提交 27302e8f 编写于 作者: A Arend van Spriel 提交者: Greg Kroah-Hartman

staging: brcm80211: remove dependency between aiutils and siutils sources

The two source files have been separated where aiutils is only used
by the brcmsmac driver and the siutils is only used by the brcmfmac
driver.

Cc: devel@linuxdriverproject.org
Cc: linux-wireless@vger.kernel.org
Cc: Brett Rudley <brudley@broadcom.com>
Cc: Henry Ptasinski <henryp@broadcom.com>
Cc: Roland Vossen <rvossen@broadcom.com>
Signed-off-by: NArend van Spriel <arend@broadcom.com>
Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
上级 36648b8b
......@@ -47,7 +47,6 @@ BRCMSMAC_OFILES := \
phy/wlc_phytbl_lcn.o \
phy/wlc_phytbl_n.o \
../util/aiutils.o \
../util/siutils.o \
../util/bcmutils.o \
../util/bcmwifi.o \
../util/bcmotp.o \
......
......@@ -17,6 +17,8 @@
#ifndef _D11_H
#define _D11_H
#include <sbconfig.h>
#ifndef WL_RSSI_ANT_MAX
#define WL_RSSI_ANT_MAX 4 /* max possible rx antennas */
#elif WL_RSSI_ANT_MAX != 4
......
......@@ -18,7 +18,7 @@
#define _wlc_phy_h_
#include <wlioctl.h>
#include <siutils.h>
#include <aiutils.h>
#include <d11.h>
#include <wlc_phy_shim.h>
#include <net/mac80211.h> /* struct wiphy */
......
......@@ -21,7 +21,7 @@
#include <wlc_cfg.h>
#include <qmath.h>
#include <linux/pci.h>
#include <siutils.h>
#include <aiutils.h>
#include <wlc_pmu.h>
#include <bcmdevs.h>
......
......@@ -20,7 +20,7 @@
#include <wlc_cfg.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <siutils.h>
#include <aiutils.h>
#include <sbchipc.h>
#include <wlc_pmu.h>
......
......@@ -18,7 +18,7 @@
#include <bcmdefs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <aiutils.h>
#include <wlioctl.h>
#include <sbhnddma.h>
......
......@@ -18,7 +18,7 @@
#include <bcmdefs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <aiutils.h>
#include <wlioctl.h>
#include <sbhnddma.h>
#include <hnddma.h>
......
......@@ -22,7 +22,7 @@
#include <bcmdefs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <aiutils.h>
#include <bcmdevs.h>
#include <sbhnddma.h>
#include <wlioctl.h>
......
......@@ -25,7 +25,7 @@
#include <bcmdefs.h>
#include <bcmdevs.h>
#include <bcmwifi.h>
#include <siutils.h>
#include <aiutils.h>
#include <bcmsrom.h>
#include <bcmotp.h>
#include <bcmutils.h>
......@@ -829,7 +829,7 @@ int wlc_bmac_attach(struct wlc_info *wlc, u16 vendor, u16 device, uint unit,
wlc_hw->band->bandtype = j ? WLC_BAND_5G : WLC_BAND_2G;
wlc->band->bandunit = j;
wlc->band->bandtype = j ? WLC_BAND_5G : WLC_BAND_2G;
wlc->core->coreidx = si_coreidx(wlc_hw->sih);
wlc->core->coreidx = ai_coreidx(wlc_hw->sih);
wlc_hw->machwcap = R_REG(&regs->machwcap);
wlc_hw->machwcap_backup = wlc_hw->machwcap;
......
......@@ -21,7 +21,7 @@
#include <bcmdefs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <aiutils.h>
#include <sbhnddma.h>
#include <wlioctl.h>
......
......@@ -23,7 +23,7 @@
#include <bcmdevs.h>
#include <bcmutils.h>
#include <bcmwifi.h>
#include <siutils.h>
#include <aiutils.h>
#include <pcicfg.h>
#include <bcmsrom.h>
#include <wlioctl.h>
......
......@@ -29,7 +29,7 @@
#include <bcmdefs.h>
#include <bcmutils.h>
#include <bcmwifi.h>
#include <siutils.h>
#include <aiutils.h>
#include <wlioctl.h>
#include <sbconfig.h>
#include <sbchipc.h>
......
......@@ -13,221 +13,123 @@
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <bcmdefs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <bcmdevs.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <wlc_pmu.h>
#include "siutils_priv.h"
#define PMU_ERROR(args)
#ifdef BCMDBG
#define PMU_MSG(args) printk args
/* debug-only definitions */
/* #define BCMDBG_FORCEHT */
#else
#define PMU_MSG(args)
#endif /* BCMDBG */
#include <bcmutils.h>
#include "wlc_pmu.h"
/* To check in verbose debugging messages not intended
* to be on except on private builds.
/*
* d11 slow to fast clock transition time in slow clock cycles
*/
#define PMU_NONE(args)
/* PLL controls/clocks */
static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal);
static u32 si_pmu1_alpclk0(si_t *sih, chipcregs_t *cc);
#define D11SCC_SLOW2FAST_TRANSITION 2
/* PMU resources */
static bool si_pmu_res_depfltr_bb(si_t *sih);
static bool si_pmu_res_depfltr_ncb(si_t *sih);
static bool si_pmu_res_depfltr_paldo(si_t *sih);
static bool si_pmu_res_depfltr_npaldo(si_t *sih);
static u32 si_pmu_res_deps(si_t *sih, chipcregs_t *cc, u32 rsrcs, bool all);
static uint si_pmu_res_uptime(si_t *sih, chipcregs_t *cc, u8 rsrc);
static void si_pmu_res_masks(si_t *sih, u32 * pmin, u32 * pmax);
static void si_pmu_spuravoid_pllupdate(si_t *sih, chipcregs_t *cc,
u8 spuravoid);
/*
* external LPO crystal frequency
*/
#define EXT_ILP_HZ 32768
static void si_pmu_set_4330_plldivs(si_t *sih);
/*
* Duration for ILP clock frequency measurment in milliseconds
*
* remark: 1000 must be an integer multiple of this duration
*/
#define ILP_CALC_DUR 10
/* FVCO frequency */
/*
* FVCO frequency
*/
#define FVCO_880 880000 /* 880MHz */
#define FVCO_1760 1760000 /* 1760MHz */
#define FVCO_1440 1440000 /* 1440MHz */
#define FVCO_960 960000 /* 960MHz */
/* Read/write a chipcontrol reg */
u32 si_pmu_chipcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, chipcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, chipcontrol_data), mask, val);
}
/* Read/write a regcontrol reg */
u32 si_pmu_regcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, regcontrol_data), mask, val);
}
/* Read/write a pllcontrol reg */
u32 si_pmu_pllcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pllcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, pllcontrol_data), mask, val);
}
/* PMU PLL update */
void si_pmu_pllupd(si_t *sih)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pmucontrol),
PCTL_PLL_PLLCTL_UPD, PCTL_PLL_PLLCTL_UPD);
}
/*
* PMU crystal table indices for 1440MHz fvco
*/
#define PMU1_XTALTAB0_1440_12000K 0
#define PMU1_XTALTAB0_1440_13000K 1
#define PMU1_XTALTAB0_1440_14400K 2
#define PMU1_XTALTAB0_1440_15360K 3
#define PMU1_XTALTAB0_1440_16200K 4
#define PMU1_XTALTAB0_1440_16800K 5
#define PMU1_XTALTAB0_1440_19200K 6
#define PMU1_XTALTAB0_1440_19800K 7
#define PMU1_XTALTAB0_1440_20000K 8
#define PMU1_XTALTAB0_1440_25000K 9
#define PMU1_XTALTAB0_1440_26000K 10
#define PMU1_XTALTAB0_1440_30000K 11
#define PMU1_XTALTAB0_1440_37400K 12
#define PMU1_XTALTAB0_1440_38400K 13
#define PMU1_XTALTAB0_1440_40000K 14
#define PMU1_XTALTAB0_1440_48000K 15
void si_pmu_set_ldo_voltage(si_t *sih, u8 ldo, u8 voltage)
{
u8 sr_cntl_shift = 0, rc_shift = 0, shift = 0, mask = 0;
u8 addr = 0;
/*
* PMU crystal table indices for 960MHz fvco
*/
#define PMU1_XTALTAB0_960_12000K 0
#define PMU1_XTALTAB0_960_13000K 1
#define PMU1_XTALTAB0_960_14400K 2
#define PMU1_XTALTAB0_960_15360K 3
#define PMU1_XTALTAB0_960_16200K 4
#define PMU1_XTALTAB0_960_16800K 5
#define PMU1_XTALTAB0_960_19200K 6
#define PMU1_XTALTAB0_960_19800K 7
#define PMU1_XTALTAB0_960_20000K 8
#define PMU1_XTALTAB0_960_25000K 9
#define PMU1_XTALTAB0_960_26000K 10
#define PMU1_XTALTAB0_960_30000K 11
#define PMU1_XTALTAB0_960_37400K 12
#define PMU1_XTALTAB0_960_38400K 13
#define PMU1_XTALTAB0_960_40000K 14
#define PMU1_XTALTAB0_960_48000K 15
switch (sih->chip) {
case BCM4336_CHIP_ID:
switch (ldo) {
case SET_LDO_VOLTAGE_CLDO_PWM:
addr = 4;
rc_shift = 1;
mask = 0xf;
break;
case SET_LDO_VOLTAGE_CLDO_BURST:
addr = 4;
rc_shift = 5;
mask = 0xf;
break;
case SET_LDO_VOLTAGE_LNLDO1:
addr = 4;
rc_shift = 17;
mask = 0xf;
break;
default:
return;
}
break;
case BCM4330_CHIP_ID:
switch (ldo) {
case SET_LDO_VOLTAGE_CBUCK_PWM:
addr = 3;
rc_shift = 0;
mask = 0x1f;
break;
default:
break;
}
break;
default:
return;
}
/*
* PMU crystal table indices for 880MHz fvco
*/
#define PMU1_XTALTAB0_880_12000K 0
#define PMU1_XTALTAB0_880_13000K 1
#define PMU1_XTALTAB0_880_14400K 2
#define PMU1_XTALTAB0_880_15360K 3
#define PMU1_XTALTAB0_880_16200K 4
#define PMU1_XTALTAB0_880_16800K 5
#define PMU1_XTALTAB0_880_19200K 6
#define PMU1_XTALTAB0_880_19800K 7
#define PMU1_XTALTAB0_880_20000K 8
#define PMU1_XTALTAB0_880_24000K 9
#define PMU1_XTALTAB0_880_25000K 10
#define PMU1_XTALTAB0_880_26000K 11
#define PMU1_XTALTAB0_880_30000K 12
#define PMU1_XTALTAB0_880_37400K 13
#define PMU1_XTALTAB0_880_38400K 14
#define PMU1_XTALTAB0_880_40000K 15
shift = sr_cntl_shift + rc_shift;
/*
* crystal frequency values
*/
#define XTAL_FREQ_24000MHZ 24000
#define XTAL_FREQ_30000MHZ 30000
#define XTAL_FREQ_37400MHZ 37400
#define XTAL_FREQ_48000MHZ 48000
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_addr),
~0, addr);
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_data),
mask << shift, (voltage & mask) << shift);
}
/*
* Resource dependancies mask change action
*
* @RES_DEPEND_SET: Override the dependancies mask
* @RES_DEPEND_ADD: Add to the dependancies mask
* @RES_DEPEND_REMOVE: Remove from the dependancies mask
*/
#define RES_DEPEND_SET 0
#define RES_DEPEND_ADD 1
#define RES_DEPEND_REMOVE -1
/* d11 slow to fast clock transition time in slow clock cycles */
#define D11SCC_SLOW2FAST_TRANSITION 2
u16 si_pmu_fast_pwrup_delay(si_t *sih)
{
uint delay = PMU_MAX_TRANSITION_DLY;
chipcregs_t *cc;
uint origidx;
#ifdef BCMDBG
char chn[8];
chn[0] = 0; /* to suppress compile error */
#endif
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
switch (sih->chip) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
case BCM6362_CHIP_ID:
case BCM4313_CHIP_ID:
delay = ISSIM_ENAB(sih) ? 70 : 3700;
break;
case BCM4329_CHIP_ID:
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4329_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
case BCM4319_CHIP_ID:
delay = ISSIM_ENAB(sih) ? 70 : 3700;
break;
case BCM4336_CHIP_ID:
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4336_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
case BCM4330_CHIP_ID:
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4330_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
default:
break;
}
/* Return to original core */
si_setcoreidx(sih, origidx);
return (u16) delay;
}
/* Setup resource up/down timers */
typedef struct {
u8 resnum;
......@@ -242,10 +144,23 @@ typedef struct {
bool(*filter) (si_t *sih); /* action is taken when filter is NULL or return true */
} pmu_res_depend_t;
/* Resource dependancies mask change action */
#define RES_DEPEND_SET 0 /* Override the dependancies mask */
#define RES_DEPEND_ADD 1 /* Add to the dependancies mask */
#define RES_DEPEND_REMOVE -1 /* Remove from the dependancies mask */
/* setup pll and query clock speed */
typedef struct {
u16 fref;
u8 xf;
u8 p1div;
u8 p2div;
u8 ndiv_int;
u32 ndiv_frac;
} pmu1_xtaltab0_t;
/*
* prototypes used in resource tables
*/
static bool si_pmu_res_depfltr_bb(si_t *sih);
static bool si_pmu_res_depfltr_ncb(si_t *sih);
static bool si_pmu_res_depfltr_paldo(si_t *sih);
static bool si_pmu_res_depfltr_npaldo(si_t *sih);
static const pmu_res_updown_t bcm4328a0_res_updown[] = {
{
......@@ -502,6 +417,92 @@ static const pmu_res_depend_t bcm4330a0_res_depend[] = {
PMURES_BIT(RES4330_HT_AVAIL), RES_DEPEND_ADD, 0, NULL}
};
/* the following table is based on 1440Mhz fvco */
static const pmu1_xtaltab0_t pmu1_xtaltab0_1440[] = {
{
12000, 1, 1, 1, 0x78, 0x0}, {
13000, 2, 1, 1, 0x6E, 0xC4EC4E}, {
14400, 3, 1, 1, 0x64, 0x0}, {
15360, 4, 1, 1, 0x5D, 0xC00000}, {
16200, 5, 1, 1, 0x58, 0xE38E38}, {
16800, 6, 1, 1, 0x55, 0xB6DB6D}, {
19200, 7, 1, 1, 0x4B, 0}, {
19800, 8, 1, 1, 0x48, 0xBA2E8B}, {
20000, 9, 1, 1, 0x48, 0x0}, {
25000, 10, 1, 1, 0x39, 0x999999}, {
26000, 11, 1, 1, 0x37, 0x627627}, {
30000, 12, 1, 1, 0x30, 0x0}, {
37400, 13, 2, 1, 0x4D, 0x15E76}, {
38400, 13, 2, 1, 0x4B, 0x0}, {
40000, 14, 2, 1, 0x48, 0x0}, {
48000, 15, 2, 1, 0x3c, 0x0}, {
0, 0, 0, 0, 0, 0}
};
static const pmu1_xtaltab0_t pmu1_xtaltab0_960[] = {
{
12000, 1, 1, 1, 0x50, 0x0}, {
13000, 2, 1, 1, 0x49, 0xD89D89}, {
14400, 3, 1, 1, 0x42, 0xAAAAAA}, {
15360, 4, 1, 1, 0x3E, 0x800000}, {
16200, 5, 1, 1, 0x39, 0x425ED0}, {
16800, 6, 1, 1, 0x39, 0x249249}, {
19200, 7, 1, 1, 0x32, 0x0}, {
19800, 8, 1, 1, 0x30, 0x7C1F07}, {
20000, 9, 1, 1, 0x30, 0x0}, {
25000, 10, 1, 1, 0x26, 0x666666}, {
26000, 11, 1, 1, 0x24, 0xEC4EC4}, {
30000, 12, 1, 1, 0x20, 0x0}, {
37400, 13, 2, 1, 0x33, 0x563EF9}, {
38400, 14, 2, 1, 0x32, 0x0}, {
40000, 15, 2, 1, 0x30, 0x0}, {
48000, 16, 2, 1, 0x28, 0x0}, {
0, 0, 0, 0, 0, 0}
};
static const pmu1_xtaltab0_t pmu1_xtaltab0_880_4329[] = {
{
12000, 1, 3, 22, 0x9, 0xFFFFEF}, {
13000, 2, 1, 6, 0xb, 0x483483}, {
14400, 3, 1, 10, 0xa, 0x1C71C7}, {
15360, 4, 1, 5, 0xb, 0x755555}, {
16200, 5, 1, 10, 0x5, 0x6E9E06}, {
16800, 6, 1, 10, 0x5, 0x3Cf3Cf}, {
19200, 7, 1, 4, 0xb, 0x755555}, {
19800, 8, 1, 11, 0x4, 0xA57EB}, {
20000, 9, 1, 11, 0x4, 0x0}, {
24000, 10, 3, 11, 0xa, 0x0}, {
25000, 11, 5, 16, 0xb, 0x0}, {
26000, 12, 1, 1, 0x21, 0xD89D89}, {
30000, 13, 3, 8, 0xb, 0x0}, {
37400, 14, 3, 1, 0x46, 0x969696}, {
38400, 15, 1, 1, 0x16, 0xEAAAAA}, {
40000, 16, 1, 2, 0xb, 0}, {
0, 0, 0, 0, 0, 0}
};
/* the following table is based on 880Mhz fvco */
static const pmu1_xtaltab0_t pmu1_xtaltab0_880[] = {
{
12000, 1, 3, 22, 0x9, 0xFFFFEF}, {
13000, 2, 1, 6, 0xb, 0x483483}, {
14400, 3, 1, 10, 0xa, 0x1C71C7}, {
15360, 4, 1, 5, 0xb, 0x755555}, {
16200, 5, 1, 10, 0x5, 0x6E9E06}, {
16800, 6, 1, 10, 0x5, 0x3Cf3Cf}, {
19200, 7, 1, 4, 0xb, 0x755555}, {
19800, 8, 1, 11, 0x4, 0xA57EB}, {
20000, 9, 1, 11, 0x4, 0x0}, {
24000, 10, 3, 11, 0xa, 0x0}, {
25000, 11, 5, 16, 0xb, 0x0}, {
26000, 12, 1, 2, 0x10, 0xEC4EC4}, {
30000, 13, 3, 8, 0xb, 0x0}, {
33600, 14, 1, 2, 0xd, 0x186186}, {
38400, 15, 1, 2, 0xb, 0x755555}, {
40000, 16, 1, 2, 0xb, 0}, {
0, 0, 0, 0, 0, 0}
};
/* true if the power topology uses the buck boost to provide 3.3V to VDDIO_RF and WLAN PA */
static bool si_pmu_res_depfltr_bb(si_t *sih)
{
......@@ -527,8 +528,26 @@ static bool si_pmu_res_depfltr_npaldo(si_t *sih)
return (sih->boardflags & BFL_PALDO) == 0;
}
#define BCM94325_BBVDDIOSD_BOARDS(sih) (sih->boardtype == BCM94325DEVBU_BOARD || \
sih->boardtype == BCM94325BGABU_BOARD)
/* Return dependancies (direct or all/indirect) for the given resources */
static u32
si_pmu_res_deps(si_t *sih, chipcregs_t *cc, u32 rsrcs,
bool all)
{
u32 deps = 0;
u32 i;
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(rsrcs & PMURES_BIT(i)))
continue;
W_REG(&cc->res_table_sel, i);
deps |= R_REG(&cc->res_dep_mask);
}
return !all ? deps : (deps
? (deps |
si_pmu_res_deps(sih, cc, deps,
true)) : 0);
}
/* Determine min/max rsrc masks. Value 0 leaves hardware at default. */
static void si_pmu_res_masks(si_t *sih, u32 * pmin, u32 * pmax)
......@@ -604,13 +623,11 @@ static void si_pmu_res_masks(si_t *sih, u32 * pmin, u32 * pmax)
/* Apply nvram override to min mask */
val = getvar(NULL, "rmin");
if (val != NULL) {
PMU_MSG(("Applying rmin=%s to min_mask\n", val));
min_mask = (u32) simple_strtoul(val, NULL, 0);
}
/* Apply nvram override to max mask */
val = getvar(NULL, "rmax");
if (val != NULL) {
PMU_MSG(("Applying rmax=%s to max_mask\n", val));
max_mask = (u32) simple_strtoul(val, NULL, 0);
}
......@@ -618,446 +635,239 @@ static void si_pmu_res_masks(si_t *sih, u32 * pmin, u32 * pmax)
*pmax = max_mask;
}
/* initialize PMU resources */
void si_pmu_res_init(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
const pmu_res_updown_t *pmu_res_updown_table = NULL;
