提交 08c048e9 编写于 作者: C Chenguangli 提交者: Yang Yingliang

scsi/hifc: add hifc driver chip resource module

driver inclusion
category: feature
bugzilla: NA

-----------------------------------------------------------------------

This module includes cfg, cqm, hwdev, hwif, mgmt, sml. and are mainly used to
initialize chip capabilityes and to initialize resources for communication between
drivers and chip.
Signed-off-by: NChenguangli <chenguangli2@huawei.com>
Acked-by: NHanjun Guo <guohanjun@huawei.com>
Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
上级 a8d21c00
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/completion.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/semaphore.h>
#include <linux/jiffies.h>
#include <linux/delay.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_hwif.h"
#include "hifc_api_cmd.h"
#define API_CMD_CHAIN_CELL_SIZE_SHIFT 6U
#define API_CMD_CELL_DESC_SIZE 8
#define API_CMD_CELL_DATA_ADDR_SIZE 8
#define API_CHAIN_NUM_CELLS 32
#define API_CHAIN_CELL_SIZE 128
#define API_CHAIN_RSP_DATA_SIZE 128
#define API_CMD_CELL_WB_ADDR_SIZE 8
#define API_CHAIN_CELL_ALIGNMENT 8
#define API_CMD_TIMEOUT 10000
#define API_CMD_STATUS_TIMEOUT 100000
#define API_CMD_BUF_SIZE 2048ULL
#define API_CMD_NODE_ALIGN_SIZE 512ULL
#define API_PAYLOAD_ALIGN_SIZE 64ULL
#define API_CHAIN_RESP_ALIGNMENT 64ULL
#define COMPLETION_TIMEOUT_DEFAULT 1000UL
#define POLLING_COMPLETION_TIMEOUT_DEFAULT 1000U
#define API_CMD_RESPONSE_DATA_PADDR(val) be64_to_cpu(*((u64 *)(val)))
#define READ_API_CMD_PRIV_DATA(id, token) (((id) << 16) + (token))
#define WRITE_API_CMD_PRIV_DATA(id) (((u8)id) << 16)
#define MASKED_IDX(chain, idx) ((idx) & ((chain)->num_cells - 1))
#define SIZE_4BYTES(size) (ALIGN((u32)(size), 4U) >> 2)
#define SIZE_8BYTES(size) (ALIGN((u32)(size), 8U) >> 3)
enum api_cmd_data_format {
SGL_DATA = 1,
};
enum api_cmd_type {
API_CMD_WRITE_TYPE = 0,
API_CMD_READ_TYPE = 1,
};
enum api_cmd_bypass {
NOT_BYPASS = 0,
BYPASS = 1,
};
enum api_cmd_resp_aeq {
NOT_TRIGGER = 0,
TRIGGER = 1,
};
static u8 xor_chksum_set(void *data)
{
int idx;
u8 checksum = 0;
u8 *val = data;
for (idx = 0; idx < 7; idx++)
checksum ^= val[idx];
return checksum;
}
static void set_prod_idx(struct hifc_api_cmd_chain *chain)
{
enum hifc_api_cmd_chain_type chain_type = chain->chain_type;
struct hifc_hwif *hwif = chain->hwdev->hwif;
u32 hw_prod_idx_addr = HIFC_CSR_API_CMD_CHAIN_PI_ADDR(chain_type);
u32 prod_idx = chain->prod_idx;
hifc_hwif_write_reg(hwif, hw_prod_idx_addr, prod_idx);
}
static u32 get_hw_cons_idx(struct hifc_api_cmd_chain *chain)
{
u32 addr, val;
addr = HIFC_CSR_API_CMD_STATUS_0_ADDR(chain->chain_type);
val = hifc_hwif_read_reg(chain->hwdev->hwif, addr);
return HIFC_API_CMD_STATUS_GET(val, CONS_IDX);
}
static void dump_api_chain_reg(struct hifc_api_cmd_chain *chain)
{
void *dev = chain->hwdev->dev_hdl;
u32 addr, val;
addr = HIFC_CSR_API_CMD_STATUS_0_ADDR(chain->chain_type);
val = hifc_hwif_read_reg(chain->hwdev->hwif, addr);
sdk_err(dev, "Chain type: 0x%x, cpld error: 0x%x, check error: 0x%x, current fsm: 0x%x\n",
chain->chain_type, HIFC_API_CMD_STATUS_GET(val, CPLD_ERR),
HIFC_API_CMD_STATUS_GET(val, CHKSUM_ERR),
HIFC_API_CMD_STATUS_GET(val, FSM));
sdk_err(dev, "Chain hw current ci: 0x%x\n",
HIFC_API_CMD_STATUS_GET(val, CONS_IDX));
addr = HIFC_CSR_API_CMD_CHAIN_PI_ADDR(chain->chain_type);
val = hifc_hwif_read_reg(chain->hwdev->hwif, addr);
sdk_err(dev, "Chain hw current pi: 0x%x\n", val);
}
/**
* chain_busy - check if the chain is still processing last requests
* @chain: chain to check
* Return: 0 - success, negative - failure
**/
static int chain_busy(struct hifc_api_cmd_chain *chain)
{
void *dev = chain->hwdev->dev_hdl;
struct hifc_api_cmd_cell_ctxt *ctxt;
u64 resp_header;
ctxt = &chain->cell_ctxt[chain->prod_idx];
switch (chain->chain_type) {
case HIFC_API_CMD_MULTI_READ:
case HIFC_API_CMD_POLL_READ:
resp_header = be64_to_cpu(ctxt->resp->header);
if (ctxt->status &&
!HIFC_API_CMD_RESP_HEADER_VALID(resp_header)) {
sdk_err(dev, "Context(0x%x) busy!, pi: %d, resp_header: 0x%08x%08x\n",
ctxt->status, chain->prod_idx,
upper_32_bits(resp_header),
lower_32_bits(resp_header));
dump_api_chain_reg(chain);
return -EBUSY;
}
break;
case HIFC_API_CMD_POLL_WRITE:
case HIFC_API_CMD_WRITE_TO_MGMT_CPU:
case HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU:
chain->cons_idx = get_hw_cons_idx(chain);
if (chain->cons_idx == MASKED_IDX(chain, chain->prod_idx + 1)) {
sdk_err(dev, "API CMD chain %d is busy, cons_idx = %d, prod_idx = %d\n",
chain->chain_type, chain->cons_idx,
chain->prod_idx);
dump_api_chain_reg(chain);
return -EBUSY;
}
break;
default:
sdk_err(dev, "Unknown Chain type %d\n", chain->chain_type);
return -EINVAL;
}
return 0;
}
/**
* get_cell_data_size - get the data size of specific cell type
* @type: chain type
* @cmd_size: the command size
* Return: cell_data_size
**/
static u16 get_cell_data_size(enum hifc_api_cmd_chain_type type, u16 cmd_size)
{
u16 cell_data_size = 0;
switch (type) {
case HIFC_API_CMD_POLL_READ:
cell_data_size = ALIGN(API_CMD_CELL_DESC_SIZE +
API_CMD_CELL_WB_ADDR_SIZE +
API_CMD_CELL_DATA_ADDR_SIZE,
API_CHAIN_CELL_ALIGNMENT);
break;
case HIFC_API_CMD_WRITE_TO_MGMT_CPU:
case HIFC_API_CMD_POLL_WRITE:
case HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU:
cell_data_size = ALIGN(API_CMD_CELL_DESC_SIZE +
API_CMD_CELL_DATA_ADDR_SIZE,
API_CHAIN_CELL_ALIGNMENT);
break;
default:
break;
}
return cell_data_size;
}
/**
* prepare_cell_ctrl - prepare the ctrl of the cell for the command
* @cell_ctrl: the control of the cell to set the control into it
* @cell_len: the size of the cell
**/
static void prepare_cell_ctrl(u64 *cell_ctrl, u16 cell_len)
{
u64 ctrl;
u8 chksum;
ctrl = HIFC_API_CMD_CELL_CTRL_SET(SIZE_8BYTES(cell_len), CELL_LEN) |
HIFC_API_CMD_CELL_CTRL_SET(0ULL, RD_DMA_ATTR_OFF) |
HIFC_API_CMD_CELL_CTRL_SET(0ULL, WR_DMA_ATTR_OFF);
chksum = xor_chksum_set(&ctrl);
ctrl |= HIFC_API_CMD_CELL_CTRL_SET(chksum, XOR_CHKSUM);
/* The data in the HW should be in Big Endian Format */
*cell_ctrl = cpu_to_be64(ctrl);
}
/**
* prepare_api_cmd - prepare API CMD command
* @chain: chain for the command
* @cell: the cell of the command
* @dest: destination node on the card that will receive the command
* @cmd: command data
* @cmd_size: the command size
**/
static void prepare_api_cmd(struct hifc_api_cmd_chain *chain,
struct hifc_api_cmd_cell *cell,
enum hifc_node_id dest,
const void *cmd, u16 cmd_size)
{
struct hifc_api_cmd_cell_ctxt *cell_ctxt;
u32 priv;
cell_ctxt = &chain->cell_ctxt[chain->prod_idx];
switch (chain->chain_type) {
case HIFC_API_CMD_POLL_READ:
priv = READ_API_CMD_PRIV_DATA(chain->chain_type,
cell_ctxt->saved_prod_idx);
cell->desc = HIFC_API_CMD_DESC_SET(SGL_DATA, API_TYPE) |
HIFC_API_CMD_DESC_SET(API_CMD_READ_TYPE, RD_WR) |
HIFC_API_CMD_DESC_SET(BYPASS, MGMT_BYPASS) |
HIFC_API_CMD_DESC_SET(NOT_TRIGGER, RESP_AEQE_EN) |
HIFC_API_CMD_DESC_SET(priv, PRIV_DATA);
break;
case HIFC_API_CMD_POLL_WRITE:
priv = WRITE_API_CMD_PRIV_DATA(chain->chain_type);
cell->desc = HIFC_API_CMD_DESC_SET(SGL_DATA, API_TYPE) |
HIFC_API_CMD_DESC_SET(API_CMD_WRITE_TYPE, RD_WR) |
HIFC_API_CMD_DESC_SET(BYPASS, MGMT_BYPASS) |
HIFC_API_CMD_DESC_SET(NOT_TRIGGER, RESP_AEQE_EN) |
HIFC_API_CMD_DESC_SET(priv, PRIV_DATA);
break;
case HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU:
case HIFC_API_CMD_WRITE_TO_MGMT_CPU:
priv = WRITE_API_CMD_PRIV_DATA(chain->chain_type);
cell->desc = HIFC_API_CMD_DESC_SET(SGL_DATA, API_TYPE) |
HIFC_API_CMD_DESC_SET(API_CMD_WRITE_TYPE, RD_WR) |
HIFC_API_CMD_DESC_SET(NOT_BYPASS, MGMT_BYPASS) |
HIFC_API_CMD_DESC_SET(TRIGGER, RESP_AEQE_EN) |
HIFC_API_CMD_DESC_SET(priv, PRIV_DATA);
break;
default:
sdk_err(chain->hwdev->dev_hdl, "Unknown Chain type: %d\n",
chain->chain_type);
return;
}
cell->desc |= HIFC_API_CMD_DESC_SET(dest, DEST) |
HIFC_API_CMD_DESC_SET(SIZE_4BYTES(cmd_size), SIZE);
cell->desc |= HIFC_API_CMD_DESC_SET(xor_chksum_set(&cell->desc),
XOR_CHKSUM);
/* The data in the HW should be in Big Endian Format */
cell->desc = cpu_to_be64(cell->desc);
memcpy(cell_ctxt->api_cmd_vaddr, cmd, cmd_size);
}
/**
* prepare_cell - prepare cell ctrl and cmd in the current producer cell
* @chain: chain for the command
* @dest: destination node on the card that will receive the command
* @cmd: command data
* @cmd_size: the command size
**/
static void prepare_cell(struct hifc_api_cmd_chain *chain,
enum hifc_node_id dest,
void *cmd, u16 cmd_size)
{
struct hifc_api_cmd_cell *curr_node;
u16 cell_size;
curr_node = chain->curr_node;
cell_size = get_cell_data_size(chain->chain_type, cmd_size);
prepare_cell_ctrl(&curr_node->ctrl, cell_size);
prepare_api_cmd(chain, curr_node, dest, cmd, cmd_size);
}
static inline void cmd_chain_prod_idx_inc(struct hifc_api_cmd_chain *chain)
{
chain->prod_idx = MASKED_IDX(chain, chain->prod_idx + 1);
}
static void issue_api_cmd(struct hifc_api_cmd_chain *chain)
{
set_prod_idx(chain);
}
/**
* api_cmd_status_update - update the status of the chain
* @chain: chain to update
**/
static void api_cmd_status_update(struct hifc_api_cmd_chain *chain)
{
struct hifc_api_cmd_status *wb_status;
enum hifc_api_cmd_chain_type chain_type;
u64 status_header;
u32 buf_desc;
wb_status = chain->wb_status;
buf_desc = be32_to_cpu(wb_status->buf_desc);
if (HIFC_API_CMD_STATUS_GET(buf_desc, CHKSUM_ERR))
return;
status_header = be64_to_cpu(wb_status->header);
chain_type = HIFC_API_CMD_STATUS_HEADER_GET(status_header, CHAIN_ID);
if (chain_type >= HIFC_API_CMD_MAX)
return;
if (chain_type != chain->chain_type)
return;
chain->cons_idx = HIFC_API_CMD_STATUS_GET(buf_desc, CONS_IDX);
}
/**
* wait_for_status_poll - wait for write to mgmt command to complete
* @chain: the chain of the command
* Return: 0 - success, negative - failure
**/
static int wait_for_status_poll(struct hifc_api_cmd_chain *chain)
{
int err = -ETIMEDOUT;
u32 cnt = 0;
while (cnt < API_CMD_STATUS_TIMEOUT &&
chain->hwdev->chip_present_flag) {
api_cmd_status_update(chain);
/* SYNC API CMD cmd should start after prev cmd finished */
if (chain->cons_idx == chain->prod_idx) {
err = 0;
break;
}
usleep_range(50, 100);
cnt++;
}
return err;
}
static void copy_resp_data(struct hifc_api_cmd_cell_ctxt *ctxt, void *ack,
u16 ack_size)
{
struct hifc_api_cmd_resp_fmt *resp = ctxt->resp;
memcpy(ack, &resp->resp_data, ack_size);
ctxt->status = 0;
}
/**
* prepare_cell - polling for respense data of the read api-command
* @chain: pointer to api cmd chain
*
* Return: 0 - success, negative - failure
**/
static int wait_for_resp_polling(struct hifc_api_cmd_cell_ctxt *ctxt)
{
u64 resp_header;
int ret = -ETIMEDOUT;
u32 cnt = 0;
while (cnt < POLLING_COMPLETION_TIMEOUT_DEFAULT) {
resp_header = be64_to_cpu(ctxt->resp->header);
rmb(); /* read the latest header */
if (HIFC_API_CMD_RESP_HEADER_VALID(resp_header)) {
ret = 0;
break;
}
usleep_range(100, 1000);
cnt++;
}
if (ret)
pr_err("Wait for api chain response timeout\n");
return ret;
}
/**
* wait_for_api_cmd_completion - wait for command to complete
* @chain: chain for the command
* Return: 0 - success, negative - failure
**/
static int wait_for_api_cmd_completion(struct hifc_api_cmd_chain *chain,
struct hifc_api_cmd_cell_ctxt *ctxt,
void *ack, u16 ack_size)
{
void *dev = chain->hwdev->dev_hdl;
int err = 0;
switch (chain->chain_type) {
case HIFC_API_CMD_POLL_READ:
err = wait_for_resp_polling(ctxt);
if (!err)
copy_resp_data(ctxt, ack, ack_size);
break;
case HIFC_API_CMD_POLL_WRITE:
case HIFC_API_CMD_WRITE_TO_MGMT_CPU:
err = wait_for_status_poll(chain);
if (err) {
sdk_err(dev, "API CMD Poll status timeout, chain type: %d\n",
chain->chain_type);
break;
}
break;
case HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU:
/* No need to wait */
break;
default:
sdk_err(dev, "Unknown API CMD Chain type: %d\n",
chain->chain_type);
err = -EINVAL;
break;
}
if (err)
dump_api_chain_reg(chain);
return err;
}
static inline void update_api_cmd_ctxt(struct hifc_api_cmd_chain *chain,
struct hifc_api_cmd_cell_ctxt *ctxt)
{
ctxt->status = 1;
ctxt->saved_prod_idx = chain->prod_idx;
if (ctxt->resp) {
ctxt->resp->header = 0;
/* make sure "header" was cleared */
wmb();
}
}
/**
* api_cmd - API CMD command
* @chain: chain for the command
* @dest: destination node on the card that will receive the command
* @cmd: command data
* @size: the command size
* Return: 0 - success, negative - failure
**/
static int api_cmd(struct hifc_api_cmd_chain *chain,
enum hifc_node_id dest,
void *cmd, u16 cmd_size, void *ack, u16 ack_size)
{
struct hifc_api_cmd_cell_ctxt *ctxt;
if (chain->chain_type == HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU)
spin_lock(&chain->async_lock);
else
down(&chain->sem);
ctxt = &chain->cell_ctxt[chain->prod_idx];
if (chain_busy(chain)) {
if (chain->chain_type == HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU)
spin_unlock(&chain->async_lock);
else
up(&chain->sem);
return -EBUSY;
}
update_api_cmd_ctxt(chain, ctxt);
prepare_cell(chain, dest, cmd, cmd_size);
cmd_chain_prod_idx_inc(chain);
wmb(); /* issue the command */
issue_api_cmd(chain);
/* incremented prod idx, update ctxt */
chain->curr_node = chain->cell_ctxt[chain->prod_idx].cell_vaddr;
if (chain->chain_type == HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU)
spin_unlock(&chain->async_lock);
else
up(&chain->sem);
return wait_for_api_cmd_completion(chain, ctxt, ack, ack_size);
}
/**
* hifc_api_cmd_write - Write API CMD command
* @chain: chain for write command
* @dest: destination node on the card that will receive the command
* @cmd: command data
* @size: the command size
* Return: 0 - success, negative - failure
**/
int hifc_api_cmd_write(struct hifc_api_cmd_chain *chain,
enum hifc_node_id dest, void *cmd, u16 size)
{
/* Verify the chain type */
return api_cmd(chain, dest, cmd, size, NULL, 0);
}
int hifc_api_cmd_read(struct hifc_api_cmd_chain *chain,
enum hifc_node_id dest,
void *cmd, u16 size, void *ack, u16 ack_size)
{
return api_cmd(chain, dest, cmd, size, ack, ack_size);
}
/**
* api_cmd_hw_restart - restart the chain in the HW
* @chain: the API CMD specific chain to restart
**/
static int api_cmd_hw_restart(struct hifc_api_cmd_chain *cmd_chain)
{
struct hifc_hwif *hwif = cmd_chain->hwdev->hwif;
u32 reg_addr, val;
int err;
u32 cnt = 0;
/* Read Modify Write */
reg_addr = HIFC_CSR_API_CMD_CHAIN_REQ_ADDR(cmd_chain->chain_type);
val = hifc_hwif_read_reg(hwif, reg_addr);
val = HIFC_API_CMD_CHAIN_REQ_CLEAR(val, RESTART);
val |= HIFC_API_CMD_CHAIN_REQ_SET(1, RESTART);
hifc_hwif_write_reg(hwif, reg_addr, val);
err = -ETIMEDOUT;
while (cnt < API_CMD_TIMEOUT) {
val = hifc_hwif_read_reg(hwif, reg_addr);
if (!HIFC_API_CMD_CHAIN_REQ_GET(val, RESTART)) {
err = 0;
break;
}
usleep_range(900, 1000);
cnt++;
}
return err;
}
/**
* api_cmd_ctrl_init - set the control register of a chain
* @chain: the API CMD specific chain to set control register for
**/
static void api_cmd_ctrl_init(struct hifc_api_cmd_chain *chain)
{
struct hifc_hwif *hwif = chain->hwdev->hwif;
u32 reg_addr, ctrl;
u32 size;
/* Read Modify Write */
reg_addr = HIFC_CSR_API_CMD_CHAIN_CTRL_ADDR(chain->chain_type);
size = (u32)ilog2(chain->cell_size >> API_CMD_CHAIN_CELL_SIZE_SHIFT);
ctrl = hifc_hwif_read_reg(hwif, reg_addr);
ctrl = HIFC_API_CMD_CHAIN_CTRL_CLEAR(ctrl, AEQE_EN) &
HIFC_API_CMD_CHAIN_CTRL_CLEAR(ctrl, CELL_SIZE);
ctrl |= HIFC_API_CMD_CHAIN_CTRL_SET(0, AEQE_EN) |
HIFC_API_CMD_CHAIN_CTRL_SET(size, CELL_SIZE);
hifc_hwif_write_reg(hwif, reg_addr, ctrl);
}
/**
* api_cmd_set_status_addr - set the status address of a chain in the HW
* @chain: the API CMD specific chain to set status address for
**/
static void api_cmd_set_status_addr(struct hifc_api_cmd_chain *chain)
{
struct hifc_hwif *hwif = chain->hwdev->hwif;
u32 addr, val;
addr = HIFC_CSR_API_CMD_STATUS_HI_ADDR(chain->chain_type);
val = upper_32_bits(chain->wb_status_paddr);
hifc_hwif_write_reg(hwif, addr, val);
addr = HIFC_CSR_API_CMD_STATUS_LO_ADDR(chain->chain_type);
val = lower_32_bits(chain->wb_status_paddr);
hifc_hwif_write_reg(hwif, addr, val);
}
/**
* api_cmd_set_num_cells - set the number cells of a chain in the HW
* @chain: the API CMD specific chain to set the number of cells for
**/
static void api_cmd_set_num_cells(struct hifc_api_cmd_chain *chain)
{
struct hifc_hwif *hwif = chain->hwdev->hwif;
u32 addr, val;
addr = HIFC_CSR_API_CMD_CHAIN_NUM_CELLS_ADDR(chain->chain_type);
val = chain->num_cells;
hifc_hwif_write_reg(hwif, addr, val);
}
/**
* api_cmd_head_init - set the head cell of a chain in the HW
* @chain: the API CMD specific chain to set the head for
**/
static void api_cmd_head_init(struct hifc_api_cmd_chain *chain)
{
struct hifc_hwif *hwif = chain->hwdev->hwif;
u32 addr, val;
addr = HIFC_CSR_API_CMD_CHAIN_HEAD_HI_ADDR(chain->chain_type);
val = upper_32_bits(chain->head_cell_paddr);
hifc_hwif_write_reg(hwif, addr, val);
addr = HIFC_CSR_API_CMD_CHAIN_HEAD_LO_ADDR(chain->chain_type);
val = lower_32_bits(chain->head_cell_paddr);
hifc_hwif_write_reg(hwif, addr, val);
}
/**
* wait_for_ready_chain - wait for the chain to be ready
* @chain: the API CMD specific chain to wait for
* Return: 0 - success, negative - failure
**/
static int wait_for_ready_chain(struct hifc_api_cmd_chain *chain)
{
struct hifc_hwif *hwif = chain->hwdev->hwif;
u32 addr, val;
u32 hw_cons_idx;
u32 cnt = 0;
int err;
addr = HIFC_CSR_API_CMD_STATUS_0_ADDR(chain->chain_type);
err = -ETIMEDOUT;
while (cnt < API_CMD_TIMEOUT) {
val = hifc_hwif_read_reg(hwif, addr);
hw_cons_idx = HIFC_API_CMD_STATUS_GET(val, CONS_IDX);
/* wait for HW cons idx to be updated */
if (hw_cons_idx == chain->cons_idx) {
err = 0;
break;
}
usleep_range(900, 1000);
cnt++;
}
return err;
}
/**
* api_cmd_chain_hw_clean - clean the HW
* @chain: the API CMD specific chain
**/
static void api_cmd_chain_hw_clean(struct hifc_api_cmd_chain *chain)
{
struct hifc_hwif *hwif = chain->hwdev->hwif;
u32 addr, ctrl;
addr = HIFC_CSR_API_CMD_CHAIN_CTRL_ADDR(chain->chain_type);
ctrl = hifc_hwif_read_reg(hwif, addr);
ctrl = HIFC_API_CMD_CHAIN_CTRL_CLEAR(ctrl, RESTART_EN) &
HIFC_API_CMD_CHAIN_CTRL_CLEAR(ctrl, XOR_ERR) &
HIFC_API_CMD_CHAIN_CTRL_CLEAR(ctrl, AEQE_EN) &
HIFC_API_CMD_CHAIN_CTRL_CLEAR(ctrl, XOR_CHK_EN) &
HIFC_API_CMD_CHAIN_CTRL_CLEAR(ctrl, CELL_SIZE);
hifc_hwif_write_reg(hwif, addr, ctrl);
}
/**
* api_cmd_chain_hw_init - initialize the chain in the HW
* @chain: the API CMD specific chain to initialize in HW
* Return: 0 - success, negative - failure
**/
static int api_cmd_chain_hw_init(struct hifc_api_cmd_chain *chain)
{
api_cmd_chain_hw_clean(chain);
api_cmd_set_status_addr(chain);
if (api_cmd_hw_restart(chain)) {
sdk_err(chain->hwdev->dev_hdl, "Failed to restart api_cmd_hw\n");
return -EBUSY;
}
api_cmd_ctrl_init(chain);
api_cmd_set_num_cells(chain);
api_cmd_head_init(chain);
return wait_for_ready_chain(chain);
}
/**
* alloc_cmd_buf - allocate a dma buffer for API CMD command
* @chain: the API CMD specific chain for the cmd
* @cell: the cell in the HW for the cmd
* @cell_idx: the index of the cell
* Return: 0 - success, negative - failure
**/
static int alloc_cmd_buf(struct hifc_api_cmd_chain *chain,
struct hifc_api_cmd_cell *cell, u32 cell_idx)
{
struct hifc_api_cmd_cell_ctxt *cell_ctxt;
void *dev = chain->hwdev->dev_hdl;
void *buf_vaddr;
u64 buf_paddr;
int err = 0;
buf_vaddr = (u8 *)((u64)chain->buf_vaddr_base +
chain->buf_size_align * cell_idx);
buf_paddr = chain->buf_paddr_base +
chain->buf_size_align * cell_idx;
cell_ctxt = &chain->cell_ctxt[cell_idx];
cell_ctxt->api_cmd_vaddr = buf_vaddr;
/* set the cmd DMA address in the cell */
switch (chain->chain_type) {
case HIFC_API_CMD_POLL_READ:
cell->read.hw_cmd_paddr = cpu_to_be64(buf_paddr);
break;
case HIFC_API_CMD_WRITE_TO_MGMT_CPU:
case HIFC_API_CMD_POLL_WRITE:
case HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU:
/* The data in the HW should be in Big Endian Format */
cell->write.hw_cmd_paddr = cpu_to_be64(buf_paddr);
break;
default:
sdk_err(dev, "Unknown API CMD Chain type: %d\n",
chain->chain_type);
err = -EINVAL;
break;
}
return err;
}
static void alloc_resp_buf(struct hifc_api_cmd_chain *chain,
struct hifc_api_cmd_cell *cell, u32 cell_idx)
{
struct hifc_api_cmd_cell_ctxt *cell_ctxt;
void *resp_vaddr;
u64 resp_paddr;
resp_vaddr = (u8 *)((u64)chain->rsp_vaddr_base +
chain->rsp_size_align * cell_idx);
resp_paddr = chain->rsp_paddr_base +
chain->rsp_size_align * cell_idx;
cell_ctxt = &chain->cell_ctxt[cell_idx];
cell_ctxt->resp = resp_vaddr;
cell->read.hw_wb_resp_paddr = cpu_to_be64(resp_paddr);
}
static int hifc_alloc_api_cmd_cell_buf(struct hifc_api_cmd_chain *chain,
u32 cell_idx,
struct hifc_api_cmd_cell *node)
{
void *dev = chain->hwdev->dev_hdl;
int err;
/* For read chain, we should allocate buffer for the response data */
if (chain->chain_type == HIFC_API_CMD_MULTI_READ ||
chain->chain_type == HIFC_API_CMD_POLL_READ)
alloc_resp_buf(chain, node, cell_idx);
switch (chain->chain_type) {
case HIFC_API_CMD_WRITE_TO_MGMT_CPU:
case HIFC_API_CMD_POLL_WRITE:
case HIFC_API_CMD_POLL_READ:
case HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU:
err = alloc_cmd_buf(chain, node, cell_idx);
if (err) {
sdk_err(dev, "Failed to allocate cmd buffer\n");
goto alloc_cmd_buf_err;
}
break;
/* For api command write and api command read, the data section
* is directly inserted in the cell, so no need to allocate.
*/
case HIFC_API_CMD_MULTI_READ:
chain->cell_ctxt[cell_idx].api_cmd_vaddr =
&node->read.hw_cmd_paddr;
break;
default:
sdk_err(dev, "Unsupported API CMD chain type\n");
err = -EINVAL;
goto alloc_cmd_buf_err;
}
return 0;
alloc_cmd_buf_err:
return err;
}
/**
* api_cmd_create_cell - create API CMD cell of specific chain
* @chain: the API CMD specific chain to create its cell
* @cell_idx: the cell index to create
* @pre_node: previous cell
* @node_vaddr: the virt addr of the cell
* Return: 0 - success, negative - failure
**/
static int api_cmd_create_cell(struct hifc_api_cmd_chain *chain, u32 cell_idx,
struct hifc_api_cmd_cell *pre_node,
struct hifc_api_cmd_cell **node_vaddr)
{
struct hifc_api_cmd_cell_ctxt *cell_ctxt;
struct hifc_api_cmd_cell *node;
void *cell_vaddr;
u64 cell_paddr;
int err;
cell_vaddr = (void *)((u64)chain->cell_vaddr_base +
chain->cell_size_align * cell_idx);
cell_paddr = chain->cell_paddr_base +
chain->cell_size_align * cell_idx;
cell_ctxt = &chain->cell_ctxt[cell_idx];
cell_ctxt->cell_vaddr = cell_vaddr;
node = cell_ctxt->cell_vaddr;
if (!pre_node) {
chain->head_node = cell_vaddr;
chain->head_cell_paddr = cell_paddr;
} else {
/* The data in the HW should be in Big Endian Format */
pre_node->next_cell_paddr = cpu_to_be64(cell_paddr);
}
/* Driver software should make sure that there is an empty API
* command cell at the end the chain
*/
node->next_cell_paddr = 0;
err = hifc_alloc_api_cmd_cell_buf(chain, cell_idx, node);
if (err)
return err;
*node_vaddr = node;
return 0;
}
/**
* api_cmd_create_cells - create API CMD cells for specific chain
* @chain: the API CMD specific chain
* Return: 0 - success, negative - failure
**/
static int api_cmd_create_cells(struct hifc_api_cmd_chain *chain)
{
struct hifc_api_cmd_cell *node = NULL, *pre_node = NULL;
void *dev = chain->hwdev->dev_hdl;
u32 cell_idx;
int err;
for (cell_idx = 0; cell_idx < chain->num_cells; cell_idx++) {
err = api_cmd_create_cell(chain, cell_idx, pre_node, &node);
if (err) {
sdk_err(dev, "Failed to create API CMD cell\n");
return err;
}
pre_node = node;
}
if (!node)
return -EFAULT;
/* set the Final node to point on the start */
node->next_cell_paddr = cpu_to_be64(chain->head_cell_paddr);
/* set the current node to be the head */
chain->curr_node = chain->head_node;
return 0;
}
/**
* api_chain_init - initialize API CMD specific chain
* @chain: the API CMD specific chain to initialize
* @attr: attributes to set in the chain
* Return: 0 - success, negative - failure
**/
static int api_chain_init(struct hifc_api_cmd_chain *chain,
struct hifc_api_cmd_chain_attr *attr)
{
void *dev = chain->hwdev->dev_hdl;
size_t cell_ctxt_size;
size_t cells_buf_size;
int err;
chain->chain_type = attr->chain_type;
chain->num_cells = attr->num_cells;
chain->cell_size = attr->cell_size;
chain->rsp_size = attr->rsp_size;
chain->prod_idx = 0;
chain->cons_idx = 0;
if (chain->chain_type == HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU)
spin_lock_init(&chain->async_lock);
else
sema_init(&chain->sem, 1);
cell_ctxt_size = chain->num_cells * sizeof(*chain->cell_ctxt);
if (!cell_ctxt_size) {
sdk_err(dev, "Api chain cell size cannot be zero\n");
err = -EINVAL;
goto alloc_cell_ctxt_err;
}
chain->cell_ctxt = kzalloc(cell_ctxt_size, GFP_KERNEL);
if (!chain->cell_ctxt) {
sdk_err(dev, "Failed to allocate cell contexts for a chain\n");
err = -ENOMEM;
goto alloc_cell_ctxt_err;
}
chain->wb_status = dma_zalloc_coherent(dev,
sizeof(*chain->wb_status),
&chain->wb_status_paddr,
GFP_KERNEL);
if (!chain->wb_status) {
sdk_err(dev, "Failed to allocate DMA wb status\n");
err = -ENOMEM;
goto alloc_wb_status_err;
}
chain->cell_size_align = ALIGN((u64)chain->cell_size,
API_CMD_NODE_ALIGN_SIZE);
chain->rsp_size_align = ALIGN((u64)chain->rsp_size,
API_CHAIN_RESP_ALIGNMENT);
chain->buf_size_align = ALIGN(API_CMD_BUF_SIZE, API_PAYLOAD_ALIGN_SIZE);
cells_buf_size = (chain->cell_size_align + chain->rsp_size_align +
chain->buf_size_align) * chain->num_cells;
err = hifc_dma_zalloc_coherent_align(dev, cells_buf_size,
API_CMD_NODE_ALIGN_SIZE,
GFP_KERNEL,
&chain->cells_addr);
if (err) {
sdk_err(dev, "Failed to allocate API CMD cells buffer\n");
goto alloc_cells_buf_err;
}
chain->cell_vaddr_base = chain->cells_addr.align_vaddr;
chain->cell_paddr_base = chain->cells_addr.align_paddr;
chain->rsp_vaddr_base = (u8 *)((u64)chain->cell_vaddr_base +
chain->cell_size_align * chain->num_cells);
chain->rsp_paddr_base = chain->cell_paddr_base +
chain->cell_size_align * chain->num_cells;
chain->buf_vaddr_base = (u8 *)((u64)chain->rsp_vaddr_base +
chain->rsp_size_align * chain->num_cells);
chain->buf_paddr_base = chain->rsp_paddr_base +
chain->rsp_size_align * chain->num_cells;
return 0;
alloc_cells_buf_err:
dma_free_coherent(dev, sizeof(*chain->wb_status),
chain->wb_status, chain->wb_status_paddr);
alloc_wb_status_err:
kfree(chain->cell_ctxt);
alloc_cell_ctxt_err:
return err;
}
/**
* api_chain_free - free API CMD specific chain
* @chain: the API CMD specific chain to free
**/
static void api_chain_free(struct hifc_api_cmd_chain *chain)
{
void *dev = chain->hwdev->dev_hdl;
hifc_dma_free_coherent_align(dev, &chain->cells_addr);
dma_free_coherent(dev, sizeof(*chain->wb_status),
chain->wb_status, chain->wb_status_paddr);
kfree(chain->cell_ctxt);
}
/**
* api_cmd_create_chain - create API CMD specific chain
* @chain: the API CMD specific chain to create
* @attr: attributes to set in the chain
* Return: 0 - success, negative - failure
**/
static int api_cmd_create_chain(struct hifc_api_cmd_chain **cmd_chain,
struct hifc_api_cmd_chain_attr *attr)
{
struct hifc_hwdev *hwdev = attr->hwdev;
struct hifc_api_cmd_chain *chain;
int err;
if (attr->num_cells & (attr->num_cells - 1)) {
sdk_err(hwdev->dev_hdl, "Invalid number of cells, must be power of 2\n");
return -EINVAL;
}
chain = kzalloc(sizeof(*chain), GFP_KERNEL);
if (!chain)
return -ENOMEM;
chain->hwdev = hwdev;
err = api_chain_init(chain, attr);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to initialize chain\n");
goto chain_init_err;
}
err = api_cmd_create_cells(chain);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to create cells for API CMD chain\n");
goto create_cells_err;
}
err = api_cmd_chain_hw_init(chain);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to initialize chain HW\n");
goto chain_hw_init_err;
}
*cmd_chain = chain;
return 0;
chain_hw_init_err:
create_cells_err:
api_chain_free(chain);
chain_init_err:
kfree(chain);
return err;
}
/**
* api_cmd_destroy_chain - destroy API CMD specific chain
* @chain: the API CMD specific chain to destroy
**/
static void api_cmd_destroy_chain(struct hifc_api_cmd_chain *chain)
{
api_chain_free(chain);
kfree(chain);
}
/**
* hifc_api_cmd_init - Initialize all the API CMD chains
* @hwdev: the pointer to hw device
* @chain: the API CMD chains that will be initialized
* Return: 0 - success, negative - failure
**/
int hifc_api_cmd_init(struct hifc_hwdev *hwdev,
struct hifc_api_cmd_chain **chain)
{
void *dev = hwdev->dev_hdl;
struct hifc_api_cmd_chain_attr attr;
enum hifc_api_cmd_chain_type chain_type, i;
int err;
attr.hwdev = hwdev;
attr.num_cells = API_CHAIN_NUM_CELLS;
attr.cell_size = API_CHAIN_CELL_SIZE;
attr.rsp_size = API_CHAIN_RSP_DATA_SIZE;
chain_type = HIFC_API_CMD_WRITE_TO_MGMT_CPU;
for (; chain_type < HIFC_API_CMD_MAX; chain_type++) {
attr.chain_type = chain_type;
err = api_cmd_create_chain(&chain[chain_type], &attr);
if (err) {
sdk_err(dev, "Failed to create chain %d\n", chain_type);
goto create_chain_err;
}
}
return 0;
create_chain_err:
i = HIFC_API_CMD_WRITE_TO_MGMT_CPU;
for (; i < chain_type; i++)
api_cmd_destroy_chain(chain[i]);
return err;
}
/**
* hifc_api_cmd_free - free the API CMD chains
* @chain: the API CMD chains that will be freed
**/
void hifc_api_cmd_free(struct hifc_api_cmd_chain **chain)
{
enum hifc_api_cmd_chain_type chain_type;
chain_type = HIFC_API_CMD_WRITE_TO_MGMT_CPU;
for (; chain_type < HIFC_API_CMD_MAX; chain_type++)
api_cmd_destroy_chain(chain[chain_type]);
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef HIFC_API_CMD_H_
#define HIFC_API_CMD_H_
#define HIFC_API_CMD_CELL_CTRL_CELL_LEN_SHIFT 0
#define HIFC_API_CMD_CELL_CTRL_RD_DMA_ATTR_OFF_SHIFT 16
#define HIFC_API_CMD_CELL_CTRL_WR_DMA_ATTR_OFF_SHIFT 24
#define HIFC_API_CMD_CELL_CTRL_XOR_CHKSUM_SHIFT 56
#define HIFC_API_CMD_CELL_CTRL_CELL_LEN_MASK 0x3FU
#define HIFC_API_CMD_CELL_CTRL_RD_DMA_ATTR_OFF_MASK 0x3FU
#define HIFC_API_CMD_CELL_CTRL_WR_DMA_ATTR_OFF_MASK 0x3FU
#define HIFC_API_CMD_CELL_CTRL_XOR_CHKSUM_MASK 0xFFU
#define HIFC_API_CMD_CELL_CTRL_SET(val, member) \
((((u64)val) & HIFC_API_CMD_CELL_CTRL_##member##_MASK) << \
HIFC_API_CMD_CELL_CTRL_##member##_SHIFT)
#define HIFC_API_CMD_DESC_API_TYPE_SHIFT 0
#define HIFC_API_CMD_DESC_RD_WR_SHIFT 1
#define HIFC_API_CMD_DESC_MGMT_BYPASS_SHIFT 2
#define HIFC_API_CMD_DESC_RESP_AEQE_EN_SHIFT 3
#define HIFC_API_CMD_DESC_PRIV_DATA_SHIFT 8
#define HIFC_API_CMD_DESC_DEST_SHIFT 32
#define HIFC_API_CMD_DESC_SIZE_SHIFT 40
#define HIFC_API_CMD_DESC_XOR_CHKSUM_SHIFT 56
#define HIFC_API_CMD_DESC_API_TYPE_MASK 0x1U
#define HIFC_API_CMD_DESC_RD_WR_MASK 0x1U
#define HIFC_API_CMD_DESC_MGMT_BYPASS_MASK 0x1U
#define HIFC_API_CMD_DESC_RESP_AEQE_EN_MASK 0x1U
#define HIFC_API_CMD_DESC_DEST_MASK 0x1FU
#define HIFC_API_CMD_DESC_SIZE_MASK 0x7FFU
#define HIFC_API_CMD_DESC_XOR_CHKSUM_MASK 0xFFU
#define HIFC_API_CMD_DESC_PRIV_DATA_MASK 0xFFFFFFU
#define HIFC_API_CMD_DESC_SET(val, member) \
((((u64)val) & HIFC_API_CMD_DESC_##member##_MASK) << \
HIFC_API_CMD_DESC_##member##_SHIFT)
#define HIFC_API_CMD_STATUS_HEADER_VALID_SHIFT 0
#define HIFC_API_CMD_STATUS_HEADER_CHAIN_ID_SHIFT 16
#define HIFC_API_CMD_STATUS_HEADER_VALID_MASK 0xFFU
#define HIFC_API_CMD_STATUS_HEADER_CHAIN_ID_MASK 0xFFU
#define HIFC_API_CMD_STATUS_HEADER_GET(val, member) \
(((val) >> HIFC_API_CMD_STATUS_HEADER_##member##_SHIFT) & \
HIFC_API_CMD_STATUS_HEADER_##member##_MASK)
#define HIFC_API_CMD_CHAIN_REQ_RESTART_SHIFT 1
#define HIFC_API_CMD_CHAIN_REQ_RESTART_MASK 0x1U
#define HIFC_API_CMD_CHAIN_REQ_WB_TRIGGER_MASK 0x1U
#define HIFC_API_CMD_CHAIN_REQ_SET(val, member) \
(((val) & HIFC_API_CMD_CHAIN_REQ_##member##_MASK) << \
HIFC_API_CMD_CHAIN_REQ_##member##_SHIFT)
#define HIFC_API_CMD_CHAIN_REQ_GET(val, member) \
(((val) >> HIFC_API_CMD_CHAIN_REQ_##member##_SHIFT) & \
HIFC_API_CMD_CHAIN_REQ_##member##_MASK)
#define HIFC_API_CMD_CHAIN_REQ_CLEAR(val, member) \
((val) & (~(HIFC_API_CMD_CHAIN_REQ_##member##_MASK \
<< HIFC_API_CMD_CHAIN_REQ_##member##_SHIFT)))
#define HIFC_API_CMD_CHAIN_CTRL_RESTART_EN_SHIFT 1
#define HIFC_API_CMD_CHAIN_CTRL_XOR_ERR_SHIFT 2
#define HIFC_API_CMD_CHAIN_CTRL_AEQE_EN_SHIFT 4
#define HIFC_API_CMD_CHAIN_CTRL_AEQ_ID_SHIFT 8
#define HIFC_API_CMD_CHAIN_CTRL_XOR_CHK_EN_SHIFT 28
#define HIFC_API_CMD_CHAIN_CTRL_CELL_SIZE_SHIFT 30
#define HIFC_API_CMD_CHAIN_CTRL_RESTART_EN_MASK 0x1U
#define HIFC_API_CMD_CHAIN_CTRL_XOR_ERR_MASK 0x1U
#define HIFC_API_CMD_CHAIN_CTRL_AEQE_EN_MASK 0x1U
#define HIFC_API_CMD_CHAIN_CTRL_AEQ_ID_MASK 0x3U
#define HIFC_API_CMD_CHAIN_CTRL_XOR_CHK_EN_MASK 0x3U
#define HIFC_API_CMD_CHAIN_CTRL_CELL_SIZE_MASK 0x3U
#define HIFC_API_CMD_CHAIN_CTRL_SET(val, member) \
(((val) & HIFC_API_CMD_CHAIN_CTRL_##member##_MASK) << \
HIFC_API_CMD_CHAIN_CTRL_##member##_SHIFT)
#define HIFC_API_CMD_CHAIN_CTRL_CLEAR(val, member) \
((val) & (~(HIFC_API_CMD_CHAIN_CTRL_##member##_MASK \
<< HIFC_API_CMD_CHAIN_CTRL_##member##_SHIFT)))
#define HIFC_API_CMD_RESP_HEAD_VALID_MASK 0xFF
#define HIFC_API_CMD_RESP_HEAD_VALID_CODE 0xFF
#define HIFC_API_CMD_RESP_HEADER_VALID(val) \
(((val) & HIFC_API_CMD_RESP_HEAD_VALID_MASK) == \
HIFC_API_CMD_RESP_HEAD_VALID_CODE)
#define HIFC_API_CMD_STATUS_CONS_IDX_MASK 0xFFFFFFU
#define HIFC_API_CMD_STATUS_CONS_IDX_SHIFT 0
#define HIFC_API_CMD_STATUS_FSM_MASK 0xFU
#define HIFC_API_CMD_STATUS_FSM_SHIFT 24
#define HIFC_API_CMD_STATUS_CHKSUM_ERR_MASK 0x3U
#define HIFC_API_CMD_STATUS_CHKSUM_ERR_SHIFT 28
#define HIFC_API_CMD_STATUS_CPLD_ERR_MASK 0x1U
#define HIFC_API_CMD_STATUS_CPLD_ERR_SHIFT 30
#define HIFC_API_CMD_STATUS_GET(val, member) \
(((val) >> HIFC_API_CMD_STATUS_##member##_SHIFT) & \
HIFC_API_CMD_STATUS_##member##_MASK)
/* API CMD registers */
#define HIFC_CSR_API_CMD_BASE 0xF000
#define HIFC_CSR_API_CMD_STRIDE 0x100
#define HIFC_CSR_API_CMD_CHAIN_HEAD_HI_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0x0 + (idx) * HIFC_CSR_API_CMD_STRIDE)
#define HIFC_CSR_API_CMD_CHAIN_HEAD_LO_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0x4 + (idx) * HIFC_CSR_API_CMD_STRIDE)
#define HIFC_CSR_API_CMD_STATUS_HI_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0x8 + (idx) * HIFC_CSR_API_CMD_STRIDE)
#define HIFC_CSR_API_CMD_STATUS_LO_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0xC + (idx) * HIFC_CSR_API_CMD_STRIDE)
#define HIFC_CSR_API_CMD_CHAIN_NUM_CELLS_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0x10 + (idx) * HIFC_CSR_API_CMD_STRIDE)
#define HIFC_CSR_API_CMD_CHAIN_CTRL_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0x14 + (idx) * HIFC_CSR_API_CMD_STRIDE)
#define HIFC_CSR_API_CMD_CHAIN_PI_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0x1C + (idx) * HIFC_CSR_API_CMD_STRIDE)
#define HIFC_CSR_API_CMD_CHAIN_REQ_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0x20 + (idx) * HIFC_CSR_API_CMD_STRIDE)
#define HIFC_CSR_API_CMD_STATUS_0_ADDR(idx) \
(HIFC_CSR_API_CMD_BASE + 0x30 + (idx) * HIFC_CSR_API_CMD_STRIDE)
enum hifc_api_cmd_chain_type {
/* write command with completion notification */
HIFC_API_CMD_WRITE = 0,
/* read command with completion notification */
HIFC_API_CMD_READ = 1,
/* write to mgmt cpu command with completion */
HIFC_API_CMD_WRITE_TO_MGMT_CPU = 2,
/* multi read command with completion notification - not used */
HIFC_API_CMD_MULTI_READ = 3,
/* write command without completion notification */
HIFC_API_CMD_POLL_WRITE = 4,
/* read command without completion notification */
HIFC_API_CMD_POLL_READ = 5,
/* read from mgmt cpu command with completion */
HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU = 6,
HIFC_API_CMD_MAX,
};
struct hifc_api_cmd_status {
u64 header;
u32 buf_desc;
u32 cell_addr_hi;
u32 cell_addr_lo;
u32 rsvd0;
u64 rsvd1;
};
/* HW struct */
struct hifc_api_cmd_cell {
u64 ctrl;
/* address is 64 bit in HW struct */
u64 next_cell_paddr;
u64 desc;
/* HW struct */
union {
struct {
u64 hw_cmd_paddr;
} write;
struct {
u64 hw_wb_resp_paddr;
u64 hw_cmd_paddr;
} read;
};
};
struct hifc_api_cmd_resp_fmt {
u64 header;
u64 rsvd[3];
u64 resp_data;
};
struct hifc_api_cmd_cell_ctxt {
struct hifc_api_cmd_cell *cell_vaddr;
void *api_cmd_vaddr;
struct hifc_api_cmd_resp_fmt *resp;
struct completion done;
int status;
u32 saved_prod_idx;
};
struct hifc_api_cmd_chain_attr {
struct hifc_hwdev *hwdev;
enum hifc_api_cmd_chain_type chain_type;
u32 num_cells;
u16 rsp_size;
u16 cell_size;
};
struct hifc_api_cmd_chain {
struct hifc_hwdev *hwdev;
enum hifc_api_cmd_chain_type chain_type;
u32 num_cells;
u16 cell_size;
u16 rsp_size;
/* HW members is 24 bit format */
u32 prod_idx;
u32 cons_idx;
struct semaphore sem;
/* Async cmd can not be scheduling */
spinlock_t async_lock;
dma_addr_t wb_status_paddr;
struct hifc_api_cmd_status *wb_status;
dma_addr_t head_cell_paddr;
struct hifc_api_cmd_cell *head_node;
struct hifc_api_cmd_cell_ctxt *cell_ctxt;
struct hifc_api_cmd_cell *curr_node;
struct hifc_dma_addr_align cells_addr;
u8 *cell_vaddr_base;
u64 cell_paddr_base;
u8 *rsp_vaddr_base;
u64 rsp_paddr_base;
u8 *buf_vaddr_base;
u64 buf_paddr_base;
u64 cell_size_align;
u64 rsp_size_align;
u64 buf_size_align;
};
int hifc_api_cmd_write(struct hifc_api_cmd_chain *chain,
enum hifc_node_id dest, void *cmd, u16 size);
int hifc_api_cmd_read(struct hifc_api_cmd_chain *chain,
enum hifc_node_id dest, void *cmd, u16 size,
void *ack, u16 ack_size);
int hifc_api_cmd_init(struct hifc_hwdev *hwdev,
struct hifc_api_cmd_chain **chain);
void hifc_api_cmd_free(struct hifc_api_cmd_chain **chain);
#endif
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mutex.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/semaphore.h>
#include <linux/vmalloc.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_hwif.h"
#include "hifc_cqm_main.h"
#include "hifc_api_cmd.h"
#include "hifc_hw.h"
#include "hifc_mgmt.h"
#include "hifc_cfg.h"
uint intr_mode;
int hifc_sync_time(void *hwdev, u64 time)
{
struct hifc_sync_time_info time_info = {0};
u16 out_size = sizeof(time_info);
int err;
time_info.mstime = time;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_SYNC_TIME, &time_info,
sizeof(time_info), &time_info, &out_size,
0);
if (err || time_info.status || !out_size) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to sync time to mgmt, err: %d, status: 0x%x, out size: 0x%x\n",
err, time_info.status, out_size);
}
return err;
}
static void parse_pub_res_cap(struct service_cap *cap,
struct hifc_dev_cap *dev_cap,
enum func_type type)
{
cap->port_id = dev_cap->port_id;
cap->force_up = dev_cap->force_up;
pr_info("Get public resource capbility, force_up: 0x%x\n",
cap->force_up);
/* FC need max queue number, but max queue number info is in
* l2nic cap, we also put max queue num info in public cap, so
* FC can get correct max queue number info.
