diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c index 78b51b8ad4f62158555060a67f9506f9a212298c..788629c06ce9c87c3b65ca41b152c2172c3db6fd 100644 --- a/kernel/locking/lockdep.c +++ b/kernel/locking/lockdep.c @@ -2764,8 +2764,18 @@ static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, * Step 3: we found a bad match! Now retrieve a lock from the backward * list whose usage mask matches the exclusive usage mask from the * lock found on the forward list. + * + * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering + * the follow case: + * + * When trying to add A -> B to the graph, we find that there is a + * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, + * that B -> ... -> M. However M is **softirq-safe**, if we use exact + * invert bits of M's usage_mask, we will find another lock N that is + * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not + * cause a inversion deadlock. */ - backward_mask = original_mask(target_entry1->class->usage_mask); + backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); ret = find_usage_backwards(&this, backward_mask, &target_entry); if (bfs_error(ret)) {