uint pmu_res_updown_table_sz = 0;
const pmu_res_depend_t *pmu_res_depend_table = NULL;
uint pmu_res_depend_table_sz = 0;
/* Return up time in ILP cycles for the given resource. */
static uint
si_pmu_res_uptime(si_t *sih, chipcregs_t *cc, u8 rsrc) {
u32 deps;
uint up, i, dup, dmax;
u32 min_mask = 0, max_mask = 0;
char name[8], *val;
uint i, rsrcs;
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
/* uptime of resource 'rsrc' */
W_REG(&cc->res_table_sel, rsrc);
up = (R_REG(&cc->res_updn_timer) >> 8) & 0xff;
switch (sih->chip) {
case BCM4329_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = NULL;
pmu_res_updown_table_sz = 0;
} else {
pmu_res_updown_table = bcm4329_res_updown;
pmu_res_updown_table_sz = ARRAY_SIZE(bcm4329_res_updown);
/* direct dependancies of resource 'rsrc' */
deps = si_pmu_res_deps(sih, cc, PMURES_BIT(rsrc), false);
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(deps & PMURES_BIT(i)))
continue;
deps &= ~si_pmu_res_deps(sih, cc, PMURES_BIT(i), true);
}
/* Optimize resources dependencies */
pmu_res_depend_table = bcm4329_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4329_res_depend);
break;
si_pmu_res_masks(sih, &min_mask, &max_mask);
deps &= ~min_mask;
case BCM4319_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4319a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4319a0_res_updown_qt);
} else {
pmu_res_updown_table = bcm4319a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4319a0_res_updown);
/* max uptime of direct dependancies */
dmax = 0;
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(deps & PMURES_BIT(i)))
continue;
dup = si_pmu_res_uptime(sih, cc, (u8) i);
if (dmax < dup)
dmax = dup;
}
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4319a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4319a0_res_depend);
break;
case BCM4336_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4336a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4336a0_res_updown_qt);
} else {
pmu_res_updown_table = bcm4336a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4336a0_res_updown);
}
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4336a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4336a0_res_depend);
return up + dmax + PMURES_UP_TRANSITION;
}
static void
si_pmu_spuravoid_pllupdate(si_t *sih, chipcregs_t *cc, u8 spuravoid)
{
u32 tmp = 0;
u8 phypll_offset = 0;
u8 bcm5357_bcm43236_p1div[] = { 0x1, 0x5, 0x5 };
u8 bcm5357_bcm43236_ndiv[] = { 0x30, 0xf6, 0xfc };
switch (sih->chip) {
case BCM5357_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
/* BCM5357 needs to touch PLL1_PLLCTL[02], so offset PLL0_PLLCTL[02] by 6 */
phypll_offset = (sih->chip == BCM5357_CHIP_ID) ? 6 : 0;
/* RMW only the P1 divider */
W_REG(&cc->pllcontrol_addr,
PMU1_PLL0_PLLCTL0 + phypll_offset);
tmp = R_REG(&cc->pllcontrol_data);
tmp &= (~(PMU1_PLL0_PC0_P1DIV_MASK));
tmp |=
(bcm5357_bcm43236_p1div[spuravoid] <<
PMU1_PLL0_PC0_P1DIV_SHIFT);
W_REG(&cc->pllcontrol_data, tmp);
/* RMW only the int feedback divider */
W_REG(&cc->pllcontrol_addr,
PMU1_PLL0_PLLCTL2 + phypll_offset);
tmp = R_REG(&cc->pllcontrol_data);
tmp &= ~(PMU1_PLL0_PC2_NDIV_INT_MASK);
tmp |=
(bcm5357_bcm43236_ndiv[spuravoid]) <<
PMU1_PLL0_PC2_NDIV_INT_SHIFT;
W_REG(&cc->pllcontrol_data, tmp);
tmp = 1 << 10;
break;
case BCM4330_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4330a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4330a0_res_updown_qt);
case BCM4331_CHIP_ID:
if (spuravoid == 2) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0FC00a08);
} else if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600a08);
} else {
pmu_res_updown_table = bcm4330a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4330a0_res_updown);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
}
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4330a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4330a0_res_depend);
tmp = 1 << 10;
break;
default:
break;
}
/* # resources */
rsrcs = (sih->pmucaps & PCAP_RC_MASK) >> PCAP_RC_SHIFT;
/* Program up/down timers */
while (pmu_res_updown_table_sz--) {
PMU_MSG(("Changing rsrc %d res_updn_timer to 0x%x\n",
pmu_res_updown_table[pmu_res_updown_table_sz].resnum,
pmu_res_updown_table[pmu_res_updown_table_sz].updown));
W_REG(&cc->res_table_sel,
pmu_res_updown_table[pmu_res_updown_table_sz].resnum);
W_REG(&cc->res_updn_timer,
pmu_res_updown_table[pmu_res_updown_table_sz].updown);
}
/* Apply nvram overrides to up/down timers */
for (i = 0; i < rsrcs; i++) {
snprintf(name, sizeof(name), "r%dt", i);
val = getvar(NULL, name);
if (val == NULL)
continue;
PMU_MSG(("Applying %s=%s to rsrc %d res_updn_timer\n", name,
val, i));
W_REG(&cc->res_table_sel, (u32) i);
W_REG(&cc->res_updn_timer,
(u32) simple_strtoul(val, NULL, 0));
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM6362_CHIP_ID:
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500010);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x000C0C06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x2001E920);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
} else {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100010);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x000c0c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
}
/* Program resource dependencies table */
while (pmu_res_depend_table_sz--) {
if (pmu_res_depend_table[pmu_res_depend_table_sz].filter != NULL
&& !(pmu_res_depend_table[pmu_res_depend_table_sz].
filter) (sih))
continue;
for (i = 0; i < rsrcs; i++) {
if ((pmu_res_depend_table[pmu_res_depend_table_sz].
res_mask & PMURES_BIT(i)) == 0)
continue;
W_REG(&cc->res_table_sel, i);
switch (pmu_res_depend_table[pmu_res_depend_table_sz].
action) {
case RES_DEPEND_SET:
PMU_MSG(("Changing rsrc %d res_dep_mask to 0x%x\n", i, pmu_res_depend_table[pmu_res_depend_table_sz].depend_mask));
W_REG(&cc->res_dep_mask,
pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
case RES_DEPEND_ADD:
PMU_MSG(("Adding 0x%x to rsrc %d res_dep_mask\n", pmu_res_depend_table[pmu_res_depend_table_sz].depend_mask, i));
OR_REG(&cc->res_dep_mask,
pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
case RES_DEPEND_REMOVE:
PMU_MSG(("Removing 0x%x from rsrc %d res_dep_mask\n", pmu_res_depend_table[pmu_res_depend_table_sz].depend_mask, i));
AND_REG(&cc->res_dep_mask,
~pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
default:
tmp = 1 << 10;
break;
}
}
}
/* Apply nvram overrides to dependancies masks */
for (i = 0; i < rsrcs; i++) {
snprintf(name, sizeof(name), "r%dd", i);
val = getvar(NULL, name);
if (val == NULL)
continue;
PMU_MSG(("Applying %s=%s to rsrc %d res_dep_mask\n", name, val,
i));
W_REG(&cc->res_table_sel, (u32) i);
W_REG(&cc->res_dep_mask,
(u32) simple_strtoul(val, NULL, 0));
}
/* Determine min/max rsrc masks */
si_pmu_res_masks(sih, &min_mask, &max_mask);
/* It is required to program max_mask first and then min_mask */
/* Program max resource mask */
if (max_mask) {
PMU_MSG(("Changing max_res_mask to 0x%x\n", max_mask));
W_REG(&cc->max_res_mask, max_mask);
}
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100008);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x0c000c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888855);
/* Program min resource mask */
tmp = 1 << 10;
break;
if (min_mask) {
PMU_MSG(("Changing min_res_mask to 0x%x\n", min_mask));
W_REG(&cc->min_res_mask, min_mask);
case BCM4716_CHIP_ID:
case BCM4748_CHIP_ID:
case BCM47162_CHIP_ID:
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500060);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x080C0C06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x2001E924);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
} else {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100060);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x080c0c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
}
/* Add some delay; allow resources to come up and settle. */
mdelay(2);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* setup pll and query clock speed */
typedef struct {
u16 freq;
u8 xf;
u8 wbint;
u32 wbfrac;
} pmu0_xtaltab0_t;
/* the following table is based on 880Mhz fvco */
static const pmu0_xtaltab0_t pmu0_xtaltab0[] = {
{
12000, 1, 73, 349525}, {
13000, 2, 67, 725937}, {
14400, 3, 61, 116508}, {
15360, 4, 57, 305834}, {
16200, 5, 54, 336579}, {
16800, 6, 52, 399457}, {
19200, 7, 45, 873813}, {
19800, 8, 44, 466033}, {
20000, 9, 44, 0}, {
25000, 10, 70, 419430}, {
26000, 11, 67, 725937}, {
30000, 12, 58, 699050}, {
38400, 13, 45, 873813}, {
40000, 14, 45, 0}, {
0, 0, 0, 0}
};
#define PMU0_XTAL0_DEFAULT 8
/* setup pll and query clock speed */
typedef struct {
u16 fref;
u8 xf;
u8 p1div;
u8 p2div;
u8 ndiv_int;
u32 ndiv_frac;
} pmu1_xtaltab0_t;
static const pmu1_xtaltab0_t pmu1_xtaltab0_880_4329[] = {
{
12000, 1, 3, 22, 0x9, 0xFFFFEF}, {
13000, 2, 1, 6, 0xb, 0x483483}, {
14400, 3, 1, 10, 0xa, 0x1C71C7}, {
15360, 4, 1, 5, 0xb, 0x755555}, {
16200, 5, 1, 10, 0x5, 0x6E9E06}, {
16800, 6, 1, 10, 0x5, 0x3Cf3Cf}, {
19200, 7, 1, 4, 0xb, 0x755555}, {
19800, 8, 1, 11, 0x4, 0xA57EB}, {
20000, 9, 1, 11, 0x4, 0x0}, {
24000, 10, 3, 11, 0xa, 0x0}, {
25000, 11, 5, 16, 0xb, 0x0}, {
26000, 12, 1, 1, 0x21, 0xD89D89}, {
30000, 13, 3, 8, 0xb, 0x0}, {
37400, 14, 3, 1, 0x46, 0x969696}, {
38400, 15, 1, 1, 0x16, 0xEAAAAA}, {
40000, 16, 1, 2, 0xb, 0}, {
0, 0, 0, 0, 0, 0}
};
/* the following table is based on 880Mhz fvco */
static const pmu1_xtaltab0_t pmu1_xtaltab0_880[] = {
{
12000, 1, 3, 22, 0x9, 0xFFFFEF}, {
13000, 2, 1, 6, 0xb, 0x483483}, {
14400, 3, 1, 10, 0xa, 0x1C71C7}, {
15360, 4, 1, 5, 0xb, 0x755555}, {
16200, 5, 1, 10, 0x5, 0x6E9E06}, {
16800, 6, 1, 10, 0x5, 0x3Cf3Cf}, {
19200, 7, 1, 4, 0xb, 0x755555}, {
19800, 8, 1, 11, 0x4, 0xA57EB}, {
20000, 9, 1, 11, 0x4, 0x0}, {
24000, 10, 3, 11, 0xa, 0x0}, {
25000, 11, 5, 16, 0xb, 0x0}, {
26000, 12, 1, 2, 0x10, 0xEC4EC4}, {
30000, 13, 3, 8, 0xb, 0x0}, {
33600, 14, 1, 2, 0xd, 0x186186}, {
38400, 15, 1, 2, 0xb, 0x755555}, {
40000, 16, 1, 2, 0xb, 0}, {
0, 0, 0, 0, 0, 0}
};
#define PMU1_XTALTAB0_880_12000K 0
#define PMU1_XTALTAB0_880_13000K 1
#define PMU1_XTALTAB0_880_14400K 2
#define PMU1_XTALTAB0_880_15360K 3
#define PMU1_XTALTAB0_880_16200K 4
#define PMU1_XTALTAB0_880_16800K 5
#define PMU1_XTALTAB0_880_19200K 6
#define PMU1_XTALTAB0_880_19800K 7
#define PMU1_XTALTAB0_880_20000K 8
#define PMU1_XTALTAB0_880_24000K 9
#define PMU1_XTALTAB0_880_25000K 10
#define PMU1_XTALTAB0_880_26000K 11
#define PMU1_XTALTAB0_880_30000K 12
#define PMU1_XTALTAB0_880_37400K 13
#define PMU1_XTALTAB0_880_38400K 14
#define PMU1_XTALTAB0_880_40000K 15
tmp = 3 << 9;
break;
/* the following table is based on 1760Mhz fvco */
static const pmu1_xtaltab0_t pmu1_xtaltab0_1760[] = {
{
12000, 1, 3, 44, 0x9, 0xFFFFEF}, {
13000, 2, 1, 12, 0xb, 0x483483}, {
14400, 3, 1, 20, 0xa, 0x1C71C7}, {
15360, 4, 1, 10, 0xb, 0x755555}, {
16200, 5, 1, 20, 0x5, 0x6E9E06}, {
16800, 6, 1, 20, 0x5, 0x3Cf3Cf}, {
19200, 7, 1, 18, 0x5, 0x17B425}, {
19800, 8, 1, 22, 0x4, 0xA57EB}, {
20000, 9, 1, 22, 0x4, 0x0}, {
24000, 10, 3, 22, 0xa, 0x0}, {
25000, 11, 5, 32, 0xb, 0x0}, {
26000, 12, 1, 4, 0x10, 0xEC4EC4}, {
30000, 13, 3, 16, 0xb, 0x0}, {
38400, 14, 1, 10, 0x4, 0x955555}, {
40000, 15, 1, 4, 0xb, 0}, {
0, 0, 0, 0, 0, 0}
};
case BCM4319_CHIP_ID:
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100070);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x1014140a);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888854);
/* table index */
#define PMU1_XTALTAB0_1760_12000K 0
#define PMU1_XTALTAB0_1760_13000K 1
#define PMU1_XTALTAB0_1760_14400K 2
#define PMU1_XTALTAB0_1760_15360K 3
#define PMU1_XTALTAB0_1760_16200K 4
#define PMU1_XTALTAB0_1760_16800K 5
#define PMU1_XTALTAB0_1760_19200K 6
#define PMU1_XTALTAB0_1760_19800K 7
#define PMU1_XTALTAB0_1760_20000K 8
#define PMU1_XTALTAB0_1760_24000K 9
#define PMU1_XTALTAB0_1760_25000K 10
#define PMU1_XTALTAB0_1760_26000K 11
#define PMU1_XTALTAB0_1760_30000K 12
#define PMU1_XTALTAB0_1760_38400K 13
#define PMU1_XTALTAB0_1760_40000K 14
if (spuravoid == 1) { /* spur_avoid ON, enable 41/82/164Mhz clock mode */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x05201828);
} else { /* enable 40/80/160Mhz clock mode */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x05001828);
}
break;
case BCM4336_CHIP_ID:
/* Looks like these are only for default xtal freq 26MHz */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x02100020);
/* the following table is based on 1440Mhz fvco */
static const pmu1_xtaltab0_t pmu1_xtaltab0_1440[] = {
{
12000, 1, 1, 1, 0x78, 0x0}, {
13000, 2, 1, 1, 0x6E, 0xC4EC4E}, {
14400, 3, 1, 1, 0x64, 0x0}, {
15360, 4, 1, 1, 0x5D, 0xC00000}, {
16200, 5, 1, 1, 0x58, 0xE38E38}, {
16800, 6, 1, 1, 0x55, 0xB6DB6D}, {
19200, 7, 1, 1, 0x4B, 0}, {
19800, 8, 1, 1, 0x48, 0xBA2E8B}, {
20000, 9, 1, 1, 0x48, 0x0}, {
25000, 10, 1, 1, 0x39, 0x999999}, {
26000, 11, 1, 1, 0x37, 0x627627}, {
30000, 12, 1, 1, 0x30, 0x0}, {
37400, 13, 2, 1, 0x4D, 0x15E76}, {
38400, 13, 2, 1, 0x4B, 0x0}, {
40000, 14, 2, 1, 0x48, 0x0}, {
48000, 15, 2, 1, 0x3c, 0x0}, {
0, 0, 0, 0, 0, 0}
};
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x0C0C0C0C);
/* table index */
#define PMU1_XTALTAB0_1440_12000K 0
#define PMU1_XTALTAB0_1440_13000K 1
#define PMU1_XTALTAB0_1440_14400K 2
#define PMU1_XTALTAB0_1440_15360K 3
#define PMU1_XTALTAB0_1440_16200K 4
#define PMU1_XTALTAB0_1440_16800K 5
#define PMU1_XTALTAB0_1440_19200K 6
#define PMU1_XTALTAB0_1440_19800K 7
#define PMU1_XTALTAB0_1440_20000K 8
#define PMU1_XTALTAB0_1440_25000K 9
#define PMU1_XTALTAB0_1440_26000K 10
#define PMU1_XTALTAB0_1440_30000K 11
#define PMU1_XTALTAB0_1440_37400K 12
#define PMU1_XTALTAB0_1440_38400K 13
#define PMU1_XTALTAB0_1440_40000K 14
#define PMU1_XTALTAB0_1440_48000K 15
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x01240C0C);
#define XTAL_FREQ_24000MHZ 24000
#define XTAL_FREQ_30000MHZ 30000
#define XTAL_FREQ_37400MHZ 37400
#define XTAL_FREQ_48000MHZ 48000
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x202C2820);
static const pmu1_xtaltab0_t pmu1_xtaltab0_960[] = {
{
12000, 1, 1, 1, 0x50, 0x0}, {
13000, 2, 1, 1, 0x49, 0xD89D89}, {
14400, 3, 1, 1, 0x42, 0xAAAAAA}, {
15360, 4, 1, 1, 0x3E, 0x800000}, {
16200, 5, 1, 1, 0x39, 0x425ED0}, {
16800, 6, 1, 1, 0x39, 0x249249}, {
19200, 7, 1, 1, 0x32, 0x0}, {
19800, 8, 1, 1, 0x30, 0x7C1F07}, {
20000, 9, 1, 1, 0x30, 0x0}, {
25000, 10, 1, 1, 0x26, 0x666666}, {
26000, 11, 1, 1, 0x24, 0xEC4EC4}, {
30000, 12, 1, 1, 0x20, 0x0}, {
37400, 13, 2, 1, 0x33, 0x563EF9}, {
38400, 14, 2, 1, 0x32, 0x0}, {
40000, 15, 2, 1, 0x30, 0x0}, {
48000, 16, 2, 1, 0x28, 0x0}, {
0, 0, 0, 0, 0, 0}
};
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888825);
/* table index */
#define PMU1_XTALTAB0_960_12000K 0
#define PMU1_XTALTAB0_960_13000K 1
#define PMU1_XTALTAB0_960_14400K 2
#define PMU1_XTALTAB0_960_15360K 3
#define PMU1_XTALTAB0_960_16200K 4
#define PMU1_XTALTAB0_960_16800K 5
#define PMU1_XTALTAB0_960_19200K 6
#define PMU1_XTALTAB0_960_19800K 7
#define PMU1_XTALTAB0_960_20000K 8
#define PMU1_XTALTAB0_960_25000K 9
#define PMU1_XTALTAB0_960_26000K 10
#define PMU1_XTALTAB0_960_30000K 11
#define PMU1_XTALTAB0_960_37400K 12