*/
cap->max_sqs = dev_cap->nic_max_sq + 1;
cap->max_rqs = dev_cap->nic_max_rq + 1;
cap->host_total_function = dev_cap->host_total_func;
cap->host_oq_id_mask_val = dev_cap->host_oq_id_mask_val;
cap->max_connect_num = dev_cap->max_conn_num;
cap->max_stick2cache_num = dev_cap->max_stick2cache_num;
pr_info("Get public resource capbility, svc_cap_en: 0x%x\n",
dev_cap->svc_cap_en);
pr_info("port_id=0x%x\n", cap->port_id);
pr_info("Host_total_function=0x%x, host_oq_id_mask_val=0x%x\n",
cap->host_total_function, cap->host_oq_id_mask_val);
}
static void parse_fc_res_cap(struct service_cap *cap,
struct hifc_dev_cap *dev_cap,
enum func_type type)
{
struct dev_fc_svc_cap *fc_cap = &cap->fc_cap.dev_fc_cap;
fc_cap->max_parent_qpc_num = dev_cap->fc_max_pctx;
fc_cap->scq_num = dev_cap->fc_max_scq;
fc_cap->srq_num = dev_cap->fc_max_srq;
fc_cap->max_child_qpc_num = dev_cap->fc_max_cctx;
fc_cap->vp_id_start = dev_cap->fc_vp_id_start;
fc_cap->vp_id_end = dev_cap->fc_vp_id_end;
pr_info("Get fc resource capbility\n");
pr_info("Max_parent_qpc_num=0x%x, scq_num=0x%x, srq_num=0x%x, max_child_qpc_num=0x%x\n",
fc_cap->max_parent_qpc_num, fc_cap->scq_num, fc_cap->srq_num,
fc_cap->max_child_qpc_num);
pr_info("Vp_id_start=0x%x, vp_id_end=0x%x\n",
fc_cap->vp_id_start, fc_cap->vp_id_end);
}
static void parse_dev_cap(struct hifc_hwdev *dev,
struct hifc_dev_cap *dev_cap, enum func_type type)
{
struct service_cap *cap = &dev->cfg_mgmt->svc_cap;
/* Public resource */
parse_pub_res_cap(cap, dev_cap, type);
/* PPF managed dynamic resource */
parse_fc_res_cap(cap, dev_cap, type);
}
static int get_cap_from_fw(struct hifc_hwdev *dev, enum func_type type)
{
struct hifc_dev_cap dev_cap = {0};
u16 out_len = sizeof(dev_cap);
int err;
dev_cap.version = HIFC_CMD_VER_FUNC_ID;
err = hifc_global_func_id_get(dev, &dev_cap.func_id);
if (err)
return err;
sdk_info(dev->dev_hdl, "Get cap from fw, func_idx: %d\n",
dev_cap.func_id);
err = hifc_msg_to_mgmt_sync(dev, HIFC_MOD_CFGM, HIFC_CFG_NIC_CAP,
&dev_cap, sizeof(dev_cap),
&dev_cap, &out_len, 0);
if (err || dev_cap.status || !out_len) {
sdk_err(dev->dev_hdl,
"Failed to get capability from FW, err: %d, status: 0x%x, out size: 0x%x\n",
err, dev_cap.status, out_len);
return -EFAULT;
}
parse_dev_cap(dev, &dev_cap, type);
return 0;
}
static void fc_param_fix(struct hifc_hwdev *dev)
{
struct service_cap *cap = &dev->cfg_mgmt->svc_cap;
struct fc_service_cap *fc_cap = &cap->fc_cap;
fc_cap->parent_qpc_size = FC_PCTX_SZ;
fc_cap->child_qpc_size = FC_CCTX_SZ;
fc_cap->sqe_size = FC_SQE_SZ;
fc_cap->scqc_size = FC_SCQC_SZ;
fc_cap->scqe_size = FC_SCQE_SZ;
fc_cap->srqc_size = FC_SRQC_SZ;
fc_cap->srqe_size = FC_SRQE_SZ;
}
static void cfg_get_eq_num(struct hifc_hwdev *dev)
{
struct cfg_eq_info *eq_info = &dev->cfg_mgmt->eq_info;
eq_info->num_ceq = dev->hwif->attr.num_ceqs;
eq_info->num_ceq_remain = eq_info->num_ceq;
}
static int cfg_init_eq(struct hifc_hwdev *dev)
{
struct cfg_mgmt_info *cfg_mgmt = dev->cfg_mgmt;
struct cfg_eq *eq;
u8 num_ceq, i = 0;
cfg_get_eq_num(dev);
num_ceq = cfg_mgmt->eq_info.num_ceq;
sdk_info(dev->dev_hdl, "Cfg mgmt: ceqs=0x%x, remain=0x%x\n",
cfg_mgmt->eq_info.num_ceq, cfg_mgmt->eq_info.num_ceq_remain);
if (!num_ceq) {
sdk_err(dev->dev_hdl, "Ceq num cfg in fw is zero\n");
return -EFAULT;
}
eq = kcalloc(num_ceq, sizeof(*eq), GFP_KERNEL);
if (!eq)
return -ENOMEM;
for (i = 0; i < num_ceq; ++i) {
eq[i].eqn = i;
eq[i].free = CFG_FREE;
eq[i].type = SERVICE_T_MAX;
}
cfg_mgmt->eq_info.eq = eq;
mutex_init(&cfg_mgmt->eq_info.eq_mutex);
return 0;
}
static int cfg_init_interrupt(struct hifc_hwdev *dev)
{
struct cfg_mgmt_info *cfg_mgmt = dev->cfg_mgmt;
struct cfg_irq_info *irq_info = &cfg_mgmt->irq_param_info;
u16 intr_num = dev->hwif->attr.num_irqs;
if (!intr_num) {
sdk_err(dev->dev_hdl, "Irq num cfg in fw is zero\n");
return -EFAULT;
}
irq_info->alloc_info = kcalloc(intr_num, sizeof(*irq_info->alloc_info),
GFP_KERNEL);
if (!irq_info->alloc_info)
return -ENOMEM;
irq_info->num_irq_hw = intr_num;
cfg_mgmt->svc_cap.interrupt_type = intr_mode;
mutex_init(&irq_info->irq_mutex);
return 0;
}
static int cfg_enable_interrupt(struct hifc_hwdev *dev)
{
struct cfg_mgmt_info *cfg_mgmt = dev->cfg_mgmt;
u16 nreq = cfg_mgmt->irq_param_info.num_irq_hw;
void *pcidev = dev->pcidev_hdl;
struct irq_alloc_info_st *irq_info;
struct msix_entry *entry;
u16 i = 0;
int actual_irq;
irq_info = cfg_mgmt->irq_param_info.alloc_info;
sdk_info(dev->dev_hdl, "Interrupt type: %d, irq num: %d.\n",
cfg_mgmt->svc_cap.interrupt_type, nreq);
switch (cfg_mgmt->svc_cap.interrupt_type) {
case INTR_TYPE_MSIX:
if (!nreq) {
sdk_err(dev->dev_hdl, "Interrupt number cannot be zero\n");
return -EINVAL;
}
entry = kcalloc(nreq, sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
for (i = 0; i < nreq; i++)
entry[i].entry = i;
actual_irq = pci_enable_msix_range(pcidev, entry,
VECTOR_THRESHOLD, nreq);
if (actual_irq < 0) {
sdk_err(dev->dev_hdl, "Alloc msix entries with threshold 2 failed.\n");
kfree(entry);
return -ENOMEM;
}
nreq = (u16)actual_irq;
cfg_mgmt->irq_param_info.num_total = nreq;
cfg_mgmt->irq_param_info.num_irq_remain = nreq;
sdk_info(dev->dev_hdl, "Request %d msix vector success.\n",
nreq);
for (i = 0; i < nreq; ++i) {
/* u16 driver uses to specify entry, OS writes */
irq_info[i].info.msix_entry_idx = entry[i].entry;
/* u32 kernel uses to write allocated vector */
irq_info[i].info.irq_id = entry[i].vector;
irq_info[i].type = SERVICE_T_MAX;
irq_info[i].free = CFG_FREE;
}
kfree(entry);
break;
default:
sdk_err(dev->dev_hdl, "Unsupport interrupt type %d\n",
cfg_mgmt->svc_cap.interrupt_type);
break;
}
return 0;
}
int hifc_alloc_irqs(void *hwdev, enum hifc_service_type type, u16 num,
struct irq_info *irq_info_array, u16 *act_num)
{
struct hifc_hwdev *dev = hwdev;
struct cfg_mgmt_info *cfg_mgmt;
struct cfg_irq_info *irq_info;
struct irq_alloc_info_st *alloc_info;
int max_num_irq;
u16 free_num_irq;
int i, j;
if (!hwdev || !irq_info_array || !act_num)
return -EINVAL;
cfg_mgmt = dev->cfg_mgmt;
irq_info = &cfg_mgmt->irq_param_info;
alloc_info = irq_info->alloc_info;
max_num_irq = irq_info->num_total;
free_num_irq = irq_info->num_irq_remain;
mutex_lock(&irq_info->irq_mutex);
if (num > free_num_irq) {
if (free_num_irq == 0) {
sdk_err(dev->dev_hdl,
"no free irq resource in cfg mgmt.\n");
mutex_unlock(&irq_info->irq_mutex);
return -ENOMEM;
}
sdk_warn(dev->dev_hdl, "only %d irq resource in cfg mgmt.\n",
free_num_irq);
num = free_num_irq;
}
*act_num = 0;
for (i = 0; i < num; i++) {
for (j = 0; j < max_num_irq; j++) {
if (alloc_info[j].free == CFG_FREE) {
if (irq_info->num_irq_remain == 0) {
sdk_err(dev->dev_hdl, "No free irq resource in cfg mgmt\n");
mutex_unlock(&irq_info->irq_mutex);
return -EINVAL;
}
alloc_info[j].type = type;
alloc_info[j].free = CFG_BUSY;
irq_info_array[i].msix_entry_idx =
alloc_info[j].info.msix_entry_idx;
irq_info_array[i].irq_id =
alloc_info[j].info.irq_id;
(*act_num)++;
irq_info->num_irq_remain--;
break;
}
}
}
mutex_unlock(&irq_info->irq_mutex);
return 0;
}
void hifc_free_irq(void *hwdev, enum hifc_service_type type, u32 irq_id)
{
struct hifc_hwdev *dev = hwdev;
struct cfg_mgmt_info *cfg_mgmt;
struct cfg_irq_info *irq_info;
struct irq_alloc_info_st *alloc_info;
int max_num_irq;
int i;
if (!hwdev)
return;
cfg_mgmt = dev->cfg_mgmt;
irq_info = &cfg_mgmt->irq_param_info;
alloc_info = irq_info->alloc_info;
max_num_irq = irq_info->num_total;
mutex_lock(&irq_info->irq_mutex);
for (i = 0; i < max_num_irq; i++) {
if (irq_id == alloc_info[i].info.irq_id &&
type == alloc_info[i].type) {
if (alloc_info[i].free == CFG_BUSY) {
alloc_info[i].free = CFG_FREE;
irq_info->num_irq_remain++;
if (irq_info->num_irq_remain > max_num_irq) {
sdk_err(dev->dev_hdl, "Find target,but over range\n");
mutex_unlock(&irq_info->irq_mutex);
return;
}
break;
}
}
}
if (i >= max_num_irq)
sdk_warn(dev->dev_hdl, "Irq %d don`t need to free\n", irq_id);
mutex_unlock(&irq_info->irq_mutex);
}
int init_cfg_mgmt(struct hifc_hwdev *dev)
{
int err;
struct cfg_mgmt_info *cfg_mgmt;
cfg_mgmt = kzalloc(sizeof(*cfg_mgmt), GFP_KERNEL);
if (!cfg_mgmt)
return -ENOMEM;
dev->cfg_mgmt = cfg_mgmt;
cfg_mgmt->hwdev = dev;
err = cfg_init_eq(dev);
if (err) {
sdk_err(dev->dev_hdl, "Failed to init cfg event queue, err: %d\n",
err);
goto free_mgmt_mem;
}
err = cfg_init_interrupt(dev);
if (err) {
sdk_err(dev->dev_hdl, "Failed to init cfg interrupt, err: %d\n",
err);
goto free_eq_mem;
}
err = cfg_enable_interrupt(dev);
if (err) {
sdk_err(dev->dev_hdl, "Failed to enable cfg interrupt, err: %d\n",
err);
goto free_interrupt_mem;
}
return 0;
free_interrupt_mem:
kfree(cfg_mgmt->irq_param_info.alloc_info);
cfg_mgmt->irq_param_info.alloc_info = NULL;
free_eq_mem:
kfree(cfg_mgmt->eq_info.eq);
cfg_mgmt->eq_info.eq = NULL;
free_mgmt_mem:
kfree(cfg_mgmt);
return err;
}
void free_cfg_mgmt(struct hifc_hwdev *dev)
{
struct cfg_mgmt_info *cfg_mgmt = dev->cfg_mgmt;
/* if the allocated resource were recycled */
if (cfg_mgmt->irq_param_info.num_irq_remain !=
cfg_mgmt->irq_param_info.num_total ||
cfg_mgmt->eq_info.num_ceq_remain != cfg_mgmt->eq_info.num_ceq)
sdk_err(dev->dev_hdl, "Can't reclaim all irq and event queue, please check\n");
switch (cfg_mgmt->svc_cap.interrupt_type) {
case INTR_TYPE_MSIX:
pci_disable_msix(dev->pcidev_hdl);
break;
case INTR_TYPE_MSI:
pci_disable_msi(dev->pcidev_hdl);
break;
case INTR_TYPE_INT:
default:
break;
}
kfree(cfg_mgmt->irq_param_info.alloc_info);
cfg_mgmt->irq_param_info.alloc_info = NULL;
kfree(cfg_mgmt->eq_info.eq);
cfg_mgmt->eq_info.eq = NULL;
kfree(cfg_mgmt);
}
int init_capability(struct hifc_hwdev *dev)
{
int err;
enum func_type type = HIFC_FUNC_TYPE(dev);
struct cfg_mgmt_info *cfg_mgmt = dev->cfg_mgmt;
cfg_mgmt->svc_cap.timer_en = 1;
cfg_mgmt->svc_cap.test_xid_alloc_mode = 1;
cfg_mgmt->svc_cap.test_gpa_check_enable = 1;
err = get_cap_from_fw(dev, type);
if (err) {
sdk_err(dev->dev_hdl, "Failed to get PF/PPF capability\n");
return err;
}
fc_param_fix(dev);
if (dev->cfg_mgmt->svc_cap.force_up)
dev->feature_cap |= HIFC_FUNC_FORCE_LINK_UP;
sdk_info(dev->dev_hdl, "Init capability success\n");
return 0;
}
void free_capability(struct hifc_hwdev *dev)
{
sdk_info(dev->dev_hdl, "Free capability success");
}
bool hifc_support_fc(void *hwdev, struct fc_service_cap *cap)
{
struct hifc_hwdev *dev = hwdev;
if (!hwdev)
return false;
if (cap)
memcpy(cap, &dev->cfg_mgmt->svc_cap.fc_cap, sizeof(*cap));
return true;
}
u8 hifc_host_oq_id_mask(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
if (!dev) {
pr_err("Hwdev pointer is NULL for getting host oq id mask\n");
return 0;
}
return dev->cfg_mgmt->svc_cap.host_oq_id_mask_val;
}
u16 hifc_func_max_qnum(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
if (!dev) {
pr_err("Hwdev pointer is NULL for getting function max queue number\n");
return 0;
}
return dev->cfg_mgmt->svc_cap.max_sqs;
}
/* Caller should ensure atomicity when calling this function */
int hifc_stateful_init(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
int err;
if (!dev)
return -EINVAL;
if (dev->statufull_ref_cnt++)
return 0;
err = cqm_init(dev);
if (err) {
sdk_err(dev->dev_hdl, "Failed to init cqm, err: %d\n", err);
goto init_cqm_err;
}
sdk_info(dev->dev_hdl, "Initialize statefull resource success\n");
return 0;
init_cqm_err:
dev->statufull_ref_cnt--;
return err;
}
/* Caller should ensure atomicity when calling this function */
void hifc_stateful_deinit(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
if (!dev || !dev->statufull_ref_cnt)
return;
if (--dev->statufull_ref_cnt)
return;
cqm_uninit(hwdev);
sdk_info(dev->dev_hdl, "Clear statefull resource success\n");
}
bool hifc_is_hwdev_mod_inited(void *hwdev, enum hifc_hwdev_init_state state)
{
struct hifc_hwdev *dev = hwdev;
if (!hwdev || state >= HIFC_HWDEV_MAX_INVAL_INITED)
return false;
return !!test_bit(state, &dev->func_state);
}
static int hifc_os_dep_init(struct hifc_hwdev *hwdev)
{
hwdev->workq = create_singlethread_workqueue(HIFC_HW_WQ_NAME);
if (!hwdev->workq) {
sdk_err(hwdev->dev_hdl, "Failed to initialize hardware workqueue\n");
return -EFAULT;
}
sema_init(&hwdev->fault_list_sem, 1);
return 0;
}
static void hifc_os_dep_deinit(struct hifc_hwdev *hwdev)
{
destroy_workqueue(hwdev->workq);
}
static int __hilink_phy_init(struct hifc_hwdev *hwdev)
{
int err;
err = hifc_phy_init_status_judge(hwdev);
if (err) {
sdk_info(hwdev->dev_hdl, "Phy init failed\n");
return err;
}
return 0;
}
static int init_hwdev_and_hwif(struct hifc_init_para *para)
{
struct hifc_hwdev *hwdev;
int err;
if (!(*para->hwdev)) {
hwdev = kzalloc(sizeof(*hwdev), GFP_KERNEL);
if (!hwdev)
return -ENOMEM;
*para->hwdev = hwdev;
hwdev->adapter_hdl = para->adapter_hdl;
hwdev->pcidev_hdl = para->pcidev_hdl;
hwdev->dev_hdl = para->dev_hdl;
hwdev->chip_node = para->chip_node;
hwdev->chip_fault_stats = vzalloc(HIFC_CHIP_FAULT_SIZE);
if (!hwdev->chip_fault_stats)
goto alloc_chip_fault_stats_err;
err = hifc_init_hwif(hwdev, para->cfg_reg_base,
para->intr_reg_base,
para->db_base_phy, para->db_base,
para->dwqe_mapping);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init hwif\n");
goto init_hwif_err;
}
}
return 0;
init_hwif_err:
vfree(hwdev->chip_fault_stats);
alloc_chip_fault_stats_err:
*para->hwdev = NULL;
return -EFAULT;
}
static void deinit_hwdev_and_hwif(struct hifc_hwdev *hwdev)
{
hifc_free_hwif(hwdev);
vfree(hwdev->chip_fault_stats);
kfree(hwdev);
}
static int init_hw_cfg(struct hifc_hwdev *hwdev)
{
int err;
err = init_capability(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init capability\n");
return err;
}
err = __hilink_phy_init(hwdev);
if (err)
goto hilink_phy_init_err;
return 0;
hilink_phy_init_err:
free_capability(hwdev);
return err;
}
/* Return:
* 0: all success
* >0: partitial success
* <0: all failed
*/
int hifc_init_hwdev(struct hifc_init_para *para)
{
struct hifc_hwdev *hwdev;
int err;
err = init_hwdev_and_hwif(para);
if (err)
return err;
hwdev = *para->hwdev;
/* detect slave host according to BAR reg */
hwdev->feature_cap = HIFC_FUNC_MGMT | HIFC_FUNC_PORT |
HIFC_FUNC_SUPP_RATE_LIMIT | HIFC_FUNC_SUPP_DFX_REG |
HIFC_FUNC_SUPP_RX_MODE | HIFC_FUNC_SUPP_SET_VF_MAC_VLAN |
HIFC_FUNC_SUPP_CHANGE_MAC;
err = hifc_os_dep_init(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init os dependent\n");
goto os_dep_init_err;
}
hifc_set_chip_present(hwdev);
hifc_init_heartbeat(hwdev);
err = init_cfg_mgmt(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init config mgmt\n");
goto init_cfg_mgmt_err;
}
err = hifc_init_comm_ch(hwdev);
if (err) {
if (!(hwdev->func_state & HIFC_HWDEV_INIT_MODES_MASK)) {
sdk_err(hwdev->dev_hdl, "Failed to init communication channel\n");
goto init_comm_ch_err;
} else {
sdk_err(hwdev->dev_hdl, "Init communication channel partitail failed\n");
return hwdev->func_state & HIFC_HWDEV_INIT_MODES_MASK;
}
}
err = init_hw_cfg(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init hardware config\n");
goto init_hw_cfg_err;
}
set_bit(HIFC_HWDEV_ALL_INITED, &hwdev->func_state);
sdk_info(hwdev->dev_hdl, "Init hwdev success\n");
return 0;
init_hw_cfg_err:
return (hwdev->func_state & HIFC_HWDEV_INIT_MODES_MASK);
init_comm_ch_err:
free_cfg_mgmt(hwdev);
init_cfg_mgmt_err:
hifc_destroy_heartbeat(hwdev);
hifc_os_dep_deinit(hwdev);
os_dep_init_err:
deinit_hwdev_and_hwif(hwdev);
*para->hwdev = NULL;
return -EFAULT;
}
void hifc_free_hwdev(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
enum hifc_hwdev_init_state state = HIFC_HWDEV_ALL_INITED;
int flag = 0;
if (!hwdev)
return;
if (test_bit(HIFC_HWDEV_ALL_INITED, &dev->func_state)) {
clear_bit(HIFC_HWDEV_ALL_INITED, &dev->func_state);
/* BM slave function not need to exec rx_tx_flush */
hifc_func_rx_tx_flush(hwdev);
free_capability(dev);
}
while (state > HIFC_HWDEV_NONE_INITED) {
if (test_bit(state, &dev->func_state)) {
flag = 1;
break;
}
state--;
}
if (flag) {
hifc_uninit_comm_ch(dev);
free_cfg_mgmt(dev);
hifc_destroy_heartbeat(dev);
hifc_os_dep_deinit(dev);
}
clear_bit(HIFC_HWDEV_NONE_INITED, &dev->func_state);
deinit_hwdev_and_hwif(dev);
}
u64 hifc_get_func_feature_cap(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
if (!dev) {
pr_err("Hwdev pointer is NULL for getting function feature capability\n");
return 0;
}
return dev->feature_cap;
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef __CFG_MGT_H__
#define __CFG_MGT_H__
enum {
CFG_FREE = 0,
CFG_BUSY = 1
};
/* FC */
#define FC_PCTX_SZ 256
#define FC_CCTX_SZ 256
#define FC_SQE_SZ 128
#define FC_SCQC_SZ 64
#define FC_SCQE_SZ 64
#define FC_SRQC_SZ 64
#define FC_SRQE_SZ 32
/* device capability */
struct service_cap {
/* Host global resources */
u16 host_total_function;
u8 host_oq_id_mask_val;
/* DO NOT get interrupt_type from firmware */
enum intr_type interrupt_type;
u8 intr_chip_en;
u8 port_id; /* PF/VF's physical port */
u8 force_up;
u8 timer_en; /* 0:disable, 1:enable */
u16 max_sqs;
u16 max_rqs;
/* For test */
bool test_xid_alloc_mode;
bool test_gpa_check_enable;
u32 max_connect_num; /* PF/VF maximum connection number(1M) */
/* The maximum connections which can be stick to cache memory, max 1K */
u16 max_stick2cache_num;
struct nic_service_cap nic_cap; /* NIC capability */
struct fc_service_cap fc_cap; /* FC capability */
};
struct hifc_sync_time_info {
u8 status;
u8 version;
u8 rsvd0[6];
u64 mstime;
};
struct cfg_eq {
enum hifc_service_type type;
int eqn;
int free; /* 1 - alocated, 0- freed */
};
struct cfg_eq_info {
struct cfg_eq *eq;
u8 num_ceq;
u8 num_ceq_remain;
/* mutex used for allocate EQs */
struct mutex eq_mutex;
};
struct irq_alloc_info_st {
enum hifc_service_type type;
int free; /* 1 - alocated, 0- freed */
struct irq_info info;
};
struct cfg_irq_info {
struct irq_alloc_info_st *alloc_info;
u16 num_total;
u16 num_irq_remain;
u16 num_irq_hw; /* device max irq number */
/* mutex used for allocate EQs */
struct mutex irq_mutex;
};
#define VECTOR_THRESHOLD 2
struct cfg_mgmt_info {
struct hifc_hwdev *hwdev;
struct service_cap svc_cap;
struct cfg_eq_info eq_info; /* EQ */
struct cfg_irq_info irq_param_info; /* IRQ */
u32 func_seq_num; /* temporary */
};
enum cfg_sub_cmd {
/* PPF(PF) <-> FW */
HIFC_CFG_NIC_CAP = 0,
CFG_FW_VERSION,
CFG_UCODE_VERSION,
HIFC_CFG_FUNC_CAP,
HIFC_CFG_MBOX_CAP = 6,
};
struct hifc_dev_cap {
u8 status;
u8 version;
u8 rsvd0[6];
/* Public resource */
u8 sf_svc_attr;
u8 host_id;
u8 sf_en_pf;
u8 sf_en_vf;
u8 ep_id;
u8 intr_type;
u8 max_cos_id;
u8 er_id;
u8 port_id;
u8 max_vf;
u16 svc_cap_en;
u16 host_total_func;
u8 host_oq_id_mask_val;
u8 max_vf_cos_id;
u32 max_conn_num;
u16 max_stick2cache_num;
u16 max_bfilter_start_addr;
u16 bfilter_len;
u16 hash_bucket_num;
u8 cfg_file_ver;
u8 net_port_mode;
u8 valid_cos_bitmap; /* every bit indicate cos is valid */
u8 force_up;
u32 pf_num;
u32 pf_id_start;
u32 vf_num;
u32 vf_id_start;
/* shared resource */
u32 host_pctx_num;
u8 host_sf_en;
u8 rsvd2[3];
u32 host_ccxt_num;
u32 host_scq_num;
u32 host_srq_num;
u32 host_mpt_num;
/* l2nic */
u16 nic_max_sq;
u16 nic_max_rq;
u32 rsvd[46];
/* FC */
u32 fc_max_pctx;
u32 fc_max_scq;
u32 fc_max_srq;
u32 fc_max_cctx;
u32 fc_cctx_id_start;
u8 fc_vp_id_start;
u8 fc_vp_id_end;
u16 func_id;
};
#endif
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/module.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_hwif.h"
#include "hifc_wq.h"
#include "hifc_api_cmd.h"
#include "hifc_mgmt.h"
#include "hifc_eqs.h"
#include "hifc_cmdq.h"
#define CMDQ_CMD_TIMEOUT 1000 /* millisecond */
#define UPPER_8_BITS(data) (((data) >> 8) & 0xFF)
#define LOWER_8_BITS(data) ((data) & 0xFF)
#define CMDQ_DB_INFO_HI_PROD_IDX_SHIFT 0
#define CMDQ_DB_INFO_QUEUE_TYPE_SHIFT 23
#define CMDQ_DB_INFO_CMDQ_TYPE_SHIFT 24
#define CMDQ_DB_INFO_SRC_TYPE_SHIFT 27
#define CMDQ_DB_INFO_HI_PROD_IDX_MASK 0xFFU
#define CMDQ_DB_INFO_QUEUE_TYPE_MASK 0x1U
#define CMDQ_DB_INFO_CMDQ_TYPE_MASK 0x7U
#define CMDQ_DB_INFO_SRC_TYPE_MASK 0x1FU
#define CMDQ_DB_INFO_SET(val, member) \
(((val) & CMDQ_DB_INFO_##member##_MASK) << \
CMDQ_DB_INFO_##member##_SHIFT)
#define CMDQ_CTRL_PI_SHIFT 0
#define CMDQ_CTRL_CMD_SHIFT 16
#define CMDQ_CTRL_MOD_SHIFT 24
#define CMDQ_CTRL_ACK_TYPE_SHIFT 29
#define CMDQ_CTRL_HW_BUSY_BIT_SHIFT 31
#define CMDQ_CTRL_PI_MASK 0xFFFFU
#define CMDQ_CTRL_CMD_MASK 0xFFU
#define CMDQ_CTRL_MOD_MASK 0x1FU
#define CMDQ_CTRL_ACK_TYPE_MASK 0x3U
#define CMDQ_CTRL_HW_BUSY_BIT_MASK 0x1U
#define CMDQ_CTRL_SET(val, member) \
(((val) & CMDQ_CTRL_##member##_MASK) \
<< CMDQ_CTRL_##member##_SHIFT)
#define CMDQ_CTRL_GET(val, member) \
(((val) >> CMDQ_CTRL_##member##_SHIFT) \
& CMDQ_CTRL_##member##_MASK)
#define CMDQ_WQE_HEADER_BUFDESC_LEN_SHIFT 0
#define CMDQ_WQE_HEADER_COMPLETE_FMT_SHIFT 15
#define CMDQ_WQE_HEADER_DATA_FMT_SHIFT 22
#define CMDQ_WQE_HEADER_COMPLETE_REQ_SHIFT 23
#define CMDQ_WQE_HEADER_COMPLETE_SECT_LEN_SHIFT 27
#define CMDQ_WQE_HEADER_CTRL_LEN_SHIFT 29
#define CMDQ_WQE_HEADER_HW_BUSY_BIT_SHIFT 31
#define CMDQ_WQE_HEADER_BUFDESC_LEN_MASK 0xFFU
#define CMDQ_WQE_HEADER_COMPLETE_FMT_MASK 0x1U
#define CMDQ_WQE_HEADER_DATA_FMT_MASK 0x1U
#define CMDQ_WQE_HEADER_COMPLETE_REQ_MASK 0x1U
#define CMDQ_WQE_HEADER_COMPLETE_SECT_LEN_MASK 0x3U
#define CMDQ_WQE_HEADER_CTRL_LEN_MASK 0x3U
#define CMDQ_WQE_HEADER_HW_BUSY_BIT_MASK 0x1U
#define CMDQ_WQE_HEADER_SET(val, member) \
(((val) & CMDQ_WQE_HEADER_##member##_MASK) \
<< CMDQ_WQE_HEADER_##member##_SHIFT)
#define CMDQ_WQE_HEADER_GET(val, member) \
(((val) >> CMDQ_WQE_HEADER_##member##_SHIFT) \
& CMDQ_WQE_HEADER_##member##_MASK)
#define CMDQ_CTXT_CURR_WQE_PAGE_PFN_SHIFT 0
#define CMDQ_CTXT_EQ_ID_SHIFT 56
#define CMDQ_CTXT_CEQ_ARM_SHIFT 61
#define CMDQ_CTXT_CEQ_EN_SHIFT 62
#define CMDQ_CTXT_HW_BUSY_BIT_SHIFT 63
#define CMDQ_CTXT_CURR_WQE_PAGE_PFN_MASK 0xFFFFFFFFFFFFF
#define CMDQ_CTXT_EQ_ID_MASK 0x1F
#define CMDQ_CTXT_CEQ_ARM_MASK 0x1
#define CMDQ_CTXT_CEQ_EN_MASK 0x1
#define CMDQ_CTXT_HW_BUSY_BIT_MASK 0x1
#define CMDQ_CTXT_PAGE_INFO_SET(val, member) \
(((u64)(val) & CMDQ_CTXT_##member##_MASK) \
<< CMDQ_CTXT_##member##_SHIFT)
#define CMDQ_CTXT_PAGE_INFO_GET(val, member) \
(((u64)(val) >> CMDQ_CTXT_##member##_SHIFT) \
& CMDQ_CTXT_##member##_MASK)
#define CMDQ_CTXT_WQ_BLOCK_PFN_SHIFT 0
#define CMDQ_CTXT_CI_SHIFT 52
#define CMDQ_CTXT_WQ_BLOCK_PFN_MASK 0xFFFFFFFFFFFFF
#define CMDQ_CTXT_CI_MASK 0xFFF
#define CMDQ_CTXT_BLOCK_INFO_SET(val, member) \
(((u64)(val) & CMDQ_CTXT_##member##_MASK) \
<< CMDQ_CTXT_##member##_SHIFT)
#define CMDQ_CTXT_BLOCK_INFO_GET(val, member) \
(((u64)(val) >> CMDQ_CTXT_##member##_SHIFT) \
& CMDQ_CTXT_##member##_MASK)
#define SAVED_DATA_ARM_SHIFT 31
#define SAVED_DATA_ARM_MASK 0x1U
#define SAVED_DATA_SET(val, member) \
(((val) & SAVED_DATA_##member##_MASK) \
<< SAVED_DATA_##member##_SHIFT)
#define SAVED_DATA_CLEAR(val, member) \
((val) & (~(SAVED_DATA_##member##_MASK \
<< SAVED_DATA_##member##_SHIFT)))
#define WQE_ERRCODE_VAL_SHIFT 20
#define WQE_ERRCODE_VAL_MASK 0xF
#define WQE_ERRCODE_GET(val, member) \
(((val) >> WQE_ERRCODE_##member##_SHIFT) & \
WQE_ERRCODE_##member##_MASK)
#define CEQE_CMDQ_TYPE_SHIFT 0
#define CEQE_CMDQ_TYPE_MASK 0x7
#define CEQE_CMDQ_GET(val, member) \
(((val) >> CEQE_CMDQ_##member##_SHIFT) & CEQE_CMDQ_##member##_MASK)
#define WQE_COMPLETED(ctrl_info) CMDQ_CTRL_GET(ctrl_info, HW_BUSY_BIT)
#define WQE_HEADER(wqe) ((struct hifc_cmdq_header *)(wqe))
#define CMDQ_DB_PI_OFF(pi) (((u16)LOWER_8_BITS(pi)) << 3)
#define CMDQ_DB_ADDR(db_base, pi) \
(((u8 *)(db_base) + HIFC_DB_OFF) + CMDQ_DB_PI_OFF(pi))
#define CMDQ_PFN_SHIFT 12
#define CMDQ_PFN(addr) ((addr) >> CMDQ_PFN_SHIFT)
#define FIRST_DATA_TO_WRITE_LAST sizeof(u64)
#define WQE_LCMD_SIZE 64
#define WQE_SCMD_SIZE 64
#define COMPLETE_LEN 3
#define CMDQ_WQEBB_SIZE 64
#define CMDQ_WQE_SIZE 64
#define CMDQ_WQ_PAGE_SIZE 4096
#define WQE_NUM_WQEBBS(wqe_size, wq) \
((u16)(ALIGN((u32)(wqe_size), (wq)->wqebb_size) / (wq)->wqebb_size))
#define cmdq_to_cmdqs(cmdq) container_of((cmdq) - (cmdq)->cmdq_type, \
struct hifc_cmdqs, cmdq[0])
#define CMDQ_SEND_CMPT_CODE 10
#define CMDQ_COMPLETE_CMPT_CODE 11
#define HIFC_GET_CMDQ_FREE_WQEBBS(cmdq_wq) \
atomic_read(&(cmdq_wq)->delta)
enum cmdq_scmd_type {
CMDQ_SET_ARM_CMD = 2,
};
enum cmdq_wqe_type {
WQE_LCMD_TYPE,
WQE_SCMD_TYPE,
};
enum ctrl_sect_len {
CTRL_SECT_LEN = 1,
CTRL_DIRECT_SECT_LEN = 2,
};
enum bufdesc_len {
BUFDESC_LCMD_LEN = 2,
BUFDESC_SCMD_LEN = 3,
};
enum data_format {
DATA_SGE,
DATA_DIRECT,
};
enum completion_format {
COMPLETE_DIRECT,
COMPLETE_SGE,
};
enum completion_request {
CEQ_SET = 1,
};
enum cmdq_cmd_type {
SYNC_CMD_DIRECT_RESP,
SYNC_CMD_SGE_RESP,
ASYNC_CMD,
};
bool hifc_cmdq_idle(struct hifc_cmdq *cmdq)
{
struct hifc_wq *wq = cmdq->wq;
return (atomic_read(&wq->delta) == wq->q_depth ? true : false);
}
struct hifc_cmd_buf *hifc_alloc_cmd_buf(void *hwdev)
{
struct hifc_cmdqs *cmdqs;
