the sum of the minimum dirty shares of all * registered backing devices, which, for obvious reasons, can not @@ -579,6 +559,7 @@ static unsigned long hard_dirty_limit(unsigned long thresh) */ unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) { + struct wb_domain *dom = &global_wb_domain; u64 wb_thresh; long numerator, denominator; unsigned long wb_min_ratio, wb_max_ratio; @@ -586,7 +567,8 @@ unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) /* * Calculate this BDI's share of the thresh ratio. */ - wb_writeout_fraction(wb, &numerator, &denominator); + fprop_fraction_percpu(&dom->completions, &wb->completions, + &numerator, &denominator); wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; wb_thresh *= numerator; @@ -1831,7 +1813,7 @@ void __init page_writeback_init(void) writeback_set_ratelimit(); register_cpu_notifier(&ratelimit_nb); - fprop_global_init(&writeout_completions, GFP_KERNEL); + BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); } /**