#define PMU1_XTALTAB0_960_38400K 13
#define PMU1_XTALTAB0_960_40000K 14
#define PMU1_XTALTAB0_960_48000K 15
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_data, 0x00EC4EC4);
} else {
W_REG(&cc->pllcontrol_data, 0x00762762);
}
/* select xtal table for each chip */
static const pmu1_xtaltab0_t *si_pmu1_xtaltab0(si_t *sih)
{
#ifdef BCMDBG
char chn[8];
#endif
switch (sih->chip) {
case BCM4329_CHIP_ID:
return pmu1_xtaltab0_880_4329;
case BCM4319_CHIP_ID:
return pmu1_xtaltab0_1440;
case BCM4336_CHIP_ID:
return pmu1_xtaltab0_960;
case BCM4330_CHIP_ID:
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
return pmu1_xtaltab0_960;
else
return pmu1_xtaltab0_1440;
default:
PMU_MSG(("si_pmu1_xtaltab0: Unknown chipid %s\n",
bcm_chipname(sih->chip, chn, 8)));
tmp = PCTL_PLL_PLLCTL_UPD;
break;
default:
/* bail out */
return;
}
return NULL;
tmp |= R_REG(&cc->pmucontrol);
W_REG(&cc->pmucontrol, tmp);
}
/* select default xtal frequency for each chip */
static const pmu1_xtaltab0_t *si_pmu1_xtaldef0(si_t *sih)
{
#ifdef BCMDBG
char chn[8];
#endif
switch (sih->chip) {
case BCM4329_CHIP_ID:
/* Default to 38400Khz */
......@@ -1075,38 +885,30 @@ static const pmu1_xtaltab0_t *si_pmu1_xtaldef0(si_t *sih)
else
return &pmu1_xtaltab0_1440[PMU1_XTALTAB0_1440_37400K];
default:
PMU_MSG(("si_pmu1_xtaldef0: Unknown chipid %s\n",
bcm_chipname(sih->chip, chn, 8)));
break;
}
return NULL;
}
/* select default pll fvco for each chip */
static u32 si_pmu1_pllfvco0(si_t *sih)
/* select xtal table for each chip */
static const pmu1_xtaltab0_t *si_pmu1_xtaltab0(si_t *sih)
{
#ifdef BCMDBG
char chn[8];
#endif
switch (sih->chip) {
case BCM4329_CHIP_ID:
return FVCO_880;
return pmu1_xtaltab0_880_4329;
case BCM4319_CHIP_ID:
return FVCO_1440;
return pmu1_xtaltab0_1440;
case BCM4336_CHIP_ID:
return FVCO_960;
return pmu1_xtaltab0_960;
case BCM4330_CHIP_ID:
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
return FVCO_960;
return pmu1_xtaltab0_960;
else
return FVCO_1440;
return pmu1_xtaltab0_1440;
default:
PMU_MSG(("si_pmu1_pllfvco0: Unknown chipid %s\n",
bcm_chipname(sih->chip, chn, 8)));
break;
}
return 0;
return NULL;
}
/* query alp/xtal clock frequency */
......@@ -1128,6 +930,55 @@ si_pmu1_alpclk0(si_t *sih, chipcregs_t *cc)
return xt->fref * 1000;
}
/* select default pll fvco for each chip */
static u32 si_pmu1_pllfvco0(si_t *sih)
{
switch (sih->chip) {
case BCM4329_CHIP_ID:
return FVCO_880;
case BCM4319_CHIP_ID:
return FVCO_1440;
case BCM4336_CHIP_ID:
return FVCO_960;
case BCM4330_CHIP_ID:
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
return FVCO_960;
else
return FVCO_1440;
default:
break;
}
return 0;
}
static void si_pmu_set_4330_plldivs(si_t *sih)
{
u32 FVCO = si_pmu1_pllfvco0(sih) / 1000;
u32 m1div, m2div, m3div, m4div, m5div, m6div;
u32 pllc1, pllc2;
m2div = m3div = m4div = m6div = FVCO / 80;
m5div = FVCO / 160;
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
m1div = FVCO / 80;
else
m1div = FVCO / 90;
pllc1 =
(m1div << PMU1_PLL0_PC1_M1DIV_SHIFT) | (m2div <<
PMU1_PLL0_PC1_M2DIV_SHIFT) |
(m3div << PMU1_PLL0_PC1_M3DIV_SHIFT) | (m4div <<
PMU1_PLL0_PC1_M4DIV_SHIFT);
si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL1, ~0, pllc1);
pllc2 = si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL1, 0, 0);
pllc2 &= ~(PMU1_PLL0_PC2_M5DIV_MASK | PMU1_PLL0_PC2_M6DIV_MASK);
pllc2 |=
((m5div << PMU1_PLL0_PC2_M5DIV_SHIFT) |
(m6div << PMU1_PLL0_PC2_M6DIV_SHIFT));
si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL2, ~0, pllc2);
}
/* Set up PLL registers in the PMU as per the crystal speed.
* XtalFreq field in pmucontrol register being 0 indicates the PLL
* is not programmed and the h/w default is assumed to work, in which
......@@ -1143,7 +994,6 @@ static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal)
/* Use h/w default PLL config */
if (xtal == 0) {
PMU_MSG(("Unspecified xtal frequency, skip PLL configuration\n"));
return;
}
......@@ -1156,24 +1006,16 @@ static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal)
* we don't know how to program it.
*/
if (xt == NULL || xt->fref == 0) {
PMU_MSG(("Unsupported xtal frequency %d.%d MHz, skip PLL configuration\n", xtal / 1000, xtal % 1000));
return;
}
/* for 4319 bootloader already programs the PLL but bootloader does not program the
PLL4 and PLL5. So Skip this check for 4319
/* for 4319 bootloader already programs the PLL but bootloader does not
* program the PLL4 and PLL5. So Skip this check for 4319
*/
if ((((R_REG(&cc->pmucontrol) & PCTL_XTALFREQ_MASK) >>
PCTL_XTALFREQ_SHIFT) == xt->xf) &&
!((sih->chip == BCM4319_CHIP_ID)
|| (sih->chip == BCM4330_CHIP_ID))) {
PMU_MSG(("PLL already programmed for %d.%d MHz\n",
xt->fref / 1000, xt->fref % 1000));
|| (sih->chip == BCM4330_CHIP_ID)))
return;
}
PMU_MSG(("XTAL %d.%d MHz (%d)\n", xtal / 1000, xtal % 1000, xt->xf));
PMU_MSG(("Programming PLL for %d.%d MHz\n", xt->fref / 1000,
xt->fref % 1000));
switch (sih->chip) {
case BCM4329_CHIP_ID:
......@@ -1264,8 +1106,6 @@ static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal)
break;
}
PMU_MSG(("Done masking\n"));
/* Write p1div and p2div to pllcontrol[0] */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
tmp = R_REG(&cc->pllcontrol_data) &
......@@ -1317,9 +1157,6 @@ static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal)
/* Write clock driving strength to pllcontrol[5] */
if (buf_strength) {
PMU_MSG(("Adjusting PLL buffer drive strength: %x\n",
buf_strength));
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
tmp =
R_REG(&cc->pllcontrol_data) & ~PMU1_PLL0_PC5_CLK_DRV_MASK;
......@@ -1327,8 +1164,6 @@ static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal)
W_REG(&cc->pllcontrol_data, tmp);
}
PMU_MSG(("Done pll\n"));
/* to operate the 4319 usb in 24MHz/48MHz; chipcontrol[2][84:83] needs
* to be updated.
*/
......@@ -1370,26 +1205,94 @@ static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal)
W_REG(&cc->pmucontrol, tmp);
}
/* initialize PLL */
void si_pmu_pll_init(si_t *sih, uint xtalfreq)
u32 si_pmu_ilp_clock(si_t *sih)
{
static u32 ilpcycles_per_sec = 0;
if (ISSIM_ENAB(sih))
return ILP_CLOCK;
if (ilpcycles_per_sec == 0) {
u32 start, end, delta;
u32 origidx = ai_coreidx(sih);
chipcregs_t *cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
start = R_REG(&cc->pmutimer);
mdelay(ILP_CALC_DUR);
end = R_REG(&cc->pmutimer);
delta = end - start;
ilpcycles_per_sec = delta * (1000 / ILP_CALC_DUR);
si_setcoreidx(sih, origidx);
}
return ilpcycles_per_sec;
}
void si_pmu_set_ldo_voltage(si_t *sih, u8 ldo, u8 voltage)
{
u8 sr_cntl_shift = 0, rc_shift = 0, shift = 0, mask = 0;
u8 addr = 0;
switch (sih->chip) {
case BCM4336_CHIP_ID:
switch (ldo) {
case SET_LDO_VOLTAGE_CLDO_PWM:
addr = 4;
rc_shift = 1;
mask = 0xf;
break;
case SET_LDO_VOLTAGE_CLDO_BURST:
addr = 4;
rc_shift = 5;
mask = 0xf;
break;
case SET_LDO_VOLTAGE_LNLDO1:
addr = 4;
rc_shift = 17;
mask = 0xf;
break;
default:
return;
}
break;
case BCM4330_CHIP_ID:
switch (ldo) {
case SET_LDO_VOLTAGE_CBUCK_PWM:
addr = 3;
rc_shift = 0;
mask = 0x1f;
break;
default:
return;
}
break;
default:
return;
}
shift = sr_cntl_shift + rc_shift;
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_addr),
~0, addr);
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_data),
mask << shift, (voltage & mask) << shift);
}
u16 si_pmu_fast_pwrup_delay(si_t *sih)
{
uint delay = PMU_MAX_TRANSITION_DLY;
chipcregs_t *cc;
uint origidx;
#ifdef BCMDBG
char chn[8];
chn[0] = 0; /* to suppress compile error */
#endif
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
origidx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
switch (sih->chip) {
case BCM4329_CHIP_ID:
if (xtalfreq == 0)
xtalfreq = 38400;
si_pmu1_pllinit0(sih, cc, xtalfreq);
break;
case BCM4313_CHIP_ID:
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
......@@ -1398,39 +1301,117 @@ void si_pmu_pll_init(si_t *sih, uint xtalfreq)
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
case BCM6362_CHIP_ID:
/* ??? */
case BCM4313_CHIP_ID:
delay = ISSIM_ENAB(sih) ? 70 : 3700;
break;
case BCM4329_CHIP_ID:
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4329_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
case BCM4319_CHIP_ID:
delay = ISSIM_ENAB(sih) ? 70 : 3700;
break;
case BCM4336_CHIP_ID:
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4336_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
case BCM4330_CHIP_ID:
si_pmu1_pllinit0(sih, cc, xtalfreq);
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4330_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
default:
PMU_MSG(("No PLL init done for chip %s rev %d pmurev %d\n",
bcm_chipname(sih->chip, chn, 8), sih->chiprev,
sih->pmurev));
break;
}
/* Return to original core */
si_setcoreidx(sih, origidx);
return (u16) delay;
}
void si_pmu_sprom_enable(si_t *sih, bool enable)
{
chipcregs_t *cc;
uint origidx;
/* Remember original core before switch to chipc */
origidx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* Read/write a chipcontrol reg */
u32 si_pmu_chipcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, chipcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, chipcontrol_data), mask, val);
}
/* Read/write a regcontrol reg */
u32 si_pmu_regcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, regcontrol_data), mask, val);
}
/* Read/write a pllcontrol reg */
u32 si_pmu_pllcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pllcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, pllcontrol_data), mask, val);
}
/* PMU PLL update */
void si_pmu_pllupd(si_t *sih)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pmucontrol),
PCTL_PLL_PLLCTL_UPD, PCTL_PLL_PLLCTL_UPD);
}
/* query alp/xtal clock frequency */
u32 si_pmu_alp_clock(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 clock = ALP_CLOCK;
#ifdef BCMDBG
char chn[8];
#endif
/* bail out with default */
if (!PMUCTL_ENAB(sih))
return clock;
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
origidx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
switch (sih->chip) {
......@@ -1462,10 +1443,6 @@ u32 si_pmu_alp_clock(si_t *sih)
clock = 25000 * 1000;
break;
default:
PMU_MSG(("No ALP clock specified "
"for chip %s rev %d pmurev %d, using default %d Hz\n",
bcm_chipname(sih->chip, chn, 8), sih->chiprev,
sih->pmurev, clock));
break;
}
......@@ -1474,137 +1451,35 @@ u32 si_pmu_alp_clock(si_t *sih)
return clock;
}
/* Measure ILP clock frequency */
#define ILP_CALC_DUR 10 /* ms, make sure 1000 can be divided by it. */
static u32 ilpcycles_per_sec;
u32 si_pmu_ilp_clock(si_t *sih)
void si_pmu_spuravoid(si_t *sih, u8 spuravoid)
{
if (ISSIM_ENAB(sih))
return ILP_CLOCK;
if (ilpcycles_per_sec == 0) {
u32 start, end, delta;
u32 origidx = si_coreidx(sih);
chipcregs_t *cc = si_setcoreidx(sih, SI_CC_IDX);
start = R_REG(&cc->pmutimer);
mdelay(ILP_CALC_DUR);
end = R_REG(&cc->pmutimer);
delta = end - start;
ilpcycles_per_sec = delta * (1000 / ILP_CALC_DUR);
si_setcoreidx(sih, origidx);
}
return ilpcycles_per_sec;
}
/* SDIO Pad drive strength to select value mappings */
typedef struct {
u8 strength; /* Pad Drive Strength in mA */
u8 sel; /* Chip-specific select value */
} sdiod_drive_str_t;
/* SDIO Drive Strength to sel value table for PMU Rev 1 */
static const sdiod_drive_str_t sdiod_drive_strength_tab1[] = {
{
4, 0x2}, {
2, 0x3}, {
1, 0x0}, {
0, 0x0}
};
/* SDIO Drive Strength to sel value table for PMU Rev 2, 3 */
static const sdiod_drive_str_t sdiod_drive_strength_tab2[] = {
{
12, 0x7}, {
10, 0x6}, {
8, 0x5}, {
6, 0x4}, {
4, 0x2}, {
2, 0x1}, {
0, 0x0}
};
/* SDIO Drive Strength to sel value table for PMU Rev 8 (1.8V) */
static const sdiod_drive_str_t sdiod_drive_strength_tab3[] = {
{
32, 0x7}, {
26, 0x6}, {
22, 0x5}, {
16, 0x4}, {
12, 0x3}, {
8, 0x2}, {
4, 0x1}, {
0, 0x0}
};
#define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu))
void
si_sdiod_drive_strength_init(si_t *sih, u32 drivestrength) {
chipcregs_t *cc;
uint origidx, intr_val = 0;
sdiod_drive_str_t *str_tab = NULL;
u32 str_mask = 0;
u32 str_shift = 0;
#ifdef BCMDBG
char chn[8];
#endif
if (!(sih->cccaps & CC_CAP_PMU)) {
return;
}
uint origidx, intr_val;
u32 tmp = 0;
/* Remember original core before switch to chipc */
cc = (chipcregs_t *) si_switch_core(sih, CC_CORE_ID, &origidx,
&intr_val);
switch (SDIOD_DRVSTR_KEY(sih->chip, sih->pmurev)) {
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 1):
str_tab = (sdiod_drive_str_t *)&sdiod_drive_strength_tab1;
str_mask = 0x30000000;
str_shift = 28;
break;
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 2):
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 3):
str_tab = (sdiod_drive_str_t *)&sdiod_drive_strength_tab2;
str_mask = 0x00003800;
str_shift = 11;
break;
case SDIOD_DRVSTR_KEY(BCM4336_CHIP_ID, 8):
str_tab = (sdiod_drive_str_t *) &sdiod_drive_strength_tab3;
str_mask = 0x00003800;
str_shift = 11;
break;
default:
PMU_MSG(("No SDIO Drive strength init done for chip %s rev %d pmurev %d\n", bcm_chipname(sih->chip, chn, 8), sih->chiprev, sih->pmurev));
break;
}
if (str_tab != NULL) {
u32 drivestrength_sel = 0;
u32 cc_data_temp;
int i;
for (i = 0; str_tab[i].strength != 0; i++) {
if (drivestrength >= str_tab[i].strength) {
drivestrength_sel = str_tab[i].sel;
break;
}
/* force the HT off */
if (sih->chip == BCM4336_CHIP_ID) {
tmp = R_REG(&cc->max_res_mask);
tmp &= ~RES4336_HT_AVAIL;
W_REG(&cc->max_res_mask, tmp);
/* wait for the ht to really go away */
SPINWAIT(((R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL) == 0),
10000);
ASSERT((R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL) == 0);
}
W_REG(&cc->chipcontrol_addr, 1);
cc_data_temp = R_REG(&cc->chipcontrol_data);
cc_data_temp &= ~str_mask;
drivestrength_sel <<= str_shift;
cc_data_temp |= drivestrength_sel;
W_REG(&cc->chipcontrol_data, cc_data_temp);
/* update the pll changes */
si_pmu_spuravoid_pllupdate(sih, cc, spuravoid);
PMU_MSG(("SDIO: %dmA drive strength selected, set to 0x%08x\n",
drivestrength, cc_data_temp));
/* enable HT back on */
if (sih->chip == BCM4336_CHIP_ID) {
tmp = R_REG(&cc->max_res_mask);
tmp |= RES4336_HT_AVAIL;
W_REG(&cc->max_res_mask, tmp);
}
/* Return to original core */
......@@ -1618,7 +1493,7 @@ void si_pmu_init(si_t *sih)
uint origidx;
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
origidx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
if (sih->pmurev == 1)
......@@ -1639,357 +1514,307 @@ void si_pmu_init(si_t *sih)
si_setcoreidx(sih, origidx);
}
/* Return up time in ILP cycles for the given resource. */
static uint
si_pmu_res_uptime(si_t *sih, chipcregs_t *cc, u8 rsrc) {
u32 deps;
uint up, i, dup, dmax;
u32 min_mask = 0, max_mask = 0;
/* uptime of resource 'rsrc' */
W_REG(&cc->res_table_sel, rsrc);
up = (R_REG(&cc->res_updn_timer) >> 8) & 0xff;
/* direct dependancies of resource 'rsrc' */
deps = si_pmu_res_deps(sih, cc, PMURES_BIT(rsrc), false);
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(deps & PMURES_BIT(i)))
continue;
deps &= ~si_pmu_res_deps(sih, cc, PMURES_BIT(i), true);
}
si_pmu_res_masks(sih, &min_mask, &max_mask);
deps &= ~min_mask;
/* max uptime of direct dependancies */
dmax = 0;
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(deps & PMURES_BIT(i)))
continue;
dup = si_pmu_res_uptime(sih, cc, (u8) i);
if (dmax < dup)