struct hifc_cmd_buf *cmd_buf;
void *dev;
if (!hwdev) {
pr_err("Failed to alloc cmd buf, Invalid hwdev\n");
return NULL;
}
cmdqs = ((struct hifc_hwdev *)hwdev)->cmdqs;
dev = ((struct hifc_hwdev *)hwdev)->dev_hdl;
cmd_buf = kzalloc(sizeof(*cmd_buf), GFP_ATOMIC);
if (!cmd_buf)
return NULL;
cmd_buf->buf = pci_pool_alloc(cmdqs->cmd_buf_pool, GFP_ATOMIC,
&cmd_buf->dma_addr);
if (!cmd_buf->buf) {
sdk_err(dev, "Failed to allocate cmdq cmd buf from the pool\n");
goto alloc_pci_buf_err;
}
return cmd_buf;
alloc_pci_buf_err:
kfree(cmd_buf);
return NULL;
}
void hifc_free_cmd_buf(void *hwdev, struct hifc_cmd_buf *cmd_buf)
{
struct hifc_cmdqs *cmdqs;
if (!hwdev || !cmd_buf) {
pr_err("Failed to free cmd buf\n");
return;
}
cmdqs = ((struct hifc_hwdev *)hwdev)->cmdqs;
pci_pool_free(cmdqs->cmd_buf_pool, cmd_buf->buf, cmd_buf->dma_addr);
kfree(cmd_buf);
}
static int cmdq_wqe_size(enum cmdq_wqe_type wqe_type)
{
int wqe_size = 0;
switch (wqe_type) {
case WQE_LCMD_TYPE:
wqe_size = WQE_LCMD_SIZE;
break;
case WQE_SCMD_TYPE:
wqe_size = WQE_SCMD_SIZE;
break;
}
return wqe_size;
}
static int cmdq_get_wqe_size(enum bufdesc_len len)
{
int wqe_size = 0;
switch (len) {
case BUFDESC_LCMD_LEN:
wqe_size = WQE_LCMD_SIZE;
break;
case BUFDESC_SCMD_LEN:
wqe_size = WQE_SCMD_SIZE;
break;
}
return wqe_size;
}
static void cmdq_set_completion(struct hifc_cmdq_completion *complete,
struct hifc_cmd_buf *buf_out)
{
struct hifc_sge_resp *sge_resp = &complete->sge_resp;
hifc_set_sge(&sge_resp->sge, buf_out->dma_addr,
HIFC_CMDQ_BUF_SIZE);
}
static void cmdq_set_lcmd_bufdesc(struct hifc_cmdq_wqe_lcmd *wqe,
struct hifc_cmd_buf *buf_in)
{
hifc_set_sge(&wqe->buf_desc.sge, buf_in->dma_addr, buf_in->size);
}
static void cmdq_set_inline_wqe_data(struct hifc_cmdq_inline_wqe *wqe,
const void *buf_in, u32 in_size)
{
struct hifc_cmdq_wqe_scmd *wqe_scmd = &wqe->wqe_scmd;
wqe_scmd->buf_desc.buf_len = in_size;
memcpy(wqe_scmd->buf_desc.data, buf_in, in_size);
}
static void cmdq_fill_db(struct hifc_cmdq_db *db,
enum hifc_cmdq_type cmdq_type, u16 prod_idx)
{
db->db_info = CMDQ_DB_INFO_SET(UPPER_8_BITS(prod_idx), HI_PROD_IDX) |
CMDQ_DB_INFO_SET(HIFC_DB_CMDQ_TYPE, QUEUE_TYPE) |
CMDQ_DB_INFO_SET(cmdq_type, CMDQ_TYPE) |
CMDQ_DB_INFO_SET(HIFC_DB_SRC_CMDQ_TYPE, SRC_TYPE);
}
static void cmdq_set_db(struct hifc_cmdq *cmdq,
enum hifc_cmdq_type cmdq_type, u16 prod_idx)
{
struct hifc_cmdq_db db;
cmdq_fill_db(&db, cmdq_type, prod_idx);
/* The data that is written to HW should be in Big Endian Format */
db.db_info = cpu_to_be32(db.db_info);
wmb(); /* write all before the doorbell */
writel(db.db_info, CMDQ_DB_ADDR(cmdq->db_base, prod_idx));
}
static void cmdq_wqe_fill(void *dst, const void *src)
{
memcpy((u8 *)dst + FIRST_DATA_TO_WRITE_LAST,
(u8 *)src + FIRST_DATA_TO_WRITE_LAST,
CMDQ_WQE_SIZE - FIRST_DATA_TO_WRITE_LAST);
wmb(); /* The first 8 bytes should be written last */
*(u64 *)dst = *(u64 *)src;
}
static void cmdq_prepare_wqe_ctrl(struct hifc_cmdq_wqe *wqe, int wrapped,
enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd, u16 prod_idx,
enum completion_format complete_format,
enum data_format data_format,
enum bufdesc_len buf_len)
{
struct hifc_ctrl *ctrl;
enum ctrl_sect_len ctrl_len;
struct hifc_cmdq_wqe_lcmd *wqe_lcmd;
struct hifc_cmdq_wqe_scmd *wqe_scmd;
u32 saved_data = WQE_HEADER(wqe)->saved_data;
if (data_format == DATA_SGE) {
wqe_lcmd = &wqe->wqe_lcmd;
wqe_lcmd->status.status_info = 0;
ctrl = &wqe_lcmd->ctrl;
ctrl_len = CTRL_SECT_LEN;
} else {
wqe_scmd = &wqe->inline_wqe.wqe_scmd;
wqe_scmd->status.status_info = 0;
ctrl = &wqe_scmd->ctrl;
ctrl_len = CTRL_DIRECT_SECT_LEN;
}
ctrl->ctrl_info = CMDQ_CTRL_SET(prod_idx, PI) |
CMDQ_CTRL_SET(cmd, CMD) |
CMDQ_CTRL_SET(mod, MOD) |
CMDQ_CTRL_SET(ack_type, ACK_TYPE);
WQE_HEADER(wqe)->header_info =
CMDQ_WQE_HEADER_SET(buf_len, BUFDESC_LEN) |
CMDQ_WQE_HEADER_SET(complete_format, COMPLETE_FMT) |
CMDQ_WQE_HEADER_SET(data_format, DATA_FMT) |
CMDQ_WQE_HEADER_SET(CEQ_SET, COMPLETE_REQ) |
CMDQ_WQE_HEADER_SET(COMPLETE_LEN, COMPLETE_SECT_LEN) |
CMDQ_WQE_HEADER_SET(ctrl_len, CTRL_LEN) |
CMDQ_WQE_HEADER_SET((u32)wrapped, HW_BUSY_BIT);
if (cmd == CMDQ_SET_ARM_CMD && mod == HIFC_MOD_COMM) {
saved_data &= SAVED_DATA_CLEAR(saved_data, ARM);
WQE_HEADER(wqe)->saved_data = saved_data |
SAVED_DATA_SET(1, ARM);
} else {
saved_data &= SAVED_DATA_CLEAR(saved_data, ARM);
WQE_HEADER(wqe)->saved_data = saved_data;
}
}
static void cmdq_set_lcmd_wqe(struct hifc_cmdq_wqe *wqe,
enum cmdq_cmd_type cmd_type,
struct hifc_cmd_buf *buf_in,
struct hifc_cmd_buf *buf_out, int wrapped,
enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd, u16 prod_idx)
{
struct hifc_cmdq_wqe_lcmd *wqe_lcmd = &wqe->wqe_lcmd;
enum completion_format complete_format = COMPLETE_DIRECT;
switch (cmd_type) {
case SYNC_CMD_SGE_RESP:
if (buf_out) {
complete_format = COMPLETE_SGE;
cmdq_set_completion(&wqe_lcmd->completion, buf_out);
}
break;
case SYNC_CMD_DIRECT_RESP:
complete_format = COMPLETE_DIRECT;
wqe_lcmd->completion.direct_resp = 0;
break;
case ASYNC_CMD:
complete_format = COMPLETE_DIRECT;
wqe_lcmd->completion.direct_resp = 0;
wqe_lcmd->buf_desc.saved_async_buf = (u64)(buf_in);
break;
}
cmdq_prepare_wqe_ctrl(wqe, wrapped, ack_type, mod, cmd,
prod_idx, complete_format, DATA_SGE,
BUFDESC_LCMD_LEN);
cmdq_set_lcmd_bufdesc(wqe_lcmd, buf_in);
}
static void cmdq_set_inline_wqe(struct hifc_cmdq_wqe *wqe,
enum cmdq_cmd_type cmd_type,
void *buf_in, u16 in_size,
struct hifc_cmd_buf *buf_out, int wrapped,
enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd, u16 prod_idx)
{
struct hifc_cmdq_wqe_scmd *wqe_scmd = &wqe->inline_wqe.wqe_scmd;
enum completion_format complete_format = COMPLETE_DIRECT;
switch (cmd_type) {
case SYNC_CMD_SGE_RESP:
complete_format = COMPLETE_SGE;
cmdq_set_completion(&wqe_scmd->completion, buf_out);
break;
case SYNC_CMD_DIRECT_RESP:
complete_format = COMPLETE_DIRECT;
wqe_scmd->completion.direct_resp = 0;
break;
default:
break;
}
cmdq_prepare_wqe_ctrl(wqe, wrapped, ack_type, mod, cmd, prod_idx,
complete_format, DATA_DIRECT, BUFDESC_SCMD_LEN);
cmdq_set_inline_wqe_data(&wqe->inline_wqe, buf_in, in_size);
}
static void cmdq_update_cmd_status(struct hifc_cmdq *cmdq, u16 prod_idx,
struct hifc_cmdq_wqe *wqe)
{
struct hifc_cmdq_cmd_info *cmd_info;
struct hifc_cmdq_wqe_lcmd *wqe_lcmd;
u32 status_info;
wqe_lcmd = &wqe->wqe_lcmd;
cmd_info = &cmdq->cmd_infos[prod_idx];
if (cmd_info->errcode) {
status_info = be32_to_cpu(wqe_lcmd->status.status_info);
*cmd_info->errcode = WQE_ERRCODE_GET(status_info, VAL);
}
if (cmd_info->direct_resp &&
cmd_info->cmd_type == HIFC_CMD_TYPE_DIRECT_RESP)
*cmd_info->direct_resp =
cpu_to_be64(wqe_lcmd->completion.direct_resp);
}
static int hifc_cmdq_sync_timeout_check(struct hifc_cmdq *cmdq,
struct hifc_cmdq_wqe *wqe, u16 pi,
enum hifc_mod_type mod, u8 cmd)
{
struct hifc_cmdq_wqe_lcmd *wqe_lcmd;
struct hifc_ctrl *ctrl;
u32 ctrl_info;
wqe_lcmd = &wqe->wqe_lcmd;
ctrl = &wqe_lcmd->ctrl;
ctrl_info = be32_to_cpu((ctrl)->ctrl_info);
if (!WQE_COMPLETED(ctrl_info)) {
sdk_info(cmdq->hwdev->dev_hdl, "Cmdq sync command check busy bit not set, mod: %u, cmd: 0x%x\n",
mod, cmd);
return -EFAULT;
}
cmdq_update_cmd_status(cmdq, pi, wqe);
sdk_info(cmdq->hwdev->dev_hdl, "Cmdq sync command check succeed, mod: %u, cmd: 0x%x\n",
mod, cmd);
return 0;
}
static void __clear_cmd_info(struct hifc_cmdq_cmd_info *cmd_info,
struct hifc_cmdq_cmd_info *saved_cmd_info)
{
if (cmd_info->errcode == saved_cmd_info->errcode)
cmd_info->errcode = NULL;
if (cmd_info->done == saved_cmd_info->done)
cmd_info->done = NULL;
if (cmd_info->direct_resp == saved_cmd_info->direct_resp)
cmd_info->direct_resp = NULL;
}
static int
cmdq_sync_cmd_timeout_handler(struct hifc_cmdq *cmdq,
struct hifc_cmdq_cmd_info *cmd_info,
struct hifc_cmdq_cmd_info *saved_cmd_info,
struct hifc_cmdq_wqe *curr_wqe,
enum hifc_mod_type mod, u8 cmd,
u16 curr_prod_idx, u64 curr_msg_id)
{
int err;
spin_lock_bh(&cmdq->cmdq_lock);
if (cmd_info->cmpt_code == saved_cmd_info->cmpt_code)
cmd_info->cmpt_code = NULL;
if (*saved_cmd_info->cmpt_code == CMDQ_COMPLETE_CMPT_CODE) {
sdk_info(cmdq->hwdev->dev_hdl, "Cmdq sync command (mod: %u, cmd: 0x%x)has been completed\n",
mod, cmd);
spin_unlock_bh(&cmdq->cmdq_lock);
return 0;
}
if (curr_msg_id == cmd_info->cmdq_msg_id) {
err = hifc_cmdq_sync_timeout_check(cmdq, curr_wqe,
curr_prod_idx,
mod, cmd);
if (err)
cmd_info->cmd_type = HIFC_CMD_TYPE_TIMEOUT;
else
cmd_info->cmd_type = HIFC_CMD_TYPE_FAKE_TIMEOUT;
} else {
err = -ETIMEDOUT;
sdk_err(cmdq->hwdev->dev_hdl,
"Cmdq sync command current msg id dismatch with cmd_info msg id, mod: %u, cmd: 0x%x\n",
mod, cmd);
}
__clear_cmd_info(cmd_info, saved_cmd_info);
spin_unlock_bh(&cmdq->cmdq_lock);
return err;
}
static int cmdq_sync_cmd_direct_resp(struct hifc_cmdq *cmdq,
enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in,
u64 *out_param, u32 timeout)
{
struct hifc_wq *wq = cmdq->wq;
struct hifc_cmdq_wqe *curr_wqe, wqe;
struct hifc_cmdq_cmd_info *cmd_info, saved_cmd_info;
struct completion done;
u16 curr_prod_idx, next_prod_idx, num_wqebbs;
int wrapped, errcode = 0, wqe_size = cmdq_wqe_size(WQE_LCMD_TYPE);
int cmpt_code = CMDQ_SEND_CMPT_CODE;
ulong timeo;
u64 curr_msg_id;
int err;
num_wqebbs = WQE_NUM_WQEBBS(wqe_size, wq);
/* Keep wrapped and doorbell index correct. bh - for tasklet(ceq) */
spin_lock_bh(&cmdq->cmdq_lock);
/* in order to save a wqebb for setting arm_bit when
* send cmdq commands frequently resulting in cmdq full
*/
if (HIFC_GET_CMDQ_FREE_WQEBBS(wq) < num_wqebbs + 1) {
spin_unlock_bh(&cmdq->cmdq_lock);
return -EBUSY;
}
/* WQE_SIZE = WQEBB_SIZE, we will get the wq element and not shadow */
curr_wqe = hifc_get_wqe(cmdq->wq, num_wqebbs, &curr_prod_idx);
if (!curr_wqe) {
spin_unlock_bh(&cmdq->cmdq_lock);
sdk_err(cmdq->hwdev->dev_hdl, "Can not get avalible wqebb, mod: %u, cmd: 0x%x\n",
mod, cmd);
return -EBUSY;
}
memset(&wqe, 0, sizeof(wqe));
wrapped = cmdq->wrapped;
next_prod_idx = curr_prod_idx + num_wqebbs;
if (next_prod_idx >= wq->q_depth) {
cmdq->wrapped = !cmdq->wrapped;
next_prod_idx -= wq->q_depth;
}
cmd_info = &cmdq->cmd_infos[curr_prod_idx];
init_completion(&done);
cmd_info->done = &done;
cmd_info->errcode = &errcode;
cmd_info->direct_resp = out_param;
cmd_info->cmpt_code = &cmpt_code;
memcpy(&saved_cmd_info, cmd_info, sizeof(*cmd_info));
cmdq_set_lcmd_wqe(&wqe, SYNC_CMD_DIRECT_RESP, buf_in, NULL,
wrapped, ack_type, mod, cmd, curr_prod_idx);
/* The data that is written to HW should be in Big Endian Format */
hifc_cpu_to_be32(&wqe, wqe_size);
/* CMDQ WQE is not shadow, therefore wqe will be written to wq */
cmdq_wqe_fill(curr_wqe, &wqe);
cmd_info->cmd_type = HIFC_CMD_TYPE_DIRECT_RESP;
(cmd_info->cmdq_msg_id)++;
curr_msg_id = cmd_info->cmdq_msg_id;
cmdq_set_db(cmdq, HIFC_CMDQ_SYNC, next_prod_idx);
spin_unlock_bh(&cmdq->cmdq_lock);
timeo = msecs_to_jiffies(timeout ? timeout : CMDQ_CMD_TIMEOUT);
if (!wait_for_completion_timeout(&done, timeo)) {
err = cmdq_sync_cmd_timeout_handler(cmdq, cmd_info,
&saved_cmd_info,
curr_wqe, mod, cmd,
curr_prod_idx, curr_msg_id);
if (!err)
goto timeout_check_ok;
sdk_err(cmdq->hwdev->dev_hdl, "Cmdq sync command timeout, prod idx: 0x%x\n",
curr_prod_idx);
return -ETIMEDOUT;
}
timeout_check_ok:
smp_rmb(); /* read error code after completion */
if (errcode > 1)
return errcode;
return 0;
}
static int cmdq_sync_cmd_detail_resp(struct hifc_cmdq *cmdq,
enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in,
struct hifc_cmd_buf *buf_out,
u32 timeout)
{
struct hifc_wq *wq = cmdq->wq;
struct hifc_cmdq_wqe *curr_wqe, wqe;
struct hifc_cmdq_cmd_info *cmd_info, saved_cmd_info;
struct completion done;
u16 curr_prod_idx, next_prod_idx, num_wqebbs;
int wrapped, errcode = 0, wqe_size = cmdq_wqe_size(WQE_LCMD_TYPE);
int cmpt_code = CMDQ_SEND_CMPT_CODE;
ulong timeo;
u64 curr_msg_id;
int err;
num_wqebbs = WQE_NUM_WQEBBS(wqe_size, wq);
/* Keep wrapped and doorbell index correct. bh - for tasklet(ceq) */
spin_lock_bh(&cmdq->cmdq_lock);
/* in order to save a wqebb for setting arm_bit when
* send cmdq commands frequently resulting in cmdq full
*/
if (HIFC_GET_CMDQ_FREE_WQEBBS(wq) < num_wqebbs + 1) {
spin_unlock_bh(&cmdq->cmdq_lock);
return -EBUSY;
}
/* WQE_SIZE = WQEBB_SIZE, we will get the wq element and not shadow*/
curr_wqe = hifc_get_wqe(cmdq->wq, num_wqebbs, &curr_prod_idx);
if (!curr_wqe) {
spin_unlock_bh(&cmdq->cmdq_lock);
sdk_err(cmdq->hwdev->dev_hdl, "Can not get avalible wqebb, mod: %u, cmd: 0x%x\n",
mod, cmd);
return -EBUSY;
}
memset(&wqe, 0, sizeof(wqe));
wrapped = cmdq->wrapped;
next_prod_idx = curr_prod_idx + num_wqebbs;
if (next_prod_idx >= wq->q_depth) {
cmdq->wrapped = !cmdq->wrapped;
next_prod_idx -= wq->q_depth;
}
cmd_info = &cmdq->cmd_infos[curr_prod_idx];
init_completion(&done);
cmd_info->done = &done;
cmd_info->errcode = &errcode;
cmd_info->cmpt_code = &cmpt_code;
memcpy(&saved_cmd_info, cmd_info, sizeof(*cmd_info));
cmdq_set_lcmd_wqe(&wqe, SYNC_CMD_SGE_RESP, buf_in, buf_out,
wrapped, ack_type, mod, cmd, curr_prod_idx);
hifc_cpu_to_be32(&wqe, wqe_size);
cmdq_wqe_fill(curr_wqe, &wqe);
cmd_info->cmd_type = HIFC_CMD_TYPE_SGE_RESP;
(cmd_info->cmdq_msg_id)++;
curr_msg_id = cmd_info->cmdq_msg_id;
cmdq_set_db(cmdq, HIFC_CMDQ_SYNC, next_prod_idx);
spin_unlock_bh(&cmdq->cmdq_lock);
timeo = msecs_to_jiffies(timeout ? timeout : CMDQ_CMD_TIMEOUT);
if (!wait_for_completion_timeout(&done, timeo)) {
err = cmdq_sync_cmd_timeout_handler(cmdq, cmd_info,
&saved_cmd_info,
curr_wqe, mod, cmd,
curr_prod_idx, curr_msg_id);
if (!err)
goto timeout_check_ok;
sdk_err(cmdq->hwdev->dev_hdl, "Cmdq sync command timeout, prod idx: 0x%x\n",
curr_prod_idx);
return -ETIMEDOUT;
}
timeout_check_ok:
smp_rmb(); /* read error code after completion */
if (errcode > 1)
return errcode;
return 0;
}
static int cmdq_async_cmd(struct hifc_cmdq *cmdq, enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in)
{
struct hifc_wq *wq = cmdq->wq;
int wqe_size = cmdq_wqe_size(WQE_LCMD_TYPE);
u16 curr_prod_idx, next_prod_idx, num_wqebbs;
struct hifc_cmdq_wqe *curr_wqe, wqe;
int wrapped;
num_wqebbs = WQE_NUM_WQEBBS(wqe_size, wq);
spin_lock_bh(&cmdq->cmdq_lock);
/* WQE_SIZE = WQEBB_SIZE, we will get the wq element and not shadow*/
curr_wqe = hifc_get_wqe(cmdq->wq, num_wqebbs, &curr_prod_idx);
if (!curr_wqe) {
spin_unlock_bh(&cmdq->cmdq_lock);
return -EBUSY;
}
memset(&wqe, 0, sizeof(wqe));
wrapped = cmdq->wrapped;
next_prod_idx = curr_prod_idx + num_wqebbs;
if (next_prod_idx >= cmdq->wq->q_depth) {
cmdq->wrapped = !cmdq->wrapped;
next_prod_idx -= cmdq->wq->q_depth;
}
cmdq_set_lcmd_wqe(&wqe, ASYNC_CMD, buf_in, NULL, wrapped,
ack_type, mod, cmd, curr_prod_idx);
/* The data that is written to HW should be in Big Endian Format */
hifc_cpu_to_be32(&wqe, wqe_size);
cmdq_wqe_fill(curr_wqe, &wqe);
cmdq->cmd_infos[curr_prod_idx].cmd_type = HIFC_CMD_TYPE_ASYNC;
cmdq_set_db(cmdq, HIFC_CMDQ_ASYNC, next_prod_idx);
spin_unlock_bh(&cmdq->cmdq_lock);
return 0;
}
static int cmdq_set_arm_bit(struct hifc_cmdq *cmdq, void *buf_in, u16 in_size)
{
struct hifc_wq *wq = cmdq->wq;
struct hifc_cmdq_wqe *curr_wqe, wqe;
u16 curr_prod_idx, next_prod_idx, num_wqebbs;
int wrapped, wqe_size = cmdq_wqe_size(WQE_SCMD_TYPE);
num_wqebbs = WQE_NUM_WQEBBS(wqe_size, wq);
/* Keep wrapped and doorbell index correct. bh - for tasklet(ceq) */
spin_lock_bh(&cmdq->cmdq_lock);
/* WQE_SIZE = WQEBB_SIZE, we will get the wq element and not shadow*/
curr_wqe = hifc_get_wqe(cmdq->wq, num_wqebbs, &curr_prod_idx);
if (!curr_wqe) {
spin_unlock_bh(&cmdq->cmdq_lock);
sdk_err(cmdq->hwdev->dev_hdl, "Can not get avalible wqebb setting arm\n");
return -EBUSY;
}
memset(&wqe, 0, sizeof(wqe));
wrapped = cmdq->wrapped;
next_prod_idx = curr_prod_idx + num_wqebbs;
if (next_prod_idx >= wq->q_depth) {
cmdq->wrapped = !cmdq->wrapped;
next_prod_idx -= wq->q_depth;
}
cmdq_set_inline_wqe(&wqe, SYNC_CMD_DIRECT_RESP, buf_in, in_size, NULL,
wrapped, HIFC_ACK_TYPE_CMDQ, HIFC_MOD_COMM,
CMDQ_SET_ARM_CMD, curr_prod_idx);
/* The data that is written to HW should be in Big Endian Format */
hifc_cpu_to_be32(&wqe, wqe_size);
/* cmdq wqe is not shadow, therefore wqe will be written to wq */
cmdq_wqe_fill(curr_wqe, &wqe);
cmdq->cmd_infos[curr_prod_idx].cmd_type = HIFC_CMD_TYPE_SET_ARM;
cmdq_set_db(cmdq, cmdq->cmdq_type, next_prod_idx);
spin_unlock_bh(&cmdq->cmdq_lock);
return 0;
}
static int cmdq_params_valid(void *hwdev, struct hifc_cmd_buf *buf_in)
{
if (!buf_in || !hwdev) {
pr_err("Invalid CMDQ buffer addr\n");
return -EINVAL;
}
if (!buf_in->size || buf_in->size > HIFC_CMDQ_MAX_DATA_SIZE) {
pr_err("Invalid CMDQ buffer size: 0x%x\n", buf_in->size);
return -EINVAL;
}
return 0;
}
#define WAIT_CMDQ_ENABLE_TIMEOUT 300
static int wait_cmdqs_enable(struct hifc_cmdqs *cmdqs)
{
unsigned long end;
end = jiffies + msecs_to_jiffies(WAIT_CMDQ_ENABLE_TIMEOUT);
do {
if (cmdqs->status & HIFC_CMDQ_ENABLE)
return 0;
} while (time_before(jiffies, end) && cmdqs->hwdev->chip_present_flag &&
!cmdqs->disable_flag);
cmdqs->disable_flag = 1;
return -EBUSY;
}
int hifc_cmdq_direct_resp(void *hwdev, enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in, u64 *out_param,
u32 timeout)
{
struct hifc_cmdqs *cmdqs;
int err = cmdq_params_valid(hwdev, buf_in);
if (err) {
pr_err("Invalid CMDQ parameters\n");
return err;
}
cmdqs = ((struct hifc_hwdev *)hwdev)->cmdqs;
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag) ||
!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_CMDQ_INITED))
return -EPERM;
err = wait_cmdqs_enable(cmdqs);
if (err) {
sdk_err(cmdqs->hwdev->dev_hdl, "Cmdq is disable\n");
return err;
}
err = cmdq_sync_cmd_direct_resp(&cmdqs->cmdq[HIFC_CMDQ_SYNC], ack_type,
mod, cmd, buf_in, out_param, timeout);
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag))
return -ETIMEDOUT;
else
return err;
}
int hifc_cmdq_detail_resp(void *hwdev,
enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in,
struct hifc_cmd_buf *buf_out,
u32 timeout)
{
struct hifc_cmdqs *cmdqs;
int err = cmdq_params_valid(hwdev, buf_in);
if (err)
return err;
cmdqs = ((struct hifc_hwdev *)hwdev)->cmdqs;
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag) ||
!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_CMDQ_INITED))
return -EPERM;
err = wait_cmdqs_enable(cmdqs);
if (err) {
sdk_err(cmdqs->hwdev->dev_hdl, "Cmdq is disable\n");
return err;
}
err = cmdq_sync_cmd_detail_resp(&cmdqs->cmdq[HIFC_CMDQ_SYNC], ack_type,
mod, cmd, buf_in, buf_out, timeout);
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag))
return -ETIMEDOUT;
else
return err;
}
int hifc_cmdq_async(void *hwdev, enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in)
{
struct hifc_cmdqs *cmdqs;
int err = cmdq_params_valid(hwdev, buf_in);
if (err)
return err;
cmdqs = ((struct hifc_hwdev *)hwdev)->cmdqs;
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag) ||
!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_CMDQ_INITED))
return -EPERM;
err = wait_cmdqs_enable(cmdqs);
if (err) {
sdk_err(cmdqs->hwdev->dev_hdl, "Cmdq is disable\n");
return err;
}
return cmdq_async_cmd(&cmdqs->cmdq[HIFC_CMDQ_ASYNC], ack_type, mod,
cmd, buf_in);
}
int hifc_set_arm_bit(void *hwdev, enum hifc_set_arm_type q_type, u16 q_id)
{
struct hifc_cmdqs *cmdqs;
struct hifc_cmdq *cmdq;
struct hifc_cmdq_arm_bit arm_bit;
enum hifc_cmdq_type cmdq_type = HIFC_CMDQ_SYNC;
u16 in_size;
int err;
if (!hwdev)
return -EINVAL;
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag) ||
!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_CMDQ_INITED))
return -EPERM;
cmdqs = ((struct hifc_hwdev *)hwdev)->cmdqs;
if (!(cmdqs->status & HIFC_CMDQ_ENABLE))
return -EBUSY;
if (q_type == HIFC_SET_ARM_CMDQ) {
if (q_id >= HIFC_MAX_CMDQ_TYPES)
return -EFAULT;
cmdq_type = q_id;
}
/* sq is using interrupt now, so we only need to set arm bit for cmdq,
* remove comment below if need to set sq arm bit
* else
* cmdq_type = HIFC_CMDQ_SYNC;
*/
cmdq = &cmdqs->cmdq[cmdq_type];
arm_bit.q_type = q_type;
arm_bit.q_id = q_id;
in_size = sizeof(arm_bit);
err = cmdq_set_arm_bit(cmdq, &arm_bit, in_size);
if (err) {
sdk_err(cmdqs->hwdev->dev_hdl,
"Failed to set arm for q_type: %d, qid %d\n",
q_type, q_id);
return err;
}
return 0;
}
static void clear_wqe_complete_bit(struct hifc_cmdq *cmdq,
struct hifc_cmdq_wqe *wqe, u16 ci)
{
struct hifc_cmdq_wqe_lcmd *wqe_lcmd;
struct hifc_cmdq_inline_wqe *inline_wqe;
struct hifc_cmdq_wqe_scmd *wqe_scmd;
struct hifc_ctrl *ctrl;
u32 header_info = be32_to_cpu(WQE_HEADER(wqe)->header_info);
int buf_len = CMDQ_WQE_HEADER_GET(header_info, BUFDESC_LEN);
int wqe_size = cmdq_get_wqe_size(buf_len);
u16 num_wqebbs;
if (wqe_size == WQE_LCMD_SIZE) {
wqe_lcmd = &wqe->wqe_lcmd;
ctrl = &wqe_lcmd->ctrl;
} else {
inline_wqe = &wqe->inline_wqe;
wqe_scmd = &inline_wqe->wqe_scmd;
ctrl = &wqe_scmd->ctrl;
}
/* clear HW busy bit */
ctrl->ctrl_info = 0;
cmdq->cmd_infos[ci].cmd_type = HIFC_CMD_TYPE_NONE;
wmb(); /* verify wqe is clear */
num_wqebbs = WQE_NUM_WQEBBS(wqe_size, cmdq->wq);
hifc_put_wqe(cmdq->wq, num_wqebbs);
}
static void cmdq_sync_cmd_handler(struct hifc_cmdq *cmdq,
struct hifc_cmdq_wqe *wqe, u16 cons_idx)
{
u16 prod_idx = cons_idx;
spin_lock(&cmdq->cmdq_lock);
cmdq_update_cmd_status(cmdq, prod_idx, wqe);
if (cmdq->cmd_infos[prod_idx].cmpt_code) {
*cmdq->cmd_infos[prod_idx].cmpt_code =
CMDQ_COMPLETE_CMPT_CODE;
cmdq->cmd_infos[prod_idx].cmpt_code = NULL;
}
/* make sure cmpt_code operation before done operation */
smp_rmb();
if (cmdq->cmd_infos[prod_idx].done) {
complete(cmdq->cmd_infos[prod_idx].done);
cmdq->cmd_infos[prod_idx].done = NULL;
}
spin_unlock(&cmdq->cmdq_lock);
clear_wqe_complete_bit(cmdq, wqe, cons_idx);
}
static void cmdq_async_cmd_handler(struct hifc_hwdev *hwdev,
struct hifc_cmdq *cmdq,
struct hifc_cmdq_wqe *wqe, u16 ci)
{
u64 buf = wqe->wqe_lcmd.buf_desc.saved_async_buf;
int addr_sz = sizeof(u64);
hifc_be32_to_cpu((void *)&buf, addr_sz);
if (buf)
hifc_free_cmd_buf(hwdev, (struct hifc_cmd_buf *)buf);
clear_wqe_complete_bit(cmdq, wqe, ci);
}
static int cmdq_arm_ceq_handler(struct hifc_cmdq *cmdq,
struct hifc_cmdq_wqe *wqe, u16 ci)
{
struct hifc_cmdq_inline_wqe *inline_wqe = &wqe->inline_wqe;
struct hifc_cmdq_wqe_scmd *wqe_scmd = &inline_wqe->wqe_scmd;
struct hifc_ctrl *ctrl = &wqe_scmd->ctrl;
u32 ctrl_info = be32_to_cpu((ctrl)->ctrl_info);
if (!WQE_COMPLETED(ctrl_info))
return -EBUSY;
clear_wqe_complete_bit(cmdq, wqe, ci);
return 0;
}
#define HIFC_CMDQ_WQE_HEAD_LEN 32
static void hifc_dump_cmdq_wqe_head(struct hifc_hwdev *hwdev,
struct hifc_cmdq_wqe *wqe)
{
u32 i;
u32 *data = (u32 *)wqe;
for (i = 0; i < (HIFC_CMDQ_WQE_HEAD_LEN / sizeof(u32)); i += 4) {
sdk_info(hwdev->dev_hdl, "wqe data: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
data[i], data[i + 1], data[i + 2],
data[i + 3]);/*lint !e679*/
}
}
#define CMDQ_CMD_TYPE_TIMEOUT(cmd_type) \
((cmd_type) == HIFC_CMD_TYPE_TIMEOUT || \
(cmd_type) == HIFC_CMD_TYPE_FAKE_TIMEOUT)
static inline void cmdq_response_handle(struct hifc_hwdev *hwdev,
struct hifc_cmdq *cmdq,
struct hifc_cmdq_wqe *wqe,
enum hifc_cmdq_type cmdq_type, u16 ci)
{
if (cmdq_type == HIFC_CMDQ_ASYNC)
cmdq_async_cmd_handler(hwdev, cmdq, wqe, ci);
else
cmdq_sync_cmd_handler(cmdq, wqe, ci);
}
static inline void set_arm_bit(struct hifc_hwdev *hwdev, int set_arm,
enum hifc_cmdq_type cmdq_type)
{
if (set_arm)
hifc_set_arm_bit(hwdev, HIFC_SET_ARM_CMDQ, cmdq_type);
}
void hifc_cmdq_ceq_handler(void *handle, u32 ceqe_data)
{
struct hifc_cmdqs *cmdqs = ((struct hifc_hwdev *)handle)->cmdqs;
enum hifc_cmdq_type cmdq_type = CEQE_CMDQ_GET(ceqe_data, TYPE);
struct hifc_cmdq *cmdq = &cmdqs->cmdq[cmdq_type];
struct hifc_hwdev *hwdev = cmdqs->hwdev;
struct hifc_cmdq_wqe *wqe;
struct hifc_cmdq_wqe_lcmd *wqe_lcmd;
struct hifc_ctrl *ctrl;
struct hifc_cmdq_cmd_info *cmd_info;
u32 ctrl_info;
u16 ci;
int set_arm = 1;
while ((wqe = hifc_read_wqe(cmdq->wq, 1, &ci)) != NULL) {
cmd_info = &cmdq->cmd_infos[ci];
if (cmd_info->cmd_type == HIFC_CMD_TYPE_NONE) {
set_arm = 1;
break;
} else if (CMDQ_CMD_TYPE_TIMEOUT(cmd_info->cmd_type)) {
if (cmd_info->cmd_type == HIFC_CMD_TYPE_TIMEOUT) {
sdk_info(hwdev->dev_hdl, "Cmdq timeout, q_id: %u, ci: %u\n",
cmdq_type, ci);
hifc_dump_cmdq_wqe_head(hwdev, wqe);
}
set_arm = 1;
clear_wqe_complete_bit(cmdq, wqe, ci);
} else if (cmd_info->cmd_type == HIFC_CMD_TYPE_SET_ARM) {
/* arm_bit was set until here */
set_arm = 0;
if (cmdq_arm_ceq_handler(cmdq, wqe, ci))
break;
} else {
set_arm = 1;
/* only arm bit is using scmd wqe, the wqe is lcmd */
wqe_lcmd = &wqe->wqe_lcmd;
ctrl = &wqe_lcmd->ctrl;
ctrl_info = be32_to_cpu((ctrl)->ctrl_info);
if (!WQE_COMPLETED(ctrl_info))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the cmdq wqe until we have
* verified the command has been processed and
* written back.
*/
dma_rmb();
cmdq_response_handle(hwdev, cmdq, wqe, cmdq_type, ci);
}
}
set_arm_bit(hwdev, set_arm, cmdq_type);
}
static void cmdq_init_queue_ctxt(struct hifc_cmdq *cmdq,
struct hifc_cmdq_pages *cmdq_pages,
struct hifc_cmdq_ctxt *cmdq_ctxt)
{
struct hifc_cmdqs *cmdqs = cmdq_to_cmdqs(cmdq);
struct hifc_hwdev *hwdev = cmdqs->hwdev;
struct hifc_wq *wq = cmdq->wq;
struct hifc_cmdq_ctxt_info *ctxt_info = &cmdq_ctxt->ctxt_info;
u64 wq_first_page_paddr, cmdq_first_block_paddr, pfn;
u16 start_ci = (u16)wq->cons_idx;
/* The data in the HW is in Big Endian Format */
wq_first_page_paddr = be64_to_cpu(*wq->block_vaddr);
pfn = CMDQ_PFN(wq_first_page_paddr);
ctxt_info->curr_wqe_page_pfn =
CMDQ_CTXT_PAGE_INFO_SET(1, HW_BUSY_BIT) |
CMDQ_CTXT_PAGE_INFO_SET(1, CEQ_EN) |
CMDQ_CTXT_PAGE_INFO_SET(1, CEQ_ARM) |
CMDQ_CTXT_PAGE_INFO_SET(HIFC_CEQ_ID_CMDQ, EQ_ID) |
CMDQ_CTXT_PAGE_INFO_SET(pfn, CURR_WQE_PAGE_PFN);
/* If only use one page, use 0-level CLA */
if (cmdq->wq->num_q_pages != 1) {
cmdq_first_block_paddr = cmdq_pages->cmdq_page_paddr;
pfn = CMDQ_PFN(cmdq_first_block_paddr);
}
ctxt_info->wq_block_pfn = CMDQ_CTXT_BLOCK_INFO_SET(start_ci, CI) |
CMDQ_CTXT_BLOCK_INFO_SET(pfn, WQ_BLOCK_PFN);
cmdq_ctxt->func_idx = hifc_global_func_id_hw(hwdev);
cmdq_ctxt->ppf_idx = HIFC_HWIF_PPF_IDX(hwdev->hwif);
cmdq_ctxt->cmdq_id = cmdq->cmdq_type;
}
static int init_cmdq(struct hifc_cmdq *cmdq, struct hifc_hwdev *hwdev,
struct hifc_wq *wq, enum hifc_cmdq_type q_type)
{
void __iomem *db_base;
int err = 0;
cmdq->wq = wq;
cmdq->cmdq_type = q_type;
cmdq->wrapped = 1;
cmdq->hwdev = hwdev;
spin_lock_init(&cmdq->cmdq_lock);
cmdq->cmd_infos = kcalloc(wq->q_depth, sizeof(*cmdq->cmd_infos),
GFP_KERNEL);
if (!cmdq->cmd_infos) {
err = -ENOMEM;
goto cmd_infos_err;
}
err = hifc_alloc_db_addr(hwdev, &db_base, NULL);
if (err)
goto alloc_db_err;
cmdq->db_base = (u8 *)db_base;
return 0;
alloc_db_err:
kfree(cmdq->cmd_infos);
cmd_infos_err:
return err;
}
static void free_cmdq(struct hifc_hwdev *hwdev, struct hifc_cmdq *cmdq)
{
hifc_free_db_addr(hwdev, cmdq->db_base, NULL);
kfree(cmdq->cmd_infos);
}
int hifc_set_cmdq_ctxts(struct hifc_hwdev *hwdev)
{
struct hifc_cmdqs *cmdqs = hwdev->cmdqs;
struct hifc_cmdq_ctxt *cmdq_ctxt, cmdq_ctxt_out = {0};
enum hifc_cmdq_type cmdq_type;
u16 in_size;
u16 out_size = sizeof(*cmdq_ctxt);
int err;
cmdq_type = HIFC_CMDQ_SYNC;
for (; cmdq_type < HIFC_MAX_CMDQ_TYPES; cmdq_type++) {
cmdq_ctxt = &cmdqs->cmdq[cmdq_type].cmdq_ctxt;
cmdq_ctxt->func_idx = hifc_global_func_id_hw(hwdev);
in_size = sizeof(*cmdq_ctxt);
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_CMDQ_CTXT_SET,
cmdq_ctxt, in_size,
&cmdq_ctxt_out, &out_size, 0);
if (err || !out_size || cmdq_ctxt_out.status) {
sdk_err(hwdev->dev_hdl, "Failed to set cmdq ctxt, err: %d, status: 0x%x, out_size: 0x%x\n",
err, cmdq_ctxt_out.status, out_size);
return -EFAULT;
}
}
cmdqs->status |= HIFC_CMDQ_ENABLE;
cmdqs->disable_flag = 0;
return 0;
}
void hifc_cmdq_flush_cmd(struct hifc_hwdev *hwdev,
struct hifc_cmdq *cmdq)
{
struct hifc_cmdq_wqe *wqe;
struct hifc_cmdq_cmd_info *cmdq_info;
u16 ci, wqe_left, i;
u64 buf;
spin_lock_bh(&cmdq->cmdq_lock);
wqe_left = cmdq->wq->q_depth - (u16)atomic_read(&cmdq->wq->delta);
ci = MASKED_WQE_IDX(cmdq->wq, cmdq->wq->cons_idx);
for (i = 0; i < wqe_left; i++, ci++) {
ci = MASKED_WQE_IDX(cmdq->wq, ci);
cmdq_info = &cmdq->cmd_infos[ci];
if (cmdq_info->cmd_type == HIFC_CMD_TYPE_SET_ARM)
continue;
if (cmdq->cmdq_type == HIFC_CMDQ_ASYNC) {
wqe = hifc_get_wqebb_addr(cmdq->wq, ci);
buf = wqe->wqe_lcmd.buf_desc.saved_async_buf;
wqe->wqe_lcmd.buf_desc.saved_async_buf = 0;
hifc_be32_to_cpu((void *)&buf, sizeof(u64));
if (buf)
hifc_free_cmd_buf(hwdev,
(struct hifc_cmd_buf *)buf);
} else {
if (cmdq_info->done) {
complete(cmdq_info->done);
cmdq_info->done = NULL;
cmdq_info->cmpt_code = NULL;
cmdq_info->direct_resp = NULL;
cmdq_info->errcode = NULL;
}
}
}
spin_unlock_bh(&cmdq->cmdq_lock);
}
int hifc_reinit_cmdq_ctxts(struct hifc_hwdev *hwdev)
{
struct hifc_cmdqs *cmdqs = hwdev->cmdqs;
enum hifc_cmdq_type cmdq_type;
cmdq_type = HIFC_CMDQ_SYNC;
for (; cmdq_type < HIFC_MAX_CMDQ_TYPES; cmdq_type++) {
hifc_cmdq_flush_cmd(hwdev, &cmdqs->cmdq[cmdq_type]);
cmdqs->cmdq[cmdq_type].wrapped = 1;
hifc_wq_wqe_pg_clear(cmdqs->cmdq[cmdq_type].wq);
}
return hifc_set_cmdq_ctxts(hwdev);
}
int hifc_cmdqs_init(struct hifc_hwdev *hwdev)
{
struct hifc_cmdqs *cmdqs;
struct hifc_cmdq_ctxt *cmdq_ctxt;
enum hifc_cmdq_type type, cmdq_type;
size_t saved_wqs_size;
u32 max_wqe_size;
int err;
cmdqs = kzalloc(sizeof(*cmdqs), GFP_KERNEL);
if (!cmdqs)
return -ENOMEM;
hwdev->cmdqs = cmdqs;
cmdqs->hwdev = hwdev;
saved_wqs_size = HIFC_MAX_CMDQ_TYPES * sizeof(struct hifc_wq);
cmdqs->saved_wqs = kzalloc(saved_wqs_size, GFP_KERNEL);
if (!cmdqs->saved_wqs) {
sdk_err(hwdev->dev_hdl, "Failed to allocate saved wqs\n");
err = -ENOMEM;
goto alloc_wqs_err;
}
cmdqs->cmd_buf_pool = dma_pool_create("hifc_cmdq", hwdev->dev_hdl,
HIFC_CMDQ_BUF_SIZE,
HIFC_CMDQ_BUF_SIZE, 0ULL);
if (!cmdqs->cmd_buf_pool) {
sdk_err(hwdev->dev_hdl, "Failed to create cmdq buffer pool\n");
err = -ENOMEM;
goto pool_create_err;
}
max_wqe_size = (u32)cmdq_wqe_size(WQE_LCMD_TYPE);
err = hifc_cmdq_alloc(&cmdqs->cmdq_pages, cmdqs->saved_wqs,
hwdev->dev_hdl, HIFC_MAX_CMDQ_TYPES,
hwdev->wq_page_size, CMDQ_WQEBB_SIZE,
HIFC_CMDQ_DEPTH, max_wqe_size);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to allocate cmdq\n");
goto cmdq_alloc_err;
}
cmdq_type = HIFC_CMDQ_SYNC;
for (; cmdq_type < HIFC_MAX_CMDQ_TYPES; cmdq_type++) {
err = init_cmdq(&cmdqs->cmdq[cmdq_type], hwdev,
&cmdqs->saved_wqs[cmdq_type], cmdq_type);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to initialize cmdq type :%d\n",
cmdq_type);
goto init_cmdq_err;
}
cmdq_ctxt = &cmdqs->cmdq[cmdq_type].cmdq_ctxt;
cmdq_init_queue_ctxt(&cmdqs->cmdq[cmdq_type],
&cmdqs->cmdq_pages, cmdq_ctxt);
}
err = hifc_set_cmdq_ctxts(hwdev);
if (err)
goto init_cmdq_err;
return 0;
init_cmdq_err:
type = HIFC_CMDQ_SYNC;
for (; type < cmdq_type; type++)
free_cmdq(hwdev, &cmdqs->cmdq[type]);
hifc_cmdq_free(&cmdqs->cmdq_pages, cmdqs->saved_wqs,
HIFC_MAX_CMDQ_TYPES);
cmdq_alloc_err:
dma_pool_destroy(cmdqs->cmd_buf_pool);
pool_create_err:
kfree(cmdqs->saved_wqs);
alloc_wqs_err:
kfree(cmdqs);
return err;
}
void hifc_cmdqs_free(struct hifc_hwdev *hwdev)
{
struct hifc_cmdqs *cmdqs = hwdev->cmdqs;
enum hifc_cmdq_type cmdq_type = HIFC_CMDQ_SYNC;
cmdqs->status &= ~HIFC_CMDQ_ENABLE;
for (; cmdq_type < HIFC_MAX_CMDQ_TYPES; cmdq_type++) {
hifc_cmdq_flush_cmd(hwdev, &cmdqs->cmdq[cmdq_type]);
free_cmdq(cmdqs->hwdev, &cmdqs->cmdq[cmdq_type]);
}
hifc_cmdq_free(&cmdqs->cmdq_pages, cmdqs->saved_wqs,
HIFC_MAX_CMDQ_TYPES);
dma_pool_destroy(cmdqs->cmd_buf_pool);
kfree(cmdqs->saved_wqs);
kfree(cmdqs);
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef HIFC_CMDQ_H_
#define HIFC_CMDQ_H_
#define HIFC_DB_OFF 0x00000800
#define HIFC_SCMD_DATA_LEN 16
#define HIFC_CMDQ_DEPTH 4096
#define HIFC_CMDQ_BUF_SIZE 2048U
#define HIFC_CMDQ_BUF_HW_RSVD 8
#define HIFC_CMDQ_MAX_DATA_SIZE \
(HIFC_CMDQ_BUF_SIZE - HIFC_CMDQ_BUF_HW_RSVD)
#define WQ_PAGE_PFN_SHIFT 12
#define WQ_BLOCK_PFN_SHIFT 9
#define WQ_PAGE_PFN(page_addr) ((page_addr) >> WQ_PAGE_PFN_SHIFT)
#define WQ_BLOCK_PFN(page_addr) ((page_addr) >> WQ_BLOCK_PFN_SHIFT)
enum hifc_cmdq_type {
HIFC_CMDQ_SYNC,
HIFC_CMDQ_ASYNC,
HIFC_MAX_CMDQ_TYPES,
};
enum hifc_db_src_type {
HIFC_DB_SRC_CMDQ_TYPE,
HIFC_DB_SRC_L2NIC_SQ_TYPE,
};
enum hifc_cmdq_db_type {
HIFC_DB_SQ_RQ_TYPE,
HIFC_DB_CMDQ_TYPE,
};
/* CMDQ WQE CTRLS */
struct hifc_cmdq_header {
u32 header_info;
u32 saved_data;
};
struct hifc_scmd_bufdesc {
u32 buf_len;
u32 rsvd;
u8 data[HIFC_SCMD_DATA_LEN];
};
struct hifc_lcmd_bufdesc {
struct hifc_sge sge;
u32 rsvd1;
u64 saved_async_buf;
u64 rsvd3;
};
struct hifc_cmdq_db {
u32 db_info;
u32 rsvd;
};
struct hifc_status {
u32 status_info;
};
struct hifc_ctrl {
u32 ctrl_info;
};
struct hifc_sge_resp {
struct hifc_sge sge;
u32 rsvd;
};
struct hifc_cmdq_completion {
/* HW Format */
union {
struct hifc_sge_resp sge_resp;
u64 direct_resp;
};
};
struct hifc_cmdq_wqe_scmd {
struct hifc_cmdq_header header;
struct hifc_cmdq_db db;
struct hifc_status status;
struct hifc_ctrl ctrl;
struct hifc_cmdq_completion completion;
struct hifc_scmd_bufdesc buf_desc;
};
struct hifc_cmdq_wqe_lcmd {
struct hifc_cmdq_header header;
struct hifc_status status;
struct hifc_ctrl ctrl;
struct hifc_cmdq_completion completion;
struct hifc_lcmd_bufdesc buf_desc;
};
struct hifc_cmdq_inline_wqe {
struct hifc_cmdq_wqe_scmd wqe_scmd;
};
struct hifc_cmdq_wqe {
/* HW Format */
union {
struct hifc_cmdq_inline_wqe inline_wqe;
struct hifc_cmdq_wqe_lcmd wqe_lcmd;
};
};
struct hifc_cmdq_arm_bit {
u32 q_type;
u32 q_id;
};
struct hifc_cmdq_ctxt_info {
u64 curr_wqe_page_pfn;
u64 wq_block_pfn;
};
struct hifc_cmdq_ctxt {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_idx;
u8 cmdq_id;
u8 ppf_idx;
u8 rsvd1[4];
struct hifc_cmdq_ctxt_info ctxt_info;
};
enum hifc_cmdq_status {
HIFC_CMDQ_ENABLE = BIT(0),
};
enum hifc_cmdq_cmd_type {
HIFC_CMD_TYPE_NONE,
HIFC_CMD_TYPE_SET_ARM,
HIFC_CMD_TYPE_DIRECT_RESP,
HIFC_CMD_TYPE_SGE_RESP,
HIFC_CMD_TYPE_ASYNC,
HIFC_CMD_TYPE_TIMEOUT,
HIFC_CMD_TYPE_FAKE_TIMEOUT,
};
struct hifc_cmdq_cmd_info {
enum hifc_cmdq_cmd_type cmd_type;
struct completion *done;
int *errcode;
int *cmpt_code;
u64 *direct_resp;
u64 cmdq_msg_id;
};
struct hifc_cmdq {
struct hifc_wq *wq;
enum hifc_cmdq_type cmdq_type;
int wrapped;
/* spinlock for send cmdq commands */
spinlock_t cmdq_lock;
/* doorbell area */
u8 __iomem *db_base;
struct hifc_cmdq_ctxt cmdq_ctxt;
struct hifc_cmdq_cmd_info *cmd_infos;
struct hifc_hwdev *hwdev;
};
struct hifc_cmdqs {
struct hifc_hwdev *hwdev;
struct pci_pool *cmd_buf_pool;
struct hifc_wq *saved_wqs;
struct hifc_cmdq_pages cmdq_pages;
struct hifc_cmdq cmdq[HIFC_MAX_CMDQ_TYPES];
u32 status;
u32 disable_flag;
};
void hifc_cmdq_ceq_handler(void *hwdev, u32 ceqe_data);
int hifc_reinit_cmdq_ctxts(struct hifc_hwdev *hwdev);
bool hifc_cmdq_idle(struct hifc_cmdq *cmdq);
int hifc_cmdqs_init(struct hifc_hwdev *hwdev);
void hifc_cmdqs_free(struct hifc_hwdev *hwdev);
void hifc_cmdq_flush_cmd(struct hifc_hwdev *hwdev,
struct hifc_cmdq *cmdq);
#endif
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_hwif.h"
#include "hifc_api_cmd.h"
#include "hifc_mgmt.h"
#include "hifc_cfg.h"
#include "hifc_cqm_object.h"
#include "hifc_cqm_main.h"
#define GET_MAX(a, b) (((a) > (b)) ? (a) : (b))
#define GET_MIN(a, b) (((a) < (b)) ? (a) : (b))
static void cqm_capability_init_check_ppf(void *ex_handle,
u32 *total_function_num)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct service_cap *service_capability = &handle->cfg_mgmt->svc_cap;
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
(handle->cqm_hdl);
if (cqm_handle->func_attribute.func_type == CQM_PPF) {
*total_function_num = service_capability->host_total_function;
cqm_handle->func_capability.timer_enable =
service_capability->timer_en;
cqm_info(handle->dev_hdl, "Cap init: total function num 0x%x\n",
*total_function_num);
cqm_info(handle->dev_hdl, "Cap init: timer_enable %d (1: enable; 0: disable)\n",
cqm_handle->func_capability.timer_enable);
}
}
void cqm_test_mode_init(struct cqm_handle_s *cqm_handle,
struct service_cap *service_capability)
{
cqm_handle->func_capability.xid_alloc_mode =
service_capability->test_xid_alloc_mode;
cqm_handle->func_capability.gpa_check_enable =
service_capability->test_gpa_check_enable;
}
static s32 cqm_service_capability_init_for_each(
struct cqm_handle_s *cqm_handle,
struct service_cap *service_capability)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)cqm_handle->ex_handle;
cqm_info(handle->dev_hdl, "Cap init: fc is valid\n");
cqm_handle->func_capability.hash_number +=
service_capability->fc_cap.dev_fc_cap.max_parent_qpc_num;
cqm_handle->func_capability.hash_basic_size = CQM_HASH_BUCKET_SIZE_64;
cqm_handle->func_capability.qpc_number +=
service_capability->fc_cap.dev_fc_cap.max_parent_qpc_num;
cqm_handle->func_capability.qpc_basic_size =
GET_MAX(service_capability->fc_cap.parent_qpc_size,
cqm_handle->func_capability.qpc_basic_size);
cqm_handle->func_capability.qpc_alloc_static = true;
cqm_handle->func_capability.scqc_number +=
service_capability->fc_cap.dev_fc_cap.scq_num;
cqm_handle->func_capability.scqc_basic_size =
GET_MAX(service_capability->fc_cap.scqc_size,
cqm_handle->func_capability.scqc_basic_size);
cqm_handle->func_capability.srqc_number +=
service_capability->fc_cap.dev_fc_cap.srq_num;
cqm_handle->func_capability.srqc_basic_size =
GET_MAX(service_capability->fc_cap.srqc_size,
cqm_handle->func_capability.srqc_basic_size);
cqm_handle->func_capability.lun_number = CQM_LUN_FC_NUM;
cqm_handle->func_capability.lun_basic_size = CQM_LUN_SIZE_8;
cqm_handle->func_capability.taskmap_number = CQM_TASKMAP_FC_NUM;
cqm_handle->func_capability.taskmap_basic_size = PAGE_SIZE;
cqm_handle->func_capability.childc_number +=
service_capability->fc_cap.dev_fc_cap.max_child_qpc_num;
cqm_handle->func_capability.childc_basic_size =
GET_MAX(service_capability->fc_cap.child_qpc_size,
cqm_handle->func_capability.childc_basic_size);
cqm_handle->func_capability.pagesize_reorder = CQM_FC_PAGESIZE_ORDER;
return CQM_SUCCESS;
}
s32 cqm_service_capability_init(struct cqm_handle_s *cqm_handle,
struct service_cap *service_capability)
{
cqm_handle->service.has_register = false;
cqm_handle->service.buf_order = 0;
if (cqm_service_capability_init_for_each(
cqm_handle,
service_capability) == CQM_FAIL)
return CQM_FAIL;
return CQM_SUCCESS;
}
/**
* cqm_capability_init - Initialize capability of cqm function and service,
* need to read information from the configuration management module
* @ex_handle: handle of hwdev
*/
s32 cqm_capability_init(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct service_cap *service_capability = &handle->cfg_mgmt->svc_cap;
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
(handle->cqm_hdl);
u32 total_function_num = 0;
int err = 0;
cqm_capability_init_check_ppf(ex_handle, &total_function_num);
cqm_handle->func_capability.flow_table_based_conn_number =
service_capability->max_connect_num;
cqm_handle->func_capability.flow_table_based_conn_cache_number =
service_capability->max_stick2cache_num;
cqm_info(handle->dev_hdl, "Cap init: cfg max_conn_num 0x%x, max_cache_conn_num 0x%x\n",
cqm_handle->func_capability.flow_table_based_conn_number,
cqm_handle->func_capability.flow_table_based_conn_cache_number);
cqm_handle->func_capability.qpc_reserved = 0;
cqm_handle->func_capability.mpt_reserved = 0;
cqm_handle->func_capability.qpc_alloc_static = false;
cqm_handle->func_capability.scqc_alloc_static = false;
cqm_handle->func_capability.l3i_number = CQM_L3I_COMM_NUM;
cqm_handle->func_capability.l3i_basic_size = CQM_L3I_SIZE_8;
cqm_handle->func_capability.timer_number = CQM_TIMER_ALIGN_SCALE_NUM *
total_function_num;
cqm_handle->func_capability.timer_basic_size = CQM_TIMER_SIZE_32;
if (cqm_service_capability_init(cqm_handle, service_capability) ==
CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_service_capability_init));
err = CQM_FAIL;
goto out;
}
cqm_test_mode_init(cqm_handle, service_capability);
cqm_info(handle->dev_hdl, "Cap init: pagesize_reorder %d\n",
cqm_handle->func_capability.pagesize_reorder);
cqm_info(handle->dev_hdl, "Cap init: xid_alloc_mode %d, gpa_check_enable %d\n",
cqm_handle->func_capability.xid_alloc_mode,
cqm_handle->func_capability.gpa_check_enable);
cqm_info(handle->dev_hdl, "Cap init: qpc_alloc_mode %d, scqc_alloc_mode %d\n",
cqm_handle->func_capability.qpc_alloc_static,
cqm_handle->func_capability.scqc_alloc_static);
cqm_info(handle->dev_hdl, "Cap init: hash_number 0x%x\n",
cqm_handle->func_capability.hash_number);
cqm_info(handle->dev_hdl, "Cap init: qpc_number 0x%x, qpc_reserved 0x%x\n",
cqm_handle->func_capability.qpc_number,
cqm_handle->func_capability.qpc_reserved);
cqm_info(handle->dev_hdl, "Cap init: scqc_number 0x%x scqc_reserved 0x%x\n",
cqm_handle->func_capability.scqc_number,
cqm_handle->func_capability.scq_reserved);
cqm_info(handle->dev_hdl, "Cap init: srqc_number 0x%x\n",
cqm_handle->func_capability.srqc_number);
cqm_info(handle->dev_hdl, "Cap init: mpt_number 0x%x, mpt_reserved 0x%x\n",
cqm_handle->func_capability.mpt_number,
cqm_handle->func_capability.mpt_reserved);
cqm_info(handle->dev_hdl, "Cap init: gid_number 0x%x, lun_number 0x%x\n",
cqm_handle->func_capability.gid_number,
cqm_handle->func_capability.lun_number);
cqm_info(handle->dev_hdl, "Cap init: taskmap_number 0x%x, l3i_number 0x%x\n",
cqm_handle->func_capability.taskmap_number,
cqm_handle->func_capability.l3i_number);
cqm_info(handle->dev_hdl, "Cap init: timer_number 0x%x\n",
cqm_handle->func_capability.timer_number);
cqm_info(handle->dev_hdl, "Cap init: xid2cid_number 0x%x, reorder_number 0x%x\n",
cqm_handle->func_capability.xid2cid_number,
cqm_handle->func_capability.reorder_number);
return CQM_SUCCESS;
out:
if (cqm_handle->func_attribute.func_type == CQM_PPF)
cqm_handle->func_capability.timer_enable = 0;
return err;
}
/**
* cqm_init - Initialize cqm
* @ex_handle: handle of hwdev
*/
s32 cqm_init(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
s32 ret = CQM_FAIL;
CQM_PTR_CHECK_RET(ex_handle, return CQM_FAIL, CQM_PTR_NULL(ex_handle));
cqm_handle = (struct cqm_handle_s *)kmalloc(sizeof(struct cqm_handle_s),
GFP_KERNEL | __GFP_ZERO);
CQM_PTR_CHECK_RET(cqm_handle, return CQM_FAIL,
CQM_ALLOC_FAIL(cqm_handle));
/* Clear memory to prevent other systems' memory from being cleared */
memset(cqm_handle, 0, sizeof(struct cqm_handle_s));
cqm_handle->ex_handle = handle;
cqm_handle->dev = (struct pci_dev *)(handle->pcidev_hdl);
handle->cqm_hdl = (void *)cqm_handle;
/* Clear statistics */
memset(&handle->hw_stats.cqm_stats, 0, sizeof(struct hifc_cqm_stats));
/* Read information of vf or pf */
cqm_handle->func_attribute = handle->hwif->attr;
cqm_info(handle->dev_hdl, "Func init: function type %d\n",
cqm_handle->func_attribute.func_type);
/* Read ability from configuration management module */
ret = cqm_capability_init(ex_handle);
if (ret == CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_capability_init));
goto err1;
}
/* Initialize entries of memory table such as BAT/CLA/bitmap */
if (cqm_mem_init(ex_handle) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_mem_init));
goto err1;
}
/* Initialize event callback */
if (cqm_event_init(ex_handle) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_event_init));
goto err2;
}
/* Initialize doorbell */
if (cqm_db_init(ex_handle) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_db_init));
goto err3;
}
/* The timer bitmap is set directly from the beginning through CQM,
* no longer set/clear the bitmap through ifconfig up/down
*/
if (hifc_func_tmr_bitmap_set(ex_handle, 1) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, "Timer start: enable timer bitmap failed\n");
goto err5;
}
return CQM_SUCCESS;
err5:
cqm_db_uninit(ex_handle);
err3:
cqm_event_uninit(ex_handle);
err2:
cqm_mem_uninit(ex_handle);
err1:
handle->cqm_hdl = NULL;
kfree(cqm_handle);
return CQM_FAIL;
}
/**
* cqm_uninit - Deinitialize the cqm, and is called once removing a function
* @ex_handle: handle of hwdev
*/
void cqm_uninit(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
s32 ret = CQM_FAIL;
CQM_PTR_CHECK_NO_RET(ex_handle, CQM_PTR_NULL(ex_handle), return);
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
CQM_PTR_CHECK_NO_RET(cqm_handle, CQM_PTR_NULL(cqm_handle), return);
/* The timer bitmap is set directly from the beginning through CQM,
* no longer set/clear the bitmap through ifconfig up/down
*/
cqm_info(handle->dev_hdl, "Timer stop: disable timer\n");
if (hifc_func_tmr_bitmap_set(ex_handle, 0) != CQM_SUCCESS)
cqm_err(handle->dev_hdl, "Timer stop: disable timer bitmap failed\n");
/* Stopping timer, release the resource
* after a delay of one or two milliseconds
*/
if ((cqm_handle->func_attribute.func_type == CQM_PPF) &&
(cqm_handle->func_capability.timer_enable == CQM_TIMER_ENABLE)) {
cqm_info(handle->dev_hdl, "Timer stop: hifc ppf timer stop\n");
ret = hifc_ppf_tmr_stop(handle);
if (ret != CQM_SUCCESS) {
cqm_info(handle->dev_hdl, "Timer stop: hifc ppf timer stop, ret=%d\n",
ret);
/* The timer fails to stop
* and does not affect resource release
*/
}
usleep_range(900, 1000);
}
/* Release hardware doorbell */
cqm_db_uninit(ex_handle);
/* Cancel the callback of chipif */
cqm_event_uninit(ex_handle);
/* Release all table items
* and require the service to release all objects
*/
cqm_mem_uninit(ex_handle);
/* Release cqm_handle */
handle->cqm_hdl = NULL;
kfree(cqm_handle);
}
/**
* cqm_mem_init - Initialize related memory of cqm,
* including all levels of entries
* @ex_handle: handle of hwdev
*/
s32 cqm_mem_init(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
if (cqm_bat_init(cqm_handle) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_bat_init));
return CQM_FAIL;
}
if (cqm_cla_init(cqm_handle) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_cla_init));
goto err1;
}
if (cqm_bitmap_init(cqm_handle) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_bitmap_init));
goto err2;
}
if (cqm_object_table_init(cqm_handle) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_object_table_init));
goto err3;
}
return CQM_SUCCESS;
err3:
cqm_bitmap_uninit(cqm_handle);
err2:
cqm_cla_uninit(cqm_handle);
err1:
cqm_bat_uninit(cqm_handle);
return CQM_FAIL;
}
/**
* cqm_mem_uninit - Deinitialize related memory of cqm,
* including all levels of entries
* @ex_handle: handle of hwdev
*/
void cqm_mem_uninit(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
cqm_object_table_uninit(cqm_handle);
cqm_bitmap_uninit(cqm_handle);
cqm_cla_uninit(cqm_handle);
cqm_bat_uninit(cqm_handle);
}
/**
* cqm_event_init - Initialize the event callback of cqm
* @ex_handle: handle of hwdev
*/
s32 cqm_event_init(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
/* Register ceq and aeq callbacks with chipif */
if (hifc_aeq_register_swe_cb(ex_handle,
HIFC_STATEFULL_EVENT,
cqm_aeq_callback) != CHIPIF_SUCCESS) {
cqm_err(handle->dev_hdl, "Event: fail to register aeq callback\n");
return CQM_FAIL;
}
return CQM_SUCCESS;
}
/**
* cqm_event_uninit - Deinitialize the event callback of cqm
* @ex_handle: handle of hwdev
*/
void cqm_event_uninit(void *ex_handle)
{
(void)hifc_aeq_unregister_swe_cb(ex_handle, HIFC_STATEFULL_EVENT);
}
/**
* cqm_db_addr_alloc - Apply for a page of hardware doorbell and dwqe,
* with the same index, all obtained are physical addresses
* each function has up to 1K
* @ex_handle: handle of hwdev
* @db_addr: the address of doorbell
* @dwqe_addr: the address of dwqe
*/
s32 cqm_db_addr_alloc(void *ex_handle, void __iomem **db_addr,
void __iomem **dwqe_addr)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
CQM_PTR_CHECK_RET(ex_handle, return CQM_FAIL, CQM_PTR_NULL(ex_handle));
CQM_PTR_CHECK_RET(db_addr, return CQM_FAIL, CQM_PTR_NULL(db_addr));
CQM_PTR_CHECK_RET(dwqe_addr, return CQM_FAIL, CQM_PTR_NULL(dwqe_addr));
atomic_inc(&handle->hw_stats.cqm_stats.cqm_db_addr_alloc_cnt);
return hifc_alloc_db_addr(ex_handle, db_addr, dwqe_addr);
}
/**
* cqm_db_init - Initialize doorbell of cqm
* @ex_handle: handle of hwdev
*/
s32 cqm_db_init(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
struct cqm_service_s *service = NULL;
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
/* Assign hardware doorbell for service */
service = &cqm_handle->service;
if (cqm_db_addr_alloc(ex_handle,
&service->hardware_db_vaddr,
&service->dwqe_vaddr) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_db_addr_alloc));
return CQM_FAIL;
}
return CQM_SUCCESS;
}
/**
* cqm_db_addr_free - Release a page of hardware doorbell and dwqe
* @ex_handle: handle of hwdev
* @db_addr: the address of doorbell
* @dwqe_addr: the address of dwqe
*/
void cqm_db_addr_free(void *ex_handle, void __iomem *db_addr,
void __iomem *dwqe_addr)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
CQM_PTR_CHECK_NO_RET(ex_handle, CQM_PTR_NULL(ex_handle), return);
atomic_inc(&handle->hw_stats.cqm_stats.cqm_db_addr_free_cnt);
hifc_free_db_addr(ex_handle, db_addr, dwqe_addr);
}
/**
* cqm_db_uninit - Deinitialize doorbell of cqm
* @ex_handle: handle of hwdev
*/
void cqm_db_uninit(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
struct cqm_service_s *service = NULL;
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
/* Release hardware doorbell */
service = &cqm_handle->service;
cqm_db_addr_free(ex_handle, service->hardware_db_vaddr,
service->dwqe_vaddr);
}
/**
* cqm_aeq_callback - cqm module callback processing of aeq
* @ex_handle: handle of hwdev
* @event: the input type of event
* @data: the input data
*/
u8 cqm_aeq_callback(void *ex_handle, u8 event, u64 data)
{
#define CQM_AEQ_BASE_T_FC 48
#define CQM_AEQ_BASE_T_FCOE 56
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
struct cqm_service_s *service = NULL;
struct service_register_template_s *service_template = NULL;
u8 event_level = FAULT_LEVEL_MAX;
CQM_PTR_CHECK_RET(ex_handle, return event_level,
CQM_PTR_NULL(ex_handle));
atomic_inc(&handle->hw_stats.cqm_stats.cqm_aeq_callback_cnt[event]);
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
CQM_PTR_CHECK_RET(cqm_handle, return event_level,
CQM_PTR_NULL(cqm_handle));
if (event >= (u8)CQM_AEQ_BASE_T_FC &&
(event < (u8)CQM_AEQ_BASE_T_FCOE)) {
service = &cqm_handle->service;
service_template = &service->service_template;
if (!service_template->aeq_callback) {
cqm_err(handle->dev_hdl, "Event: service aeq_callback unregistered\n");
} else {
service_template->aeq_callback(
service_template->service_handle, event, data);
}
return event_level;
}
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(event));
return CQM_FAIL;
}
/**
* cqm_service_register - Service driver registers callback template with cqm
* @ex_handle: handle of hwdev
* @service_template: the template of service registration
*/
s32 cqm_service_register(void *ex_handle,
struct service_register_template_s *service_template)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
struct cqm_service_s *service = NULL;
CQM_PTR_CHECK_RET(ex_handle, return CQM_FAIL, CQM_PTR_NULL(ex_handle));
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
CQM_PTR_CHECK_RET(cqm_handle, return CQM_FAIL,
CQM_PTR_NULL(cqm_handle));
CQM_PTR_CHECK_RET(service_template, return CQM_FAIL,
CQM_PTR_NULL(service_template));
service = &cqm_handle->service;
if (service->has_register == true) {
cqm_err(handle->dev_hdl, "Service register: service has registered\n");
return CQM_FAIL;
}
service->has_register = true;
(void)memcpy((void *)(&service->service_template),
(void *)service_template,
sizeof(struct service_register_template_s));
return CQM_SUCCESS;
}
/**
* cqm_service_unregister - Service-driven cancellation to CQM
* @ex_handle: handle of hwdev
* @service_type: the type of service module
*/
void cqm_service_unregister(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
struct cqm_service_s *service = NULL;
CQM_PTR_CHECK_NO_RET(ex_handle, CQM_PTR_NULL(ex_handle), return);
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
CQM_PTR_CHECK_NO_RET(cqm_handle, CQM_PTR_NULL(cqm_handle), return);
service = &cqm_handle->service;
service->has_register = false;
memset(&service->service_template, 0,
sizeof(struct service_register_template_s));
}
/**
* cqm_cmd_alloc - Apply for a cmd buffer, the buffer size is fixed at 2K,
* the buffer content is not cleared, but the service needs to be cleared
* @ex_handle: handle of hwdev
*/
struct cqm_cmd_buf_s *cqm_cmd_alloc(void *ex_handle)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
CQM_PTR_CHECK_RET(ex_handle, return NULL, CQM_PTR_NULL(ex_handle));
atomic_inc(&handle->hw_stats.cqm_stats.cqm_cmd_alloc_cnt);
return (struct cqm_cmd_buf_s *)hifc_alloc_cmd_buf(ex_handle);
}
/**
* cqm_cmd_free - Free a cmd buffer
* @ex_handle: handle of hwdev
* @cmd_buf: the cmd buffer which needs freeing memory for
*/
void cqm_cmd_free(void *ex_handle, struct cqm_cmd_buf_s *cmd_buf)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
CQM_PTR_CHECK_NO_RET(ex_handle, CQM_PTR_NULL(ex_handle), return);
CQM_PTR_CHECK_NO_RET(cmd_buf, CQM_PTR_NULL(cmd_buf), return);
CQM_PTR_CHECK_NO_RET(cmd_buf->buf, CQM_PTR_NULL(buf), return);
atomic_inc(&handle->hw_stats.cqm_stats.cqm_cmd_free_cnt);
hifc_free_cmd_buf(ex_handle, (struct hifc_cmd_buf *)cmd_buf);
}
/**
* cqm_send_cmd_box - Send a cmd in box mode,
* the interface will hang the completed amount, causing sleep
* @ex_handle: handle of hwdev
* @ack_type: the type of ack
* @mod: the mode of cqm send
* @cmd: the input cmd
* @buf_in: the input buffer of cqm_cmd
* @buf_out: the output buffer of cqm_cmd
* @timeout: exceeding the time limit will cause sleep
*/
s32 cqm_send_cmd_box(void *ex_handle, u8 ack_type, u8 mod, u8 cmd,
struct cqm_cmd_buf_s *buf_in,
struct cqm_cmd_buf_s *buf_out, u32 timeout)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
CQM_PTR_CHECK_RET(ex_handle, return CQM_FAIL, CQM_PTR_NULL(ex_handle));
CQM_PTR_CHECK_RET(buf_in, return CQM_FAIL, CQM_PTR_NULL(buf_in));
CQM_PTR_CHECK_RET(buf_in->buf, return CQM_FAIL, CQM_PTR_NULL(buf));
atomic_inc(&handle->hw_stats.cqm_stats.cqm_send_cmd_box_cnt);
return hifc_cmdq_detail_resp(ex_handle, ack_type, mod, cmd,
(struct hifc_cmd_buf *)buf_in,
(struct hifc_cmd_buf *)buf_out, timeout);
}
/**
* cqm_ring_hardware_db - Knock hardware doorbell
* @ex_handle: handle of hwdev
* @service_type: each kernel mode will be allocated a page of hardware doorbell
* @db_count: PI exceeding 64b in doorbell[7:0]
* @db: doorbell content, organized by the business,
* if there is a small-end conversion, the business needs to be completed
*/
s32 cqm_ring_hardware_db(void *ex_handle, u32 service_type, u8 db_count, u64 db)
{
struct hifc_hwdev *handle;
struct cqm_handle_s *cqm_handle;
struct cqm_service_s *service;
handle = (struct hifc_hwdev *)ex_handle;
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
service = &cqm_handle->service;
/* Write all before the doorbell */
wmb();
*((u64 *)service->hardware_db_vaddr + db_count) = db;
return CQM_SUCCESS;
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef __CQM_MAIN_H__
#define __CQM_MAIN_H__
#define CHIPIF_SUCCESS 0
#define CQM_TIMER_ENABLE 1
enum cqm_object_type_e {
CQM_OBJECT_ROOT_CTX = 0,
CQM_OBJECT_SERVICE_CTX,
CQM_OBJECT_NONRDMA_EMBEDDED_RQ = 10,
CQM_OBJECT_NONRDMA_EMBEDDED_SQ,
CQM_OBJECT_NONRDMA_SRQ,
CQM_OBJECT_NONRDMA_EMBEDDED_CQ,
CQM_OBJECT_NONRDMA_SCQ,
};
struct service_register_template_s {
u32 service_type;
u32 srq_ctx_size; /* srq,scq context_size config */
u32 scq_ctx_size;
void *service_handle; /* ceq/aeq callback fun */
void (*aeq_callback)(void *service_handle, u8 event_type, u64 val);
};
struct cqm_service_s {
bool has_register;
void __iomem *hardware_db_vaddr;
void __iomem *dwqe_vaddr;
u32 buf_order; /* size of per buf 2^buf_order page */
struct service_register_template_s service_template;
};
struct cqm_func_capability_s {
bool qpc_alloc_static; /* Allocate qpc memory dynamicly/statically */
bool scqc_alloc_static;
u8 timer_enable; /* whether timer enable */
u32 flow_table_based_conn_number;
u32 flow_table_based_conn_cache_number; /* Maximum number in cache */
u32 bloomfilter_length; /* Bloomfilter table size, aligned by 64B */
/* The starting position of the bloomfilter table in the cache */
u32 bloomfilter_addr;
u32 qpc_reserved; /* Reserved bits in bitmap */
u32 mpt_reserved; /* There are also reserved bits in ROCE/IWARP mpt */
/* All basic_size must be 2^n aligned */
u32 hash_number;
/* Number of hash buckets, BAT table fill size is
* aligned with 64 buckets, at least 64
*/
u32 hash_basic_size;
/* Hash bucket size is 64B, including 5 valid
* entries and 1 nxt_entry
*/
u32 qpc_number;
u32 qpc_basic_size;
/* Note: for cqm specail test */
u32 pagesize_reorder;
bool xid_alloc_mode;
bool gpa_check_enable;
u32 scq_reserved;
u32 mpt_number;
u32 mpt_basic_size;
u32 scqc_number;
u32 scqc_basic_size;
u32 srqc_number;
u32 srqc_basic_size;
u32 gid_number;
u32 gid_basic_size;
u32 lun_number;
u32 lun_basic_size;
u32 taskmap_number;
u32 taskmap_basic_size;
u32 l3i_number;
u32 l3i_basic_size;
u32 childc_number;
u32 childc_basic_size;
u32 child_qpc_id_start; /* Child ctx of FC is global addressing */
/* The maximum number of child ctx in
* chip is 8096
*/
u32 childc_number_all_function;
u32 timer_number;
u32 timer_basic_size;
u32 xid2cid_number;
u32 xid2cid_basic_size;
u32 reorder_number;
u32 reorder_basic_size;
};
#define CQM_PF TYPE_PF
#define CQM_PPF TYPE_PPF
#define CQM_BAT_ENTRY_MAX (16)
#define CQM_BAT_ENTRY_SIZE (16)
struct cqm_buf_list_s {
void *va;
dma_addr_t pa;
u32 refcount;
};
struct cqm_buf_s {
struct cqm_buf_list_s *buf_list;
struct cqm_buf_list_s direct;
u32 page_number; /* page_number=2^n buf_number */
u32 buf_number; /* buf_list node count */
u32 buf_size; /* buf_size=2^n PAGE_SIZE */
};
struct cqm_bitmap_s {
ulong *table;
u32 max_num;
u32 last;
/* The index that cannot be allocated is reserved in the front */
u32 reserved_top;
/* Lock for bitmap allocation */
spinlock_t lock;
};
struct completion;
struct cqm_object_s {
u32 service_type;
u32 object_type; /* context,queue,mpt,mtt etc */
u32 object_size;
/* for queue, ctx, MPT Byte */
atomic_t refcount;
struct completion free;
void *cqm_handle;
};
struct cqm_object_table_s {
struct cqm_object_s **table;
u32 max_num;
rwlock_t lock;
};
struct cqm_cla_table_s {
u32 type;
u32 max_buffer_size;
u32 obj_num;
bool alloc_static; /* Whether the buffer is statically allocated */
u32 cla_lvl;
/* The value of x calculated by the cacheline, used for chip */
u32 cacheline_x;
/* The value of y calculated by the cacheline, used for chip */
u32 cacheline_y;
/* The value of z calculated by the cacheline, used for chip */
u32 cacheline_z;
/* The value of x calculated by the obj_size, used for software */
u32 x;
/* The value of y calculated by the obj_size, used for software */
u32 y;
/* The value of z calculated by the obj_size, used for software */
u32 z;
struct cqm_buf_s cla_x_buf;
struct cqm_buf_s cla_y_buf;
struct cqm_buf_s cla_z_buf;
u32 trunk_order;/* A continuous physical page contains 2^order pages */
u32 obj_size;
/* Lock for cla buffer allocation and free */
struct mutex lock;
struct cqm_bitmap_s bitmap;
/* The association mapping table of index and object */
struct cqm_object_table_s obj_table;
};
typedef void (*init_handler)(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap);
struct cqm_cla_entry_init_s {
u32 type;
init_handler cqm_cla_init_handler;
};
struct cqm_bat_table_s {
u32 bat_entry_type[CQM_BAT_ENTRY_MAX];
u8 bat[CQM_BAT_ENTRY_MAX * CQM_BAT_ENTRY_SIZE];
struct cqm_cla_table_s entry[CQM_BAT_ENTRY_MAX];
u32 bat_size;
};
struct cqm_handle_s {
struct hifc_hwdev *ex_handle;
struct pci_dev *dev;
struct hifc_func_attr func_attribute; /* vf or pf */
struct cqm_func_capability_s func_capability;
struct cqm_service_s service;
struct cqm_bat_table_s bat_table;
struct list_head node;
};
struct cqm_cmd_buf_s {
void *buf;
dma_addr_t dma;
u16 size;
};
struct cqm_queue_header_s {
u64 doorbell_record;
u64 ci_record;
u64 rsv1; /* the share area bettween driver and ucode */
u64 rsv2; /* the share area bettween driver and ucode*/
};
struct cqm_queue_s {
struct cqm_object_s object;
u32 index; /* embedded queue QP has not index, SRQ and SCQ have */
void *priv; /* service driver private info */
u32 current_q_doorbell;
u32 current_q_room;
/* nonrdma: only select q_room_buf_1 for q_room_buf */
struct cqm_buf_s q_room_buf_1;
struct cqm_buf_s q_room_buf_2;
struct cqm_queue_header_s *q_header_vaddr;
dma_addr_t q_header_paddr;
u8 *q_ctx_vaddr; /* SRQ and SCQ ctx space */
dma_addr_t q_ctx_paddr;
u32 valid_wqe_num;
/*add for srq*/
u8 *tail_container;
u8 *head_container;
u8 queue_link_mode; /*link,ring */
};
struct cqm_nonrdma_qinfo_s {
struct cqm_queue_s common;
u32 wqe_size;
/* The number of wqe contained in each buf (excluding link wqe),
* For srq, it is the number of wqe contained in 1 container
*/
u32 wqe_per_buf;
u32 q_ctx_size;
/* When different services use different sizes of ctx, a large ctx will
* occupy multiple consecutive indexes of the bitmap
*/
u32 index_count;
u32 container_size;
};
/* service context, QPC, mpt */
struct cqm_qpc_mpt_s {
struct cqm_object_s object;
u32 xid;
dma_addr_t paddr;
void *priv; /* service driver private info */
u8 *vaddr;
};
struct cqm_qpc_mpt_info_s {
struct cqm_qpc_mpt_s common;
/* When different services use different sizes of QPC, large QPC/mpt
* will occupy multiple consecutive indexes of the bitmap
*/
u32 index_count;
};
#define CQM_ADDR_COMBINE(high_addr, low_addr) \
((((dma_addr_t)(high_addr)) << 32) + ((dma_addr_t)(low_addr)))
#define CQM_ADDR_HI(addr) ((u32)((u64)(addr) >> 32))
#define CQM_ADDR_LW(addr) ((u32)((u64)(addr) & 0xffffffff))
#define CQM_HASH_BUCKET_SIZE_64 (64)
#define CQM_LUN_SIZE_8 (8)
#define CQM_L3I_SIZE_8 (8)
#define CQM_TIMER_SIZE_32 (32)
#define CQM_LUN_FC_NUM (64)
#define CQM_TASKMAP_FC_NUM (4)
#define CQM_L3I_COMM_NUM (64)
#define CQM_TIMER_SCALE_NUM (2*1024)
#define CQM_TIMER_ALIGN_WHEEL_NUM (8)
#define CQM_TIMER_ALIGN_SCALE_NUM \
(CQM_TIMER_SCALE_NUM*CQM_TIMER_ALIGN_WHEEL_NUM)
#define CQM_FC_PAGESIZE_ORDER (0)
#define CQM_QHEAD_ALIGN_ORDER (6)
s32 cqm_mem_init(void *ex_handle);
void cqm_mem_uninit(void *ex_handle);
s32 cqm_event_init(void *ex_handle);
void cqm_event_uninit(void *ex_handle);
s32 cqm_db_init(void *ex_handle);
void cqm_db_uninit(void *ex_handle);
s32 cqm_init(void *ex_handle);
void cqm_uninit(void *ex_handle);
s32 cqm_service_register(void *ex_handle,
struct service_register_template_s *service_template);
void cqm_service_unregister(void *ex_handle);
s32 cqm_ring_hardware_db(void *ex_handle,
u32 service_type,
u8 db_count, u64 db);
s32 cqm_send_cmd_box(void *ex_handle, u8 ack_type, u8 mod, u8 cmd,
struct cqm_cmd_buf_s *buf_in,
struct cqm_cmd_buf_s *buf_out,
u32 timeout);
u8 cqm_aeq_callback(void *ex_handle, u8 event, u64 data);
void cqm_object_delete(struct cqm_object_s *object);
struct cqm_cmd_buf_s *cqm_cmd_alloc(void *ex_handle);
void cqm_cmd_free(void *ex_handle, struct cqm_cmd_buf_s *cmd_buf);
struct cqm_queue_s *cqm_object_fc_srq_create(
void *ex_handle,
enum cqm_object_type_e object_type,
u32 wqe_number,
u32 wqe_size,
void *object_priv);
struct cqm_qpc_mpt_s *cqm_object_qpc_mpt_create(
void *ex_handle,
enum cqm_object_type_e object_type,
u32 object_size,
void *object_priv,
u32 index);
struct cqm_queue_s *cqm_object_nonrdma_queue_create(
void *ex_handle,
enum cqm_object_type_e object_type,
u32 wqe_number,
u32 wqe_size,
void *object_priv);
#define CQM_PTR_NULL(x) "%s: "#x" is null\n", __func__
#define CQM_ALLOC_FAIL(x) "%s: "#x" alloc fail\n", __func__
#define CQM_MAP_FAIL(x) "%s: "#x" map fail\n", __func__
#define CQM_FUNCTION_FAIL(x) "%s: "#x" return failure\n", __func__
#define CQM_WRONG_VALUE(x) "%s: "#x" %u is wrong\n", __func__, (u32)x
#define cqm_err(dev, format, ...) \
dev_err(dev, "[CQM]"format, ##__VA_ARGS__)
#define cqm_warn(dev, format, ...) \
dev_warn(dev, "[CQM]"format, ##__VA_ARGS__)
#define cqm_notice(dev, format, ...) \
dev_notice(dev, "[CQM]"format, ##__VA_ARGS__)
#define cqm_info(dev, format, ...) \
dev_info(dev, "[CQM]"format, ##__VA_ARGS__)
#define cqm_dbg(format, ...)