dmax = dup;
}
PMU_MSG(("si_pmu_res_uptime: rsrc %u uptime %u(deps 0x%08x uptime %u)\n", rsrc, up, deps, dmax));
/* initialize PMU chip controls and other chip level stuff */
void si_pmu_chip_init(si_t *sih)
{
uint origidx;
return up + dmax + PMURES_UP_TRANSITION;
}
/* Return dependancies (direct or all/indirect) for the given resources */
static u32
si_pmu_res_deps(si_t *sih, chipcregs_t *cc, u32 rsrcs,
bool all)
{
u32 deps = 0;
u32 i;
/* Gate off SPROM clock and chip select signals */
si_pmu_sprom_enable(sih, false);
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(rsrcs & PMURES_BIT(i)))
continue;
W_REG(&cc->res_table_sel, i);
deps |= R_REG(&cc->res_dep_mask);
}
/* Remember original core */
origidx = ai_coreidx(sih);
return !all ? deps : (deps
? (deps |
si_pmu_res_deps(sih, cc, deps,
true)) : 0);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* power up/down OTP through PMU resources */
void si_pmu_otp_power(si_t *sih, bool on)
/* initialize PMU switch/regulators */
void si_pmu_swreg_init(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 rsrcs = 0; /* rsrcs to turn on/off OTP power */
/* Don't do anything if OTP is disabled */
if (si_is_otp_disabled(sih)) {
PMU_MSG(("si_pmu_otp_power: OTP is disabled\n"));
return;
}
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
switch (sih->chip) {
case BCM4329_CHIP_ID:
rsrcs = PMURES_BIT(RES4329_OTP_PU);
break;
case BCM4319_CHIP_ID:
rsrcs = PMURES_BIT(RES4319_OTP_PU);
break;
case BCM4336_CHIP_ID:
rsrcs = PMURES_BIT(RES4336_OTP_PU);
/* Reduce CLDO PWM output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CLDO_PWM, 0xe);
/* Reduce CLDO BURST output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CLDO_BURST,
0xe);
/* Reduce LNLDO1 output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_LNLDO1, 0xe);
if (sih->chiprev == 0)
si_pmu_regcontrol(sih, 2, 0x400000, 0x400000);
break;
case BCM4330_CHIP_ID:
rsrcs = PMURES_BIT(RES4330_OTP_PU);
/* CBUCK Voltage is 1.8 by default and set that to 1.5 */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CBUCK_PWM, 0);
break;
default:
break;
}
if (rsrcs != 0) {
u32 otps;
/* Figure out the dependancies (exclude min_res_mask) */
u32 deps = si_pmu_res_deps(sih, cc, rsrcs, true);
u32 min_mask = 0, max_mask = 0;
si_pmu_res_masks(sih, &min_mask, &max_mask);
deps &= ~min_mask;
/* Turn on/off the power */
if (on) {
PMU_MSG(("Adding rsrc 0x%x to min_res_mask\n",
rsrcs | deps));
OR_REG(&cc->min_res_mask, (rsrcs | deps));
SPINWAIT(!(R_REG(&cc->res_state) & rsrcs),
PMU_MAX_TRANSITION_DLY);
} else {
PMU_MSG(("Removing rsrc 0x%x from min_res_mask\n",
rsrcs | deps));
AND_REG(&cc->min_res_mask, ~(rsrcs | deps));
}
SPINWAIT((((otps = R_REG(&cc->otpstatus)) & OTPS_READY) !=
(on ? OTPS_READY : 0)), 100);
if ((otps & OTPS_READY) != (on ? OTPS_READY : 0))
PMU_MSG(("OTP ready bit not %s after wait\n",
(on ? "ON" : "OFF")));
}
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void si_pmu_spuravoid(si_t *sih, u8 spuravoid)
/* initialize PLL */
void si_pmu_pll_init(si_t *sih, uint xtalfreq)
{
chipcregs_t *cc;
uint origidx, intr_val;
u32 tmp = 0;
/* Remember original core before switch to chipc */
cc = (chipcregs_t *) si_switch_core(sih, CC_CORE_ID, &origidx,
&intr_val);
/* force the HT off */
if (sih->chip == BCM4336_CHIP_ID) {
tmp = R_REG(&cc->max_res_mask);
tmp &= ~RES4336_HT_AVAIL;
W_REG(&cc->max_res_mask, tmp);
/* wait for the ht to really go away */
SPINWAIT(((R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL) == 0),
10000);
}
/* update the pll changes */
si_pmu_spuravoid_pllupdate(sih, cc, spuravoid);
/* enable HT back on */
if (sih->chip == BCM4336_CHIP_ID) {
tmp = R_REG(&cc->max_res_mask);
tmp |= RES4336_HT_AVAIL;
W_REG(&cc->max_res_mask, tmp);
}
uint origidx;
/* Return to original core */
si_restore_core(sih, origidx, intr_val);
}
static void
si_pmu_spuravoid_pllupdate(si_t *sih, chipcregs_t *cc, u8 spuravoid)
{
u32 tmp = 0;
u8 phypll_offset = 0;
u8 bcm5357_bcm43236_p1div[] = { 0x1, 0x5, 0x5 };
u8 bcm5357_bcm43236_ndiv[] = { 0x30, 0xf6, 0xfc };
/* Remember original core before switch to chipc */
origidx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
switch (sih->chip) {
case BCM5357_CHIP_ID:
case BCM4329_CHIP_ID:
if (xtalfreq == 0)
xtalfreq = 38400;
si_pmu1_pllinit0(sih, cc, xtalfreq);
break;
case BCM4313_CHIP_ID:
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
case BCM6362_CHIP_ID:
/* ??? */
break;
case BCM4319_CHIP_ID:
case BCM4336_CHIP_ID:
case BCM4330_CHIP_ID:
si_pmu1_pllinit0(sih, cc, xtalfreq);
break;
default:
break;
}
/* BCM5357 needs to touch PLL1_PLLCTL[02], so offset PLL0_PLLCTL[02] by 6 */
phypll_offset = (sih->chip == BCM5357_CHIP_ID) ? 6 : 0;
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* RMW only the P1 divider */
W_REG(&cc->pllcontrol_addr,
PMU1_PLL0_PLLCTL0 + phypll_offset);
tmp = R_REG(&cc->pllcontrol_data);
tmp &= (~(PMU1_PLL0_PC0_P1DIV_MASK));
tmp |=
(bcm5357_bcm43236_p1div[spuravoid] <<
PMU1_PLL0_PC0_P1DIV_SHIFT);
W_REG(&cc->pllcontrol_data, tmp);
/* initialize PMU resources */
void si_pmu_res_init(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
const pmu_res_updown_t *pmu_res_updown_table = NULL;
uint pmu_res_updown_table_sz = 0;
const pmu_res_depend_t *pmu_res_depend_table = NULL;
uint pmu_res_depend_table_sz = 0;
u32 min_mask = 0, max_mask = 0;
char name[8], *val;
uint i, rsrcs;
/* RMW only the int feedback divider */
W_REG(&cc->pllcontrol_addr,
PMU1_PLL0_PLLCTL2 + phypll_offset);
tmp = R_REG(&cc->pllcontrol_data);
tmp &= ~(PMU1_PLL0_PC2_NDIV_INT_MASK);
tmp |=
(bcm5357_bcm43236_ndiv[spuravoid]) <<
PMU1_PLL0_PC2_NDIV_INT_SHIFT;
W_REG(&cc->pllcontrol_data, tmp);
/* Remember original core before switch to chipc */
origidx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
tmp = 1 << 10;
switch (sih->chip) {
case BCM4329_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = NULL;
pmu_res_updown_table_sz = 0;
} else {
pmu_res_updown_table = bcm4329_res_updown;
pmu_res_updown_table_sz = ARRAY_SIZE(bcm4329_res_updown);
}
/* Optimize resources dependencies */
pmu_res_depend_table = bcm4329_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4329_res_depend);
break;
case BCM4331_CHIP_ID:
if (spuravoid == 2) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0FC00a08);
} else if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600a08);
case BCM4319_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4319a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4319a0_res_updown_qt);
} else {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
pmu_res_updown_table = bcm4319a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4319a0_res_updown);
}
tmp = 1 << 10;
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4319a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4319a0_res_depend);
break;
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM6362_CHIP_ID:
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500010);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x000C0C06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x2001E920);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
case BCM4336_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4336a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4336a0_res_updown_qt);
} else {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100010);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x000c0c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
pmu_res_updown_table = bcm4336a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4336a0_res_updown);
}
tmp = 1 << 10;
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4336a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4336a0_res_depend);
break;
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100008);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x0c000c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888855);
case BCM4330_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4330a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4330a0_res_updown_qt);
} else {
pmu_res_updown_table = bcm4330a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4330a0_res_updown);
}
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4330a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4330a0_res_depend);
break;
default:
break;
}
/* # resources */
rsrcs = (sih->pmucaps & PCAP_RC_MASK) >> PCAP_RC_SHIFT;
/* Program up/down timers */
while (pmu_res_updown_table_sz--) {
W_REG(&cc->res_table_sel,
pmu_res_updown_table[pmu_res_updown_table_sz].resnum);
W_REG(&cc->res_updn_timer,
pmu_res_updown_table[pmu_res_updown_table_sz].updown);
}
/* Apply nvram overrides to up/down timers */
for (i = 0; i < rsrcs; i++) {
snprintf(name, sizeof(name), "r%dt", i);
val = getvar(NULL, name);
if (val == NULL)
continue;
W_REG(&cc->res_table_sel, (u32) i);
W_REG(&cc->res_updn_timer,
(u32) simple_strtoul(val, NULL, 0));
}
/* Program resource dependencies table */
while (pmu_res_depend_table_sz--) {
if (pmu_res_depend_table[pmu_res_depend_table_sz].filter != NULL
&& !(pmu_res_depend_table[pmu_res_depend_table_sz].
filter) (sih))
continue;
for (i = 0; i < rsrcs; i++) {
if ((pmu_res_depend_table[pmu_res_depend_table_sz].
res_mask & PMURES_BIT(i)) == 0)
continue;
W_REG(&cc->res_table_sel, i);
switch (pmu_res_depend_table[pmu_res_depend_table_sz].
action) {
case RES_DEPEND_SET:
W_REG(&cc->res_dep_mask,
pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
case RES_DEPEND_ADD:
OR_REG(&cc->res_dep_mask,
pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
case RES_DEPEND_REMOVE:
AND_REG(&cc->res_dep_mask,
~pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
default:
ASSERT(0);
break;
}
}
}
/* Apply nvram overrides to dependancies masks */
for (i = 0; i < rsrcs; i++) {
snprintf(name, sizeof(name), "r%dd", i);
val = getvar(NULL, name);
if (val == NULL)
continue;
W_REG(&cc->res_table_sel, (u32) i);
W_REG(&cc->res_dep_mask,
(u32) simple_strtoul(val, NULL, 0));
}
/* Determine min/max rsrc masks */
si_pmu_res_masks(sih, &min_mask, &max_mask);
/* It is required to program max_mask first and then min_mask */
/* Program max resource mask */
if (max_mask) {
W_REG(&cc->max_res_mask, max_mask);
}
tmp = 1 << 10;
break;
/* Program min resource mask */
case BCM4716_CHIP_ID:
case BCM4748_CHIP_ID:
case BCM47162_CHIP_ID:
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500060);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x080C0C06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x2001E924);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
} else {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100060);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x080c0c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
if (min_mask) {
W_REG(&cc->min_res_mask, min_mask);
}
tmp = 3 << 9;
break;
/* Add some delay; allow resources to come up and settle. */
mdelay(2);
case BCM4319_CHIP_ID:
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100070);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x1014140a);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888854);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
if (spuravoid == 1) { /* spur_avoid ON, enable 41/82/164Mhz clock mode */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x05201828);
} else { /* enable 40/80/160Mhz clock mode */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x05001828);
}
break;
case BCM4336_CHIP_ID:
/* Looks like these are only for default xtal freq 26MHz */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x02100020);
u32 si_pmu_measure_alpclk(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 alp_khz;
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x0C0C0C0C);
if (sih->pmurev < 10)
return 0;
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x01240C0C);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x202C2820);
/* Remember original core before switch to chipc */
origidx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888825);
if (R_REG(&cc->pmustatus) & PST_EXTLPOAVAIL) {
u32 ilp_ctr, alp_hz;
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_data, 0x00EC4EC4);
} else {
W_REG(&cc->pllcontrol_data, 0x00762762);
}
/* Enable the reg to measure the freq, in case disabled before */
W_REG(&cc->pmu_xtalfreq,
1U << PMU_XTALFREQ_REG_MEASURE_SHIFT);
tmp = PCTL_PLL_PLLCTL_UPD;
break;
/* Delay for well over 4 ILP clocks */
udelay(1000);
default:
PMU_ERROR(("%s: unknown spuravoidance settings for chip %s, not changing PLL\n", __func__, bcm_chipname(sih->chip, chn, 8)));
break;
}
/* Read the latched number of ALP ticks per 4 ILP ticks */
ilp_ctr =
R_REG(&cc->pmu_xtalfreq) & PMU_XTALFREQ_REG_ILPCTR_MASK;
tmp |= R_REG(&cc->pmucontrol);
W_REG(&cc->pmucontrol, tmp);
/* Turn off the PMU_XTALFREQ_REG_MEASURE_SHIFT bit to save power */
W_REG(&cc->pmu_xtalfreq, 0);
/* Calculate ALP frequency */
alp_hz = (ilp_ctr * EXT_ILP_HZ) / 4;
/* Round to nearest 100KHz, and at the same time convert to KHz */
alp_khz = (alp_hz + 50000) / 100000 * 100;
} else
alp_khz = 0;
/* Return to original core */
si_setcoreidx(sih, origidx);
return alp_khz;
}
bool si_pmu_is_otp_powered(si_t *sih)
......@@ -1999,7 +1824,7 @@ bool si_pmu_is_otp_powered(si_t *sih)
bool st;
/* Remember original core before switch to chipc */
idx = si_coreidx(sih);
idx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
switch (sih->chip) {
......@@ -2041,134 +1866,60 @@ bool si_pmu_is_otp_powered(si_t *sih)
return st;
}
void si_pmu_sprom_enable(si_t *sih, bool enable)
/* power up/down OTP through PMU resources */
void si_pmu_otp_power(si_t *sih, bool on)
{
chipcregs_t *cc;
uint origidx;
u32 rsrcs = 0; /* rsrcs to turn on/off OTP power */
/* Don't do anything if OTP is disabled */
if (si_is_otp_disabled(sih)) {
return;
}
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
origidx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* initialize PMU chip controls and other chip level stuff */
void si_pmu_chip_init(si_t *sih)
{
uint origidx;
/* Gate off SPROM clock and chip select signals */
si_pmu_sprom_enable(sih, false);
/* Remember original core */
origidx = si_coreidx(sih);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* initialize PMU switch/regulators */
void si_pmu_swreg_init(si_t *sih)
{
switch (sih->chip) {
case BCM4329_CHIP_ID:
rsrcs = PMURES_BIT(RES4329_OTP_PU);
break;
case BCM4319_CHIP_ID:
rsrcs = PMURES_BIT(RES4319_OTP_PU);
break;
case BCM4336_CHIP_ID:
/* Reduce CLDO PWM output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CLDO_PWM, 0xe);
/* Reduce CLDO BURST output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CLDO_BURST,
0xe);
/* Reduce LNLDO1 output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_LNLDO1, 0xe);
if (sih->chiprev == 0)
si_pmu_regcontrol(sih, 2, 0x400000, 0x400000);
rsrcs = PMURES_BIT(RES4336_OTP_PU);
break;
case BCM4330_CHIP_ID:
/* CBUCK Voltage is 1.8 by default and set that to 1.5 */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CBUCK_PWM, 0);
rsrcs = PMURES_BIT(RES4330_OTP_PU);
break;
default:
break;
}
}
/*
* Measures the ALP clock frequency in KHz. Returns 0 if not possible.
* Possible only if PMU rev >= 10 and there is an external LPO 32768Hz crystal.
*/
#define EXT_ILP_HZ 32768
u32 si_pmu_measure_alpclk(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 alp_khz;
if (sih->pmurev < 10)
return 0;
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
if (R_REG(&cc->pmustatus) & PST_EXTLPOAVAIL) {
u32 ilp_ctr, alp_hz;
/* Enable the reg to measure the freq, in case disabled before */
W_REG(&cc->pmu_xtalfreq,
1U << PMU_XTALFREQ_REG_MEASURE_SHIFT);
/* Delay for well over 4 ILP clocks */
udelay(1000);
/* Read the latched number of ALP ticks per 4 ILP ticks */
ilp_ctr =
R_REG(&cc->pmu_xtalfreq) & PMU_XTALFREQ_REG_ILPCTR_MASK;
/* Turn off the PMU_XTALFREQ_REG_MEASURE_SHIFT bit to save power */
W_REG(&cc->pmu_xtalfreq, 0);
if (rsrcs != 0) {
u32 otps;
/* Calculate ALP frequency */
alp_hz = (ilp_ctr * EXT_ILP_HZ) / 4;
/* Figure out the dependancies (exclude min_res_mask) */
u32 deps = si_pmu_res_deps(sih, cc, rsrcs, true);
u32 min_mask = 0, max_mask = 0;
si_pmu_res_masks(sih, &min_mask, &max_mask);
deps &= ~min_mask;
/* Turn on/off the power */
if (on) {
OR_REG(&cc->min_res_mask, (rsrcs | deps));
SPINWAIT(!(R_REG(&cc->res_state) & rsrcs),
PMU_MAX_TRANSITION_DLY);
} else {
AND_REG(&cc->min_res_mask, ~(rsrcs | deps));
}
/* Round to nearest 100KHz, and at the same time convert to KHz */
alp_khz = (alp_hz + 50000) / 100000 * 100;
} else
alp_khz = 0;
SPINWAIT((((otps = R_REG(&cc->otpstatus)) & OTPS_READY) !=
(on ? OTPS_READY : 0)), 100);
}
/* Return to original core */
si_setcoreidx(sih, origidx);
return alp_khz;
}
static void si_pmu_set_4330_plldivs(si_t *sih)
{
u32 FVCO = si_pmu1_pllfvco0(sih) / 1000;
u32 m1div, m2div, m3div, m4div, m5div, m6div;
u32 pllc1, pllc2;
m2div = m3div = m4div = m6div = FVCO / 80;
m5div = FVCO / 160;
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
m1div = FVCO / 80;
else
m1div = FVCO / 90;
pllc1 =
(m1div << PMU1_PLL0_PC1_M1DIV_SHIFT) | (m2div <<
PMU1_PLL0_PC1_M2DIV_SHIFT) |
(m3div << PMU1_PLL0_PC1_M3DIV_SHIFT) | (m4div <<
PMU1_PLL0_PC1_M4DIV_SHIFT);
si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL1, ~0, pllc1);
pllc2 = si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL1, 0, 0);
pllc2 &= ~(PMU1_PLL0_PC2_M5DIV_MASK | PMU1_PLL0_PC2_M6DIV_MASK);
pllc2 |=
((m5div << PMU1_PLL0_PC2_M5DIV_SHIFT) |
(m6div << PMU1_PLL0_PC2_M6DIV_SHIFT));
si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL2, ~0, pllc2);
}
......@@ -14,9 +14,17 @@
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _hndpmu_h_
#define _hndpmu_h_
#ifndef WLC_PMU_H_
#define WLC_PMU_H_
#include <linux/types.h>
#include <aiutils.h>
/*
* LDO selections used in si_pmu_set_ldo_voltage
*/
#define SET_LDO_VOLTAGE_LDO1 1
#define SET_LDO_VOLTAGE_LDO2 2
#define SET_LDO_VOLTAGE_LDO3 3
......@@ -28,25 +36,23 @@
#define SET_LDO_VOLTAGE_LNLDO1 9
#define SET_LDO_VOLTAGE_LNLDO2_SEL 10
extern void si_pmu_set_ldo_voltage(si_t *sih, u8 ldo, u8 voltage);
extern u16 si_pmu_fast_pwrup_delay(si_t *sih);
extern void si_pmu_sprom_enable(si_t *sih, bool enable);
extern u32 si_pmu_chipcontrol(si_t *sih, uint reg, u32 mask, u32 val);
extern u32 si_pmu_regcontrol(si_t *sih, uint reg, u32 mask, u32 val);
extern u32 si_pmu_ilp_clock(si_t *sih);
extern u32 si_pmu_alp_clock(si_t *sih);
extern void si_pmu_pllupd(si_t *sih);
extern void si_pmu_spuravoid(si_t *sih, u8 spuravoid);
extern u32 si_pmu_pllcontrol(si_t *sih, uint reg, u32 mask, u32 val);
extern void si_pmu_init(si_t *sih);
extern void si_pmu_chip_init(si_t *sih);
extern void si_pmu_pll_init(si_t *sih, u32 xtalfreq);
extern void si_pmu_res_init(si_t *sih);
extern void si_pmu_swreg_init(si_t *sih);
extern u32 si_pmu_alp_clock(si_t *sih);
extern void si_pmu_set_ldo_voltage(si_t *sih, u8 ldo, u8 voltage);
extern u16 si_pmu_fast_pwrup_delay(si_t *sih);
extern void si_pmu_pllupd(si_t *sih);
extern void si_pmu_spuravoid(si_t *sih, u8 spuravoid);
extern bool si_pmu_is_otp_powered(si_t *sih);
extern u32 si_pmu_measure_alpclk(si_t *sih);
extern u32 si_pmu_chipcontrol(si_t *sih, uint reg, u32 mask, u32 val);
extern u32 si_pmu_regcontrol(si_t *sih, uint reg, u32 mask, u32 val);
extern u32 si_pmu_pllcontrol(si_t *sih, uint reg, u32 mask, u32 val);
extern void si_pmu_sprom_enable(si_t *sih, bool enable);
extern bool si_pmu_is_otp_powered(si_t *sih);
extern void si_pmu_otp_power(si_t *sih, bool on);
extern void si_sdiod_drive_strength_init(si_t *sih, u32 drivestrength);
extern u32 si_pmu_ilp_clock(si_t *sih);
#endif /* _hndpmu_h_ */
#endif /* WLC_PMU_H_ */
......@@ -19,7 +19,7 @@
#include <proto/802.11.h>
#include <bcmdefs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <aiutils.h>
#include <wlioctl.h>
#include <sbhnddma.h>
......
......@@ -21,7 +21,7 @@
#include <bcmdefs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <aiutils.h>
#include <wlioctl.h>
#include <bcmwifi.h>
#include <sbhnddma.h>
......
/*
* Copyright (c) 2011 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _aiutils_h_
#define _aiutils_h_
/* cpp contortions to concatenate w/arg prescan */
#ifndef PAD
#define _PADLINE(line) pad ## line
#define _XSTR(line) _PADLINE(line)
#define PAD _XSTR(__LINE__)
#endif
/* Include the soci specific files */
#include <aidmp.h>
/*
* SOC Interconnect Address Map.
* All regions may not exist on all chips.
*/
/* Physical SDRAM */
#define SI_SDRAM_BASE 0x00000000
/* Host Mode sb2pcitranslation0 (64 MB) */
#define SI_PCI_MEM 0x08000000
#define SI_PCI_MEM_SZ (64 * 1024 * 1024)
/* Host Mode sb2pcitranslation1 (64 MB) */
#define SI_PCI_CFG 0x0c000000
/* Byteswapped Physical SDRAM */
#define SI_SDRAM_SWAPPED 0x10000000
/* Region 2 for sdram (512 MB) */
#define SI_SDRAM_R2 0x80000000
#ifdef SI_ENUM_BASE_VARIABLE
#define SI_ENUM_BASE (sii->pub.si_enum_base)
#else
#define SI_ENUM_BASE 0x18000000 /* Enumeration space base */
#endif /* SI_ENUM_BASE_VARIABLE */
/* Wrapper space base */
#define SI_WRAP_BASE 0x18100000
/* each core gets 4Kbytes for registers */
#define SI_CORE_SIZE 0x1000
/*
* Max cores (this is arbitrary, for software
* convenience and could be changed if we
* make any larger chips
*/
#define SI_MAXCORES 16
/* On-chip RAM on chips that also have DDR */
#define SI_FASTRAM 0x19000000
#define SI_FASTRAM_SWAPPED 0x19800000
/* Flash Region 2 (region 1 shadowed here) */
#define SI_FLASH2 0x1c000000
/* Size of Flash Region 2 */
#define SI_FLASH2_SZ 0x02000000
/* ARM Cortex-M3 ROM */
#define SI_ARMCM3_ROM 0x1e000000
/* MIPS Flash Region 1 */
#define SI_FLASH1 0x1fc00000
/* MIPS Size of Flash Region 1 */
#define SI_FLASH1_SZ 0x00400000
/* ARM7TDMI-S ROM */
#define SI_ARM7S_ROM 0x20000000
/* ARM Cortex-M3 SRAM Region 2 */
#define SI_ARMCM3_SRAM2 0x60000000
/* ARM7TDMI-S SRAM Region 2 */
#define SI_ARM7S_SRAM2 0x80000000
/* ARM Flash Region 1 */
#define SI_ARM_FLASH1 0xffff0000
/* ARM Size of Flash Region 1 */
#define SI_ARM_FLASH1_SZ 0x00010000
/* Client Mode sb2pcitranslation2 (1 GB) */
#define SI_PCI_DMA 0x40000000
/* Client Mode sb2pcitranslation2 (1 GB) */
#define SI_PCI_DMA2 0x80000000
/* Client Mode sb2pcitranslation2 size in bytes */
#define SI_PCI_DMA_SZ 0x40000000
/* PCIE Client Mode sb2pcitranslation2 (2 ZettaBytes), low 32 bits */
#define SI_PCIE_DMA_L32 0x00000000
/* PCIE Client Mode sb2pcitranslation2 (2 ZettaBytes), high 32 bits */
#define SI_PCIE_DMA_H32 0x80000000
/* core codes */
#define NODEV_CORE_ID 0x700 /* Invalid coreid */
#define CC_CORE_ID 0x800 /* chipcommon core */
#define ILINE20_CORE_ID 0x801 /* iline20 core */
#define SRAM_CORE_ID 0x802 /* sram core */
#define SDRAM_CORE_ID 0x803 /* sdram core */
#define PCI_CORE_ID 0x804 /* pci core */
#define MIPS_CORE_ID 0x805 /* mips core */
#define ENET_CORE_ID 0x806 /* enet mac core */
#define CODEC_CORE_ID 0x807 /* v90 codec core */
#define USB_CORE_ID 0x808 /* usb 1.1 host/device core */
#define ADSL_CORE_ID 0x809 /* ADSL core */
#define ILINE100_CORE_ID 0x80a /* iline100 core */
#define IPSEC_CORE_ID 0x80b /* ipsec core */
#define UTOPIA_CORE_ID 0x80c /* utopia core */
#define PCMCIA_CORE_ID 0x80d /* pcmcia core */
#define SOCRAM_CORE_ID 0x80e /* internal memory core */
#define MEMC_CORE_ID 0x80f /* memc sdram core */
#define OFDM_CORE_ID 0x810 /* OFDM phy core */
#define EXTIF_CORE_ID 0x811 /* external interface core */
#define D11_CORE_ID 0x812 /* 802.11 MAC core */
#define APHY_CORE_ID 0x813 /* 802.11a phy core */
#define BPHY_CORE_ID 0x814 /* 802.11b phy core */
#define GPHY_CORE_ID 0x815 /* 802.11g phy core */
#define MIPS33_CORE_ID 0x816 /* mips3302 core */
#define USB11H_CORE_ID 0x817 /* usb 1.1 host core */
#define USB11D_CORE_ID 0x818 /* usb 1.1 device core */
#define USB20H_CORE_ID 0x819 /* usb 2.0 host core */
#define USB20D_CORE_ID 0x81a /* usb 2.0 device core */
#define SDIOH_CORE_ID 0x81b /* sdio host core */
#define ROBO_CORE_ID 0x81c /* roboswitch core */
#define ATA100_CORE_ID 0x81d /* parallel ATA core */
#define SATAXOR_CORE_ID 0x81e /* serial ATA & XOR DMA core */
#define GIGETH_CORE_ID 0x81f /* gigabit ethernet core */
#define PCIE_CORE_ID 0x820 /* pci express core */
#define NPHY_CORE_ID 0x821 /* 802.11n 2x2 phy core */
#define SRAMC_CORE_ID 0x822 /* SRAM controller core */
#define MINIMAC_CORE_ID 0x823 /* MINI MAC/phy core */
#define ARM11_CORE_ID 0x824 /* ARM 1176 core */
#define ARM7S_CORE_ID 0x825 /* ARM7tdmi-s core */
#define LPPHY_CORE_ID 0x826 /* 802.11a/b/g phy core */
#define PMU_CORE_ID 0x827 /* PMU core */
#define SSNPHY_CORE_ID 0x828 /* 802.11n single-stream phy core */
#define SDIOD_CORE_ID 0x829 /* SDIO device core */
#define ARMCM3_CORE_ID 0x82a /* ARM Cortex M3 core */
#define HTPHY_CORE_ID 0x82b /* 802.11n 4x4 phy core */
#define MIPS74K_CORE_ID 0x82c /* mips 74k core */
#define GMAC_CORE_ID 0x82d /* Gigabit MAC core */
#define DMEMC_CORE_ID 0x82e /* DDR1/2 memory controller core */
#define PCIERC_CORE_ID 0x82f /* PCIE Root Complex core */
#define OCP_CORE_ID 0x830 /* OCP2OCP bridge core */
#define SC_CORE_ID 0x831 /* shared common core */
#define AHB_CORE_ID 0x832 /* OCP2AHB bridge core */
#define SPIH_CORE_ID 0x833 /* SPI host core */
#define I2S_CORE_ID 0x834 /* I2S core */
#define DMEMS_CORE_ID 0x835 /* SDR/DDR1 memory controller core */
#define DEF_SHIM_COMP 0x837 /* SHIM component in ubus/6362 */
#define OOB_ROUTER_CORE_ID 0x367 /* OOB router core ID */
#define DEF_AI_COMP 0xfff /* Default component, in ai chips it
* maps all unused address ranges
*/
/* There are TWO constants on all HND chips: SI_ENUM_BASE above,
* and chipcommon being the first core:
*/
#define SI_CC_IDX 0
/* SOC Interconnect types (aka chip types) */
#define SOCI_AI 1
/* Common core control flags */
#define SICF_BIST_EN 0x8000
#define SICF_PME_EN 0x4000
#define SICF_CORE_BITS 0x3ffc
#define SICF_FGC 0x0002
#define SICF_CLOCK_EN 0x0001
/* Common core status flags */
#define SISF_BIST_DONE 0x8000
#define SISF_BIST_ERROR 0x4000
#define SISF_GATED_CLK 0x2000
#define SISF_DMA64 0x1000
#define SISF_CORE_BITS 0x0fff
/* A register that is common to all cores to
* communicate w/PMU regarding clock control.
*/
#define SI_CLK_CTL_ST 0x1e0 /* clock control and status */
/* clk_ctl_st register */
#define CCS_FORCEALP 0x00000001 /* force ALP request */
#define CCS_FORCEHT 0x00000002 /* force HT request */
#define CCS_FORCEILP 0x00000004 /* force ILP request */
#define CCS_ALPAREQ 0x00000008 /* ALP Avail Request */
#define CCS_HTAREQ 0x00000010 /* HT Avail Request */
#define CCS_FORCEHWREQOFF 0x00000020 /* Force HW Clock Request Off */
#define CCS_ERSRC_REQ_MASK 0x00000700 /* external resource requests */
#define CCS_ERSRC_REQ_SHIFT 8
#define CCS_ALPAVAIL 0x00010000 /* ALP is available */
#define CCS_HTAVAIL 0x00020000 /* HT is available */
#define CCS_BP_ON_APL 0x00040000 /* RO: running on ALP clock */
#define CCS_BP_ON_HT 0x00080000 /* RO: running on HT clock */
#define CCS_ERSRC_STS_MASK 0x07000000 /* external resource status */
#define CCS_ERSRC_STS_SHIFT 24
/* HT avail in chipc and pcmcia on 4328a0 */
#define CCS0_HTAVAIL 0x00010000
/* ALP avail in chipc and pcmcia on 4328a0 */
#define CCS0_ALPAVAIL 0x00020000
/* Not really related to SOC Interconnect, but a couple of software
* conventions for the use the flash space:
*/
/* Minumum amount of flash we support */
#define FLASH_MIN 0x00020000 /* Minimum flash size */
/* A boot/binary may have an embedded block that describes its size */
#define BISZ_OFFSET 0x3e0 /* At this offset into the binary */
#define BISZ_MAGIC 0x4249535a /* Marked with value: 'BISZ' */
#define BISZ_MAGIC_IDX 0 /* Word 0: magic */
#define BISZ_TXTST_IDX 1 /* 1: text start */
#define BISZ_TXTEND_IDX 2 /* 2: text end */
#define BISZ_DATAST_IDX 3 /* 3: data start */
#define BISZ_DATAEND_IDX 4 /* 4: data end */
#define BISZ_BSSST_IDX 5 /* 5: bss start */
#define BISZ_BSSEND_IDX 6 /* 6: bss end */
#define BISZ_SIZE 7 /* descriptor size in 32-bit integers */
#define SI_INFO(sih) (si_info_t *)sih
#define GOODCOREADDR(x, b) \
(((x) >= (b)) && ((x) < ((b) + SI_MAXCORES * SI_CORE_SIZE)) && \
IS_ALIGNED((x), SI_CORE_SIZE))
#define GOODREGS(regs) \
((regs) != NULL && IS_ALIGNED((unsigned long)(regs), SI_CORE_SIZE))
#define BADCOREADDR 0
#define GOODIDX(idx) (((uint)idx) < SI_MAXCORES)
#define NOREV -1 /* Invalid rev */
/* Newer chips can access PCI/PCIE and CC core without requiring to change
* PCI BAR0 WIN
*/
#define SI_FAST(si) (((si)->pub.buscoretype == PCIE_CORE_ID) || \
(((si)->pub.buscoretype == PCI_CORE_ID) && \
(si)->pub.buscorerev >= 13))
#define PCIEREGS(si) (((char *)((si)->curmap) + PCI_16KB0_PCIREGS_OFFSET))
#define CCREGS_FAST(si) (((char *)((si)->curmap) + PCI_16KB0_CCREGS_OFFSET))
/*
* Macros to disable/restore function core(D11, ENET, ILINE20, etc) interrupts
* before after core switching to avoid invalid register accesss inside ISR.
*/
#define INTR_OFF(si, intr_val) \
if ((si)->intrsoff_fn && \
(si)->coreid[(si)->curidx] == (si)->dev_coreid) \
intr_val = (*(si)->intrsoff_fn)((si)->intr_arg)
#define INTR_RESTORE(si, intr_val) \
if ((si)->intrsrestore_fn && \
(si)->coreid[(si)->curidx] == (si)->dev_coreid) \
(*(si)->intrsrestore_fn)((si)->intr_arg, intr_val)
/* dynamic clock control defines */
#define LPOMINFREQ 25000 /* low power oscillator min */
#define LPOMAXFREQ 43000 /* low power oscillator max */
#define XTALMINFREQ 19800000 /* 20 MHz - 1% */
#define XTALMAXFREQ 20200000 /* 20 MHz + 1% */
#define PCIMINFREQ 25000000 /* 25 MHz */
#define PCIMAXFREQ 34000000 /* 33 MHz + fudge */
#define ILP_DIV_5MHZ 0 /* ILP = 5 MHz */
#define ILP_DIV_1MHZ 4 /* ILP = 1 MHz */
#define PCI(si) (((si)->pub.bustype == PCI_BUS) && \
((si)->pub.buscoretype == PCI_CORE_ID))
#define PCIE(si) (((si)->pub.bustype == PCI_BUS) && \
((si)->pub.buscoretype == PCIE_CORE_ID))
#define PCI_FORCEHT(si) \
(PCIE(si) && (si->pub.chip == BCM4716_CHIP_ID))
/* GPIO Based LED powersave defines */
#define DEFAULT_GPIO_ONTIME 10 /* Default: 10% on */
#define DEFAULT_GPIO_OFFTIME 90 /* Default: 10% on */
#ifndef DEFAULT_GPIOTIMERVAL
#define DEFAULT_GPIOTIMERVAL \
((DEFAULT_GPIO_ONTIME << GPIO_ONTIME_SHIFT) | DEFAULT_GPIO_OFFTIME)
#endif
/*
* Data structure to export all chip specific common variables
* public (read-only) portion of aiutils handle returned by si_attach()
*/
struct si_pub {
uint socitype; /* SOCI_SB, SOCI_AI */
uint bustype; /* SI_BUS, PCI_BUS */
uint buscoretype; /* PCI_CORE_ID, PCIE_CORE_ID, PCMCIA_CORE_ID */
uint buscorerev; /* buscore rev */
uint buscoreidx; /* buscore index */
int ccrev; /* chip common core rev */
u32 cccaps; /* chip common capabilities */
u32 cccaps_ext; /* chip common capabilities extension */
int pmurev; /* pmu core rev */
u32 pmucaps; /* pmu capabilities */
uint boardtype; /* board type */
uint boardvendor; /* board vendor */
uint boardflags; /* board flags */
uint boardflags2; /* board flags2 */
uint chip; /* chip number */
uint chiprev; /* chip revision */
uint chippkg; /* chip package option */
u32 chipst; /* chip status */
bool issim; /* chip is in simulation or emulation */
uint socirev; /* SOC interconnect rev */
bool pci_pr32414;
};
/*
* for HIGH_ONLY driver, the si_t must be writable to allow states sync from
* BMAC to HIGH driver for monolithic driver, it is readonly to prevent accident
* change
*/
typedef const struct si_pub si_t;
/*
* Many of the routines below take an 'sih' handle as their first arg.