#define CQM_PTR_CHECK_RET(ptr, ret, desc) \
do {\
if (unlikely(NULL == (ptr))) {\
pr_err("[CQM]"desc);\
ret; \
} \
} while (0)
#define CQM_PTR_CHECK_NO_RET(ptr, desc, ret) \
do {\
if (unlikely((ptr) == NULL)) {\
pr_err("[CQM]"desc);\
ret; \
} \
} while (0)
#define CQM_CHECK_EQUAL_RET(dev_hdl, actual, expect, ret, desc) \
do {\
if (unlikely((expect) != (actual))) {\
cqm_err(dev_hdl, desc);\
ret; \
} \
} while (0)
#endif /* __CQM_MAIN_H__ */
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/device.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_hwif.h"
#include "hifc_api_cmd.h"
#include "hifc_mgmt.h"
#include "hifc_cfg.h"
#include "hifc_cqm_object.h"
#include "hifc_cqm_main.h"
#define common_section
#define CQM_MOD_CQM 8
#define CQM_HARDWARE_DOORBELL 1
/**
* cqm_swab64 - Convert a memory block to another endian by 8 byte basis
* @addr: start address of the memory block
* @cnt: the number of 8 byte basis in the memory block
*/
void cqm_swab64(u8 *addr, u32 cnt)
{
u32 i = 0;
u64 *temp = (u64 *)addr;
u64 value = 0;
for (i = 0; i < cnt; i++) {
value = __swab64(*temp);
*temp = value;
temp++;
}
}
/**
* cqm_swab32 - Convert a memory block to another endian by 4 byte basis
* @addr: start address of the memory block
* @cnt: the number of 4 byte basis in the memory block
*/
void cqm_swab32(u8 *addr, u32 cnt)
{
u32 i = 0;
u32 *temp = (u32 *)addr;
u32 value = 0;
for (i = 0; i < cnt; i++) {
value = __swab32(*temp);
*temp = value;
temp++;
}
}
/**
* cqm_shift - Find the base logarithm of two
* @data: the input data
*/
s32 cqm_shift(u32 data)
{
s32 shift = -1;
do {
data >>= 1;
shift++;
} while (data);
return shift;
}
/**
* cqm_check_align - Check whether the data is aligned as the base of 2^n
* @data: the input data
*/
bool cqm_check_align(u32 data)
{
if (data == 0)
return false;
do {
/* If data can be divided exactly by 2,
* it right shifts one bit
*/
if ((data & 0x1) == 0) {
data >>= 1;
} else {
/* If data can not be divided exactly by 2
* it is not the base of 2^n,return false
*/
return false;
}
} while (data != 1);
return true;
}
/**
* cqm_kmalloc_align - Alloc memory whose start address is aligned as the basis
* of 2^n
* @size: the size of memory allocated
* @flags: the type of memory allocated
* @align_order: the basis for aligning
*/
static void *cqm_kmalloc_align(size_t size, gfp_t flags, u16 align_order)
{
void *orig_addr = NULL;
void *align_addr = NULL;
void *index_addr = NULL;
orig_addr = kmalloc(size + ((u64)1 << align_order) + sizeof(void *),
flags);
if (!orig_addr)
return NULL;
index_addr = (void *)((char *)orig_addr + sizeof(void *));
align_addr = (void *)((((u64)index_addr +
((u64)1 << align_order) - 1) >> align_order) << align_order);
/* Record the original memory address for memory release. */
index_addr = (void *)((char *)align_addr - sizeof(void *));
*(void **)index_addr = orig_addr;
cqm_dbg("allocate %lu bytes aligned address: %p, original address: %p\n",
size, align_addr, orig_addr);
return align_addr;
}
/**
* cqm_kfree_align - Free memory whose start address is aligned as the basis of
* 2^n
* @addr: aligned address which would be free
*/
static void cqm_kfree_align(void *addr)
{
void *index_addr = NULL;
/* Release original memory address */
index_addr = (void *)((char *)addr - sizeof(void *));
cqm_dbg("free aligned address: %p, original address: %p\n",
addr, *(void **)index_addr);
kfree(*(void **)index_addr);
}
/**
* cqm_buf_alloc_page - Alloc total pages memory for buffers
* @cqm_handle: handle of cqm
* @buf: the buffer which needs allocating memory for
*/
s32 cqm_buf_alloc_page(struct cqm_handle_s *cqm_handle, struct cqm_buf_s *buf)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
u32 order = 0;
void *va = NULL;
s32 i = 0;
order = get_order(buf->buf_size);
/*Here to allocate for every buffer's page for non-ovs*/
for (i = 0; i < (s32)buf->buf_number; i++) {
va = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!va) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(buf_page));
break;
}
/* Pages should be initialized to 0 after applied
* especially related to the hash table
*/
memset(va, 0, buf->buf_size);
buf->buf_list[i].va = va;
}
if (i != buf->buf_number) {
i--;
for (; i >= 0; i--) {
free_pages((ulong)(buf->buf_list[i].va), order);
buf->buf_list[i].va = NULL;
}
return CQM_FAIL;
}
return CQM_SUCCESS;
}
/**
* cqm_buf_alloc_map - Buffer pci mapping
* @cqm_handle: handle of cqm
* @buf: the buffer which needs map
*/
s32 cqm_buf_alloc_map(struct cqm_handle_s *cqm_handle, struct cqm_buf_s *buf)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct pci_dev *dev = cqm_handle->dev;
s32 i = 0;
void *va = NULL;
for (i = 0; i < (s32)buf->buf_number; i++) {
va = buf->buf_list[i].va;
buf->buf_list[i].pa =
pci_map_single(dev, va, buf->buf_size,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev, buf->buf_list[i].pa)) {
cqm_err(handle->dev_hdl, CQM_MAP_FAIL(buf_list));
break;
}
}
if (i != buf->buf_number) {
i--;
for (; i >= 0; i--) {
pci_unmap_single(dev, buf->buf_list[i].pa,
buf->buf_size, PCI_DMA_BIDIRECTIONAL);
}
return CQM_FAIL;
}
return CQM_SUCCESS;
}
/**
* cqm_buf_alloc_direct - Buffer pci direct remapping
* @cqm_handle: handle of cqm
* @buf: the buffer which needs remap
*/
s32 cqm_buf_alloc_direct(struct cqm_handle_s *cqm_handle,
struct cqm_buf_s *buf, bool direct)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct page **pages = NULL;
u32 order = 0;
u32 i = 0;
u32 j = 0;
order = get_order(buf->buf_size);
if (direct == true) {
pages = (struct page **)
vmalloc(sizeof(struct page *) * buf->page_number);
if (!pages) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(pages));
return CQM_FAIL;
}
for (i = 0; i < buf->buf_number; i++) {
for (j = 0; j < ((u32)1 << order); j++) {
pages[(i << order) + j] = (struct page *)
(void *)virt_to_page(
(u8 *)(buf->buf_list[i].va) +
(PAGE_SIZE * j));
}
}
/*lint -save -e648
*Shield alarm for kernel functions' vmapping
*/
buf->direct.va = vmap(pages, buf->page_number,
VM_MAP, PAGE_KERNEL);
/*lint -restore*/
vfree(pages);
if (!buf->direct.va) {
cqm_err(handle->dev_hdl, CQM_MAP_FAIL(buf->direct.va));
return CQM_FAIL;
}
} else {
buf->direct.va = NULL;
}
return CQM_SUCCESS;
}
/**
* cqm_buf_alloc - Allocate for buffer and dma for the struct cqm_buf_s
* @cqm_handle: handle of cqm
* @buf: the buffer which needs allocating memory for and dma
*/
s32 cqm_buf_alloc(struct cqm_handle_s *cqm_handle,
struct cqm_buf_s *buf, bool direct)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct pci_dev *dev = cqm_handle->dev;
u32 order = 0;
s32 i = 0;
order = get_order(buf->buf_size);
/* Allocate for the descriptor space of buffer lists */
buf->buf_list = (struct cqm_buf_list_s *)
vmalloc(buf->buf_number *
sizeof(struct cqm_buf_list_s));
CQM_PTR_CHECK_RET(buf->buf_list, return CQM_FAIL,
CQM_ALLOC_FAIL(buf_list));
memset(buf->buf_list, 0,
buf->buf_number * sizeof(struct cqm_buf_list_s));
/* Allocate for every buffer's page */
if (cqm_buf_alloc_page(cqm_handle, buf) == CQM_FAIL) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_buf_alloc_page));
goto err1;
}
/* Buffer pci remapping */
if (cqm_buf_alloc_map(cqm_handle, buf) == CQM_FAIL) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_buf_alloc_map));
goto err2;
}
/* Buffer pci mapping */
if (cqm_buf_alloc_direct(cqm_handle, buf, direct) == CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_buf_alloc_direct));
goto err3;
}
return CQM_SUCCESS;
err3:
for (i = 0; i < (s32)buf->buf_number; i++) {
pci_unmap_single(dev, buf->buf_list[i].pa, buf->buf_size,
PCI_DMA_BIDIRECTIONAL);
}
err2:
for (i = 0; i < (s32)buf->buf_number; i++) {
free_pages((ulong)(buf->buf_list[i].va), order);
buf->buf_list[i].va = NULL;
}
err1:
vfree(buf->buf_list);
buf->buf_list = NULL;
return CQM_FAIL;
}
/**
* cqm_cla_cache_invalid - Set the chip logical address cache invalid
* @cqm_handle: handle of cqm
* @gpa: global physical address
* @cache_size: chip cache size
*/
s32 cqm_cla_cache_invalid(struct cqm_handle_s *cqm_handle, dma_addr_t gpa,
u32 cache_size)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_cmd_buf_s *buf_in = NULL;
struct cqm_cla_cache_invalid_cmd_s *cmd = NULL;
s32 ret = CQM_FAIL;
buf_in = cqm_cmd_alloc((void *)(cqm_handle->ex_handle));
CQM_PTR_CHECK_RET(buf_in, return CQM_FAIL,
CQM_ALLOC_FAIL(buf_in));
buf_in->size = sizeof(struct cqm_cla_cache_invalid_cmd_s);
/* Fill command format, and turn into big endian */
cmd = (struct cqm_cla_cache_invalid_cmd_s *)(buf_in->buf);
cmd->cache_size = cache_size;
cmd->gpa_h = CQM_ADDR_HI(gpa);
cmd->gpa_l = CQM_ADDR_LW(gpa);
cqm_swab32((u8 *)cmd,
(sizeof(struct cqm_cla_cache_invalid_cmd_s) >> 2));
/* cmdq send a cmd */
ret = cqm_send_cmd_box((void *)(cqm_handle->ex_handle),
CQM_CMD_ACK_TYPE_CMDQ,
CQM_MOD_CQM, CQM_CMD_T_CLA_CACHE_INVALID,
buf_in, NULL, CQM_CMD_TIMEOUT);
if (ret != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_send_cmd_box));
cqm_err(handle->dev_hdl, "Cla cache invalid: cqm_send_cmd_box_ret=%d\n",
ret);
cqm_err(handle->dev_hdl, "Cla cache invalid: cla_cache_invalid_cmd: 0x%x 0x%x 0x%x\n",
cmd->gpa_h, cmd->gpa_l, cmd->cache_size);
}
cqm_cmd_free((void *)(cqm_handle->ex_handle), buf_in);
return ret;
}
/**
* cqm_buf_free - Free buffer space and dma for the struct cqm_buf_s
* @buf: the buffer which needs freeing memory for
* @dev: specific pci device
*/
void cqm_buf_free(struct cqm_buf_s *buf, struct pci_dev *dev)
{
u32 order = 0;
s32 i = 0;
order = get_order(buf->buf_size);
if (buf->direct.va) {
vunmap(buf->direct.va);
buf->direct.va = NULL;
}
if (buf->buf_list) {
for (i = 0; i < (s32)(buf->buf_number); i++) {
if (buf->buf_list[i].va) {
pci_unmap_single(dev, buf->buf_list[i].pa,
buf->buf_size,
PCI_DMA_BIDIRECTIONAL);
free_pages((ulong)(buf->buf_list[i].va), order);
buf->buf_list[i].va = NULL;
}
}
vfree(buf->buf_list);
buf->buf_list = NULL;
}
}
/**
* __free_cache_inv - Free cache and make buffer list invalid
* @cqm_handle: handle of cqm
* @buf: the buffer which needs freeing memory for
* @inv_flag: invalid or not
* @order:the basis for aligning
* @buf_idx:buffer index
*/
static void __free_cache_inv(struct cqm_handle_s *cqm_handle,
struct cqm_buf_s *buf, s32 *inv_flag,
u32 order, s32 buf_idx)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
if (handle->chip_present_flag) {
*inv_flag = cqm_cla_cache_invalid(cqm_handle,
buf->buf_list[buf_idx].pa,
PAGE_SIZE << order);
if (*inv_flag != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, "Buffer free: fail to invalid buf_list pa cache, inv_flag=%d\n",
*inv_flag);
}
}
pci_unmap_single(cqm_handle->dev, buf->buf_list[buf_idx].pa,
buf->buf_size, PCI_DMA_BIDIRECTIONAL);
free_pages((unsigned long)(buf->buf_list[buf_idx].va), order);
buf->buf_list[buf_idx].va = NULL;
}
/**
* cqm_buf_free_cache_inv - Free cache and make buffer list invalid
* @cqm_handle: handle of cqm
* @buf: the buffer which needs freeing memory for
* @inv_flag: invalid or not
*/
void cqm_buf_free_cache_inv(struct cqm_handle_s *cqm_handle,
struct cqm_buf_s *buf, s32 *inv_flag)
{
u32 order = 0;
s32 i = 0;
order = get_order(buf->buf_size);
if (buf->direct.va) {
vunmap(buf->direct.va);
buf->direct.va = NULL;
}
if (buf->buf_list) {
for (i = 0; i < (s32)(buf->buf_number); i++) {
if (buf->buf_list[i].va) {
__free_cache_inv(cqm_handle, buf,
inv_flag, order, i);
}
}
vfree(buf->buf_list);
buf->buf_list = NULL;
}
}
#define bat_cla_section
/**
* cqm_bat_update - Send cmds to the tile to update the BAT table through cmdq
* @cqm_handle: cqm handle
* Return: 0 - success, negative - failure
*/
s32 cqm_bat_update(struct cqm_handle_s *cqm_handle)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_cmd_buf_s *buf_in = NULL;
s32 ret = CQM_FAIL;
struct cqm_bat_update_cmd_s *bat_update_cmd = NULL;
/* Allocate a cmd and fill */
buf_in = cqm_cmd_alloc((void *)(cqm_handle->ex_handle));
CQM_PTR_CHECK_RET(buf_in, return CQM_FAIL, CQM_ALLOC_FAIL(buf_in));
buf_in->size = sizeof(struct cqm_bat_update_cmd_s);
bat_update_cmd = (struct cqm_bat_update_cmd_s *)(buf_in->buf);
bat_update_cmd->byte_len = cqm_handle->bat_table.bat_size;
bat_update_cmd->offset = 0;
memcpy(bat_update_cmd->data, cqm_handle->bat_table.bat,
bat_update_cmd->byte_len);
/*Big endian conversion*/
cqm_swab32((u8 *)bat_update_cmd,
sizeof(struct cqm_bat_update_cmd_s) >> 2);
/* send a cmd */
ret = cqm_send_cmd_box((void *)(cqm_handle->ex_handle),
CQM_CMD_ACK_TYPE_CMDQ, CQM_MOD_CQM,
CQM_CMD_T_BAT_UPDATE, buf_in,
NULL, CQM_CMD_TIMEOUT);
if (ret != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_send_cmd_box));
cqm_err(handle->dev_hdl, "Bat update: send_cmd_box ret=%d\n",
ret);
cqm_cmd_free((void *)(cqm_handle->ex_handle), buf_in);
return CQM_FAIL;
}
/* Free a cmd */
cqm_cmd_free((void *)(cqm_handle->ex_handle), buf_in);
return CQM_SUCCESS;
}
s32 cqm_bat_init_ft(struct cqm_handle_s *cqm_handle,
struct cqm_bat_table_s *bat_table,
enum func_type function_type)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
if (function_type == CQM_PF || function_type == CQM_PPF) {
bat_table->bat_entry_type[0] = CQM_BAT_ENTRY_T_CFG;
bat_table->bat_entry_type[1] = CQM_BAT_ENTRY_T_HASH;
bat_table->bat_entry_type[2] = CQM_BAT_ENTRY_T_QPC;
bat_table->bat_entry_type[3] = CQM_BAT_ENTRY_T_SCQC;
bat_table->bat_entry_type[4] = CQM_BAT_ENTRY_T_LUN;
bat_table->bat_entry_type[5] = CQM_BAT_ENTRY_T_TASKMAP;
bat_table->bat_entry_type[6] = CQM_BAT_ENTRY_T_L3I;
bat_table->bat_entry_type[7] = CQM_BAT_ENTRY_T_CHILDC;
bat_table->bat_entry_type[8] = CQM_BAT_ENTRY_T_TIMER;
bat_table->bat_entry_type[9] = CQM_BAT_ENTRY_T_XID2CID;
bat_table->bat_entry_type[10] = CQM_BAT_ENTRY_T_REORDER;
bat_table->bat_size = CQM_BAT_SIZE_FT_PF;
} else {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(function_type));
return CQM_FAIL;
}
return CQM_SUCCESS;
}
/**
* cqm_bat_init - Initialize the BAT table, only select the items to be
* initialized and arrange the entry order, the content of the BAT table entry
* needs to be filled after the CLA allocation
* @cqm_handle: cqm handle
* Return: 0 - success, negative - failure
*/
s32 cqm_bat_init(struct cqm_handle_s *cqm_handle)
{
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
u32 i = 0;
memset(bat_table, 0, sizeof(struct cqm_bat_table_s));
/* Initialize the type of each bat entry */
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++)
bat_table->bat_entry_type[i] = CQM_BAT_ENTRY_T_INVALID;
if (cqm_bat_init_ft(cqm_handle, bat_table,
cqm_handle->func_attribute.func_type) == CQM_FAIL) {
return CQM_FAIL;
}
return CQM_SUCCESS;
}
/**
* cqm_bat_uninit - Deinitialize BAT table
* @cqm_handle: cqm handle
*/
void cqm_bat_uninit(struct cqm_handle_s *cqm_handle)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
u32 i = 0;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++)
bat_table->bat_entry_type[i] = CQM_BAT_ENTRY_T_INVALID;
memset(bat_table->bat, 0, CQM_BAT_ENTRY_MAX * CQM_BAT_ENTRY_SIZE);
/* Notify the chip to refresh the BAT table */
if (cqm_bat_update(cqm_handle) != CQM_SUCCESS)
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_bat_update));
}
static void cqm_bat_config_entry_size(
struct cqm_cla_table_s *cla_table,
struct cqm_bat_entry_standerd_s *bat_entry_standerd)
{
/* Except for QPC of 256/512/1024, the others are all cacheline 256B,
* and the conversion will be done inside the chip
*/
if (cla_table->obj_size > CQM_CHIP_CACHELINE) {
if (cla_table->obj_size == 512) {
bat_entry_standerd->entry_size = CQM_BAT_ENTRY_SIZE_512;
} else {
bat_entry_standerd->entry_size =
CQM_BAT_ENTRY_SIZE_1024;
}
bat_entry_standerd->max_number =
cla_table->max_buffer_size / cla_table->obj_size;
} else {
bat_entry_standerd->entry_size = CQM_BAT_ENTRY_SIZE_256;
bat_entry_standerd->max_number =
cla_table->max_buffer_size / CQM_CHIP_CACHELINE;
}
}
void cqm_bat_fill_cla_std_entry(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
u8 *entry_base_addr, u32 entry_type,
u8 gpa_check_enable)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_bat_entry_standerd_s *bat_entry_standerd = NULL;
dma_addr_t pa = 0;
if (cla_table->obj_num == 0) {
cqm_info(handle->dev_hdl, "Cla alloc: cla_type %u, obj_num=0, don't init bat entry\n",
cla_table->type);
return;
}
bat_entry_standerd = (struct cqm_bat_entry_standerd_s *)entry_base_addr;
cqm_bat_config_entry_size(cla_table, bat_entry_standerd);
bat_entry_standerd->max_number = bat_entry_standerd->max_number - 1;
bat_entry_standerd->bypass = CQM_BAT_NO_BYPASS_CACHE;
bat_entry_standerd->z = cla_table->cacheline_z;
bat_entry_standerd->y = cla_table->cacheline_y;
bat_entry_standerd->x = cla_table->cacheline_x;
bat_entry_standerd->cla_level = cla_table->cla_lvl;
if (cla_table->cla_lvl == CQM_CLA_LVL_0)
pa = cla_table->cla_z_buf.buf_list[0].pa;
else if (cla_table->cla_lvl == CQM_CLA_LVL_1)
pa = cla_table->cla_y_buf.buf_list[0].pa;
else
pa = cla_table->cla_x_buf.buf_list[0].pa;
bat_entry_standerd->cla_gpa_h = CQM_ADDR_HI(pa);
if (entry_type == CQM_BAT_ENTRY_T_REORDER) {
/* Reorder does not support GPA validity check */
bat_entry_standerd->cla_gpa_l = CQM_ADDR_LW(pa);
} else {
/* GPA is valid when gpa[0]=1 */
bat_entry_standerd->cla_gpa_l =
CQM_ADDR_LW(pa) | gpa_check_enable;
}
}
static void cqm_bat_fill_cla_cfg(struct cqm_handle_s *cqm_handle,
u8 *entry_base_addr)
{
struct cqm_bat_entry_cfg_s *bat_entry_cfg =
(struct cqm_bat_entry_cfg_s *)entry_base_addr;
bat_entry_cfg->cur_conn_cache = 0;
bat_entry_cfg->max_conn_cache =
cqm_handle->func_capability.flow_table_based_conn_cache_number;
bat_entry_cfg->cur_conn_num_h_4 = 0;
bat_entry_cfg->cur_conn_num_l_16 = 0;
bat_entry_cfg->max_conn_num =
cqm_handle->func_capability.flow_table_based_conn_number;
/* Align by 64 buckets, shift right 6 bits */
if ((cqm_handle->func_capability.hash_number >> 6) != 0) {
/* After shift right 6 bits, the value should - 1 for the hash
* value
*/
bat_entry_cfg->bucket_num =
((cqm_handle->func_capability.hash_number >> 6) - 1);
}
if (cqm_handle->func_capability.bloomfilter_length != 0) {
bat_entry_cfg->bloom_filter_len =
cqm_handle->func_capability.bloomfilter_length - 1;
bat_entry_cfg->bloom_filter_addr =
cqm_handle->func_capability.bloomfilter_addr;
}
}
static void cqm_bat_fill_cla_taskmap(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
u8 *entry_base_addr)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_bat_entry_taskmap_s *bat_entry_taskmap =
(struct cqm_bat_entry_taskmap_s *)entry_base_addr;
if (cqm_handle->func_capability.taskmap_number != 0) {
bat_entry_taskmap->gpa0_h =
(u32)(cla_table->cla_z_buf.buf_list[0].pa >> 32);
bat_entry_taskmap->gpa0_l =
(u32)(cla_table->cla_z_buf.buf_list[0].pa & 0xffffffff);
bat_entry_taskmap->gpa1_h =
(u32)(cla_table->cla_z_buf.buf_list[1].pa >> 32);
bat_entry_taskmap->gpa1_l =
(u32)(cla_table->cla_z_buf.buf_list[1].pa & 0xffffffff);
bat_entry_taskmap->gpa2_h =
(u32)(cla_table->cla_z_buf.buf_list[2].pa >> 32);
bat_entry_taskmap->gpa2_l =
(u32)(cla_table->cla_z_buf.buf_list[2].pa & 0xffffffff);
bat_entry_taskmap->gpa3_h =
(u32)(cla_table->cla_z_buf.buf_list[3].pa >> 32);
bat_entry_taskmap->gpa3_l =
(u32)(cla_table->cla_z_buf.buf_list[3].pa & 0xffffffff);
cqm_info(handle->dev_hdl, "Cla alloc: taskmap bat entry: 0x%x 0x%x, 0x%x 0x%x, 0x%x 0x%x, 0x%x 0x%x\n",
bat_entry_taskmap->gpa0_h, bat_entry_taskmap->gpa0_l,
bat_entry_taskmap->gpa1_h, bat_entry_taskmap->gpa1_l,
bat_entry_taskmap->gpa2_h, bat_entry_taskmap->gpa2_l,
bat_entry_taskmap->gpa3_h, bat_entry_taskmap->gpa3_l);
}
}
/**
* cqm_bat_fill_cla - Fill the base address of the cla table into the bat table
* @cqm_handle: cqm handle
*/
void cqm_bat_fill_cla(struct cqm_handle_s *cqm_handle)
{
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
u32 entry_type = CQM_BAT_ENTRY_T_INVALID;
u8 *entry_base_addr = NULL;
u32 i = 0;
u8 gpa_check_enable = cqm_handle->func_capability.gpa_check_enable;
/* Fill each item according to the arranged BAT table */
entry_base_addr = bat_table->bat;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++) {
entry_type = bat_table->bat_entry_type[i];
if (entry_type == CQM_BAT_ENTRY_T_CFG) {
cqm_bat_fill_cla_cfg(cqm_handle, entry_base_addr);
entry_base_addr += sizeof(struct cqm_bat_entry_cfg_s);
} else if (entry_type == CQM_BAT_ENTRY_T_TASKMAP) {
cqm_bat_fill_cla_taskmap(cqm_handle,
&bat_table->entry[i],
entry_base_addr);
entry_base_addr +=
sizeof(struct cqm_bat_entry_taskmap_s);
} else if ((entry_type == CQM_BAT_ENTRY_T_INVALID) ||
((entry_type == CQM_BAT_ENTRY_T_TIMER) &&
(cqm_handle->func_attribute.func_type != CQM_PPF))) {
/* When entry_type is invalid, or the timer entry under
* PF does not need to apply for memory and bat filling
*/
entry_base_addr += CQM_BAT_ENTRY_SIZE;
} else {
cla_table = &bat_table->entry[i];
cqm_bat_fill_cla_std_entry(cqm_handle, cla_table,
entry_base_addr, entry_type,
gpa_check_enable);
entry_base_addr +=
sizeof(struct cqm_bat_entry_standerd_s);
}
/* Checks if entry_base_addr is out of bounds */
if (entry_base_addr >=
(bat_table->bat + CQM_BAT_ENTRY_MAX * CQM_BAT_ENTRY_SIZE))
break;
}
}
static void cqm_cla_xyz_cacheline_lvl1(struct cqm_cla_table_s *cla_table,
u32 trunk_size)
{
s32 shift = 0;
if (cla_table->obj_size >= CQM_CHIP_CACHELINE) {
cla_table->cacheline_z = cla_table->z;
cla_table->cacheline_y = cla_table->y;
cla_table->cacheline_x = cla_table->x;
} else {
shift = cqm_shift(trunk_size / CQM_CHIP_CACHELINE);
cla_table->cacheline_z = shift ? (shift - 1) : (shift);
cla_table->cacheline_y = CQM_MAX_INDEX_BIT;
cla_table->cacheline_x = 0;
}
}
s32 cqm_cla_xyz_lvl1(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
u32 trunk_size)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_buf_s *cla_y_buf = NULL;
struct cqm_buf_s *cla_z_buf = NULL;
dma_addr_t *base = NULL;
s32 shift = 0;
u32 i = 0;
s32 ret = CQM_FAIL;
u8 gpa_check_enable = cqm_handle->func_capability.gpa_check_enable;
if (cla_table->type == CQM_BAT_ENTRY_T_REORDER)
gpa_check_enable = 0;
cla_table->cla_lvl = CQM_CLA_LVL_1;
shift = cqm_shift(trunk_size / cla_table->obj_size);
cla_table->z = shift ? (shift - 1) : (shift);
cla_table->y = CQM_MAX_INDEX_BIT;
cla_table->x = 0;
cqm_cla_xyz_cacheline_lvl1(cla_table, trunk_size);
/* Allocate y buf space */
cla_y_buf = &cla_table->cla_y_buf;
cla_y_buf->buf_size = trunk_size;
cla_y_buf->buf_number = 1;
cla_y_buf->page_number = cla_y_buf->buf_number <<
cla_table->trunk_order;
ret = cqm_buf_alloc(cqm_handle, cla_y_buf, false);
CQM_CHECK_EQUAL_RET(handle->dev_hdl, ret, CQM_SUCCESS, return CQM_FAIL,
CQM_ALLOC_FAIL(lvl_1_y_buf));
/* Allocate z buf space */
cla_z_buf = &cla_table->cla_z_buf;
cla_z_buf->buf_size = trunk_size;
cla_z_buf->buf_number = ALIGN(cla_table->max_buffer_size, trunk_size) /
trunk_size;
cla_z_buf->page_number = cla_z_buf->buf_number <<
cla_table->trunk_order;
/* Requires static allocation of all buffer space */
if (cla_table->alloc_static == true) {
if (cqm_buf_alloc(cqm_handle, cla_z_buf, false) == CQM_FAIL) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(lvl_1_z_buf));
cqm_buf_free(cla_y_buf, cqm_handle->dev);
return CQM_FAIL;
}
/* Fill gpa of z buf list into y buf */
base = (dma_addr_t *)(cla_y_buf->buf_list->va);
for (i = 0; i < cla_z_buf->buf_number; i++) {
/*gpa[0]=1 means this GPA is valid*/
*base = (cla_z_buf->buf_list[i].pa | gpa_check_enable);
base++;
}
/* big-endian conversion */
cqm_swab64((u8 *)(cla_y_buf->buf_list->va),
cla_z_buf->buf_number);
} else {
/* Only initialize and allocate buf list space, buffer spaces
* are dynamically allocated in service
*/
cla_z_buf->buf_list = (struct cqm_buf_list_s *)
vmalloc(cla_z_buf->buf_number *
sizeof(struct cqm_buf_list_s));
if (!cla_z_buf->buf_list) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(lvl_1_z_buf));
cqm_buf_free(cla_y_buf, cqm_handle->dev);
return CQM_FAIL;
}
memset(cla_z_buf->buf_list, 0,
cla_z_buf->buf_number * sizeof(struct cqm_buf_list_s));
}
return CQM_SUCCESS;
}
static s32 cqm_cla_yz_lvl2_static(struct cqm_handle_s *cqm_handle,
struct cqm_buf_s *cla_y_buf,
struct cqm_buf_s *cla_z_buf,
u8 gpa_check_enable)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
dma_addr_t *base = NULL;
u32 i = 0;
if (cqm_buf_alloc(cqm_handle, cla_z_buf, false) == CQM_FAIL) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(lvl_2_z_buf));
return CQM_FAIL;
}
/* The virtual address of y buf is remapped for software access */
if (cqm_buf_alloc(cqm_handle, cla_y_buf, true) == CQM_FAIL) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(lvl_2_y_buf));
cqm_buf_free(cla_z_buf, cqm_handle->dev);
return CQM_FAIL;
}
/* Fill gpa of z buf list into y buf */
base = (dma_addr_t *)(cla_y_buf->direct.va);
for (i = 0; i < cla_z_buf->buf_number; i++) {
/*gpa[0]=1 means this GPA is valid*/
*base = (cla_z_buf->buf_list[i].pa | gpa_check_enable);
base++;
}
/* big-endian conversion */
cqm_swab64((u8 *)(cla_y_buf->direct.va), cla_z_buf->buf_number);
return CQM_SUCCESS;
}
static void cqm_cla_yz_lvl2_init_cacheline(struct cqm_cla_table_s *cla_table,
u32 trunk_size)
{
s32 shift = 0;
if (cla_table->obj_size >= CQM_CHIP_CACHELINE) {
cla_table->cacheline_z = cla_table->z;
cla_table->cacheline_y = cla_table->y;
cla_table->cacheline_x = cla_table->x;
} else {
shift = cqm_shift(trunk_size / CQM_CHIP_CACHELINE);
cla_table->cacheline_z = shift ? (shift - 1) : (shift);
shift = cqm_shift(trunk_size / sizeof(dma_addr_t));
cla_table->cacheline_y = cla_table->cacheline_z + shift;
cla_table->cacheline_x = CQM_MAX_INDEX_BIT;
}
}
s32 cqm_cla_xyz_lvl2(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
u32 trunk_size)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_buf_s *cla_x_buf = NULL;
struct cqm_buf_s *cla_y_buf = NULL;
struct cqm_buf_s *cla_z_buf = NULL;
dma_addr_t *base = NULL;
s32 shift = 0;
u32 i = 0;
s32 ret = CQM_FAIL;
u8 gpa_check_enable = cqm_handle->func_capability.gpa_check_enable;
if (cla_table->type == CQM_BAT_ENTRY_T_REORDER)
gpa_check_enable = 0;
cla_table->cla_lvl = CQM_CLA_LVL_2;
shift = cqm_shift(trunk_size / cla_table->obj_size);
cla_table->z = shift ? (shift - 1) : (shift);
shift = cqm_shift(trunk_size / sizeof(dma_addr_t));
cla_table->y = cla_table->z + shift;
cla_table->x = CQM_MAX_INDEX_BIT;
cqm_cla_yz_lvl2_init_cacheline(cla_table, trunk_size);
/* Allocate x buf space */
cla_x_buf = &cla_table->cla_x_buf;
cla_x_buf->buf_size = trunk_size;
cla_x_buf->buf_number = 1;
cla_x_buf->page_number = cla_x_buf->buf_number <<
cla_table->trunk_order;
ret = cqm_buf_alloc(cqm_handle, cla_x_buf, false);
CQM_CHECK_EQUAL_RET(handle->dev_hdl, ret, CQM_SUCCESS, return CQM_FAIL,
CQM_ALLOC_FAIL(lvl_2_x_buf));
/* Allocate y buf and z buf space */
cla_z_buf = &cla_table->cla_z_buf;
cla_z_buf->buf_size = trunk_size;
cla_z_buf->buf_number = ALIGN(cla_table->max_buffer_size, trunk_size) /
trunk_size;
cla_z_buf->page_number = cla_z_buf->buf_number <<
cla_table->trunk_order;
cla_y_buf = &cla_table->cla_y_buf;
cla_y_buf->buf_size = trunk_size;
cla_y_buf->buf_number =
(ALIGN(cla_z_buf->buf_number * sizeof(dma_addr_t),
trunk_size)) / trunk_size;
cla_y_buf->page_number = cla_y_buf->buf_number <<
cla_table->trunk_order;
/* Requires static allocation of all buffer space */
if (cla_table->alloc_static == true) {
if (cqm_cla_yz_lvl2_static(cqm_handle,
cla_y_buf,
cla_z_buf,
gpa_check_enable) == CQM_FAIL) {
cqm_buf_free(cla_x_buf, cqm_handle->dev);
return CQM_FAIL;
}
/* Fill gpa of y buf list into x buf */
base = (dma_addr_t *)(cla_x_buf->buf_list->va);
for (i = 0; i < cla_y_buf->buf_number; i++) {
/* gpa[0]=1 means this GPA is valid */
*base = (cla_y_buf->buf_list[i].pa | gpa_check_enable);
base++;
}
/* big-endian conversion */
cqm_swab64((u8 *)(cla_x_buf->buf_list->va),
cla_y_buf->buf_number);
} else {
/* Only initialize and allocate buf list space, buffer spaces
* are allocated in service
*/
cla_z_buf->buf_list = (struct cqm_buf_list_s *)
vmalloc(cla_z_buf->buf_number *
sizeof(struct cqm_buf_list_s));
if (!cla_z_buf->buf_list) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(lvl_2_z_buf));
cqm_buf_free(cla_x_buf, cqm_handle->dev);
return CQM_FAIL;
}
memset(cla_z_buf->buf_list, 0,
cla_z_buf->buf_number * sizeof(struct cqm_buf_list_s));
cla_y_buf->buf_list = (struct cqm_buf_list_s *)
vmalloc(cla_y_buf->buf_number *
sizeof(struct cqm_buf_list_s));
if (!cla_y_buf->buf_list) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(lvl_2_y_buf));
cqm_buf_free(cla_z_buf, cqm_handle->dev);
cqm_buf_free(cla_x_buf, cqm_handle->dev);
return CQM_FAIL;
}
memset(cla_y_buf->buf_list, 0,
cla_y_buf->buf_number * sizeof(struct cqm_buf_list_s));
}
return CQM_SUCCESS;
}
static s32 cqm_cla_xyz_check(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
if (cla_table->obj_num == 0) {
/* If the capability is set to 0, the CLA does not need to be
* initialized and exits directly
*/
cqm_info(handle->dev_hdl, "Cla alloc: cla_type %u, obj_num=0, don't alloc buffer\n",
cla_table->type);
return CQM_SUCCESS;
}
/* Check whether obj_size is aligned with 2^n, and error is reported in
* case of 0 and 1
*/
if (cqm_check_align(cla_table->obj_size) == false) {
cqm_err(handle->dev_hdl, "Cla alloc: cla_type %u, obj_size 0x%x is not align on 2^n\n",
cla_table->type, cla_table->obj_size);
return CQM_FAIL;
}
return CQM_SUCCESS;
}
/**
* cqm_cla_xyz - Calculate how many levels of cla tables and allocate space
* for each level of cla tables
* @cqm_handle: cqm handle
* @cla_table: cla table
* Return: 0 - success, negative - failure
*/
s32 cqm_cla_xyz(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_buf_s *cla_z_buf = NULL;
u32 trunk_size = 0;
s32 ret = CQM_FAIL;
if (cqm_cla_xyz_check(cqm_handle, cla_table) == CQM_FAIL)
return CQM_FAIL;
trunk_size = PAGE_SIZE << cla_table->trunk_order;
if (trunk_size < cla_table->obj_size) {
cqm_err(handle->dev_hdl, "Cla alloc: cla type %u, obj_size 0x%x is out of trunk size\n",
cla_table->type, cla_table->obj_size);
return CQM_FAIL;
}
/* Level 0 CLA: The buffer occupies little space, and can be assigned to
* cla_z_buf during initialization
*/
if (cla_table->max_buffer_size <= trunk_size) {
cla_table->cla_lvl = CQM_CLA_LVL_0;
cla_table->z = CQM_MAX_INDEX_BIT;
cla_table->y = 0;
cla_table->x = 0;
cla_table->cacheline_z = cla_table->z;
cla_table->cacheline_y = cla_table->y;
cla_table->cacheline_x = cla_table->x;
/* Allocate z buf space */
cla_z_buf = &cla_table->cla_z_buf;
cla_z_buf->buf_size = trunk_size;
cla_z_buf->buf_number = 1;
cla_z_buf->page_number =
cla_z_buf->buf_number << cla_table->trunk_order;
ret = cqm_buf_alloc(cqm_handle, cla_z_buf, false);
CQM_CHECK_EQUAL_RET(
handle->dev_hdl, ret, CQM_SUCCESS,
return CQM_FAIL, CQM_ALLOC_FAIL(lvl_0_z_buf));
} else if (cla_table->max_buffer_size <=
(trunk_size * (trunk_size / sizeof(dma_addr_t)))) {
/* Level 1 CLA: Cla_y_buf is allocated during initialization,
* and cla_z_buf can be allocated dynamically
*/
if (cqm_cla_xyz_lvl1(cqm_handle,
cla_table, trunk_size) == CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_cla_xyz_lvl1));
return CQM_FAIL;
}
} else if (cla_table->max_buffer_size <=
(trunk_size * (trunk_size / sizeof(dma_addr_t)) *
(trunk_size / sizeof(dma_addr_t)))) {
/* Level 2 CLA: Cla_x_buf is allocated during initialization,
* and cla_y_buf and cla_z_buf can be dynamically allocated
*/
if (cqm_cla_xyz_lvl2(cqm_handle, cla_table, trunk_size) ==
CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_cla_xyz_lvl2));
return CQM_FAIL;
}
} else {
cqm_err(handle->dev_hdl, "Cla alloc: cla max_buffer_size 0x%x exceeds support range\n",
cla_table->max_buffer_size);
return CQM_FAIL;
}
return CQM_SUCCESS;
}
static void cqm_bat_entry_hash_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = capability->pagesize_reorder;
cla_table->max_buffer_size = capability->hash_number *
capability->hash_basic_size;
cla_table->obj_size = capability->hash_basic_size;
cla_table->obj_num = capability->hash_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_qpc_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_handle_s *handle = (struct cqm_handle_s *)cqm_handle;
struct hifc_hwdev *hwdev_handle = handle->ex_handle;
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = capability->pagesize_reorder;
cla_table->max_buffer_size = capability->qpc_number *
capability->qpc_basic_size;
cla_table->obj_size = capability->qpc_basic_size;
cla_table->obj_num = capability->qpc_number;
cla_table->alloc_static = capability->qpc_alloc_static;
cqm_info(hwdev_handle->dev_hdl, "Cla alloc: qpc alloc_static=%d\n",
cla_table->alloc_static);
}
static void cqm_bat_entry_mpt_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = capability->pagesize_reorder;
cla_table->max_buffer_size = capability->mpt_number *
capability->mpt_basic_size;
cla_table->obj_size = capability->mpt_basic_size;
cla_table->obj_num = capability->mpt_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_scqc_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_handle_s *handle = (struct cqm_handle_s *)cqm_handle;
struct hifc_hwdev *hwdev_handle = handle->ex_handle;
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = capability->pagesize_reorder;
cla_table->max_buffer_size = capability->scqc_number *
capability->scqc_basic_size;
cla_table->obj_size = capability->scqc_basic_size;
cla_table->obj_num = capability->scqc_number;
cla_table->alloc_static = capability->scqc_alloc_static;
cqm_info(hwdev_handle->dev_hdl, "Cla alloc: scqc alloc_static=%d\n",
cla_table->alloc_static);
}
static void cqm_bat_entry_srqc_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = capability->pagesize_reorder;
cla_table->max_buffer_size = capability->srqc_number *
capability->srqc_basic_size;
cla_table->obj_size = capability->srqc_basic_size;
cla_table->obj_num = capability->srqc_number;
cla_table->alloc_static = false;
}
static void cqm_bat_entry_gid_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->max_buffer_size = capability->gid_number *
capability->gid_basic_size;
cla_table->trunk_order = (u32)cqm_shift(
ALIGN(
cla_table->max_buffer_size,
PAGE_SIZE) / PAGE_SIZE);
cla_table->obj_size = capability->gid_basic_size;
cla_table->obj_num = capability->gid_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_lun_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = CLA_TABLE_PAGE_ORDER;
cla_table->max_buffer_size = capability->lun_number *
capability->lun_basic_size;
cla_table->obj_size = capability->lun_basic_size;
cla_table->obj_num = capability->lun_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_taskmap_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = CQM_4K_PAGE_ORDER;
cla_table->max_buffer_size = capability->taskmap_number *
capability->taskmap_basic_size;
cla_table->obj_size = capability->taskmap_basic_size;
cla_table->obj_num = capability->taskmap_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_l3i_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = CLA_TABLE_PAGE_ORDER;
cla_table->max_buffer_size = capability->l3i_number *
capability->l3i_basic_size;
cla_table->obj_size = capability->l3i_basic_size;
cla_table->obj_num = capability->l3i_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_childc_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = capability->pagesize_reorder;
cla_table->max_buffer_size = capability->childc_number *
capability->childc_basic_size;
cla_table->obj_size = capability->childc_basic_size;
cla_table->obj_num = capability->childc_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_timer_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = CQM_4K_PAGE_ORDER;
cla_table->max_buffer_size = capability->timer_number *
capability->timer_basic_size;
cla_table->obj_size = capability->timer_basic_size;
cla_table->obj_num = capability->timer_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_xid2cid_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = capability->pagesize_reorder;
cla_table->max_buffer_size = capability->xid2cid_number *
capability->xid2cid_basic_size;
cla_table->obj_size = capability->xid2cid_basic_size;
cla_table->obj_num = capability->xid2cid_number;
cla_table->alloc_static = true;
}
static void cqm_bat_entry_reoder_init(void *cqm_handle,
struct cqm_cla_table_s *cla_table,
void *cap)
{
struct cqm_func_capability_s *capability =
(struct cqm_func_capability_s *)cap;
cla_table->trunk_order = capability->pagesize_reorder;
cla_table->max_buffer_size = capability->reorder_number *
capability->reorder_basic_size;
cla_table->obj_size = capability->reorder_basic_size;
cla_table->obj_num = capability->reorder_number;
cla_table->alloc_static = true;
}
struct cqm_cla_entry_init_s cqm_cla_entry_init_tbl[] = {
{CQM_BAT_ENTRY_T_HASH, cqm_bat_entry_hash_init},
{CQM_BAT_ENTRY_T_QPC, cqm_bat_entry_qpc_init},
{CQM_BAT_ENTRY_T_MPT, cqm_bat_entry_mpt_init},
{CQM_BAT_ENTRY_T_SCQC, cqm_bat_entry_scqc_init},
{CQM_BAT_ENTRY_T_SRQC, cqm_bat_entry_srqc_init},
{CQM_BAT_ENTRY_T_GID, cqm_bat_entry_gid_init},
{CQM_BAT_ENTRY_T_LUN, cqm_bat_entry_lun_init},
{CQM_BAT_ENTRY_T_TASKMAP, cqm_bat_entry_taskmap_init},
{CQM_BAT_ENTRY_T_L3I, cqm_bat_entry_l3i_init},
{CQM_BAT_ENTRY_T_CHILDC, cqm_bat_entry_childc_init},
{CQM_BAT_ENTRY_T_TIMER, cqm_bat_entry_timer_init},
{CQM_BAT_ENTRY_T_XID2CID, cqm_bat_entry_xid2cid_init},
{CQM_BAT_ENTRY_T_REORDER, cqm_bat_entry_reoder_init},
};
static struct cqm_cla_entry_init_s *cqm_get_cla_init_entry(
struct cqm_handle_s *cqm_handle,
u32 type)
{
int i;
struct cqm_cla_entry_init_s *entry = NULL;
for (i = 0;
i < (sizeof(cqm_cla_entry_init_tbl) /
sizeof(struct cqm_cla_entry_init_s)); i++) {
entry = &cqm_cla_entry_init_tbl[i];
if (entry->type == type)
return entry;
}
return NULL;
}
void cqm_cla_init_entry(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
struct cqm_func_capability_s *capability)
{
struct cqm_cla_entry_init_s *entry;
entry = cqm_get_cla_init_entry(cqm_handle, cla_table->type);
if (entry && entry->cqm_cla_init_handler)
entry->cqm_cla_init_handler(cqm_handle, cla_table, capability);
}
static s32 cqm_cla_fill_entry(struct cqm_handle_s *cqm_handle)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
s32 ret = CQM_FAIL;
/* After the allocation of CLA entry, fill in the BAT table */
cqm_bat_fill_cla(cqm_handle);
/* Notify the chip to refresh the BAT table */
ret = cqm_bat_update(cqm_handle);
if (ret != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_bat_update));
return CQM_FAIL;
}
cqm_info(handle->dev_hdl, "Timer start: func_type=%d, timer_enable=%u\n",
cqm_handle->func_attribute.func_type,
cqm_handle->func_capability.timer_enable);
if ((cqm_handle->func_attribute.func_type == CQM_PPF) &&
(cqm_handle->func_capability.timer_enable == CQM_TIMER_ENABLE)) {
/* After the timer resource is allocated,
* the timer needs to be enabled
*/
cqm_info(handle->dev_hdl, "Timer start: hifc ppf timer start\n");
ret = hifc_ppf_tmr_start((void *)(cqm_handle->ex_handle));
if (ret != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, "Timer start: hifc ppf timer start, ret=%d\n",
ret);
return CQM_FAIL;
}
}
return CQM_SUCCESS;
}
s32 cqm_cla_init(struct cqm_handle_s *cqm_handle)
{
struct cqm_func_capability_s *capability = &cqm_handle->func_capability;
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
s32 inv_flag = 0;
u32 i = 0;
u32 j = 0;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++) {
cla_table = &bat_table->entry[i];
cla_table->type = bat_table->bat_entry_type[i];
cqm_cla_init_entry(cqm_handle, cla_table, capability);
/* Allocate CLA entry space of all levels */
if ((cla_table->type >= CQM_BAT_ENTRY_T_HASH) &&
(cla_table->type <= CQM_BAT_ENTRY_T_REORDER)) {
/* Only needs to allocate timer resources for PPF,
* 8 wheels * 2k scales * 32B * func_num, for PF, there
* is no need to allocate resources for the timer, nor
* to fill in the structure of the timer entry in the
* BAT table.
*/
if (!((cla_table->type == CQM_BAT_ENTRY_T_TIMER) &&
(cqm_handle->func_attribute.func_type
!= CQM_PPF))) {
if (cqm_cla_xyz(cqm_handle, cla_table) ==
CQM_FAIL)
goto err;
}
}
mutex_init(&cla_table->lock);
}
if (cqm_cla_fill_entry(cqm_handle) == CQM_FAIL)
goto err;
return CQM_SUCCESS;
err:
for (j = 0; j < i; j++) {
cla_table = &bat_table->entry[j];
if (cla_table->type != CQM_BAT_ENTRY_T_INVALID) {
cqm_buf_free_cache_inv(cqm_handle,
&cla_table->cla_x_buf,
&inv_flag);
cqm_buf_free_cache_inv(cqm_handle,
&cla_table->cla_y_buf,
&inv_flag);
cqm_buf_free_cache_inv(cqm_handle,
&cla_table->cla_z_buf,
&inv_flag);
}
}
return CQM_FAIL;
}
void cqm_cla_uninit(struct cqm_handle_s *cqm_handle)
{
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
s32 inv_flag = 0;
u32 i = 0;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++) {
cla_table = &bat_table->entry[i];
if (cla_table->type != CQM_BAT_ENTRY_T_INVALID) {
cqm_buf_free_cache_inv(cqm_handle,
&cla_table->cla_x_buf,
&inv_flag);
cqm_buf_free_cache_inv(cqm_handle,
&cla_table->cla_y_buf,
&inv_flag);
cqm_buf_free_cache_inv(cqm_handle,
&cla_table->cla_z_buf,
&inv_flag);
}
}
}
s32 cqm_cla_update(struct cqm_handle_s *cqm_handle,
struct cqm_buf_list_s *buf_node_parent,
struct cqm_buf_list_s *buf_node_child,
u32 child_index, u8 cla_update_mode)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_cmd_buf_s *buf_in = NULL;
struct cqm_cla_update_cmd_s *cmd = NULL;
dma_addr_t pa = 0;
s32 ret = CQM_FAIL;
u8 gpa_check_enable = cqm_handle->func_capability.gpa_check_enable;
buf_in = cqm_cmd_alloc((void *)(cqm_handle->ex_handle));
CQM_PTR_CHECK_RET(buf_in, return CQM_FAIL, CQM_ALLOC_FAIL(buf_in));
buf_in->size = sizeof(struct cqm_cla_update_cmd_s);
/* Fill the command format and convert to big endian */
cmd = (struct cqm_cla_update_cmd_s *)(buf_in->buf);
pa = buf_node_parent->pa + (child_index * sizeof(dma_addr_t));
cmd->gpa_h = CQM_ADDR_HI(pa);
cmd->gpa_l = CQM_ADDR_LW(pa);
pa = buf_node_child->pa;
cmd->value_h = CQM_ADDR_HI(pa);
cmd->value_l = CQM_ADDR_LW(pa);
cqm_dbg("Cla alloc: cqm_cla_update, gpa=0x%x 0x%x, value=0x%x 0x%x, cla_update_mode=0x%x\n",
cmd->gpa_h, cmd->gpa_l, cmd->value_h, cmd->value_l,
cla_update_mode);
/* CLA GPA check */
if (gpa_check_enable) {
switch (cla_update_mode) {
/* gpa[0]=1 means this GPA is valid */
case CQM_CLA_RECORD_NEW_GPA:
cmd->value_l |= 1;
break;
/* gpa[0]=0 means this GPA is valid */
case CQM_CLA_DEL_GPA_WITHOUT_CACHE_INVALID:
case CQM_CLA_DEL_GPA_WITH_CACHE_INVALID:
cmd->value_l &= (~1);
break;
default:
cqm_err(handle->dev_hdl,
"Cla alloc: cqm_cla_update, cqm_cla_update, wrong cla_update_mode=%u\n",
cla_update_mode);
break;
}
}
cqm_swab32((u8 *)cmd, (sizeof(struct cqm_cla_update_cmd_s) >> 2));
ret = cqm_send_cmd_box((void *)(cqm_handle->ex_handle),
CQM_CMD_ACK_TYPE_CMDQ,
CQM_MOD_CQM, CQM_CMD_T_CLA_UPDATE,
buf_in, NULL, CQM_CMD_TIMEOUT);
if (ret != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_send_cmd_box));
cqm_err(handle->dev_hdl,
"Cla alloc: cqm_cla_update, cqm_send_cmd_box_ret=%d\n",
ret);
cqm_err(handle->dev_hdl, "Cla alloc: cqm_cla_update, cla_update_cmd: 0x%x 0x%x 0x%x 0x%x\n",
cmd->gpa_h, cmd->gpa_l, cmd->value_h, cmd->value_l);
cqm_cmd_free((void *)(cqm_handle->ex_handle), buf_in);
return CQM_FAIL;
}
cqm_cmd_free((void *)(cqm_handle->ex_handle), buf_in);
return CQM_SUCCESS;
}
/**
* cqm_cla_alloc - Allocate a CLA trunk page
* @cqm_handle: cqm handle
* @cla_table: cla handle
* @buf_node_parent: the parent node whose content is to be updated
* @buf_node_child: the child node whose content is to be allocated
* @child_index: child index
* Return: 0 - success, negative - failure
*/
s32 cqm_cla_alloc(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
struct cqm_buf_list_s *buf_node_parent,
struct cqm_buf_list_s *buf_node_child, u32 child_index)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
s32 ret = CQM_FAIL;
/* Allocate trunk page */
buf_node_child->va = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
cla_table->trunk_order);
CQM_PTR_CHECK_RET(buf_node_child->va, return CQM_FAIL,
CQM_ALLOC_FAIL(va));
/* pci mapping */
buf_node_child->pa =
pci_map_single(cqm_handle->dev, buf_node_child->va,
PAGE_SIZE << cla_table->trunk_order,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(cqm_handle->dev, buf_node_child->pa)) {
cqm_err(handle->dev_hdl, CQM_MAP_FAIL(buf_node_child->pa));
goto err1;
}
/* Notify the chip of trunk_pa and
* let it fill in the cla table entry
*/
ret = cqm_cla_update(cqm_handle, buf_node_parent,
buf_node_child, child_index,
CQM_CLA_RECORD_NEW_GPA);
if (ret != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_cla_update));
goto err2;
}
return CQM_SUCCESS;
err2:
pci_unmap_single(cqm_handle->dev, buf_node_child->pa,
PAGE_SIZE << cla_table->trunk_order,
PCI_DMA_BIDIRECTIONAL);
err1:
free_pages((ulong)(buf_node_child->va), cla_table->trunk_order);
buf_node_child->va = NULL;
return CQM_FAIL;
}
void cqm_cla_free(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
struct cqm_buf_list_s *buf_node_parent,
struct cqm_buf_list_s *buf_node_child,
u32 child_index, u8 cla_update_mode)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
cqm_dbg("Cla free: cla_update_mode=%u\n", cla_update_mode);
if (cqm_cla_update(cqm_handle, buf_node_parent,
buf_node_child, child_index,
cla_update_mode) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_cla_update));
return;
}
if (cla_update_mode == CQM_CLA_DEL_GPA_WITH_CACHE_INVALID) {
if (cqm_cla_cache_invalid(
cqm_handle, buf_node_child->pa,
PAGE_SIZE << cla_table->trunk_order) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_cla_cache_invalid));
return;
}
}
/* Unblock the pci mapping of the trunk page */
pci_unmap_single(cqm_handle->dev, buf_node_child->pa,
PAGE_SIZE << cla_table->trunk_order,
PCI_DMA_BIDIRECTIONAL);
/* Free trunk page */
free_pages((ulong)(buf_node_child->va), cla_table->trunk_order);
buf_node_child->va = NULL;
}
/**
* cqm_static_qpc_cla_get - When QPC is a static allocation, allocate the count
* of buffer from the index position in the cla table without lock
* @cqm_handle: cqm handle
* @cla_table: cla handle
* @index: the index of table
* @count: the count of buffer
* @pa: the physical address
* Return: the virtual address
*/
u8 *cqm_static_qpc_cla_get(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
u32 index, u32 count, dma_addr_t *pa)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_buf_s *cla_y_buf = &cla_table->cla_y_buf;
struct cqm_buf_s *cla_z_buf = &cla_table->cla_z_buf;
struct cqm_buf_list_s *buf_node_z = NULL;
u32 x_index = 0;
u32 y_index = 0;
u32 z_index = 0;
u32 trunk_size = PAGE_SIZE << cla_table->trunk_order;
u8 *ret_addr = NULL;
u32 offset = 0;
if (cla_table->cla_lvl == CQM_CLA_LVL_0) {
offset = index * cla_table->obj_size;
ret_addr = (u8 *)(cla_z_buf->buf_list->va) + offset;
*pa = cla_z_buf->buf_list->pa + offset;
} else if (cla_table->cla_lvl == CQM_CLA_LVL_1) {
z_index = index & ((1 << (cla_table->z + 1)) - 1);
y_index = index >> (cla_table->z + 1);
if (y_index >= cla_z_buf->buf_number) {
cqm_err(handle->dev_hdl,
"Static qpc cla get: index exceeds buf_number, y_index %u, z_buf_number %u\n",
y_index, cla_z_buf->buf_number);
return NULL;
}
buf_node_z = &cla_z_buf->buf_list[y_index];
if (!buf_node_z->va) {
cqm_err(handle->dev_hdl, "Cla get: static qpc cla_z_buf[%u].va=NULL\n",
y_index);
return NULL;
}
buf_node_z->refcount += count;
offset = z_index * cla_table->obj_size;
ret_addr = (u8 *)(buf_node_z->va) + offset;
*pa = buf_node_z->pa + offset;
} else {
z_index = index & ((1 << (cla_table->z + 1)) - 1);
y_index = (index >> (cla_table->z + 1)) &
((1 << (cla_table->y - cla_table->z)) - 1);
x_index = index >> (cla_table->y + 1);
if ((x_index >= cla_y_buf->buf_number) ||
((x_index * (trunk_size / sizeof(dma_addr_t)) + y_index) >=
cla_z_buf->buf_number)) {
cqm_err(handle->dev_hdl,
"Static qpc cla get: index exceeds buf_number,x_index %u, y_index %u, y_buf_number %u, z_buf_number %u\n ",
x_index, y_index, cla_y_buf->buf_number,
cla_z_buf->buf_number);
return NULL;
}
buf_node_z = &(cla_z_buf->buf_list[x_index *
(trunk_size / sizeof(dma_addr_t)) + y_index]);
if (!buf_node_z->va) {
cqm_err(handle->dev_hdl, "Cla get: static qpc cla_z_buf.va=NULL\n");
return NULL;
}
buf_node_z->refcount += count;
offset = z_index * cla_table->obj_size;
ret_addr = (u8 *)(buf_node_z->va) + offset;
*pa = buf_node_z->pa + offset;
}
return ret_addr;
}
static s32 cqm_cla_get_level_two(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
u32 index, u32 count,
dma_addr_t *pa, u8 **ret_addr)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_buf_s *cla_x_buf = &cla_table->cla_x_buf;
struct cqm_buf_s *cla_y_buf = &cla_table->cla_y_buf;
struct cqm_buf_s *cla_z_buf = &cla_table->cla_z_buf;
struct cqm_buf_list_s *buf_node_x = NULL;
struct cqm_buf_list_s *buf_node_y = NULL;
struct cqm_buf_list_s *buf_node_z = NULL;
u32 x_index = 0;
u32 y_index = 0;
u32 z_index = 0;
u32 trunk_size = PAGE_SIZE << cla_table->trunk_order;
u32 offset = 0;
z_index = index & ((1 << (cla_table->z + 1)) - 1);
y_index = (index >> (cla_table->z + 1)) &
((1 << (cla_table->y - cla_table->z)) - 1);
x_index = index >> (cla_table->y + 1);
if ((x_index >= cla_y_buf->buf_number) ||
((x_index * (trunk_size / sizeof(dma_addr_t)) + y_index) >=
cla_z_buf->buf_number)) {
cqm_err(handle->dev_hdl,
"Cla get: index exceeds buf_number, x_index %u, y_index %u, y_buf_number %u, z_buf_number %u\n",
x_index, y_index, cla_y_buf->buf_number,
cla_z_buf->buf_number);
return CQM_FAIL;
}
buf_node_x = cla_x_buf->buf_list;
buf_node_y = &cla_y_buf->buf_list[x_index];
buf_node_z = &(cla_z_buf->buf_list[x_index *
(trunk_size / sizeof(dma_addr_t)) + y_index]);
/* Y buf node does not exist, allocates y node page */
if (!buf_node_y->va) {
if (cqm_cla_alloc(
cqm_handle, cla_table,
buf_node_x, buf_node_y, x_index) == CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_cla_alloc));
return CQM_FAIL;
}
}
/* Z buf node does not exist, allocates z node page */
if (!buf_node_z->va) {
if (cqm_cla_alloc(cqm_handle,
cla_table,
buf_node_y,
buf_node_z,
y_index) == CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_cla_alloc));
if (buf_node_y->refcount == 0) {
/* Free y node, needs cache_invalid */
cqm_cla_free(
cqm_handle, cla_table,
buf_node_x, buf_node_y, x_index,
CQM_CLA_DEL_GPA_WITH_CACHE_INVALID);
}
return CQM_FAIL;
}
cqm_dbg("Cla get: 2L: y_refcount=0x%x\n", buf_node_y->refcount);
/* Y buf node's reference count should be +1 */
buf_node_y->refcount++;
}
cqm_dbg("Cla get: 2L: z_refcount=0x%x, count=0x%x\n",
buf_node_z->refcount, count);
buf_node_z->refcount += count;
offset = z_index * cla_table->obj_size;
*ret_addr = (u8 *)(buf_node_z->va) + offset;
*pa = buf_node_z->pa + offset;
return CQM_SUCCESS;
}
static s32 cqm_cla_get_level_one(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
u32 index, u32 count, dma_addr_t *pa,
u8 **ret_addr)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_buf_s *cla_y_buf = &cla_table->cla_y_buf;
struct cqm_buf_s *cla_z_buf = &cla_table->cla_z_buf;
struct cqm_buf_list_s *buf_node_y = NULL;
struct cqm_buf_list_s *buf_node_z = NULL;
u32 y_index = 0;
u32 z_index = 0;
u32 offset = 0;
z_index = index & ((1 << (cla_table->z + 1)) - 1);
y_index = index >> (cla_table->z + 1);
if (y_index >= cla_z_buf->buf_number) {
cqm_err(handle->dev_hdl,
"Cla get: index exceeds buf_number, y_index %u, z_buf_number %u\n",
y_index, cla_z_buf->buf_number);
return CQM_FAIL;
}
buf_node_z = &cla_z_buf->buf_list[y_index];
buf_node_y = cla_y_buf->buf_list;
/* Z buf node does not exist, first allocate the page */
if (!buf_node_z->va) {
if (cqm_cla_alloc(cqm_handle,
cla_table,
buf_node_y,
buf_node_z,
y_index) == CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_cla_alloc));
cqm_err(handle->dev_hdl,
"Cla get: cla_table->type=%u\n",
cla_table->type);
return CQM_FAIL;
}
}
cqm_dbg("Cla get: 1L: z_refcount=0x%x, count=0x%x\n",
buf_node_z->refcount, count);
buf_node_z->refcount += count;
offset = z_index * cla_table->obj_size;
*ret_addr = (u8 *)(buf_node_z->va) + offset;
*pa = buf_node_z->pa + offset;
return CQM_SUCCESS;
}
/**
* cqm_cla_get - Allocate the count of buffer from the index position in the
* cla table
* @cqm_handle: cqm handle
* @cla_table: cla table
* @index: the index of table
* @count: the count of buffer
* @pa: the physical address
* Return: the virtual address
*/
u8 *cqm_cla_get(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table, u32 index,
u32 count, dma_addr_t *pa)
{
struct cqm_buf_s *cla_z_buf = &cla_table->cla_z_buf;
u8 *ret_addr = NULL;
u32 offset = 0;
mutex_lock(&cla_table->lock);
if (cla_table->cla_lvl == CQM_CLA_LVL_0) {
/* Level 0 CLA pages are statically allocated */
offset = index * cla_table->obj_size;
ret_addr = (u8 *)(cla_z_buf->buf_list->va) + offset;
*pa = cla_z_buf->buf_list->pa + offset;
} else if (cla_table->cla_lvl == CQM_CLA_LVL_1) {
if (cqm_cla_get_level_one(cqm_handle, cla_table,
index, count,
pa, &ret_addr) == CQM_FAIL) {
mutex_unlock(&cla_table->lock);
return NULL;
}
} else {
if (cqm_cla_get_level_two(cqm_handle,
cla_table,
index,
count,
pa,
&ret_addr) == CQM_FAIL) {
mutex_unlock(&cla_table->lock);
return NULL;
}
}
mutex_unlock(&cla_table->lock);
return ret_addr;
}
/**
* cqm_cla_put -Decrease the reference count of the trunk page, if it is reduced
* to 0, release the trunk page
* @cqm_handle: cqm handle
* @cla_table: cla table
* @index: the index of table
* @count: the count of buffer
*/
void cqm_cla_put(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
u32 index, u32 count)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_buf_s *cla_x_buf = &cla_table->cla_x_buf;
struct cqm_buf_s *cla_y_buf = &cla_table->cla_y_buf;
struct cqm_buf_s *cla_z_buf = &cla_table->cla_z_buf;
struct cqm_buf_list_s *buf_node_x = NULL;
struct cqm_buf_list_s *buf_node_y = NULL;
struct cqm_buf_list_s *buf_node_z = NULL;
u32 x_index = 0;
u32 y_index = 0;
u32 trunk_size = PAGE_SIZE << cla_table->trunk_order;
/* Buffer is statically allocated,
* no need to control the reference count
*/
if (cla_table->alloc_static == true)
return;
mutex_lock(&cla_table->lock);
if (cla_table->cla_lvl == CQM_CLA_LVL_1) {
y_index = index >> (cla_table->z + 1);
if (y_index >= cla_z_buf->buf_number) {
cqm_err(handle->dev_hdl,
"Cla put: index exceeds buf_number, y_index %u, z_buf_number %u\n",
y_index, cla_z_buf->buf_number);
cqm_err(handle->dev_hdl,
"Cla put: cla_table->type=%u\n",
cla_table->type);
mutex_unlock(&cla_table->lock);
return;
}
buf_node_z = &cla_z_buf->buf_list[y_index];
buf_node_y = cla_y_buf->buf_list;
/* When the z node page reference count is 0,
* release the z node page
*/
cqm_dbg("Cla put: 1L: z_refcount=0x%x, count=0x%x\n",
buf_node_z->refcount, count);
buf_node_z->refcount -= count;
if (buf_node_z->refcount == 0) {
/* Z node does not need cache invalid */
cqm_cla_free(cqm_handle, cla_table, buf_node_y,
buf_node_z, y_index,
CQM_CLA_DEL_GPA_WITHOUT_CACHE_INVALID);
}
} else if (cla_table->cla_lvl == CQM_CLA_LVL_2) {
y_index = (index >> (cla_table->z + 1)) &
((1 << (cla_table->y - cla_table->z)) - 1);
x_index = index >> (cla_table->y + 1);
if ((x_index >= cla_y_buf->buf_number) ||
((x_index * (trunk_size / sizeof(dma_addr_t)) + y_index) >=
cla_z_buf->buf_number)) {
cqm_err(handle->dev_hdl,
"Cla put: index exceeds buf_number, x_index %u, y_index %u, y_buf_number %u, z_buf_number %u\n",
x_index, y_index, cla_y_buf->buf_number,
cla_z_buf->buf_number);
mutex_unlock(&cla_table->lock);
return;
}
buf_node_x = cla_x_buf->buf_list;
buf_node_y = &cla_y_buf->buf_list[x_index];
buf_node_z = &(cla_z_buf->buf_list[x_index *
(trunk_size / sizeof(dma_addr_t)) + y_index]);
cqm_dbg("Cla put: 2L: z_refcount=0x%x, count=0x%x\n",
buf_node_z->refcount, count);
/* When the z node page reference count is 0,
* release the z node page
*/
buf_node_z->refcount -= count;
if (buf_node_z->refcount == 0) {
cqm_cla_free(cqm_handle, cla_table, buf_node_y,
buf_node_z, y_index,
CQM_CLA_DEL_GPA_WITHOUT_CACHE_INVALID);
/* When the y node page reference count is 0,
* release the y node page
*/
cqm_dbg("Cla put: 2L: y_refcount=0x%x\n",
buf_node_y->refcount);
buf_node_y->refcount--;
if (buf_node_y->refcount == 0) {
/* Y node needs cache invalid */
cqm_cla_free(
cqm_handle, cla_table, buf_node_x,
buf_node_y, x_index,
CQM_CLA_DEL_GPA_WITH_CACHE_INVALID);
}
}
}
mutex_unlock(&cla_table->lock);
}
/**
* cqm_cla_table_get - Find the CLA table structure corresponding to a BAT entry
* @bat_table: bat table
* @entry_type: entry type
* @count: the count of buffer
* Return: the CLA table
*/
struct cqm_cla_table_s *cqm_cla_table_get(struct cqm_bat_table_s *bat_table,
u32 entry_type)
{
struct cqm_cla_table_s *cla_table = NULL;
u32 i = 0;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++) {
cla_table = &bat_table->entry[i];
if (entry_type == cla_table->type)
return cla_table;
}
return NULL;
}
#define bitmap_section
/**
* __cqm_bitmap_init - Initialize a bitmap
* @bitmap: cqm bitmap table
* Return: 0 - success, negative - failure
*/
s32 __cqm_bitmap_init(struct cqm_bitmap_s *bitmap)
{
spin_lock_init(&bitmap->lock);
/* The max_num of bitmap is aligned by 8, and then shifted right by
* 3bits to get how many Bytes are needed
*/
bitmap->table =
(ulong *)vmalloc((ALIGN(bitmap->max_num, 8) >> 3));
CQM_PTR_CHECK_RET(bitmap->table, return CQM_FAIL,
CQM_ALLOC_FAIL(bitmap->table));
memset(bitmap->table, 0, (ALIGN(bitmap->max_num, 8) >> 3));
return CQM_SUCCESS;
}
static s32 cqm_bitmap_init_by_type(struct cqm_handle_s *cqm_handle,
struct cqm_cla_table_s *cla_table,
struct cqm_bitmap_s *bitmap)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_func_capability_s *capability = &cqm_handle->func_capability;
s32 ret = CQM_SUCCESS;
switch (cla_table->type) {
case CQM_BAT_ENTRY_T_QPC:
bitmap->max_num = capability->qpc_number;
bitmap->reserved_top = capability->qpc_reserved;
bitmap->last = capability->qpc_reserved;
cqm_info(handle->dev_hdl, "Bitmap init: cla_table_type=%u, max_num=0x%x\n",
cla_table->type, bitmap->max_num);
ret = __cqm_bitmap_init(bitmap);
break;
case CQM_BAT_ENTRY_T_MPT:
bitmap->max_num = capability->mpt_number;
bitmap->reserved_top = capability->mpt_reserved;
bitmap->last = capability->mpt_reserved;
cqm_info(handle->dev_hdl, "Bitmap init: cla_table_type=%u, max_num=0x%x\n",
cla_table->type, bitmap->max_num);
ret = __cqm_bitmap_init(bitmap);
break;
case CQM_BAT_ENTRY_T_SCQC:
bitmap->max_num = capability->scqc_number;
bitmap->reserved_top = capability->scq_reserved;
bitmap->last = capability->scq_reserved;
cqm_info(handle->dev_hdl, "Bitmap init: cla_table_type=%u, max_num=0x%x\n",
cla_table->type, bitmap->max_num);
ret = __cqm_bitmap_init(bitmap);
break;
case CQM_BAT_ENTRY_T_SRQC:
bitmap->max_num = capability->srqc_number;
bitmap->reserved_top = 0;
bitmap->last = 0;
cqm_info(handle->dev_hdl, "Bitmap init: cla_table_type=%u, max_num=0x%x\n",
cla_table->type, bitmap->max_num);
ret = __cqm_bitmap_init(bitmap);
break;
default:
break;
}
return ret;
}
/**
* cqm_bitmap_init - Initialize a bitmap
* @cqm_handle: cqm handle
* Return: 0 - success, negative - failure
*/
s32 cqm_bitmap_init(struct cqm_handle_s *cqm_handle)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
struct cqm_bitmap_s *bitmap = NULL;
u32 i = 0;
s32 ret = CQM_SUCCESS;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++) {
cla_table = &bat_table->entry[i];
if (cla_table->obj_num == 0) {
cqm_info(handle->dev_hdl, "Cla alloc: cla_type %u, obj_num=0, don't init bitmap\n",
cla_table->type);
continue;
}
bitmap = &cla_table->bitmap;
ret = cqm_bitmap_init_by_type(cqm_handle, cla_table, bitmap);
if (ret != CQM_SUCCESS) {
cqm_err(handle->dev_hdl, "Bitmap init: failed to init cla_table_type=%u, obj_num=0x%x\n",
cla_table->type, cla_table->obj_num);
goto err;
}
}
return CQM_SUCCESS;
err:
cqm_bitmap_uninit(cqm_handle);
return CQM_FAIL;
}
/**
* cqm_bitmap_uninit - Uninitialize a bitmap
* @cqm_handle: cqm handle
*/
void cqm_bitmap_uninit(struct cqm_handle_s *cqm_handle)
{
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
struct cqm_bitmap_s *bitmap = NULL;
u32 i = 0;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++) {
cla_table = &bat_table->entry[i];
bitmap = &cla_table->bitmap;
if (cla_table->type != CQM_BAT_ENTRY_T_INVALID) {
if (bitmap->table) {
vfree(bitmap->table);
bitmap->table = NULL;
}
}
}
}
/**
* cqm_bitmap_check_range - Starting from begin, check whether count bits are
* free in the table, required: 1. This set of bits cannot cross step, 2. This
* group of bits must be 0
* @table: bitmap table
* @step: steps
* @max_num: max num
* @begin: begin position
* @count: the count of bit to check
* Return: If check valid return begin position
*/
u32 cqm_bitmap_check_range(const ulong *table, u32 step,
u32 max_num, u32 begin, u32 count)
{
u32 i = 0;
u32 end = (begin + (count - 1));
/* Single bit is not checked */
if (count == 1)
return begin;
/* End is out of bounds */
if (end >= max_num)
return max_num;
/* Bit check, if there is a bit other than 0, return next bit */
for (i = (begin + 1); i <= end; i++) {
if (test_bit((s32)i, table))
return i + 1;
}
/* Check if it is in a different step */