* Allocate this by calling si_attach(). Free it by calling si_detach().
* At any one time, the sih is logically focused on one particular si core
* (the "current core").
* Use si_setcore() or si_setcoreidx() to change the association to another core
*/
#define BADIDX (SI_MAXCORES + 1)
/* clkctl xtal what flags */
#define XTAL 0x1 /* primary crystal oscillator (2050) */
#define PLL 0x2 /* main chip pll */
/* clkctl clk mode */
#define CLK_FAST 0 /* force fast (pll) clock */
#define CLK_DYNAMIC 2 /* enable dynamic clock control */
/* GPIO usage priorities */
#define GPIO_DRV_PRIORITY 0 /* Driver */
#define GPIO_APP_PRIORITY 1 /* Application */
#define GPIO_HI_PRIORITY 2 /* Highest priority. Ignore GPIO
* reservation
*/
/* GPIO pull up/down */
#define GPIO_PULLUP 0
#define GPIO_PULLDN 1
/* GPIO event regtype */
#define GPIO_REGEVT 0 /* GPIO register event */
#define GPIO_REGEVT_INTMSK 1 /* GPIO register event int mask */
#define GPIO_REGEVT_INTPOL 2 /* GPIO register event int polarity */
/* device path */
#define SI_DEVPATH_BUFSZ 16 /* min buffer size in bytes */
/* SI routine enumeration: to be used by update function with multiple hooks */
#define SI_DOATTACH 1
#define SI_PCIDOWN 2
#define SI_PCIUP 3
#define ISSIM_ENAB(sih) 0
/* PMU clock/power control */
#if defined(BCMPMUCTL)
#define PMUCTL_ENAB(sih) (BCMPMUCTL)
#else
#define PMUCTL_ENAB(sih) ((sih)->cccaps & CC_CAP_PMU)
#endif
/* chipcommon clock/power control (exclusive with PMU's) */
#if defined(BCMPMUCTL) && BCMPMUCTL
#define CCCTL_ENAB(sih) (0)
#define CCPLL_ENAB(sih) (0)
#else
#define CCCTL_ENAB(sih) ((sih)->cccaps & CC_CAP_PWR_CTL)
#define CCPLL_ENAB(sih) ((sih)->cccaps & CC_CAP_PLL_MASK)
#endif
typedef void (*gpio_handler_t) (u32 stat, void *arg);
/* External PA enable mask */
#define GPIO_CTRL_EPA_EN_MASK 0x40
#define SI_ERROR(args)
#ifdef BCMDBG
#define SI_MSG(args) printk args
#else
#define SI_MSG(args)
#endif /* BCMDBG */
/* Define SI_VMSG to printf for verbose debugging, but don't check it in */
#define SI_VMSG(args)
#define IS_SIM(chippkg) \
((chippkg == HDLSIM_PKG_ID) || (chippkg == HWSIM_PKG_ID))
typedef u32(*si_intrsoff_t) (void *intr_arg);
typedef void (*si_intrsrestore_t) (void *intr_arg, u32 arg);
typedef bool(*si_intrsenabled_t) (void *intr_arg);
typedef struct gpioh_item {
void *arg;
bool level;
gpio_handler_t handler;
u32 event;
struct gpioh_item *next;
} gpioh_item_t;
/* misc si info needed by some of the routines */
typedef struct si_info {
struct si_pub pub; /* back plane public state (must be first) */
void *pbus; /* handle to bus (pci/sdio/..) */
uint dev_coreid; /* the core provides driver functions */
void *intr_arg; /* interrupt callback function arg */
si_intrsoff_t intrsoff_fn; /* turns chip interrupts off */
si_intrsrestore_t intrsrestore_fn; /* restore chip interrupts */
si_intrsenabled_t intrsenabled_fn; /* check if interrupts are enabled */
void *pch; /* PCI/E core handle */
gpioh_item_t *gpioh_head; /* GPIO event handlers list */
bool memseg; /* flag to toggle MEM_SEG register */
char *vars;
uint varsz;
void *curmap; /* current regs va */
void *regs[SI_MAXCORES]; /* other regs va */
uint curidx; /* current core index */
uint numcores; /* # discovered cores */
uint coreid[SI_MAXCORES]; /* id of each core */
u32 coresba[SI_MAXCORES]; /* backplane address of each core */
void *regs2[SI_MAXCORES]; /* 2nd virtual address per core (usbh20) */
u32 coresba2[SI_MAXCORES]; /* 2nd phys address per core (usbh20) */
u32 coresba_size[SI_MAXCORES]; /* backplane address space size */
u32 coresba2_size[SI_MAXCORES]; /* second address space size */
void *curwrap; /* current wrapper va */
void *wrappers[SI_MAXCORES]; /* other cores wrapper va */
u32 wrapba[SI_MAXCORES]; /* address of controlling wrapper */
u32 cia[SI_MAXCORES]; /* erom cia entry for each core */
u32 cib[SI_MAXCORES]; /* erom cia entry for each core */
u32 oob_router; /* oob router registers for axi */
} si_info_t;
/* AMBA Interconnect exported externs */
#if 0
extern si_t *ai_attach(uint pcidev, struct osl_info *osh, void *regs,
uint bustype, void *sdh, char **vars, uint *varsz);
extern si_t *ai_kattach(struct osl_info *osh);
#endif
extern void ai_scan(si_t *sih, void *regs, uint devid);
extern uint ai_flag(si_t *sih);
extern void ai_setint(si_t *sih, int siflag);
extern uint ai_coreidx(si_t *sih);
extern uint ai_corevendor(si_t *sih);
extern uint ai_corerev(si_t *sih);
extern bool ai_iscoreup(si_t *sih);
extern void *ai_setcoreidx(si_t *sih, uint coreidx);
extern u32 ai_core_cflags(si_t *sih, u32 mask, u32 val);
extern void ai_core_cflags_wo(si_t *sih, u32 mask, u32 val);
extern u32 ai_core_sflags(si_t *sih, u32 mask, u32 val);
extern uint ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask,
uint val);
extern void ai_core_reset(si_t *sih, u32 bits, u32 resetbits);
extern void ai_core_disable(si_t *sih, u32 bits);
extern int ai_numaddrspaces(si_t *sih);
extern u32 ai_addrspace(si_t *sih, uint asidx);
extern u32 ai_addrspacesize(si_t *sih, uint asidx);
extern void ai_write_wrap_reg(si_t *sih, u32 offset, u32 val);
/* === exported functions === */
extern si_t *si_attach(uint pcidev, void *regs, uint bustype,
void *sdh, char **vars, uint *varsz);
extern void si_detach(si_t *sih);
extern bool si_pci_war16165(si_t *sih);
extern uint si_coreid(si_t *sih);
extern uint si_flag(si_t *sih);
extern uint si_corerev(si_t *sih);
struct osl_info *si_osh(si_t *sih);
extern uint si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask,
uint val);
extern void si_write_wrapperreg(si_t *sih, u32 offset, u32 val);
extern u32 si_core_cflags(si_t *sih, u32 mask, u32 val);
extern u32 si_core_sflags(si_t *sih, u32 mask, u32 val);
extern bool si_iscoreup(si_t *sih);
extern uint si_findcoreidx(si_t *sih, uint coreid, uint coreunit);
extern void *si_setcoreidx(si_t *sih, uint coreidx);
extern void *si_setcore(si_t *sih, uint coreid, uint coreunit);
extern void *si_switch_core(si_t *sih, uint coreid, uint *origidx,
uint *intr_val);
extern void si_restore_core(si_t *sih, uint coreid, uint intr_val);
extern void si_core_reset(si_t *sih, u32 bits, u32 resetbits);
extern void si_core_disable(si_t *sih, u32 bits);
extern u32 si_alp_clock(si_t *sih);
extern u32 si_ilp_clock(si_t *sih);
extern void si_pci_setup(si_t *sih, uint coremask);
extern void si_setint(si_t *sih, int siflag);
extern bool si_backplane64(si_t *sih);
extern void si_register_intr_callback(si_t *sih, void *intrsoff_fn,
void *intrsrestore_fn,
void *intrsenabled_fn, void *intr_arg);
extern void si_deregister_intr_callback(si_t *sih);
extern void si_clkctl_init(si_t *sih);
extern u16 si_clkctl_fast_pwrup_delay(si_t *sih);
extern bool si_clkctl_cc(si_t *sih, uint mode);
extern int si_clkctl_xtal(si_t *sih, uint what, bool on);
extern bool si_deviceremoved(si_t *sih);
extern u32 si_socram_size(si_t *sih);
extern void si_watchdog(si_t *sih, uint ticks);
extern u32 si_gpiocontrol(si_t *sih, u32 mask, u32 val,
u8 priority);
#define si_eci(sih) 0
#define si_eci_init(sih) (0)
#define si_eci_notify_bt(sih, type, val) (0)
#define si_seci(sih) 0
/* OTP status */
extern bool si_is_otp_disabled(si_t *sih);
extern bool si_is_otp_powered(si_t *sih);
extern void si_otp_power(si_t *sih, bool on);
/* SPROM availability */
extern bool si_is_sprom_available(si_t *sih);
/*
* Build device path. Path size must be >= SI_DEVPATH_BUFSZ.
* The returned path is NULL terminated and has trailing '/'.
* Return 0 on success, nonzero otherwise.
*/
extern int si_devpath(si_t *sih, char *path, int size);
/* Read variable with prepending the devpath to the name */
extern char *si_getdevpathvar(si_t *sih, const char *name);
extern int si_getdevpathintvar(si_t *sih, const char *name);
extern void si_war42780_clkreq(si_t *sih, bool clkreq);
extern void si_pci_sleep(si_t *sih);
extern void si_pci_down(si_t *sih);
extern void si_pci_up(si_t *sih);
extern void si_pcie_extendL1timer(si_t *sih, bool extend);
extern int si_pci_fixcfg(si_t *sih);
extern void si_chipcontrl_epa4331(si_t *sih, bool on);
/* Enable Ex-PA for 4313 */
extern void si_epa_4313war(si_t *sih);
char *si_getnvramflvar(si_t *sih, const char *name);
#endif /* _aiutils_h_ */
......@@ -21,12 +21,20 @@
#include <linux/module.h>
#include <linux/pci.h>
#include <bcmutils.h>
#include <siutils.h>
#include <aiutils.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pcicfg.h>
#include <bcmdevs.h>
/* ********** from siutils.c *********** */
#include <pci_core.h>
#include <pcie_core.h>
#include <nicpci.h>
#include <bcmnvram.h>
#include <bcmsrom.h>
#include <wlc_pmu.h>
#define BCM47162_DMP() ((sih->chip == BCM47162_CHIP_ID) && \
(sih->chiprev == 0) && \
(sii->coreid[sii->curidx] == MIPS74K_CORE_ID))
......@@ -526,7 +534,7 @@ uint ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
INTR_OFF(sii, intr_val);
/* save current core index */
origidx = si_coreidx(&sii->pub);
origidx = ai_coreidx(&sii->pub);
/* switch core */
r = (u32 *) ((unsigned char *) ai_setcoreidx(&sii->pub, coreidx) +
......@@ -674,3 +682,1573 @@ u32 ai_core_sflags(si_t *sih, u32 mask, u32 val)
return R_REG(&ai->iostatus);
}
/* *************** from siutils.c ************** */
/* local prototypes */
static si_info_t *si_doattach(si_info_t *sii, uint devid, void *regs,
uint bustype, void *sdh, char **vars,
uint *varsz);
static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid,
void *sdh);
static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype,
u32 savewin, uint *origidx, void *regs);
static void si_nvram_process(si_info_t *sii, char *pvars);
/* dev path concatenation util */
static char *si_devpathvar(si_t *sih, char *var, int len, const char *name);
static bool _si_clkctl_cc(si_info_t *sii, uint mode);
static bool si_ispcie(si_info_t *sii);
/* global variable to indicate reservation/release of gpio's */
static u32 si_gpioreservation;
/*
* Allocate a si handle.
* devid - pci device id (used to determine chip#)
* osh - opaque OS handle
* regs - virtual address of initial core registers
* bustype - pci/sb/sdio/etc
* vars - pointer to a pointer area for "environment" variables
* varsz - pointer to int to return the size of the vars
*/
si_t *si_attach(uint devid, void *regs, uint bustype,
void *sdh, char **vars, uint *varsz)
{
si_info_t *sii;
/* alloc si_info_t */
sii = kmalloc(sizeof(si_info_t), GFP_ATOMIC);
if (sii == NULL) {
SI_ERROR(("si_attach: malloc failed!\n"));
return NULL;
}
if (si_doattach(sii, devid, regs, bustype, sdh, vars, varsz) ==
NULL) {
kfree(sii);
return NULL;
}
sii->vars = vars ? *vars : NULL;
sii->varsz = varsz ? *varsz : 0;
return (si_t *) sii;
}
/* global kernel resource */
static si_info_t ksii;
static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid,
void *sdh)
{
/* kludge to enable the clock on the 4306 which lacks a slowclock */
if (bustype == PCI_BUS && !si_ispcie(sii))
si_clkctl_xtal(&sii->pub, XTAL | PLL, ON);
return true;
}
static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype,
u32 savewin, uint *origidx, void *regs)
{
bool pci, pcie;
uint i;
uint pciidx, pcieidx, pcirev, pcierev;
cc = si_setcoreidx(&sii->pub, SI_CC_IDX);
ASSERT(cc);
/* get chipcommon rev */
sii->pub.ccrev = (int)si_corerev(&sii->pub);
/* get chipcommon chipstatus */
if (sii->pub.ccrev >= 11)
sii->pub.chipst = R_REG(&cc->chipstatus);
/* get chipcommon capabilites */
sii->pub.cccaps = R_REG(&cc->capabilities);
/* get chipcommon extended capabilities */
if (sii->pub.ccrev >= 35)
sii->pub.cccaps_ext = R_REG(&cc->capabilities_ext);
/* get pmu rev and caps */
if (sii->pub.cccaps & CC_CAP_PMU) {
sii->pub.pmucaps = R_REG(&cc->pmucapabilities);
sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
}
/* figure out bus/orignal core idx */
sii->pub.buscoretype = NODEV_CORE_ID;
sii->pub.buscorerev = NOREV;
sii->pub.buscoreidx = BADIDX;
pci = pcie = false;
pcirev = pcierev = NOREV;
pciidx = pcieidx = BADIDX;
for (i = 0; i < sii->numcores; i++) {
uint cid, crev;
si_setcoreidx(&sii->pub, i);
cid = si_coreid(&sii->pub);
crev = si_corerev(&sii->pub);
/* Display cores found */
SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n",
i, cid, crev, sii->coresba[i], sii->regs[i]));
if (bustype == PCI_BUS) {
if (cid == PCI_CORE_ID) {
pciidx = i;
pcirev = crev;
pci = true;
} else if (cid == PCIE_CORE_ID) {
pcieidx = i;
pcierev = crev;
pcie = true;
}
}
/* find the core idx before entering this func. */
if ((savewin && (savewin == sii->coresba[i])) ||
(regs == sii->regs[i]))
*origidx = i;
}
if (pci && pcie) {
if (si_ispcie(sii))
pci = false;
else
pcie = false;
}
if (pci) {
sii->pub.buscoretype = PCI_CORE_ID;
sii->pub.buscorerev = pcirev;
sii->pub.buscoreidx = pciidx;
} else if (pcie) {
sii->pub.buscoretype = PCIE_CORE_ID;
sii->pub.buscorerev = pcierev;
sii->pub.buscoreidx = pcieidx;
}
SI_VMSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx,
sii->pub.buscoretype, sii->pub.buscorerev));
/* fixup necessary chip/core configurations */
if (sii->pub.bustype == PCI_BUS) {
if (SI_FAST(sii)) {
if (!sii->pch) {
sii->pch = (void *)pcicore_init(
&sii->pub, sii->pbus,
(void *)PCIEREGS(sii));
if (sii->pch == NULL)
return false;
}
}
if (si_pci_fixcfg(&sii->pub)) {
SI_ERROR(("si_doattach: si_pci_fixcfg failed\n"));
return false;
}
}
/* return to the original core */
si_setcoreidx(&sii->pub, *origidx);
return true;
}
static __used void si_nvram_process(si_info_t *sii, char *pvars)
{
uint w = 0;
/* get boardtype and boardrev */
switch (sii->pub.bustype) {
case PCI_BUS:
/* do a pci config read to get subsystem id and subvendor id */
pci_read_config_dword(sii->pbus, PCI_SUBSYSTEM_VENDOR_ID, &w);
/* Let nvram variables override subsystem Vend/ID */
sii->pub.boardvendor = (u16)si_getdevpathintvar(&sii->pub,
"boardvendor");
if (sii->pub.boardvendor == 0)
sii->pub.boardvendor = w & 0xffff;
else
SI_ERROR(("Overriding boardvendor: 0x%x instead of "
"0x%x\n", sii->pub.boardvendor, w & 0xffff));
sii->pub.boardtype = (u16)si_getdevpathintvar(&sii->pub,
"boardtype");
if (sii->pub.boardtype == 0)
sii->pub.boardtype = (w >> 16) & 0xffff;
else
SI_ERROR(("Overriding boardtype: 0x%x instead of 0x%x\n"
, sii->pub.boardtype, (w >> 16) & 0xffff));
break;
sii->pub.boardvendor = getintvar(pvars, "manfid");
sii->pub.boardtype = getintvar(pvars, "prodid");
break;
case SI_BUS:
case JTAG_BUS:
sii->pub.boardvendor = PCI_VENDOR_ID_BROADCOM;
sii->pub.boardtype = getintvar(pvars, "prodid");
if (pvars == NULL || (sii->pub.boardtype == 0)) {
sii->pub.boardtype = getintvar(NULL, "boardtype");
if (sii->pub.boardtype == 0)
sii->pub.boardtype = 0xffff;
}
break;
}
if (sii->pub.boardtype == 0) {
SI_ERROR(("si_doattach: unknown board type\n"));
ASSERT(sii->pub.boardtype);
}
sii->pub.boardflags = getintvar(pvars, "boardflags");
}
static si_info_t *si_doattach(si_info_t *sii, uint devid,
void *regs, uint bustype, void *pbus,
char **vars, uint *varsz)
{
struct si_pub *sih = &sii->pub;
u32 w, savewin;
chipcregs_t *cc;
char *pvars = NULL;
uint origidx;
ASSERT(GOODREGS(regs));
memset((unsigned char *) sii, 0, sizeof(si_info_t));
savewin = 0;
sih->buscoreidx = BADIDX;
sii->curmap = regs;
sii->pbus = pbus;
/* check to see if we are a si core mimic'ing a pci core */
if (bustype == PCI_BUS) {
pci_read_config_dword(sii->pbus, PCI_SPROM_CONTROL, &w);
if (w == 0xffffffff) {
SI_ERROR(("%s: incoming bus is PCI but it's a lie, "
" switching to SI devid:0x%x\n",
__func__, devid));
bustype = SI_BUS;
}
}
/* find Chipcommon address */
if (bustype == PCI_BUS) {
pci_read_config_dword(sii->pbus, PCI_BAR0_WIN, &savewin);
if (!GOODCOREADDR(savewin, SI_ENUM_BASE))
savewin = SI_ENUM_BASE;
pci_write_config_dword(sii->pbus, PCI_BAR0_WIN,
SI_ENUM_BASE);
cc = (chipcregs_t *) regs;
} else {
cc = (chipcregs_t *) REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
}
sih->bustype = bustype;
/* bus/core/clk setup for register access */
if (!si_buscore_prep(sii, bustype, devid, pbus)) {
SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n",
bustype));
return NULL;
}
/*
* ChipID recognition.