if ((begin & (~(step - 1))) != (end & (~(step - 1))))
return (end & (~(step - 1)));
/* If check pass, return begin position */
return begin;
}
static void cqm_bitmap_set_bit(struct cqm_bitmap_s *bitmap, u32 index,
u32 max_num, u32 count, bool update_last,
ulong *table)
{
u32 i;
/* Set 1 to the found bit and reset last */
if (index < max_num) {
for (i = index; i < (index + count); i++)
set_bit(i, table);
if (update_last) {
bitmap->last = (index + count);
if (bitmap->last >= bitmap->max_num)
bitmap->last = bitmap->reserved_top;
}
}
}
/**
* cqm_bitmap_alloc - Allocate a bitmap index, 0 and 1 should not be used, Scan
* back from the place where you last applied, and needs to support the
* application of a series of consecutive indexes, and should not to cross trunk
* @table: bitmap table
* @step: steps
* @count: the count of bit to check
* @update_last: update last
* Return: Success - return the index, failure - return the max
*/
u32 cqm_bitmap_alloc(struct cqm_bitmap_s *bitmap, u32 step, u32 count,
bool update_last)
{
u32 index = 0;
u32 max_num = bitmap->max_num;
u32 last = bitmap->last;
ulong *table = bitmap->table;
spin_lock(&bitmap->lock);
/* Search for a free bit from the last position */
do {
index = find_next_zero_bit(table, max_num, last);
if (index < max_num) {
last = cqm_bitmap_check_range(table, step,
max_num, index, count);
} else {
break;
}
} while (last != index);
/* The above search failed, search for a free bit from the beginning */
if (index >= max_num) {
last = bitmap->reserved_top;
do {
index = find_next_zero_bit(table, max_num, last);
if (index < max_num) {
last = cqm_bitmap_check_range(table, step,
max_num,
index, count);
} else {
break;
}
} while (last != index);
}
cqm_bitmap_set_bit(bitmap, index, max_num, count, update_last, table);
spin_unlock(&bitmap->lock);
return index;
}
/**
* cqm_bitmap_alloc_reserved - Allocate the reserve bit according to index
* @bitmap: bitmap table
* @count: count
* @index: the index of bitmap
* Return: Success - return the index, failure - return the max
*/
u32 cqm_bitmap_alloc_reserved(struct cqm_bitmap_s *bitmap, u32 count, u32 index)
{
ulong *table = bitmap->table;
u32 ret_index = CQM_INDEX_INVALID;
if ((index >= bitmap->reserved_top) || (index >= bitmap->max_num) ||
(count != 1)) {
return CQM_INDEX_INVALID;
}
spin_lock(&bitmap->lock);
if (test_bit(index, table)) {
ret_index = CQM_INDEX_INVALID;
} else {
set_bit(index, table);
ret_index = index;
}
spin_unlock(&bitmap->lock);
return ret_index;
}
/**
* cqm_bitmap_free - Release a bitmap index
* @bitmap: bitmap table
* @index: the index of bitmap
* @count: count
*/
void cqm_bitmap_free(struct cqm_bitmap_s *bitmap, u32 index, u32 count)
{
ulong i = 0;
spin_lock(&bitmap->lock);
for (i = index; i < (index + count); i++)
clear_bit((s32)i, bitmap->table);
spin_unlock(&bitmap->lock);
}
#define obj_table_section
/**
* _cqm_object_table_init - Initialize a table of object and index
* @cqm_handle: cqm handle
* Return: 0 - success, negative - failure
*/
s32 __cqm_object_table_init(struct cqm_object_table_s *obj_table)
{
rwlock_init(&obj_table->lock);
obj_table->table = (struct cqm_object_s **)vmalloc(obj_table->max_num *
sizeof(void *));
CQM_PTR_CHECK_RET(obj_table->table, return CQM_FAIL,
CQM_ALLOC_FAIL(table));
memset(obj_table->table, 0, obj_table->max_num * sizeof(void *));
return CQM_SUCCESS;
}
/**
* cqm_object_table_init - Initialize the association table of object and index
* @cqm_handle: cqm handle
* Return: 0 - success, negative - failure
*/
s32 cqm_object_table_init(struct cqm_handle_s *cqm_handle)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_func_capability_s *capability = &cqm_handle->func_capability;
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
struct cqm_object_table_s *obj_table = NULL;
s32 ret = CQM_SUCCESS;
u32 i = 0;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++) {
cla_table = &bat_table->entry[i];
if (cla_table->obj_num == 0) {
cqm_info(handle->dev_hdl,
"Obj table init: cla_table_type %u, obj_num=0, don't init obj table\n",
cla_table->type);
continue;
}
obj_table = &cla_table->obj_table;
switch (cla_table->type) {
case CQM_BAT_ENTRY_T_QPC:
obj_table->max_num = capability->qpc_number;
ret = __cqm_object_table_init(obj_table);
break;
case CQM_BAT_ENTRY_T_MPT:
obj_table->max_num = capability->mpt_number;
ret = __cqm_object_table_init(obj_table);
break;
case CQM_BAT_ENTRY_T_SCQC:
obj_table->max_num = capability->scqc_number;
ret = __cqm_object_table_init(obj_table);
break;
case CQM_BAT_ENTRY_T_SRQC:
obj_table->max_num = capability->srqc_number;
ret = __cqm_object_table_init(obj_table);
break;
default:
break;
}
if (ret != CQM_SUCCESS) {
cqm_err(handle->dev_hdl,
"Obj table init: failed to init cla_table_type=%u, obj_num=0x%x\n",
cla_table->type, cla_table->obj_num);
goto err;
}
}
return CQM_SUCCESS;
err:
cqm_object_table_uninit(cqm_handle);
return CQM_FAIL;
}
/**
* cqm_object_table_uninit - Deinitialize the association table of object and
* index
* @cqm_handle: cqm handle
*/
void cqm_object_table_uninit(struct cqm_handle_s *cqm_handle)
{
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
struct cqm_object_table_s *obj_table = NULL;
u32 i = 0;
for (i = 0; i < CQM_BAT_ENTRY_MAX; i++) {
cla_table = &bat_table->entry[i];
obj_table = &cla_table->obj_table;
if (cla_table->type != CQM_BAT_ENTRY_T_INVALID) {
if (obj_table->table) {
vfree(obj_table->table);
obj_table->table = NULL;
}
}
}
}
/**
* cqm_object_table_insert - Insert an object, turn off the soft interrupt
* @cqm_handle: cqm handle
* @object_table: object table
* @index: the index of table
* @obj: the object to insert
* Return: 0 - success, negative - failure
*/
s32 cqm_object_table_insert(struct cqm_handle_s *cqm_handle,
struct cqm_object_table_s *object_table, u32 index,
struct cqm_object_s *obj)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
if (index >= object_table->max_num) {
cqm_err(handle->dev_hdl, "Obj table insert: index 0x%x exceeds max_num 0x%x\n",
index, object_table->max_num);
return CQM_FAIL;
}
write_lock(&object_table->lock);
if (!object_table->table[index]) {
object_table->table[index] = obj;
write_unlock(&object_table->lock);
return CQM_SUCCESS;
}
write_unlock(&object_table->lock);
cqm_err(handle->dev_hdl, "Obj table insert: object_table->table[0x%x] has been inserted\n",
index);
return CQM_FAIL;
}
/**
* cqm_object_table_remove - remove an object
* @cqm_handle: cqm handle
* @object_table: object table
* @index: the index of table
* @obj: the object to remove
* Return: 0 - success, negative - failure
*/
void cqm_object_table_remove(struct cqm_handle_s *cqm_handle,
struct cqm_object_table_s *object_table,
u32 index, const struct cqm_object_s *obj)
{
struct hifc_hwdev *handle = cqm_handle->ex_handle;
if (index >= object_table->max_num) {
cqm_err(handle->dev_hdl, "Obj table remove: index 0x%x exceeds max_num 0x%x\n",
index, object_table->max_num);
return;
}
write_lock(&object_table->lock);
if ((object_table->table[index]) &&
(object_table->table[index] == obj)) {
object_table->table[index] = NULL;
} else {
cqm_err(handle->dev_hdl, "Obj table remove: object_table->table[0x%x] has been removed\n",
index);
}
write_unlock(&object_table->lock);
}
/**
* cqm_srq_used_rq_delete - Delete rq in TOE SRQ mode
* @object: cqm object
*/
void cqm_srq_used_rq_delete(struct cqm_object_s *object)
{
struct cqm_queue_s *common = container_of(object, struct cqm_queue_s,
object);
struct cqm_nonrdma_qinfo_s *qinfo = container_of(
common,
struct cqm_nonrdma_qinfo_s,
common);
u32 link_wqe_offset = qinfo->wqe_per_buf * qinfo->wqe_size;
struct cqm_srq_linkwqe_s *srq_link_wqe = NULL;
dma_addr_t addr;
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
(common->object.cqm_handle);
struct hifc_hwdev *handle = cqm_handle->ex_handle;
/* The current SRQ solution does not support the case where RQ
* initialization without container, which may cause error when RQ
* resources are released. So RQ initializes with only one container,
* and releases only one contaienr when resourced are released.
*/
CQM_PTR_CHECK_NO_RET(
common->head_container, "Rq del: rq has no contianer to release\n",
return);
/* Get current container pa from link wqe, and ummap it */
srq_link_wqe = (struct cqm_srq_linkwqe_s *)(common->head_container +
link_wqe_offset);
/* Convert only the big endian of the wqe part of the link */
cqm_swab32((u8 *)(srq_link_wqe), sizeof(struct cqm_linkwqe_s) >> 2);
addr = CQM_ADDR_COMBINE(srq_link_wqe->current_buffer_gpa_h,
srq_link_wqe->current_buffer_gpa_l);
if (addr == 0) {
cqm_err(handle->dev_hdl, "Rq del: buffer physical addr is null\n");
return;
}
pci_unmap_single(cqm_handle->dev, addr, qinfo->container_size,
PCI_DMA_BIDIRECTIONAL);
/* Get current container va from link wqe, and free it */
addr = CQM_ADDR_COMBINE(srq_link_wqe->current_buffer_addr_h,
srq_link_wqe->current_buffer_addr_l);
if (addr == 0) {
cqm_err(handle->dev_hdl, "Rq del: buffer virtual addr is null\n");
return;
}
kfree((void *)addr);
}
#define obj_intern_if_section
/**
* cqm_qpc_mpt_bitmap_alloc - Apply index from bitmap when creating qpc or mpt
* @object: cqm object
* @cla_table: cla table
* Return: 0 - success, negative - failure
*/
s32 cqm_qpc_mpt_bitmap_alloc(struct cqm_object_s *object,
struct cqm_cla_table_s *cla_table)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_qpc_mpt_s *common = container_of(object,
struct cqm_qpc_mpt_s,
object);
struct cqm_qpc_mpt_info_s *qpc_mpt_info =
container_of(
common,
struct cqm_qpc_mpt_info_s,
common);
struct cqm_bitmap_s *bitmap = &cla_table->bitmap;
u32 index = 0;
u32 count = 0;
count = (ALIGN(object->object_size, cla_table->obj_size)) /
cla_table->obj_size;
qpc_mpt_info->index_count = count;
if (qpc_mpt_info->common.xid == CQM_INDEX_INVALID) {
/* Allocate index normally */
index = cqm_bitmap_alloc(
bitmap,
1 << (cla_table->z + 1),
count,
cqm_handle->func_capability.xid_alloc_mode);
if (index < bitmap->max_num) {
qpc_mpt_info->common.xid = index;
} else {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_bitmap_alloc));
return CQM_FAIL;
}
} else {
/* Allocate reserved index */
index = cqm_bitmap_alloc_reserved(
bitmap, count,
qpc_mpt_info->common.xid);
if (index != qpc_mpt_info->common.xid) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_bitmap_alloc_reserved));
return CQM_FAIL;
}
}
return CQM_SUCCESS;
}
static struct cqm_cla_table_s *cqm_qpc_mpt_prepare_cla_table(
struct cqm_object_s *object)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
/* Get the corresponding cla table */
if (object->object_type == CQM_OBJECT_SERVICE_CTX) {
cla_table = cqm_cla_table_get(bat_table, CQM_BAT_ENTRY_T_QPC);
} else {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(object->object_type));
return NULL;
}
CQM_PTR_CHECK_RET(cla_table, return NULL,
CQM_FUNCTION_FAIL(cqm_cla_table_get));
/* Allocate index for bitmap */
if (cqm_qpc_mpt_bitmap_alloc(object, cla_table) == CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_qpc_mpt_bitmap_alloc));
return NULL;
}
return cla_table;
}
/**
* cqm_qpc_mpt_create - Create qpc or mpt
* @object: cqm object
* Return: 0 - success, negative - failure
*/
s32 cqm_qpc_mpt_create(struct cqm_object_s *object)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_qpc_mpt_s *common =
container_of(object, struct cqm_qpc_mpt_s, object);
struct cqm_qpc_mpt_info_s *qpc_mpt_info =
container_of(common, struct cqm_qpc_mpt_info_s, common);
struct cqm_cla_table_s *cla_table = NULL;
struct cqm_bitmap_s *bitmap = NULL;
struct cqm_object_table_s *object_table = NULL;
u32 index = 0;
u32 count = 0;
cla_table = cqm_qpc_mpt_prepare_cla_table(object);
CQM_PTR_CHECK_RET(cla_table, return CQM_FAIL,
CQM_FUNCTION_FAIL(cqm_qpc_mpt_prepare_cla_table));
bitmap = &cla_table->bitmap;
index = qpc_mpt_info->common.xid;
count = qpc_mpt_info->index_count;
/* Find the trunk page from BAT/CLA and allocate the buffer, the
* business needs to ensure that the released buffer has been cleared
*/
if (cla_table->alloc_static == true) {
qpc_mpt_info->common.vaddr =
cqm_static_qpc_cla_get(cqm_handle, cla_table,
index, count, &common->paddr);
} else {
qpc_mpt_info->common.vaddr =
cqm_cla_get(cqm_handle, cla_table,
index, count, &common->paddr);
}
if (!qpc_mpt_info->common.vaddr) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_cla_get));
cqm_err(handle->dev_hdl,
"Qpc mpt init: qpc mpt vaddr is null, cla_table->alloc_static=%d\n",
cla_table->alloc_static);
goto err1;
}
/* Associate index with object, FC executes in interrupt context */
object_table = &cla_table->obj_table;
if (cqm_object_table_insert(cqm_handle, object_table, index, object) !=
CQM_SUCCESS) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_object_table_insert));
goto err2;
}
return CQM_SUCCESS;
err2:
cqm_cla_put(cqm_handle, cla_table, index, count);
err1:
cqm_bitmap_free(bitmap, index, count);
return CQM_FAIL;
}
/**
* cqm_qpc_mpt_delete - Delete qpc or mpt
* @object: cqm object
*/
void cqm_qpc_mpt_delete(struct cqm_object_s *object)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_qpc_mpt_s *common = container_of(object,
struct cqm_qpc_mpt_s,
object);
struct cqm_qpc_mpt_info_s *qpc_mpt_info = container_of(
common,
struct cqm_qpc_mpt_info_s,
common);
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
struct cqm_bitmap_s *bitmap = NULL;
struct cqm_object_table_s *object_table = NULL;
u32 index = qpc_mpt_info->common.xid;
u32 count = qpc_mpt_info->index_count;
/* Find the response cla table */
atomic_inc(&cqm_handle->ex_handle->hw_stats.cqm_stats.cqm_qpc_mpt_delete_cnt);
if (object->object_type == CQM_OBJECT_SERVICE_CTX) {
cla_table = cqm_cla_table_get(bat_table, CQM_BAT_ENTRY_T_QPC);
} else {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(object->object_type));
return;
}
CQM_PTR_CHECK_NO_RET(
cla_table, CQM_FUNCTION_FAIL(cqm_cla_table_get), return);
/* Disassociate index with object */
object_table = &cla_table->obj_table;
cqm_object_table_remove(cqm_handle, object_table, index, object);
/* Wait for the completion and ensure that all references to the QPC
* are completed
*/
if (atomic_dec_and_test(&object->refcount)) {
complete(&object->free);
} else {
cqm_err(handle->dev_hdl,
"Qpc mpt del: object is referred by others, has to wait for completion\n");
}
/* The QPC static allocation needs to be non-blocking, and the service
* guarantees that the QPC is completed when the QPC is deleted
*/
if (cla_table->alloc_static == false)
wait_for_completion(&object->free);
/* Free qpc buffer */
cqm_cla_put(cqm_handle, cla_table, index, count);
/* Free index into bitmap */
bitmap = &cla_table->bitmap;
cqm_bitmap_free(bitmap, index, count);
}
/**
* cqm_linkwqe_fill - Fill link wqe for non RDMA queue buffer
* @buf: cqm buffer
* @wqe_per_buf: not include link wqe
* @wqe_size: wqe size
* @wqe_number: not include link wqe
* @tail: true linkwqe must be at the tail, false linkwqe may not be at the tail
* @link_mode: link wqe mode
*/
void cqm_linkwqe_fill(struct cqm_buf_s *buf,
u32 wqe_per_buf,
u32 wqe_size,
u32 wqe_number,
bool tail,
u8 link_mode)
{
struct cqm_linkwqe_s *wqe = NULL;
struct cqm_linkwqe_128b_s *linkwqe = NULL;
u8 *va = NULL;
u32 i = 0;
dma_addr_t addr;
/* Except for the last buffer, the linkwqe of other buffers is directly
* filled to the tail
*/
for (i = 0; i < buf->buf_number; i++) {
va = (u8 *)(buf->buf_list[i].va);
if (i != (buf->buf_number - 1)) {
wqe = (struct cqm_linkwqe_s *)(va + (u32)(wqe_size *
wqe_per_buf));
wqe->wf = CQM_WQE_WF_LINK;
wqe->ctrlsl = CQM_LINK_WQE_CTRLSL_VALUE;
wqe->lp = CQM_LINK_WQE_LP_INVALID;
/* The Obit of valid link wqe needs to be set to 1, and
* each service needs to confirm that o-bit=1 means
* valid, o-bit=0 means invalid
*/
wqe->o = CQM_LINK_WQE_OWNER_VALID;
addr = buf->buf_list[(u32)(i + 1)].pa;
wqe->next_page_gpa_h = CQM_ADDR_HI(addr);
wqe->next_page_gpa_l = CQM_ADDR_LW(addr);
} else {
/* The last buffer of Linkwqe must fill specially */
if (tail == true) {
/* Must be filled at the end of the page */
wqe = (struct cqm_linkwqe_s *)(va +
(u32)(wqe_size * wqe_per_buf));
} else {
/* The last linkwqe is filled immediately after
* the last wqe
*/
wqe = (struct cqm_linkwqe_s *)
(va + (u32)(wqe_size *
(wqe_number - wqe_per_buf *
(buf->buf_number - 1))));
}
wqe->wf = CQM_WQE_WF_LINK;
wqe->ctrlsl = CQM_LINK_WQE_CTRLSL_VALUE;
/* In link mode, the last link wqe is invalid, In ring
* mode, the last link wqe is valid, pointing to the
* home page, and lp is set
*/
if (link_mode == CQM_QUEUE_LINK_MODE) {
wqe->o = CQM_LINK_WQE_OWNER_INVALID;
} else {
/* The lp field of the last link_wqe is filled
* with 1,indicating that the o-bit is flipped
* from here
*/
wqe->lp = CQM_LINK_WQE_LP_VALID;
wqe->o = CQM_LINK_WQE_OWNER_VALID;
addr = buf->buf_list[0].pa;
wqe->next_page_gpa_h = CQM_ADDR_HI(addr);
wqe->next_page_gpa_l = CQM_ADDR_LW(addr);
}
}
if (wqe_size == 128) {
/* The 128B wqe before and after 64B have obit need to be
* assigned, For IFOE, 63th penultimate bit of last 64B is
* obit, for TOE, 157th penultimate bit of last 64B is obit
*/
linkwqe = (struct cqm_linkwqe_128b_s *)wqe;
linkwqe->second_64b.third_16B.bs.toe_o =
CQM_LINK_WQE_OWNER_VALID;
linkwqe->second_64b.forth_16B.bs.ifoe_o =
CQM_LINK_WQE_OWNER_VALID;
/* big endian conversion */
cqm_swab32((u8 *)wqe,
sizeof(struct cqm_linkwqe_128b_s) >> 2);
} else {
/* big endian conversion */
cqm_swab32((u8 *)wqe,
sizeof(struct cqm_linkwqe_s) >> 2);
}
}
}
static s32 cqm_nonrdma_queue_ctx_create_srq(struct cqm_object_s *object)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_queue_s *common = container_of(object,
struct cqm_queue_s, object);
struct cqm_nonrdma_qinfo_s *qinfo = container_of(
common,
struct cqm_nonrdma_qinfo_s,
common);
s32 shift = 0;
shift = cqm_shift(qinfo->q_ctx_size);
common->q_ctx_vaddr = (u8 *)cqm_kmalloc_align(
qinfo->q_ctx_size,
GFP_KERNEL | __GFP_ZERO,
(u16)shift);
if (!common->q_ctx_vaddr) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(q_ctx_vaddr));
return CQM_FAIL;
}
common->q_ctx_paddr =
pci_map_single(cqm_handle->dev, common->q_ctx_vaddr,
qinfo->q_ctx_size, PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(cqm_handle->dev, common->q_ctx_paddr)) {
cqm_err(handle->dev_hdl, CQM_MAP_FAIL(q_ctx_vaddr));
cqm_kfree_align(common->q_ctx_vaddr);
common->q_ctx_vaddr = NULL;
return CQM_FAIL;
}
return CQM_SUCCESS;
}
static s32 cqm_nonrdma_queue_ctx_create_scq(struct cqm_object_s *object)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_queue_s *common = container_of(object,
struct cqm_queue_s,
object);
struct cqm_nonrdma_qinfo_s *qinfo = container_of(
common,
struct cqm_nonrdma_qinfo_s,
common);
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
struct cqm_bitmap_s *bitmap = NULL;
struct cqm_object_table_s *object_table = NULL;
/* Find the corresponding cla table */
cla_table = cqm_cla_table_get(bat_table, CQM_BAT_ENTRY_T_SCQC);
if (!cla_table) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_cla_table_get));
return CQM_FAIL;
}
/* Allocate index for bitmap */
bitmap = &cla_table->bitmap;
qinfo->index_count = (ALIGN(qinfo->q_ctx_size, cla_table->obj_size)) /
cla_table->obj_size;
qinfo->common.index = cqm_bitmap_alloc(bitmap, 1 << (cla_table->z + 1),
qinfo->index_count, cqm_handle->func_capability.xid_alloc_mode);
if (qinfo->common.index >= bitmap->max_num) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_bitmap_alloc));
return CQM_FAIL;
}
/* Find the trunk page from BAT/CLA and allocate buffer */
common->q_ctx_vaddr = cqm_cla_get(cqm_handle, cla_table,
qinfo->common.index,
qinfo->index_count,
&common->q_ctx_paddr);
if (!common->q_ctx_vaddr) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_cla_get));
cqm_bitmap_free(bitmap, qinfo->common.index,
qinfo->index_count);
return CQM_FAIL;
}
/* Associate index with object */
object_table = &cla_table->obj_table;
if (cqm_object_table_insert(
cqm_handle, object_table,
qinfo->common.index, object) != CQM_SUCCESS) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_object_table_insert));
cqm_cla_put(cqm_handle, cla_table, qinfo->common.index,
qinfo->index_count);
cqm_bitmap_free(bitmap, qinfo->common.index,
qinfo->index_count);
return CQM_FAIL;
}
return CQM_SUCCESS;
}
s32 cqm_nonrdma_queue_ctx_create(struct cqm_object_s *object)
{
if (object->object_type == CQM_OBJECT_NONRDMA_SRQ)
return cqm_nonrdma_queue_ctx_create_srq(object);
else if (object->object_type == CQM_OBJECT_NONRDMA_SCQ)
return cqm_nonrdma_queue_ctx_create_scq(object);
return CQM_SUCCESS;
}
#define CQM_NORDMA_CHECK_WEQ_NUMBER(number) \
(((number) < CQM_CQ_DEPTH_MIN) || ((number) > CQM_CQ_DEPTH_MAX))
/**
* cqm_nonrdma_queue_create - Create queue for non RDMA service
* @buf: cqm object
* Return: 0 - success, negative - failure
*/
s32 cqm_nonrdma_queue_create(struct cqm_object_s *object)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_service_s *service = &cqm_handle->service;
struct cqm_queue_s *common = container_of(object,
struct cqm_queue_s,
object);
struct cqm_nonrdma_qinfo_s *qinfo = container_of(
common,
struct cqm_nonrdma_qinfo_s,
common);
struct cqm_buf_s *q_room_buf = &common->q_room_buf_1;
u32 wqe_number = qinfo->common.object.object_size;
u32 wqe_size = qinfo->wqe_size;
u32 order = service->buf_order;
u32 buf_number = 0;
u32 buf_size = 0;
bool tail = false; /* Whether linkwqe is at the end of the page */
/* When creating CQ/SCQ queue, the page size is 4k, linkwqe must be at
* the end of the page
*/
if (object->object_type == CQM_OBJECT_NONRDMA_SCQ) {
/* Depth must be 2^n alignment, depth range is 256~32K */
if (CQM_NORDMA_CHECK_WEQ_NUMBER(wqe_number)) {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(wqe_number));
return CQM_FAIL;
}
if (cqm_check_align(wqe_number) == false) {
cqm_err(handle->dev_hdl, "Nonrdma queue alloc: wqe_number is not align on 2^n\n");
return CQM_FAIL;
}
order = CQM_4K_PAGE_ORDER; /* wqe page is 4k */
tail = true; /* linkwqe must be at the end of the page */
buf_size = CQM_4K_PAGE_SIZE;
} else {
buf_size = PAGE_SIZE << order;
}
/* Calculate how many buffers are required, -1 is to deduct link wqe in
* a buf
*/
qinfo->wqe_per_buf = (buf_size / wqe_size) - 1;
/* The depth from service includes the number of linkwqe */
buf_number = ALIGN((wqe_size * wqe_number), buf_size) / buf_size;
/* Allocate cqm buffer */
q_room_buf->buf_number = buf_number;
q_room_buf->buf_size = buf_size;
q_room_buf->page_number = (buf_number << order);
if (cqm_buf_alloc(cqm_handle, q_room_buf, false) == CQM_FAIL) {
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_buf_alloc));
return CQM_FAIL;
}
/* Fill link wqe, (wqe_number - buf_number) is the number of wqe without
* linkwqe
*/
cqm_linkwqe_fill(q_room_buf, qinfo->wqe_per_buf, wqe_size,
wqe_number - buf_number, tail,
common->queue_link_mode);
/* Create queue header */
qinfo->common.q_header_vaddr =
(struct cqm_queue_header_s *)cqm_kmalloc_align(
sizeof(struct cqm_queue_header_s),
GFP_KERNEL | __GFP_ZERO, CQM_QHEAD_ALIGN_ORDER);
if (!qinfo->common.q_header_vaddr) {
cqm_err(handle->dev_hdl, CQM_ALLOC_FAIL(q_header_vaddr));
goto err1;
}
common->q_header_paddr =
pci_map_single(cqm_handle->dev,
qinfo->common.q_header_vaddr,
sizeof(struct cqm_queue_header_s),
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(cqm_handle->dev, common->q_header_paddr)) {
cqm_err(handle->dev_hdl, CQM_MAP_FAIL(q_header_vaddr));
goto err2;
}
/* Create queue ctx */
if (cqm_nonrdma_queue_ctx_create(object) == CQM_FAIL) {
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_nonrdma_queue_ctx_create));
goto err3;
}
return CQM_SUCCESS;
err3:
pci_unmap_single(cqm_handle->dev, common->q_header_paddr,
sizeof(struct cqm_queue_header_s),
PCI_DMA_BIDIRECTIONAL);
err2:
cqm_kfree_align(qinfo->common.q_header_vaddr);
qinfo->common.q_header_vaddr = NULL;
err1:
cqm_buf_free(q_room_buf, cqm_handle->dev);
return CQM_FAIL;
}
static void cqm_nonrdma_queue_free_scq_srq(struct cqm_object_s *object,
struct cqm_cla_table_s *cla_table)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct cqm_queue_s *common = container_of(object,
struct cqm_queue_s,
object);
struct cqm_nonrdma_qinfo_s *qinfo =
container_of(common, struct cqm_nonrdma_qinfo_s, common);
struct cqm_buf_s *q_room_buf = &common->q_room_buf_1;
u32 index = qinfo->common.index;
u32 count = qinfo->index_count;
struct cqm_bitmap_s *bitmap = NULL;
/* If it is in TOE SRQ mode, delete the RQ */
if (common->queue_link_mode == CQM_QUEUE_TOE_SRQ_LINK_MODE) {
cqm_dbg("Nonrdma queue del: delete srq used rq\n");
cqm_srq_used_rq_delete(&common->object);
} else {
/* Free it if exists q room */
cqm_buf_free(q_room_buf, cqm_handle->dev);
}
/* Free SRQ or SCQ ctx */
if (object->object_type == CQM_OBJECT_NONRDMA_SRQ) {
/* ctx of nonrdma's SRQ is applied independently */
if (common->q_ctx_vaddr) {
pci_unmap_single(cqm_handle->dev, common->q_ctx_paddr,
qinfo->q_ctx_size,
PCI_DMA_BIDIRECTIONAL);
cqm_kfree_align(common->q_ctx_vaddr);
common->q_ctx_vaddr = NULL;
}
} else if (object->object_type == CQM_OBJECT_NONRDMA_SCQ) {
/* The ctx of SCQ of nonrdma is managed by BAT/CLA */
cqm_cla_put(cqm_handle, cla_table, index, count);
/* Release index into bitmap */
bitmap = &cla_table->bitmap;
cqm_bitmap_free(bitmap, index, count);
}
}
/**
* cqm_nonrdma_queue_delete - Free queue for non RDMA service
* @buf: cqm object
*/
void cqm_nonrdma_queue_delete(struct cqm_object_s *object)
{
struct cqm_handle_s *cqm_handle = (struct cqm_handle_s *)
object->cqm_handle;
struct hifc_hwdev *handle = cqm_handle->ex_handle;
struct cqm_queue_s *common = container_of(object,
struct cqm_queue_s, object);
struct cqm_nonrdma_qinfo_s *qinfo = container_of(
common,
struct cqm_nonrdma_qinfo_s,
common);
struct cqm_bat_table_s *bat_table = &cqm_handle->bat_table;
struct cqm_cla_table_s *cla_table = NULL;
struct cqm_object_table_s *object_table = NULL;
u32 index = qinfo->common.index;
atomic_inc(&cqm_handle->ex_handle->hw_stats.cqm_stats.cqm_nonrdma_queue_delete_cnt);
/* SCQ has independent SCQN association */
if (object->object_type == CQM_OBJECT_NONRDMA_SCQ) {
cla_table = cqm_cla_table_get(bat_table, CQM_BAT_ENTRY_T_SCQC);
CQM_PTR_CHECK_NO_RET(
cla_table,
CQM_FUNCTION_FAIL(cqm_cla_table_get),
return);
/* index and object disassociate */
object_table = &cla_table->obj_table;
cqm_object_table_remove(cqm_handle, object_table,
index, object);
}
/* Wait for the completion and ensure that all references to the QPC
* are completed
*/
if (atomic_dec_and_test(&object->refcount))
complete(&object->free);
else
cqm_err(handle->dev_hdl, "Nonrdma queue del: object is referred by others, has to wait for completion\n");
wait_for_completion(&object->free);
/* Free it if exists q header */
if (qinfo->common.q_header_vaddr) {
pci_unmap_single(cqm_handle->dev, common->q_header_paddr,
sizeof(struct cqm_queue_header_s),
PCI_DMA_BIDIRECTIONAL);
cqm_kfree_align(qinfo->common.q_header_vaddr);
qinfo->common.q_header_vaddr = NULL;
}
cqm_nonrdma_queue_free_scq_srq(object, cla_table);
}
#define obj_extern_if_section
/**
* cqm_object_qpc_mpt_create - Create QPC and MPT
* @ex_handle: hw dev handle
* @service_type: service type
* @object_type: must be mpt and ctx
* @object_size: the unit is byte
* @object_priv: the private structure for service, can be NULL
* @index: get the reserved qpn based on this value, if wants to automatically
* allocate it, the value should be CQM_INDEX_INVALID
* Return: service ctx
*/
struct cqm_qpc_mpt_s *cqm_object_qpc_mpt_create(
void *ex_handle,
enum cqm_object_type_e object_type,
u32 object_size, void *object_priv,
u32 index)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
struct cqm_qpc_mpt_info_s *qpc_mpt_info = NULL;
s32 ret = CQM_FAIL;
CQM_PTR_CHECK_RET(ex_handle, return NULL, CQM_PTR_NULL(ex_handle));
atomic_inc(&handle->hw_stats.cqm_stats.cqm_qpc_mpt_create_cnt);
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
CQM_PTR_CHECK_RET(cqm_handle, return NULL, CQM_PTR_NULL(cqm_handle));
/* If service does not register, returns NULL */
if (cqm_handle->service.has_register == false) {
cqm_err(handle->dev_hdl, "service is not register");
return NULL;
}
if (object_type != CQM_OBJECT_SERVICE_CTX) {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(object_type));
return NULL;
}
qpc_mpt_info = (struct cqm_qpc_mpt_info_s *)
kmalloc(sizeof(struct cqm_qpc_mpt_info_s),
GFP_ATOMIC | __GFP_ZERO);
CQM_PTR_CHECK_RET(qpc_mpt_info, return NULL,
CQM_ALLOC_FAIL(qpc_mpt_info));
qpc_mpt_info->common.object.object_type = object_type;
qpc_mpt_info->common.object.object_size = object_size;
atomic_set(&qpc_mpt_info->common.object.refcount, 1);
init_completion(&qpc_mpt_info->common.object.free);
qpc_mpt_info->common.object.cqm_handle = cqm_handle;
qpc_mpt_info->common.xid = index;
qpc_mpt_info->common.priv = object_priv;
ret = cqm_qpc_mpt_create(&qpc_mpt_info->common.object);
if (ret == CQM_SUCCESS)
return &qpc_mpt_info->common;
cqm_err(handle->dev_hdl, CQM_FUNCTION_FAIL(cqm_qpc_mpt_create));
kfree(qpc_mpt_info);
return NULL;
}
/**
* cqm_object_fc_srq_create - Create RQ for FC, the number of valid wqe in the
* queue must be meet the incoming wqe number. Because linkwqe can only be
* filled at the end of the page, the actual effective number exceeds demand,
* need to inform the number of business creation.
* @ex_handle: hw dev handle
* @service_type: service type
* @object_type: must be CQM_OBJECT_NONRDMA_SRQ
* @wqe_number: valid wqe number
* @wqe_size: wqe size
* @object_priv: the private structure for service
* Return: srq structure
*/
struct cqm_queue_s *cqm_object_fc_srq_create(
void *ex_handle,
enum cqm_object_type_e object_type,
u32 wqe_number, u32 wqe_size,
void *object_priv)
{
struct cqm_nonrdma_qinfo_s *nonrdma_qinfo = NULL;
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
struct cqm_service_s *service = NULL;
u32 valid_wqe_per_buffer = 0;
u32 wqe_sum = 0; /* includes linkwqe, normal wqe */
u32 buf_size = 0;
u32 buf_num = 0;
s32 ret = CQM_FAIL;
CQM_PTR_CHECK_RET(ex_handle, return NULL, CQM_PTR_NULL(ex_handle));
atomic_inc(&handle->hw_stats.cqm_stats.cqm_fc_srq_create_cnt);
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
CQM_PTR_CHECK_RET(cqm_handle, return NULL, CQM_PTR_NULL(cqm_handle));
/* service_type must be FC */
if (cqm_handle->service.has_register == false) {
cqm_err(handle->dev_hdl, "service is not register\n");
return NULL;
}
/* wqe_size can not exceed PAGE_SIZE and should not be 0, and must be
* 2^n aligned.