* We assume we can read chipid at offset 0 from the regs arg.
* If we add other chiptypes (or if we need to support old sdio
* hosts w/o chipcommon), some way of recognizing them needs to
* be added here.
*/
w = R_REG(&cc->chipid);
sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
/* Might as wll fill in chip id rev & pkg */
sih->chip = w & CID_ID_MASK;
sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT;
sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT;
sih->issim = IS_SIM(sih->chippkg);
/* scan for cores */
if (sii->pub.socitype == SOCI_AI) {
SI_MSG(("Found chip type AI (0x%08x)\n", w));
/* pass chipc address instead of original core base */
ai_scan(&sii->pub, (void *)cc, devid);
} else {
SI_ERROR(("Found chip of unknown type (0x%08x)\n", w));
return NULL;
}
/* no cores found, bail out */
if (sii->numcores == 0) {
SI_ERROR(("si_doattach: could not find any cores\n"));
return NULL;
}
/* bus/core/clk setup */
origidx = SI_CC_IDX;
if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) {
SI_ERROR(("si_doattach: si_buscore_setup failed\n"));
goto exit;
}
/* assume current core is CC */
if ((sii->pub.ccrev == 0x25)
&&
((sih->chip == BCM43236_CHIP_ID
|| sih->chip == BCM43235_CHIP_ID
|| sih->chip == BCM43238_CHIP_ID)
&& (sii->pub.chiprev <= 2))) {
if ((cc->chipstatus & CST43236_BP_CLK) != 0) {
uint clkdiv;
clkdiv = R_REG(&cc->clkdiv);
/* otp_clk_div is even number, 120/14 < 9mhz */
clkdiv = (clkdiv & ~CLKD_OTP) | (14 << CLKD_OTP_SHIFT);
W_REG(&cc->clkdiv, clkdiv);
SI_ERROR(("%s: set clkdiv to %x\n", __func__, clkdiv));
}
udelay(10);
}
/* Init nvram from flash if it exists */
nvram_init((void *)&(sii->pub));
/* Init nvram from sprom/otp if they exist */
if (srom_var_init
(&sii->pub, bustype, regs, vars, varsz)) {
SI_ERROR(("si_doattach: srom_var_init failed: bad srom\n"));
goto exit;
}
pvars = vars ? *vars : NULL;
si_nvram_process(sii, pvars);
/* === NVRAM, clock is ready === */
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
W_REG(&cc->gpiopullup, 0);
W_REG(&cc->gpiopulldown, 0);
si_setcoreidx(sih, origidx);
/* PMU specific initializations */
if (PMUCTL_ENAB(sih)) {
u32 xtalfreq;
si_pmu_init(sih);
si_pmu_chip_init(sih);
xtalfreq = getintvar(pvars, "xtalfreq");
/* If xtalfreq var not available, try to measure it */
if (xtalfreq == 0)
xtalfreq = si_pmu_measure_alpclk(sih);
si_pmu_pll_init(sih, xtalfreq);
si_pmu_res_init(sih);
si_pmu_swreg_init(sih);
}
/* setup the GPIO based LED powersave register */
w = getintvar(pvars, "leddc");
if (w == 0)
w = DEFAULT_GPIOTIMERVAL;
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, gpiotimerval), ~0, w);
if (PCIE(sii)) {
ASSERT(sii->pch != NULL);
pcicore_attach(sii->pch, pvars, SI_DOATTACH);
}
if ((sih->chip == BCM43224_CHIP_ID) ||
(sih->chip == BCM43421_CHIP_ID)) {
/*
* enable 12 mA drive strenth for 43224 and
* set chipControl register bit 15
*/
if (sih->chiprev == 0) {
SI_MSG(("Applying 43224A0 WARs\n"));
si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, chipcontrol),
CCTRL43224_GPIO_TOGGLE,
CCTRL43224_GPIO_TOGGLE);
si_pmu_chipcontrol(sih, 0, CCTRL_43224A0_12MA_LED_DRIVE,
CCTRL_43224A0_12MA_LED_DRIVE);
}
if (sih->chiprev >= 1) {
SI_MSG(("Applying 43224B0+ WARs\n"));
si_pmu_chipcontrol(sih, 0, CCTRL_43224B0_12MA_LED_DRIVE,
CCTRL_43224B0_12MA_LED_DRIVE);
}
}
if (sih->chip == BCM4313_CHIP_ID) {
/*
* enable 12 mA drive strenth for 4313 and
* set chipControl register bit 1
*/
SI_MSG(("Applying 4313 WARs\n"));
si_pmu_chipcontrol(sih, 0, CCTRL_4313_12MA_LED_DRIVE,
CCTRL_4313_12MA_LED_DRIVE);
}
if (sih->chip == BCM4331_CHIP_ID) {
/* Enable Ext PA lines depending on chip package option */
si_chipcontrl_epa4331(sih, true);
}
return sii;
exit:
if (sih->bustype == PCI_BUS) {
if (sii->pch)
pcicore_deinit(sii->pch);
sii->pch = NULL;
}
return NULL;
}
/* may be called with core in reset */
void si_detach(si_t *sih)
{
si_info_t *sii;
uint idx;
struct si_pub *si_local = NULL;
bcopy(&sih, &si_local, sizeof(si_t **));
sii = SI_INFO(sih);
if (sii == NULL)
return;
if (sih->bustype == SI_BUS)
for (idx = 0; idx < SI_MAXCORES; idx++)
if (sii->regs[idx]) {
iounmap(sii->regs[idx]);
sii->regs[idx] = NULL;
}
nvram_exit((void *)si_local); /* free up nvram buffers */
if (sih->bustype == PCI_BUS) {
if (sii->pch)
pcicore_deinit(sii->pch);
sii->pch = NULL;
}
if (sii != &ksii)
kfree(sii);
}
/* register driver interrupt disabling and restoring callback functions */
void
si_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn,
void *intrsenabled_fn, void *intr_arg)
{
si_info_t *sii;
sii = SI_INFO(sih);
sii->intr_arg = intr_arg;
sii->intrsoff_fn = (si_intrsoff_t) intrsoff_fn;
sii->intrsrestore_fn = (si_intrsrestore_t) intrsrestore_fn;
sii->intrsenabled_fn = (si_intrsenabled_t) intrsenabled_fn;
/* save current core id. when this function called, the current core
* must be the core which provides driver functions(il, et, wl, etc.)
*/
sii->dev_coreid = sii->coreid[sii->curidx];
}
void si_deregister_intr_callback(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
sii->intrsoff_fn = NULL;
}
uint si_flag(si_t *sih)
{
if (sih->socitype == SOCI_AI)
return ai_flag(sih);
else {
ASSERT(0);
return 0;
}
}
void si_setint(si_t *sih, int siflag)
{
if (sih->socitype == SOCI_AI)
ai_setint(sih, siflag);
else
ASSERT(0);
}
uint si_coreid(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return sii->coreid[sii->curidx];
}
uint ai_coreidx(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return sii->curidx;
}
bool si_backplane64(si_t *sih)
{
return (sih->cccaps & CC_CAP_BKPLN64) != 0;
}
uint si_corerev(si_t *sih)
{
if (sih->socitype == SOCI_AI)
return ai_corerev(sih);
else {
ASSERT(0);
return 0;
}
}
/* return index of coreid or BADIDX if not found */
uint si_findcoreidx(si_t *sih, uint coreid, uint coreunit)
{
si_info_t *sii;
uint found;
uint i;
sii = SI_INFO(sih);
found = 0;
for (i = 0; i < sii->numcores; i++)
if (sii->coreid[i] == coreid) {
if (found == coreunit)
return i;
found++;
}
return BADIDX;
}
/*
* This function changes logical "focus" to the indicated core;
* must be called with interrupts off.
* Moreover, callers should keep interrupts off during switching
* out of and back to d11 core.
*/
void *si_setcore(si_t *sih, uint coreid, uint coreunit)
{
uint idx;
idx = si_findcoreidx(sih, coreid, coreunit);
if (!GOODIDX(idx))
return NULL;
if (sih->socitype == SOCI_AI)
return ai_setcoreidx(sih, idx);
else {
ASSERT(0);
return NULL;
}
}
void *si_setcoreidx(si_t *sih, uint coreidx)
{
if (sih->socitype == SOCI_AI)
return ai_setcoreidx(sih, coreidx);
else {
ASSERT(0);
return NULL;
}
}
/* Turn off interrupt as required by si_setcore, before switch core */
void *si_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val)
{
void *cc;
si_info_t *sii;
sii = SI_INFO(sih);
if (SI_FAST(sii)) {
/* Overloading the origidx variable to remember the coreid,
* this works because the core ids cannot be confused with
* core indices.
*/
*origidx = coreid;
if (coreid == CC_CORE_ID)
return (void *)CCREGS_FAST(sii);
else if (coreid == sih->buscoretype)
return (void *)PCIEREGS(sii);
}
INTR_OFF(sii, *intr_val);
*origidx = sii->curidx;
cc = si_setcore(sih, coreid, 0);
ASSERT(cc != NULL);
return cc;
}
/* restore coreidx and restore interrupt */
void si_restore_core(si_t *sih, uint coreid, uint intr_val)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (SI_FAST(sii)
&& ((coreid == CC_CORE_ID) || (coreid == sih->buscoretype)))
return;
si_setcoreidx(sih, coreid);
INTR_RESTORE(sii, intr_val);
}
u32 si_core_cflags(si_t *sih, u32 mask, u32 val)
{
if (sih->socitype == SOCI_AI)
return ai_core_cflags(sih, mask, val);
else {
ASSERT(0);
return 0;
}
}
u32 si_core_sflags(si_t *sih, u32 mask, u32 val)
{
if (sih->socitype == SOCI_AI)
return ai_core_sflags(sih, mask, val);
else {
ASSERT(0);
return 0;
}
}
bool si_iscoreup(si_t *sih)
{
if (sih->socitype == SOCI_AI)
return ai_iscoreup(sih);
else {
ASSERT(0);
return false;
}
}
void si_write_wrapperreg(si_t *sih, u32 offset, u32 val)
{
/* only for 4319, no requirement for SOCI_SB */
if (sih->socitype == SOCI_AI)
ai_write_wrap_reg(sih, offset, val);
}
uint si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
if (sih->socitype == SOCI_AI)
return ai_corereg(sih, coreidx, regoff, mask, val);
else {
ASSERT(0);
return 0;
}
}
void si_core_disable(si_t *sih, u32 bits)
{
if (sih->socitype == SOCI_AI)
ai_core_disable(sih, bits);
}
void si_core_reset(si_t *sih, u32 bits, u32 resetbits)
{
if (sih->socitype == SOCI_AI)
ai_core_reset(sih, bits, resetbits);
}
u32 si_alp_clock(si_t *sih)
{
if (PMUCTL_ENAB(sih))
return si_pmu_alp_clock(sih);
return ALP_CLOCK;
}
u32 si_ilp_clock(si_t *sih)
{
if (PMUCTL_ENAB(sih))
return si_pmu_ilp_clock(sih);
return ILP_CLOCK;
}
/* set chip watchdog reset timer to fire in 'ticks' */
void si_watchdog(si_t *sih, uint ticks)
{
uint nb, maxt;
if (PMUCTL_ENAB(sih)) {
if ((sih->chip == BCM4319_CHIP_ID) &&
(sih->chiprev == 0) && (ticks != 0)) {
si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, clk_ctl_st), ~0, 0x2);
si_setcore(sih, USB20D_CORE_ID, 0);
si_core_disable(sih, 1);
si_setcore(sih, CC_CORE_ID, 0);
}
nb = (sih->ccrev < 26) ? 16 : ((sih->ccrev >= 37) ? 32 : 24);
/* The mips compiler uses the sllv instruction,
* so we specially handle the 32-bit case.
*/
if (nb == 32)
maxt = 0xffffffff;
else
maxt = ((1 << nb) - 1);
if (ticks == 1)
ticks = 2;
else if (ticks > maxt)
ticks = maxt;
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pmuwatchdog),
~0, ticks);
} else {
/*
* make sure we come up in fast clock mode;
* or if clearing, clear clock
*/
si_clkctl_cc(sih, ticks ? CLK_FAST : CLK_DYNAMIC);
maxt = (1 << 28) - 1;
if (ticks > maxt)
ticks = maxt;
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, watchdog), ~0,
ticks);
}
}
/* return the slow clock source - LPO, XTAL, or PCI */
static uint si_slowclk_src(si_info_t *sii)
{
chipcregs_t *cc;
u32 val;
ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
if (sii->pub.ccrev < 6) {
if (sii->pub.bustype == PCI_BUS) {
pci_read_config_dword(sii->pbus, PCI_GPIO_OUT,
&val);
if (val & PCI_CFG_GPIO_SCS)
return SCC_SS_PCI;
}
return SCC_SS_XTAL;
} else if (sii->pub.ccrev < 10) {
cc = (chipcregs_t *) si_setcoreidx(&sii->pub, sii->curidx);
return R_REG(&cc->slow_clk_ctl) & SCC_SS_MASK;
} else /* Insta-clock */
return SCC_SS_XTAL;
}
/* return the ILP (slowclock) min or max frequency */
static uint si_slowclk_freq(si_info_t *sii, bool max_freq, chipcregs_t *cc)
{
u32 slowclk;
uint div;
ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
/*
* shouldn't be here unless we've established
* the chip has dynamic clk control
*/
ASSERT(R_REG(&cc->capabilities) & CC_CAP_PWR_CTL);
slowclk = si_slowclk_src(sii);
if (sii->pub.ccrev < 6) {
if (slowclk == SCC_SS_PCI)
return max_freq ? (PCIMAXFREQ / 64)
: (PCIMINFREQ / 64);
else
return max_freq ? (XTALMAXFREQ / 32)
: (XTALMINFREQ / 32);
} else if (sii->pub.ccrev < 10) {
div = 4 *
(((R_REG(&cc->slow_clk_ctl) & SCC_CD_MASK) >>
SCC_CD_SHIFT) + 1);
if (slowclk == SCC_SS_LPO)
return max_freq ? LPOMAXFREQ : LPOMINFREQ;
else if (slowclk == SCC_SS_XTAL)
return max_freq ? (XTALMAXFREQ / div)
: (XTALMINFREQ / div);
else if (slowclk == SCC_SS_PCI)
return max_freq ? (PCIMAXFREQ / div)
: (PCIMINFREQ / div);
else
ASSERT(0);
} else {
/* Chipc rev 10 is InstaClock */
div = R_REG(&cc->system_clk_ctl) >> SYCC_CD_SHIFT;
div = 4 * (div + 1);
return max_freq ? XTALMAXFREQ : (XTALMINFREQ / div);
}
return 0;
}
static void si_clkctl_setdelay(si_info_t *sii, void *chipcregs)
{
chipcregs_t *cc = (chipcregs_t *) chipcregs;
uint slowmaxfreq, pll_delay, slowclk;
uint pll_on_delay, fref_sel_delay;
pll_delay = PLL_DELAY;
/*
* If the slow clock is not sourced by the xtal then
* add the xtal_on_delay since the xtal will also be
* powered down by dynamic clk control logic.
*/
slowclk = si_slowclk_src(sii);
if (slowclk != SCC_SS_XTAL)
pll_delay += XTAL_ON_DELAY;
/* Starting with 4318 it is ILP that is used for the delays */
slowmaxfreq =
si_slowclk_freq(sii, (sii->pub.ccrev >= 10) ? false : true, cc);
pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
W_REG(&cc->pll_on_delay, pll_on_delay);
W_REG(&cc->fref_sel_delay, fref_sel_delay);
}
/* initialize power control delay registers */
void si_clkctl_init(si_t *sih)
{
si_info_t *sii;
uint origidx = 0;
chipcregs_t *cc;
bool fast;
if (!CCCTL_ENAB(sih))
return;
sii = SI_INFO(sih);
fast = SI_FAST(sii);
if (!fast) {
origidx = sii->curidx;
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
if (cc == NULL)
return;
} else {
cc = (chipcregs_t *) CCREGS_FAST(sii);
if (cc == NULL)
return;
}
ASSERT(cc != NULL);
/* set all Instaclk chip ILP to 1 MHz */
if (sih->ccrev >= 10)
SET_REG(&cc->system_clk_ctl, SYCC_CD_MASK,
(ILP_DIV_1MHZ << SYCC_CD_SHIFT));
si_clkctl_setdelay(sii, (void *)cc);
if (!fast)
si_setcoreidx(sih, origidx);
}
/*
* return the value suitable for writing to the
* dot11 core FAST_PWRUP_DELAY register
*/
u16 si_clkctl_fast_pwrup_delay(si_t *sih)
{
si_info_t *sii;
uint origidx = 0;
chipcregs_t *cc;
uint slowminfreq;
u16 fpdelay;
uint intr_val = 0;
bool fast;
sii = SI_INFO(sih);
if (PMUCTL_ENAB(sih)) {
INTR_OFF(sii, intr_val);
fpdelay = si_pmu_fast_pwrup_delay(sih);
INTR_RESTORE(sii, intr_val);
return fpdelay;
}
if (!CCCTL_ENAB(sih))
return 0;
fast = SI_FAST(sii);
fpdelay = 0;
if (!fast) {
origidx = sii->curidx;
INTR_OFF(sii, intr_val);
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
if (cc == NULL)
goto done;
} else {
cc = (chipcregs_t *) CCREGS_FAST(sii);
if (cc == NULL)
goto done;
}
ASSERT(cc != NULL);
slowminfreq = si_slowclk_freq(sii, false, cc);
fpdelay = (((R_REG(&cc->pll_on_delay) + 2) * 1000000) +
(slowminfreq - 1)) / slowminfreq;
done:
if (!fast) {
si_setcoreidx(sih, origidx);
INTR_RESTORE(sii, intr_val);
}
return fpdelay;
}
/* turn primary xtal and/or pll off/on */
int si_clkctl_xtal(si_t *sih, uint what, bool on)
{
si_info_t *sii;
u32 in, out, outen;
sii = SI_INFO(sih);
switch (sih->bustype) {
case PCI_BUS:
/* pcie core doesn't have any mapping to control the xtal pu */
if (PCIE(sii))
return -1;
pci_read_config_dword(sii->pbus, PCI_GPIO_IN, &in);
pci_read_config_dword(sii->pbus, PCI_GPIO_OUT, &out);
pci_read_config_dword(sii->pbus, PCI_GPIO_OUTEN, &outen);
/*
* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (on && (in & PCI_CFG_GPIO_XTAL))
return 0;
if (what & XTAL)
outen |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
outen |= PCI_CFG_GPIO_PLL;
if (on) {
/* turn primary xtal on */
if (what & XTAL) {
out |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUT, out);
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUTEN, outen);
udelay(XTAL_ON_DELAY);
}
/* turn pll on */
if (what & PLL) {
out &= ~PCI_CFG_GPIO_PLL;
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUT, out);
mdelay(2);
}
} else {
if (what & XTAL)
out &= ~PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUT, out);
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUTEN, outen);
}
default:
return -1;
}
return 0;
}
/*
* clock control policy function throught chipcommon
*
* set dynamic clk control mode (forceslow, forcefast, dynamic)
* returns true if we are forcing fast clock
* this is a wrapper over the next internal function
* to allow flexible policy settings for outside caller
*/
bool si_clkctl_cc(si_t *sih, uint mode)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (sih->ccrev < 6)
return false;
if (PCI_FORCEHT(sii))
return mode == CLK_FAST;
return _si_clkctl_cc(sii, mode);
}
/* clk control mechanism through chipcommon, no policy checking */
static bool _si_clkctl_cc(si_info_t *sii, uint mode)
{
uint origidx = 0;
chipcregs_t *cc;
u32 scc;
uint intr_val = 0;
bool fast = SI_FAST(sii);
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (sii->pub.ccrev < 6)
return false;
/*
* Chips with ccrev 10 are EOL and they
* don't have SYCC_HR which we use below
*/
ASSERT(sii->pub.ccrev != 10);
if (!fast) {
INTR_OFF(sii, intr_val);
origidx = sii->curidx;
if ((sii->pub.bustype == SI_BUS) &&
si_setcore(&sii->pub, MIPS33_CORE_ID, 0) &&
(si_corerev(&sii->pub) <= 7) && (sii->pub.ccrev >= 10))
goto done;
cc = (chipcregs_t *) si_setcore(&sii->pub, CC_CORE_ID, 0);
} else {
cc = (chipcregs_t *) CCREGS_FAST(sii);
if (cc == NULL)
goto done;
}
ASSERT(cc != NULL);
if (!CCCTL_ENAB(&sii->pub) && (sii->pub.ccrev < 20))
goto done;
switch (mode) {
case CLK_FAST: /* FORCEHT, fast (pll) clock */
if (sii->pub.ccrev < 10) {
/*
* don't forget to force xtal back
* on before we clear SCC_DYN_XTAL..
*/
si_clkctl_xtal(&sii->pub, XTAL, ON);
SET_REG(&cc->slow_clk_ctl,
(SCC_XC | SCC_FS | SCC_IP), SCC_IP);
} else if (sii->pub.ccrev < 20) {
OR_REG(&cc->system_clk_ctl, SYCC_HR);
} else {
OR_REG(&cc->clk_ctl_st, CCS_FORCEHT);
}
/* wait for the PLL */
if (PMUCTL_ENAB(&sii->pub)) {
u32 htavail = CCS_HTAVAIL;
SPINWAIT(((R_REG(&cc->clk_ctl_st) & htavail)
== 0), PMU_MAX_TRANSITION_DLY);
ASSERT(R_REG(&cc->clk_ctl_st) & htavail);
} else {
udelay(PLL_DELAY);
}
break;
case CLK_DYNAMIC: /* enable dynamic clock control */
if (sii->pub.ccrev < 10) {
scc = R_REG(&cc->slow_clk_ctl);
scc &= ~(SCC_FS | SCC_IP | SCC_XC);
if ((scc & SCC_SS_MASK) != SCC_SS_XTAL)
scc |= SCC_XC;
W_REG(&cc->slow_clk_ctl, scc);
/*
* for dynamic control, we have to
* release our xtal_pu "force on"
*/
if (scc & SCC_XC)
si_clkctl_xtal(&sii->pub, XTAL, OFF);
} else if (sii->pub.ccrev < 20) {
/* Instaclock */
AND_REG(&cc->system_clk_ctl, ~SYCC_HR);
} else {
AND_REG(&cc->clk_ctl_st, ~CCS_FORCEHT);
}
break;
default:
ASSERT(0);
}
done:
if (!fast) {
si_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, intr_val);
}
return mode == CLK_FAST;
}
/* Build device path. Support SI, PCI, and JTAG for now. */
int si_devpath(si_t *sih, char *path, int size)
{
int slen;
ASSERT(path != NULL);
ASSERT(size >= SI_DEVPATH_BUFSZ);
if (!path || size <= 0)
return -1;
switch (sih->bustype) {
case SI_BUS:
case JTAG_BUS:
slen = snprintf(path, (size_t) size, "sb/%u/", ai_coreidx(sih));
break;
case PCI_BUS:
ASSERT((SI_INFO(sih))->pbus != NULL);
slen = snprintf(path, (size_t) size, "pci/%u/%u/",
((struct pci_dev *)((SI_INFO(sih))->pbus))->bus->number,
PCI_SLOT(
((struct pci_dev *)((SI_INFO(sih))->pbus))->devfn));
break;
default:
slen = -1;
ASSERT(0);
break;
}
if (slen < 0 || slen >= size) {
path[0] = '\0';
return -1;
}
return 0;
}
/* Get a variable, but only if it has a devpath prefix */
char *si_getdevpathvar(si_t *sih, const char *name)
{
char varname[SI_DEVPATH_BUFSZ + 32];
si_devpathvar(sih, varname, sizeof(varname), name);
return getvar(NULL, varname);
}
/* Get a variable, but only if it has a devpath prefix */
int si_getdevpathintvar(si_t *sih, const char *name)
{
#if defined(BCMBUSTYPE) && (BCMBUSTYPE == SI_BUS)
return getintvar(NULL, name);
#else
char varname[SI_DEVPATH_BUFSZ + 32];
si_devpathvar(sih, varname, sizeof(varname), name);
return getintvar(NULL, varname);
#endif
}
char *si_getnvramflvar(si_t *sih, const char *name)
{
return getvar(NULL, name);
}
/* Concatenate the dev path with a varname into the given 'var' buffer
* and return the 'var' pointer. Nothing is done to the arguments if
* len == 0 or var is NULL, var is still returned. On overflow, the
* first char will be set to '\0'.
*/
static char *si_devpathvar(si_t *sih, char *var, int len, const char *name)
{
uint path_len;
if (!var || len <= 0)
return var;
if (si_devpath(sih, var, len) == 0) {
path_len = strlen(var);
if (strlen(name) + 1 > (uint) (len - path_len))
var[0] = '\0';
else
strncpy(var + path_len, name, len - path_len - 1);
}
return var;
}
/* return true if PCIE capability exists in the pci config space */
static __used bool si_ispcie(si_info_t *sii)
{
u8 cap_ptr;
if (sii->pub.bustype != PCI_BUS)
return false;
cap_ptr =
pcicore_find_pci_capability(sii->pbus, PCI_CAP_ID_EXP, NULL,
NULL);
if (!cap_ptr)
return false;
return true;
}
bool si_pci_war16165(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return PCI(sii) && (sih->buscorerev <= 10);
}
void si_pci_up(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* if not pci bus, we're done */
if (sih->bustype != PCI_BUS)
return;
if (PCI_FORCEHT(sii))
_si_clkctl_cc(sii, CLK_FAST);
if (PCIE(sii))
pcicore_up(sii->pch, SI_PCIUP);
}
/* Unconfigure and/or apply various WARs when system is going to sleep mode */
void si_pci_sleep(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
pcicore_sleep(sii->pch);
}
/* Unconfigure and/or apply various WARs when going down */
void si_pci_down(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* if not pci bus, we're done */
if (sih->bustype != PCI_BUS)
return;
/* release FORCEHT since chip is going to "down" state */
if (PCI_FORCEHT(sii))
_si_clkctl_cc(sii, CLK_DYNAMIC);
pcicore_down(sii->pch, SI_PCIDOWN);
}
/*
* Configure the pci core for pci client (NIC) action
* coremask is the bitvec of cores by index to be enabled.
*/
void si_pci_setup(si_t *sih, uint coremask)
{
si_info_t *sii;
struct sbpciregs *pciregs = NULL;
u32 siflag = 0, w;
uint idx = 0;
sii = SI_INFO(sih);
if (sii->pub.bustype != PCI_BUS)
return;
ASSERT(PCI(sii) || PCIE(sii));
ASSERT(sii->pub.buscoreidx != BADIDX);
if (PCI(sii)) {
/* get current core index */
idx = sii->curidx;
/* we interrupt on this backplane flag number */
siflag = si_flag(sih);
/* switch over to pci core */
pciregs = si_setcoreidx(sih, sii->pub.buscoreidx);
}
/*
* Enable sb->pci interrupts. Assume
* PCI rev 2.3 support was added in pci core rev 6 and things changed..
*/
if (PCIE(sii) || (PCI(sii) && ((sii->pub.buscorerev) >= 6))) {
/* pci config write to set this core bit in PCIIntMask */
pci_read_config_dword(sii->pbus, PCI_INT_MASK, &w);
w |= (coremask << PCI_SBIM_SHIFT);
pci_write_config_dword(sii->pbus, PCI_INT_MASK, w);
} else {
/* set sbintvec bit for our flag number */
si_setint(sih, siflag);
}
if (PCI(sii)) {
OR_REG(&pciregs->sbtopci2,
(SBTOPCI_PREF | SBTOPCI_BURST));
if (sii->pub.buscorerev >= 11) {
OR_REG(&pciregs->sbtopci2,
SBTOPCI_RC_READMULTI);
w = R_REG(&pciregs->clkrun);
W_REG(&pciregs->clkrun,
(w | PCI_CLKRUN_DSBL));
w = R_REG(&pciregs->clkrun);
}
/* switch back to previous core */
si_setcoreidx(sih, idx);
}
}
/*
* Fixup SROMless PCI device's configuration.
* The current core may be changed upon return.
*/
int si_pci_fixcfg(si_t *sih)
{
uint origidx, pciidx;
struct sbpciregs *pciregs = NULL;
sbpcieregs_t *pcieregs = NULL;
void *regs = NULL;
u16 val16, *reg16 = NULL;
si_info_t *sii = SI_INFO(sih);
ASSERT(sii->pub.bustype == PCI_BUS);
/* Fixup PI in SROM shadow area to enable the correct PCI core access */
/* save the current index */
origidx = ai_coreidx(&sii->pub);
/* check 'pi' is correct and fix it if not */
if (sii->pub.buscoretype == PCIE_CORE_ID) {
pcieregs = si_setcore(&sii->pub, PCIE_CORE_ID, 0);
regs = pcieregs;
ASSERT(pcieregs != NULL);
reg16 = &pcieregs->sprom[SRSH_PI_OFFSET];
} else if (sii->pub.buscoretype == PCI_CORE_ID) {
pciregs = si_setcore(&sii->pub, PCI_CORE_ID, 0);
regs = pciregs;
ASSERT(pciregs != NULL);
reg16 = &pciregs->sprom[SRSH_PI_OFFSET];
}
pciidx = ai_coreidx(&sii->pub);
val16 = R_REG(reg16);
if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (u16) pciidx) {
val16 =
(u16) (pciidx << SRSH_PI_SHIFT) | (val16 &
~SRSH_PI_MASK);
W_REG(reg16, val16);
}
/* restore the original index */
si_setcoreidx(&sii->pub, origidx);
pcicore_hwup(sii->pch);
return 0;
}
/* mask&set gpiocontrol bits */
u32 si_gpiocontrol(si_t *sih, u32 mask, u32 val, u8 priority)
{
uint regoff;
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(sih->bustype == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = offsetof(chipcregs_t, gpiocontrol);
return si_corereg(sih, SI_CC_IDX, regoff, mask, val);
}
void si_chipcontrl_epa4331(si_t *sih, bool on)
{
si_info_t *sii;
chipcregs_t *cc;
uint origidx;
u32 val;
sii = SI_INFO(sih);
origidx = ai_coreidx(sih);
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
val = R_REG(&cc->chipcontrol);
if (on) {
if (sih->chippkg == 9 || sih->chippkg == 0xb) {
/* Ext PA Controls for 4331 12x9 Package */
W_REG(&cc->chipcontrol, val |
(CCTRL4331_EXTPA_EN |
CCTRL4331_EXTPA_ON_GPIO2_5));
} else {
/* Ext PA Controls for 4331 12x12 Package */
W_REG(&cc->chipcontrol,
val | (CCTRL4331_EXTPA_EN));
}
} else {
val &= ~(CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5);
W_REG(&cc->chipcontrol, val);
}
si_setcoreidx(sih, origidx);
}
/* Enable BT-COEX & Ex-PA for 4313 */
void si_epa_4313war(si_t *sih)
{
si_info_t *sii;
chipcregs_t *cc;
uint origidx;
sii = SI_INFO(sih);
origidx = ai_coreidx(sih);
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
/* EPA Fix */
W_REG(&cc->gpiocontrol,
R_REG(&cc->gpiocontrol) | GPIO_CTRL_EPA_EN_MASK);
si_setcoreidx(sih, origidx);
}
/* check if the device is removed */
bool si_deviceremoved(si_t *sih)
{
u32 w;
si_info_t *sii;
sii = SI_INFO(sih);
switch (sih->bustype) {
case PCI_BUS:
ASSERT(sii->pbus != NULL);
pci_read_config_dword(sii->pbus, PCI_VENDOR_ID, &w);
if ((w & 0xFFFF) != PCI_VENDOR_ID_BROADCOM)
return true;
break;
}
return false;
}
bool si_is_sprom_available(si_t *sih)
{
if (sih->ccrev >= 31) {
si_info_t *sii;
uint origidx;
chipcregs_t *cc;
u32 sromctrl;
if ((sih->cccaps & CC_CAP_SROM) == 0)
return false;
sii = SI_INFO(sih);
origidx = sii->curidx;
cc = si_setcoreidx(sih, SI_CC_IDX);
sromctrl = R_REG(&cc->sromcontrol);
si_setcoreidx(sih, origidx);
return sromctrl & SRC_PRESENT;
}
switch (sih->chip) {
case BCM4329_CHIP_ID:
return (sih->chipst & CST4329_SPROM_SEL) != 0;
case BCM4319_CHIP_ID:
return (sih->chipst & CST4319_SPROM_SEL) != 0;
case BCM4336_CHIP_ID:
return (sih->chipst & CST4336_SPROM_PRESENT) != 0;
case BCM4330_CHIP_ID:
return (sih->chipst & CST4330_SPROM_PRESENT) != 0;
case BCM4313_CHIP_ID:
return (sih->chipst & CST4313_SPROM_PRESENT) != 0;
case BCM4331_CHIP_ID:
return (sih->chipst & CST4331_SPROM_PRESENT) != 0;
default:
return true;
}
}
bool si_is_otp_disabled(si_t *sih)
{
switch (sih->chip) {
case BCM4329_CHIP_ID:
return (sih->chipst & CST4329_SPROM_OTP_SEL_MASK) ==
CST4329_OTP_PWRDN;
case BCM4319_CHIP_ID:
return (sih->chipst & CST4319_SPROM_OTP_SEL_MASK) ==
CST4319_OTP_PWRDN;
case BCM4336_CHIP_ID:
return (sih->chipst & CST4336_OTP_PRESENT) == 0;
case BCM4330_CHIP_ID:
return (sih->chipst & CST4330_OTP_PRESENT) == 0;
case BCM4313_CHIP_ID:
return (sih->chipst & CST4313_OTP_PRESENT) == 0;
/* These chips always have their OTP on */
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
default:
return false;
}
}
bool si_is_otp_powered(si_t *sih)
{
if (PMUCTL_ENAB(sih))
return si_pmu_is_otp_powered(sih);
return true;
}
void si_otp_power(si_t *sih, bool on)
{
if (PMUCTL_ENAB(sih))
si_pmu_otp_power(sih, on);
udelay(1000);
}
......@@ -17,16 +17,16 @@
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <bcmdefs.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <bcmdefs.h>
#include <bcmdevs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <aiutils.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <bcmotp.h>
#include "siutils_priv.h"
/*
* There are two different OTP controllers so far:
......@@ -356,7 +356,7 @@ static void *ipxotp_init(si_t *sih)
}
/* Retrieve OTP region info */
idx = si_coreidx(sih);
idx = ai_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
_ipxotp_init(oi, cc);
......@@ -439,7 +439,7 @@ static int ipxotp_read_region(void *oh, int region, u16 *data, uint *wlen)
return -EINVAL;
}
idx = si_coreidx(oi->sih);
idx = ai_coreidx(oi->sih);
cc = si_setcoreidx(oi->sih, SI_CC_IDX);
/* Read the data */
......@@ -615,7 +615,7 @@ static void *hndotp_init(si_t *sih)
oi = &otpinfo;
idx = si_coreidx(sih);
idx = ai_coreidx(sih);
/* Check for otp */
cc = si_setcoreidx(sih, SI_CC_IDX);
......@@ -699,7 +699,7 @@ static int hndotp_read_region(void *oh, int region, u16 *data, uint *wlen)
*wlen =
((int)*wlen < oi->boundary / 2) ? *wlen : (uint) oi->boundary / 2;
idx = si_coreidx(oi->sih);
idx = ai_coreidx(oi->sih);
cc = si_setcoreidx(oi->sih, SI_CC_IDX);
for (i = 0; i < (int)*wlen; i++)
......@@ -722,7 +722,7 @@ static int hndotp_nvread(void *oh, char *data, uint *len)
u16 *rawotp = NULL;
/* save the orig core */
idx = si_coreidx(oi->sih);
idx = ai_coreidx(oi->sih);
cc = si_setcoreidx(oi->sih, SI_CC_IDX);
st = hndotp_status(oh);
......@@ -860,7 +860,7 @@ int otp_size(void *oh)
u16 otp_read_bit(void *oh, uint offset)
{
otpinfo_t *oi = (otpinfo_t *) oh;
uint idx = si_coreidx(oi->sih);
uint idx = ai_coreidx(oi->sih);
chipcregs_t *cc = si_setcoreidx(oi->sih, SI_CC_IDX);
u16 readBit = (u16) oi->fn->read_bit(oh, cc, offset);
si_setcoreidx(oi->sih, idx);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册