*/
if ((wqe_size >= PAGE_SIZE) || (cqm_check_align(wqe_size) == false)) {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(wqe_size));
return NULL;
}
/* FC's RQ is SRQ (unlike TOE's SRQ, fc is that all packets received by
* the stream will be put on the same rq, and TOE's srq is similar to
* rq's resource pool)
*/
if (object_type != CQM_OBJECT_NONRDMA_SRQ) {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(object_type));
return NULL;
}
service = &cqm_handle->service;
buf_size = PAGE_SIZE << (service->buf_order);
valid_wqe_per_buffer = buf_size / wqe_size - 1; /* Minus 1 link wqe */
buf_num = wqe_number / valid_wqe_per_buffer;
if (wqe_number % valid_wqe_per_buffer != 0)
buf_num++;
/* Calculate the total number of all wqe */
wqe_sum = buf_num * (valid_wqe_per_buffer + 1);
nonrdma_qinfo = (struct cqm_nonrdma_qinfo_s *)
kmalloc(sizeof(struct cqm_nonrdma_qinfo_s),
GFP_KERNEL | __GFP_ZERO);
CQM_PTR_CHECK_RET(nonrdma_qinfo, return NULL,
CQM_ALLOC_FAIL(nonrdma_qinfo));
/* Initialize object members */
nonrdma_qinfo->common.object.object_type = object_type;
/* The total number of all wqe */
nonrdma_qinfo->common.object.object_size = wqe_sum;
atomic_set(&nonrdma_qinfo->common.object.refcount, 1);
init_completion(&nonrdma_qinfo->common.object.free);
nonrdma_qinfo->common.object.cqm_handle = cqm_handle;
/* Initialize the doorbell used by the current queue, default is the
* hardware doorbell
*/
nonrdma_qinfo->common.current_q_doorbell = CQM_HARDWARE_DOORBELL;
nonrdma_qinfo->common.queue_link_mode = CQM_QUEUE_RING_MODE;
/* Initialize external public members */
nonrdma_qinfo->common.priv = object_priv;
nonrdma_qinfo->common.valid_wqe_num = wqe_sum - buf_num;
/* Initialize internal private members */
nonrdma_qinfo->wqe_size = wqe_size;
/* The SRQ for FC, which needs to create ctx */
nonrdma_qinfo->q_ctx_size = service->service_template.srq_ctx_size;
ret = cqm_nonrdma_queue_create(&nonrdma_qinfo->common.object);
if (ret == CQM_SUCCESS)
return &nonrdma_qinfo->common;
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_nonrdma_queue_create));
kfree(nonrdma_qinfo);
return NULL;
}
static int cqm_object_nonrdma_queue_create_check(
void *ex_handle,
enum cqm_object_type_e object_type,
u32 wqe_size)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
CQM_PTR_CHECK_RET(ex_handle, return CQM_FAIL, CQM_PTR_NULL(ex_handle));
atomic_inc(&handle->hw_stats.cqm_stats.cqm_nonrdma_queue_create_cnt);
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
CQM_PTR_CHECK_RET(cqm_handle, return CQM_FAIL,
CQM_PTR_NULL(cqm_handle));
/* If service does not register, returns NULL */
if (cqm_handle->service.has_register == false) {
cqm_err(handle->dev_hdl, "service is not register\n");
return CQM_FAIL;
}
/* Wqe size cannot exceed PAGE_SIZE, cannot be 0, and must be 2^n
* aligned. cqm_check_align check excludes 0, 1, non 2^n alignment
*/
if ((wqe_size >= PAGE_SIZE) || (cqm_check_align(wqe_size) == false)) {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(wqe_size));
return CQM_FAIL;
}
/* Supported Nonrdma queue: RQ, SQ, SRQ, CQ, SCQ */
if ((object_type < CQM_OBJECT_NONRDMA_EMBEDDED_RQ) ||
(object_type > CQM_OBJECT_NONRDMA_SCQ)) {
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(object_type));
return CQM_FAIL;
}
return CQM_SUCCESS;
}
/**
* cqm_object_nonrdma_queue_create - Create queues for non-RDMA services
* @ex_handle: hw dev handle
* @service_type: service type
* @object_type: can create embedded RQ/SQ/CQ and SRQ/SCQ
* @wqe_number: wqe number, including link wqe
* @wqe_size: wqe size, nust be 2^n
* @object_priv: the private structure for service, can be NULL
* Return: srq structure
*/
struct cqm_queue_s *cqm_object_nonrdma_queue_create(
void *ex_handle,
enum cqm_object_type_e object_type,
u32 wqe_number, u32 wqe_size,
void *object_priv)
{
struct hifc_hwdev *handle = (struct hifc_hwdev *)ex_handle;
struct cqm_handle_s *cqm_handle = NULL;
struct cqm_nonrdma_qinfo_s *nonrdma_qinfo = NULL;
struct cqm_service_s *service = NULL;
s32 ret = CQM_FAIL;
cqm_handle = (struct cqm_handle_s *)(handle->cqm_hdl);
if (cqm_object_nonrdma_queue_create_check(ex_handle,
object_type,
wqe_size) == CQM_FAIL) {
return NULL;
}
nonrdma_qinfo = (struct cqm_nonrdma_qinfo_s *)
kmalloc(sizeof(struct cqm_nonrdma_qinfo_s),
GFP_KERNEL | __GFP_ZERO);
CQM_PTR_CHECK_RET(nonrdma_qinfo, return NULL,
CQM_ALLOC_FAIL(nonrdma_qinfo));
/* Initialize object members */
nonrdma_qinfo->common.object.object_type = object_type;
nonrdma_qinfo->common.object.object_size = wqe_number;
atomic_set(&nonrdma_qinfo->common.object.refcount, 1);
init_completion(&nonrdma_qinfo->common.object.free);
nonrdma_qinfo->common.object.cqm_handle = cqm_handle;
/* Initialize the doorbell used by the current queue, default is the
* hardware doorbell
*/
nonrdma_qinfo->common.current_q_doorbell = CQM_HARDWARE_DOORBELL;
nonrdma_qinfo->common.queue_link_mode = CQM_QUEUE_RING_MODE;
/* Initialize external public members */
nonrdma_qinfo->common.priv = object_priv;
/* Initialize internal private members */
nonrdma_qinfo->wqe_size = wqe_size;
service = &cqm_handle->service;
switch (object_type) {
case CQM_OBJECT_NONRDMA_SCQ:
nonrdma_qinfo->q_ctx_size =
service->service_template.scq_ctx_size;
break;
case CQM_OBJECT_NONRDMA_SRQ:
/* The creation for SRQ uses a dedicated interface */
nonrdma_qinfo->q_ctx_size =
service->service_template.srq_ctx_size;
break;
default:
break;
}
ret = cqm_nonrdma_queue_create(&nonrdma_qinfo->common.object);
if (ret == CQM_SUCCESS)
return &nonrdma_qinfo->common;
cqm_err(handle->dev_hdl,
CQM_FUNCTION_FAIL(cqm_nonrdma_queue_create));
kfree(nonrdma_qinfo);
return NULL;
}
s32 cqm_qpc_mpt_delete_ret(struct cqm_object_s *object)
{
u32 object_type = 0;
object_type = object->object_type;
switch (object_type) {
case CQM_OBJECT_SERVICE_CTX:
cqm_qpc_mpt_delete(object);
return CQM_SUCCESS;
default:
return CQM_FAIL;
}
}
s32 cqm_nonrdma_queue_delete_ret(struct cqm_object_s *object)
{
u32 object_type = 0;
object_type = object->object_type;
switch (object_type) {
case CQM_OBJECT_NONRDMA_SCQ:
case CQM_OBJECT_NONRDMA_SRQ:
cqm_nonrdma_queue_delete(object);
return CQM_SUCCESS;
default:
return CQM_FAIL;
}
}
/**
* cqm_object_nonrdma_queue_create - Delete the created object, the function
* will sleep and wait for all operations on the object to complete before
* returning
* @object: cqm object
*/
void cqm_object_delete(struct cqm_object_s *object)
{
struct cqm_handle_s *cqm_handle = NULL;
struct hifc_hwdev *handle = NULL;
CQM_PTR_CHECK_NO_RET(object, CQM_PTR_NULL(object), return);
if (!object->cqm_handle) {
pr_err("[CQM]Obj del: cqm_handle is null, refcount %d\n",
(int)object->refcount.counter);
kfree(object);
return;
}
cqm_handle = (struct cqm_handle_s *)object->cqm_handle;
if (!cqm_handle->ex_handle) {
pr_err("[CQM]Obj del: ex_handle is null, refcount %d\n",
(int)object->refcount.counter);
kfree(object);
return;
}
handle = cqm_handle->ex_handle;
if (cqm_qpc_mpt_delete_ret(object) == CQM_SUCCESS) {
kfree(object);
return;
}
if (cqm_nonrdma_queue_delete_ret(object) == CQM_SUCCESS) {
kfree(object);
return;
}
cqm_err(handle->dev_hdl, CQM_WRONG_VALUE(object->object_type));
kfree(object);
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef __CQM_OBJECT_H__
#define __CQM_OBJECT_H__
#define CLA_TABLE_PAGE_ORDER (0)
#define CQM_4K_PAGE_ORDER (0)
#define CQM_CQ_DEPTH_MAX (32768)
#define CQM_CQ_DEPTH_MIN (256)
#define CQM_BAT_SIZE_FT_PF (192)
#define CQM_WQE_WF_LINK 1
#define CQM_WQE_WF_NORMAL 0
#define CQM_QUEUE_LINK_MODE 0
#define CQM_QUEUE_RING_MODE 1
#define CQM_4K_PAGE_SIZE 4096
#define CQM_SUCCESS 0
#define CQM_FAIL -1
#define CQM_QUEUE_TOE_SRQ_LINK_MODE 2
#define CQM_CMD_TIMEOUT 10000 /*ms*/
#define CQM_INDEX_INVALID ~(0U)
#define CQM_INDEX_RESERVED (0xfffff) /* reserved by cqm alloc */
enum cqm_bat_entry_type_e {
CQM_BAT_ENTRY_T_CFG = 0,
CQM_BAT_ENTRY_T_HASH,
CQM_BAT_ENTRY_T_QPC,
CQM_BAT_ENTRY_T_SCQC,
CQM_BAT_ENTRY_T_SRQC,
CQM_BAT_ENTRY_T_MPT,
CQM_BAT_ENTRY_T_GID,
CQM_BAT_ENTRY_T_LUN,
CQM_BAT_ENTRY_T_TASKMAP,
CQM_BAT_ENTRY_T_L3I,
CQM_BAT_ENTRY_T_CHILDC,
CQM_BAT_ENTRY_T_TIMER,
CQM_BAT_ENTRY_T_XID2CID,
CQM_BAT_ENTRY_T_REORDER,
CQM_BAT_ENTRY_T_INVALID = 0xff,
};
enum cqm_cmd_type_e {
CQM_CMD_T_INVALID = 0,
CQM_CMD_T_BAT_UPDATE,
CQM_CMD_T_CLA_UPDATE,
CQM_CMD_T_BLOOMFILTER_SET,
CQM_CMD_T_BLOOMFILTER_CLEAR,
CQM_CMD_T_COMPACT_SRQ_UPDATE,
CQM_CMD_T_CLA_CACHE_INVALID,
CQM_CMD_T_BLOOMFILTER_INIT,
QM_CMD_T_MAX
};
/*linkwqe*/
#define CQM_LINK_WQE_CTRLSL_VALUE 2
#define CQM_LINK_WQE_LP_VALID 1
#define CQM_LINK_WQE_LP_INVALID 0
#define CQM_LINK_WQE_OWNER_VALID 1
#define CQM_LINK_WQE_OWNER_INVALID 0
/*CLA update mode*/
#define CQM_CLA_RECORD_NEW_GPA 0
#define CQM_CLA_DEL_GPA_WITHOUT_CACHE_INVALID 1
#define CQM_CLA_DEL_GPA_WITH_CACHE_INVALID 2
#define CQM_CLA_LVL_0 0
#define CQM_CLA_LVL_1 1
#define CQM_CLA_LVL_2 2
#define CQM_MAX_INDEX_BIT 19
#define CQM_CHIP_CACHELINE 256
enum cqm_cmd_ack_type_e {
CQM_CMD_ACK_TYPE_CMDQ = 0, /* ack: write back to cmdq */
CQM_CMD_ACK_TYPE_SHARE_CQN = 1, /* ack report scq by root ctx ctx */
CQM_CMD_ACK_TYPE_APP_CQN = 2 /* ack report scq by parent ctx */
};
struct cqm_bat_entry_cfg_s {
u32 cur_conn_num_h_4 :4;
u32 rsv1 :4;
u32 max_conn_num :20;
u32 rsv2 :4;
u32 max_conn_cache :10;
u32 rsv3 :6;
u32 cur_conn_num_l_16 :16;
u32 bloom_filter_addr :16;
u32 cur_conn_cache :10;
u32 rsv4 :6;
u32 bucket_num :16;
u32 bloom_filter_len :16;
};
#define CQM_BAT_NO_BYPASS_CACHE 0
#define CQM_BAT_ENTRY_SIZE_256 0
#define CQM_BAT_ENTRY_SIZE_512 1
#define CQM_BAT_ENTRY_SIZE_1024 2
struct cqm_bat_entry_standerd_s {
u32 entry_size :2;
u32 rsv1 :6;
u32 max_number :20;
u32 rsv2 :4;
u32 cla_gpa_h :32;
u32 cla_gpa_l :32;
u32 rsv3 :8;
u32 z :5;
u32 y :5;
u32 x :5;
u32 rsv24 :1;
u32 bypass :1;
u32 cla_level :2;
u32 rsv5 :5;
};
struct cqm_bat_entry_taskmap_s {
u32 gpa0_h;
u32 gpa0_l;
u32 gpa1_h;
u32 gpa1_l;
u32 gpa2_h;
u32 gpa2_l;
u32 gpa3_h;
u32 gpa3_l;
};
struct cqm_cla_cache_invalid_cmd_s {
u32 gpa_h;
u32 gpa_l;
u32 cache_size;/* CLA cache size=4096B */
};
struct cqm_cla_update_cmd_s {
/* need to update gpa addr */
u32 gpa_h;
u32 gpa_l;
/* update value */
u32 value_h;
u32 value_l;
};
struct cqm_bat_update_cmd_s {
#define CQM_BAT_MAX_SIZE 256
u32 offset; /* byte offset,16Byte aligned */
u32 byte_len; /* max size: 256byte */
u8 data[CQM_BAT_MAX_SIZE];
};
struct cqm_handle_s;
struct cqm_linkwqe_s {
u32 rsv1 :14;
u32 wf :1;
u32 rsv2 :14;
u32 ctrlsl :2;
u32 o :1;
u32 rsv3 :31;
u32 lp :1;
u32 next_page_gpa_h;
u32 next_page_gpa_l;
u32 next_buffer_addr_h;
u32 next_buffer_addr_l;
};
struct cqm_srq_linkwqe_s {
struct cqm_linkwqe_s linkwqe;
/*add by wss for srq*/
u32 current_buffer_gpa_h;
u32 current_buffer_gpa_l;
u32 current_buffer_addr_h;
u32 current_buffer_addr_l;
u32 fast_link_page_addr_h;
u32 fast_link_page_addr_l;
u32 fixed_next_buffer_addr_h;
u32 fixed_next_buffer_addr_l;
};
union cqm_linkwqe_first_64b_s {
struct cqm_linkwqe_s basic_linkwqe;
u32 value[16];
};
struct cqm_linkwqe_second_64b_s {
u32 rsvd0[4];
u32 rsvd1[4];
union {
struct {
u32 rsvd0[3];
u32 rsvd1 :29;
u32 toe_o :1;
u32 resvd2 :2;
} bs;
u32 value[4];
} third_16B;
union {
struct {
u32 rsvd0[2];
u32 rsvd1 :31;
u32 ifoe_o :1;
u32 rsvd2;
} bs;
u32 value[4];
} forth_16B;
};
struct cqm_linkwqe_128b_s {
union cqm_linkwqe_first_64b_s first_64b;
struct cqm_linkwqe_second_64b_s second_64b;
};
s32 cqm_bat_init(struct cqm_handle_s *cqm_handle);
void cqm_bat_uninit(struct cqm_handle_s *cqm_handle);
s32 cqm_cla_init(struct cqm_handle_s *cqm_handle);
void cqm_cla_uninit(struct cqm_handle_s *cqm_handle);
s32 cqm_bitmap_init(struct cqm_handle_s *cqm_handle);
void cqm_bitmap_uninit(struct cqm_handle_s *cqm_handle);
s32 cqm_object_table_init(struct cqm_handle_s *cqm_handle);
void cqm_object_table_uninit(struct cqm_handle_s *cqm_handle);
#endif /* __CQM_OBJECT_H__ */
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwif.h"
#include "hifc_api_cmd.h"
#include "hifc_mgmt.h"
#include "hifc_hwdev.h"
#include "hifc_eqs.h"
#define HIFC_EQS_WQ_NAME "hifc_eqs"
#define AEQ_CTRL_0_INTR_IDX_SHIFT 0
#define AEQ_CTRL_0_FUNC_BUSY_SHIFT 10
#define AEQ_CTRL_0_DMA_ATTR_SHIFT 12
#define AEQ_CTRL_0_PCI_INTF_IDX_SHIFT 20
#define AEQ_CTRL_0_QPS_NUM_SHIFT 22
#define AEQ_CTRL_0_INTR_MODE_SHIFT 31
#define AEQ_CTRL_0_INTR_IDX_MASK 0x3FFU
#define AEQ_CTRL_0_FUNC_BUSY_MASK 0x1U
#define AEQ_CTRL_0_DMA_ATTR_MASK 0x3FU
#define AEQ_CTRL_0_PCI_INTF_IDX_MASK 0x3U
#define AEQ_CTRL_0_QPS_NUM_MASK 0xFFU
#define AEQ_CTRL_0_INTR_MODE_MASK 0x1U
#define AEQ_CTRL_0_GET(val, member) \
(((val) >> AEQ_CTRL_0_##member##_SHIFT) & \
AEQ_CTRL_0_##member##_MASK)
#define AEQ_CTRL_0_SET(val, member) \
(((val) & AEQ_CTRL_0_##member##_MASK) << \
AEQ_CTRL_0_##member##_SHIFT)
#define AEQ_CTRL_0_CLEAR(val, member) \
((val) & (~(AEQ_CTRL_0_##member##_MASK \
<< AEQ_CTRL_0_##member##_SHIFT)))
#define AEQ_CTRL_1_LEN_SHIFT 0
#define AEQ_CTRL_1_FUNC_OWN_SHIFT 21
#define AEQ_CTRL_1_ELEM_SIZE_SHIFT 24
#define AEQ_CTRL_1_PAGE_SIZE_SHIFT 28
#define AEQ_CTRL_1_LEN_MASK 0x1FFFFFU
#define AEQ_CTRL_1_FUNC_OWN_MASK 0x1U
#define AEQ_CTRL_1_ELEM_SIZE_MASK 0x3U
#define AEQ_CTRL_1_PAGE_SIZE_MASK 0xFU
#define AEQ_CTRL_1_GET(val, member) \
(((val) >> AEQ_CTRL_1_##member##_SHIFT) & \
AEQ_CTRL_1_##member##_MASK)
#define AEQ_CTRL_1_SET(val, member) \
(((val) & AEQ_CTRL_1_##member##_MASK) << \
AEQ_CTRL_1_##member##_SHIFT)
#define AEQ_CTRL_1_CLEAR(val, member) \
((val) & (~(AEQ_CTRL_1_##member##_MASK \
<< AEQ_CTRL_1_##member##_SHIFT)))
#define HIFC_EQ_PROD_IDX_MASK 0xFFFFF
#define HIFC_TASK_PROCESS_EQE_LIMIT 1024
#define HIFC_EQ_UPDATE_CI_STEP 64
static uint g_aeq_len = HIFC_DEFAULT_AEQ_LEN;
module_param(g_aeq_len, uint, 0444);
MODULE_PARM_DESC(g_aeq_len,
"aeq depth, valid range is " __stringify(HIFC_MIN_AEQ_LEN)
" - " __stringify(HIFC_MAX_AEQ_LEN));
static uint g_ceq_len = HIFC_DEFAULT_CEQ_LEN;
module_param(g_ceq_len, uint, 0444);
MODULE_PARM_DESC(g_ceq_len,
"ceq depth, valid range is " __stringify(HIFC_MIN_CEQ_LEN)
" - " __stringify(HIFC_MAX_CEQ_LEN));
static uint g_num_ceqe_in_tasklet = HIFC_TASK_PROCESS_EQE_LIMIT;
module_param(g_num_ceqe_in_tasklet, uint, 0444);
MODULE_PARM_DESC(g_num_ceqe_in_tasklet,
"The max number of ceqe can be processed in tasklet, default = 1024");
#define CEQ_CTRL_0_INTR_IDX_SHIFT 0
#define CEQ_CTRL_0_DMA_ATTR_SHIFT 12
#define CEQ_CTRL_0_LIMIT_KICK_SHIFT 20
#define CEQ_CTRL_0_PCI_INTF_IDX_SHIFT 24
#define CEQ_CTRL_0_INTR_MODE_SHIFT 31
#define CEQ_CTRL_0_INTR_IDX_MASK 0x3FFU
#define CEQ_CTRL_0_DMA_ATTR_MASK 0x3FU
#define CEQ_CTRL_0_LIMIT_KICK_MASK 0xFU
#define CEQ_CTRL_0_PCI_INTF_IDX_MASK 0x3U
#define CEQ_CTRL_0_INTR_MODE_MASK 0x1U
#define CEQ_CTRL_0_SET(val, member) \
(((val) & CEQ_CTRL_0_##member##_MASK) << \
CEQ_CTRL_0_##member##_SHIFT)
#define CEQ_CTRL_1_LEN_SHIFT 0
#define CEQ_CTRL_1_PAGE_SIZE_SHIFT 28
#define CEQ_CTRL_1_LEN_MASK 0x1FFFFFU
#define CEQ_CTRL_1_PAGE_SIZE_MASK 0xFU
#define CEQ_CTRL_1_SET(val, member) \
(((val) & CEQ_CTRL_1_##member##_MASK) << \
CEQ_CTRL_1_##member##_SHIFT)
#define EQ_ELEM_DESC_TYPE_SHIFT 0
#define EQ_ELEM_DESC_SRC_SHIFT 7
#define EQ_ELEM_DESC_SIZE_SHIFT 8
#define EQ_ELEM_DESC_WRAPPED_SHIFT 31
#define EQ_ELEM_DESC_TYPE_MASK 0x7FU
#define EQ_ELEM_DESC_SRC_MASK 0x1U
#define EQ_ELEM_DESC_SIZE_MASK 0xFFU
#define EQ_ELEM_DESC_WRAPPED_MASK 0x1U
#define EQ_ELEM_DESC_GET(val, member) \
(((val) >> EQ_ELEM_DESC_##member##_SHIFT) & \
EQ_ELEM_DESC_##member##_MASK)
#define EQ_CONS_IDX_CONS_IDX_SHIFT 0
#define EQ_CONS_IDX_XOR_CHKSUM_SHIFT 24
#define EQ_CONS_IDX_INT_ARMED_SHIFT 31
#define EQ_CONS_IDX_CONS_IDX_MASK 0x1FFFFFU
#define EQ_CONS_IDX_XOR_CHKSUM_MASK 0xFU
#define EQ_CONS_IDX_INT_ARMED_MASK 0x1U
#define EQ_CONS_IDX_SET(val, member) \
(((val) & EQ_CONS_IDX_##member##_MASK) << \
EQ_CONS_IDX_##member##_SHIFT)
#define EQ_CONS_IDX_CLEAR(val, member) \
((val) & (~(EQ_CONS_IDX_##member##_MASK \
<< EQ_CONS_IDX_##member##_SHIFT)))
#define EQ_WRAPPED(eq) ((u32)(eq)->wrapped << EQ_VALID_SHIFT)
#define EQ_CONS_IDX(eq) ((eq)->cons_idx | \
((u32)(eq)->wrapped << EQ_WRAPPED_SHIFT))
#define EQ_CONS_IDX_REG_ADDR(eq) (((eq)->type == HIFC_AEQ) ? \
HIFC_CSR_AEQ_CONS_IDX_ADDR((eq)->q_id) : \
HIFC_CSR_CEQ_CONS_IDX_ADDR((eq)->q_id))
#define EQ_PROD_IDX_REG_ADDR(eq) (((eq)->type == HIFC_AEQ) ? \
HIFC_CSR_AEQ_PROD_IDX_ADDR((eq)->q_id) : \
HIFC_CSR_CEQ_PROD_IDX_ADDR((eq)->q_id))
#define GET_EQ_NUM_PAGES(eq, size) \
((u16)(ALIGN((u32)((eq)->eq_len * (eq)->elem_size), \
(size)) / (size)))
#define GET_EQ_NUM_ELEMS(eq, pg_size) ((pg_size) / (u32)(eq)->elem_size)
#define GET_EQ_ELEMENT(eq, idx) \
(((u8 *)(eq)->virt_addr[(idx) / (eq)->num_elem_in_pg]) + \
(u32)(((idx) & ((eq)->num_elem_in_pg - 1)) * (eq)->elem_size))
#define GET_AEQ_ELEM(eq, idx) ((struct hifc_aeq_elem *)\
GET_EQ_ELEMENT((eq), (idx)))
#define GET_CEQ_ELEM(eq, idx) ((u32 *)GET_EQ_ELEMENT((eq), (idx)))
#define GET_CURR_AEQ_ELEM(eq) GET_AEQ_ELEM((eq), (eq)->cons_idx)
#define GET_CURR_CEQ_ELEM(eq) GET_CEQ_ELEM((eq), (eq)->cons_idx)
#define PAGE_IN_4K(page_size) ((page_size) >> 12)
#define EQ_SET_HW_PAGE_SIZE_VAL(eq) \
((u32)ilog2(PAGE_IN_4K((eq)->page_size)))
#define ELEMENT_SIZE_IN_32B(eq) (((eq)->elem_size) >> 5)
#define EQ_SET_HW_ELEM_SIZE_VAL(eq) ((u32)ilog2(ELEMENT_SIZE_IN_32B(eq)))
#define AEQ_DMA_ATTR_DEFAULT 0
#define CEQ_DMA_ATTR_DEFAULT 0
#define CEQ_LMT_KICK_DEFAULT 0
#define EQ_MSIX_RESEND_TIMER_CLEAR 1
#define EQ_WRAPPED_SHIFT 20
#define EQ_VALID_SHIFT 31
#define CEQE_TYPE_SHIFT 23
#define CEQE_TYPE_MASK 0x7
#define CEQE_TYPE(type) (((type) >> CEQE_TYPE_SHIFT) & \
CEQE_TYPE_MASK)
#define CEQE_DATA_MASK 0x3FFFFFF
#define CEQE_DATA(data) ((data) & CEQE_DATA_MASK)
#define EQ_MIN_PAGE_SIZE 0x1000U
#define aeq_to_aeqs(eq) \
container_of((eq) - (eq)->q_id, struct hifc_aeqs, aeq[0])
#define ceq_to_ceqs(eq) \
container_of((eq) - (eq)->q_id, struct hifc_ceqs, ceq[0])
/**
* aeq_interrupt - aeq interrupt handler
* @irq: irq number
* @data: the async event queue of the event
**/
static irqreturn_t aeq_interrupt(int irq, void *data)
{
struct hifc_eq *aeq = (struct hifc_eq *)data;
struct hifc_hwdev *hwdev = aeq->hwdev;
struct hifc_aeqs *aeqs = aeq_to_aeqs(aeq);
struct workqueue_struct *workq = aeqs->workq;
struct hifc_eq_work *aeq_work;
/* clear resend timer cnt register */
hifc_misx_intr_clear_resend_bit(hwdev, aeq->eq_irq.msix_entry_idx,
EQ_MSIX_RESEND_TIMER_CLEAR);
aeq_work = &aeq->aeq_work;
aeq_work->data = aeq;
queue_work(workq, &aeq_work->work);
return IRQ_HANDLED;
}
/**
* ceq_interrupt - ceq interrupt handler
* @irq: irq number
* @data: the completion event queue of the event
**/
static irqreturn_t ceq_interrupt(int irq, void *data)
{
struct hifc_eq *ceq = (struct hifc_eq *)data;
struct hifc_ceq_tasklet_data *ceq_tasklet_data;
ceq->hard_intr_jif = jiffies;
/* clear resend timer counters */
hifc_misx_intr_clear_resend_bit(ceq->hwdev, ceq->eq_irq.msix_entry_idx,
EQ_MSIX_RESEND_TIMER_CLEAR);
ceq_tasklet_data = &ceq->ceq_tasklet_data;
ceq_tasklet_data->data = data;
tasklet_schedule(&ceq->ceq_tasklet);
return IRQ_HANDLED;
}
static u8 eq_cons_idx_checksum_set(u32 val)
{
u8 checksum = 0;
u8 idx;
for (idx = 0; idx < 32; idx += 4)
checksum ^= ((val >> idx) & 0xF);
return checksum & 0xF;
}
/**
* hifc_aeq_register_hw_cb - register aeq callback for specific event
* @hwdev: pointer to hw device
* @event: event for the handler
* @hw_cb: callback function
* Return: 0 - success, negative - failure
**/
int hifc_aeq_register_hw_cb(void *hwdev, enum hifc_aeq_type event,
hifc_aeq_hwe_cb hwe_cb)
{
struct hifc_aeqs *aeqs;
if (!hwdev || !hwe_cb || event >= HIFC_MAX_AEQ_EVENTS)
return -EINVAL;
aeqs = ((struct hifc_hwdev *)hwdev)->aeqs;
aeqs->aeq_hwe_cb[event] = hwe_cb;
set_bit(HIFC_AEQ_HW_CB_REG, &aeqs->aeq_hw_cb_state[event]);
return 0;
}
/**
* hifc_aeq_unregister_hw_cb - unregister the aeq callback for specific event
* @hwdev: pointer to hw device
* @event: event for the handler
**/
void hifc_aeq_unregister_hw_cb(void *hwdev, enum hifc_aeq_type event)
{
struct hifc_aeqs *aeqs;
if (!hwdev || event >= HIFC_MAX_AEQ_EVENTS)
return;
aeqs = ((struct hifc_hwdev *)hwdev)->aeqs;
clear_bit(HIFC_AEQ_HW_CB_REG, &aeqs->aeq_hw_cb_state[event]);
while (test_bit(HIFC_AEQ_HW_CB_RUNNING, &aeqs->aeq_hw_cb_state[event]))
usleep_range(900, 1000);
aeqs->aeq_hwe_cb[event] = NULL;
}
/**
* hifc_aeq_register_sw_cb - register aeq callback for sw event
* @hwdev: pointer to hw device
* @event: soft event for the handler
* @sw_cb: callback function
* Return: 0 - success, negative - failure
**/
int hifc_aeq_register_swe_cb(void *hwdev, enum hifc_aeq_sw_type event,
hifc_aeq_swe_cb aeq_swe_cb)
{
struct hifc_aeqs *aeqs;
if (!hwdev || !aeq_swe_cb || event >= HIFC_MAX_AEQ_SW_EVENTS)
return -EINVAL;
aeqs = ((struct hifc_hwdev *)hwdev)->aeqs;
aeqs->aeq_swe_cb[event] = aeq_swe_cb;
set_bit(HIFC_AEQ_SW_CB_REG, &aeqs->aeq_sw_cb_state[event]);
return 0;
}
/**
* hifc_aeq_unregister_sw_cb - unregister the aeq callback for sw event
* @hwdev: pointer to hw device
* @event: soft event for the handler
**/
void hifc_aeq_unregister_swe_cb(void *hwdev, enum hifc_aeq_sw_type event)
{
struct hifc_aeqs *aeqs;
if (!hwdev || event >= HIFC_MAX_AEQ_SW_EVENTS)
return;
aeqs = ((struct hifc_hwdev *)hwdev)->aeqs;
clear_bit(HIFC_AEQ_SW_CB_REG, &aeqs->aeq_sw_cb_state[event]);
while (test_bit(HIFC_AEQ_SW_CB_RUNNING, &aeqs->aeq_sw_cb_state[event]))
usleep_range(900, 1000);
aeqs->aeq_swe_cb[event] = NULL;
}
/**
* hifc_ceq_register_sw_cb - register ceq callback for specific event
* @hwdev: pointer to hw device
* @event: event for the handler
* @callback: callback function
* Return: 0 - success, negative - failure
**/
int hifc_ceq_register_cb(void *hwdev, enum hifc_ceq_event event,
hifc_ceq_event_cb callback)
{
struct hifc_ceqs *ceqs;
if (!hwdev || event >= HIFC_MAX_CEQ_EVENTS)
return -EINVAL;
ceqs = ((struct hifc_hwdev *)hwdev)->ceqs;
ceqs->ceq_cb[event] = callback;
set_bit(HIFC_CEQ_CB_REG, &ceqs->ceq_cb_state[event]);
return 0;
}
/**
* hifc_ceq_unregister_cb - unregister ceq callback for specific event
* @hwdev: pointer to hw device
* @event: event for the handler
**/
void hifc_ceq_unregister_cb(void *hwdev, enum hifc_ceq_event event)
{
struct hifc_ceqs *ceqs;
if (!hwdev || event >= HIFC_MAX_CEQ_EVENTS)
return;
ceqs = ((struct hifc_hwdev *)hwdev)->ceqs;
clear_bit(HIFC_CEQ_CB_REG, &ceqs->ceq_cb_state[event]);
while (test_bit(HIFC_CEQ_CB_RUNNING, &ceqs->ceq_cb_state[event]))
usleep_range(900, 1000);
ceqs->ceq_cb[event] = NULL;
}
/**
* set_eq_cons_idx - write the cons idx to the hw
* @eq: The event queue to update the cons idx for
* @arm_state: arm state value
**/
static void set_eq_cons_idx(struct hifc_eq *eq, u32 arm_state)
{
u32 eq_wrap_ci, val;
u32 addr = EQ_CONS_IDX_REG_ADDR(eq);
eq_wrap_ci = EQ_CONS_IDX(eq);
/* other filed is resverd, set to 0 */
val = EQ_CONS_IDX_SET(eq_wrap_ci, CONS_IDX) |
EQ_CONS_IDX_SET(arm_state, INT_ARMED);
val |= EQ_CONS_IDX_SET(eq_cons_idx_checksum_set(val), XOR_CHKSUM);
hifc_hwif_write_reg(eq->hwdev->hwif, addr, val);
}
/**
* ceq_event_handler - handle for the ceq events
* @eqs: eqs part of the chip
* @ceqe: ceq element of the event
**/
static void ceq_event_handler(struct hifc_ceqs *ceqs, u32 ceqe)
{
struct hifc_hwdev *hwdev = ceqs->hwdev;
enum hifc_ceq_event event = CEQE_TYPE(ceqe);
u32 ceqe_data = CEQE_DATA(ceqe);
if (event >= HIFC_MAX_CEQ_EVENTS) {
sdk_err(hwdev->dev_hdl, "Ceq unknown event:%d, ceqe date: 0x%x\n",
event, ceqe_data);
return;
}
set_bit(HIFC_CEQ_CB_RUNNING, &ceqs->ceq_cb_state[event]);
if (ceqs->ceq_cb[event] &&
test_bit(HIFC_CEQ_CB_REG, &ceqs->ceq_cb_state[event]))
ceqs->ceq_cb[event](hwdev, ceqe_data);
clear_bit(HIFC_CEQ_CB_RUNNING, &ceqs->ceq_cb_state[event]);
}
static void aeq_swe_handler(struct hifc_aeqs *aeqs,
struct hifc_aeq_elem *aeqe_pos,
enum hifc_aeq_type event)
{
enum hifc_ucode_event_type ucode_event;
enum hifc_aeq_sw_type sw_event;
u64 aeqe_data;
u8 lev;
ucode_event = event;
/* SW event uses only the first 8B */
sw_event = ucode_event >= HIFC_NIC_FATAL_ERROR_MAX ?
HIFC_STATEFULL_EVENT :
HIFC_STATELESS_EVENT;
aeqe_data = be64_to_cpu((*(u64 *)aeqe_pos->aeqe_data));
set_bit(HIFC_AEQ_SW_CB_RUNNING,
&aeqs->aeq_sw_cb_state[sw_event]);
if (aeqs->aeq_swe_cb[sw_event] &&
test_bit(HIFC_AEQ_SW_CB_REG,
&aeqs->aeq_sw_cb_state[sw_event])) {
lev = aeqs->aeq_swe_cb[sw_event](aeqs->hwdev,
ucode_event,
aeqe_data);
hifc_swe_fault_handler(aeqs->hwdev, lev,
ucode_event, aeqe_data);
}
clear_bit(HIFC_AEQ_SW_CB_RUNNING,
&aeqs->aeq_sw_cb_state[sw_event]);
}
static void aeq_hwe_handler(struct hifc_aeqs *aeqs,
struct hifc_aeq_elem *aeqe_pos,
enum hifc_aeq_type event, u32 aeqe_desc)
{
u8 size;
if (event < HIFC_MAX_AEQ_EVENTS) {
size = EQ_ELEM_DESC_GET(aeqe_desc, SIZE);
set_bit(HIFC_AEQ_HW_CB_RUNNING,
&aeqs->aeq_hw_cb_state[event]);
if (aeqs->aeq_hwe_cb[event] &&
test_bit(HIFC_AEQ_HW_CB_REG,
&aeqs->aeq_hw_cb_state[event]))
aeqs->aeq_hwe_cb[event](aeqs->hwdev,
aeqe_pos->aeqe_data, size);
clear_bit(HIFC_AEQ_HW_CB_RUNNING,
&aeqs->aeq_hw_cb_state[event]);
return;
}
sdk_warn(aeqs->hwdev->dev_hdl, "Unknown aeq hw event %d\n", event);
}
/**
* aeq_irq_handler - handler for the aeq event
* @eq: the async event queue of the event
* Return: true - success, false - failure
**/
static bool aeq_irq_handler(struct hifc_eq *eq)
{
struct hifc_aeqs *aeqs = aeq_to_aeqs(eq);
struct hifc_aeq_elem *aeqe_pos;
enum hifc_aeq_type event;
u32 aeqe_desc;
u32 i, eqe_cnt = 0;
for (i = 0; i < HIFC_TASK_PROCESS_EQE_LIMIT; i++) {
aeqe_pos = GET_CURR_AEQ_ELEM(eq);
/* Data in HW is in Big endian Format */
aeqe_desc = be32_to_cpu(aeqe_pos->desc);
/* HW updates wrapped bit, when it adds eq element event */
if (EQ_ELEM_DESC_GET(aeqe_desc, WRAPPED) == eq->wrapped)
return false;
/* This memory barrier is needed to keep us from reading
* any other fields out of the cmdq wqe until we have
* verified the command has been processed and
* written back.
*/
dma_rmb();
event = EQ_ELEM_DESC_GET(aeqe_desc, TYPE);
if (EQ_ELEM_DESC_GET(aeqe_desc, SRC))
aeq_swe_handler(aeqs, aeqe_pos, event);
else
aeq_hwe_handler(aeqs, aeqe_pos, event, aeqe_desc);
eq->cons_idx++;
if (eq->cons_idx == eq->eq_len) {
eq->cons_idx = 0;
eq->wrapped = !eq->wrapped;
}
if (++eqe_cnt >= HIFC_EQ_UPDATE_CI_STEP) {
eqe_cnt = 0;
set_eq_cons_idx(eq, HIFC_EQ_NOT_ARMED);
}
}
return true;
}
/**
* ceq_irq_handler - handler for the ceq event
* @eq: the completion event queue of the event
* Return: true - success, false - failure
**/
static bool ceq_irq_handler(struct hifc_eq *eq)
{
struct hifc_ceqs *ceqs = ceq_to_ceqs(eq);
u32 ceqe, eqe_cnt = 0;
u32 i;
for (i = 0; i < g_num_ceqe_in_tasklet; i++) {
ceqe = *(GET_CURR_CEQ_ELEM(eq));
ceqe = be32_to_cpu(ceqe);
/* HW updates wrapped bit, when it adds eq element event */
if (EQ_ELEM_DESC_GET(ceqe, WRAPPED) == eq->wrapped)
return false;
ceq_event_handler(ceqs, ceqe);
eq->cons_idx++;
if (eq->cons_idx == eq->eq_len) {
eq->cons_idx = 0;
eq->wrapped = !eq->wrapped;
}
if (++eqe_cnt >= HIFC_EQ_UPDATE_CI_STEP) {
eqe_cnt = 0;
set_eq_cons_idx(eq, HIFC_EQ_NOT_ARMED);
}
}
return true;
}
/**
* eq_irq_handler - handler for the eq event
* @data: the event queue of the event
* Return: true - success, false - failure
**/
static bool eq_irq_handler(void *data)
{
struct hifc_eq *eq = (struct hifc_eq *)data;
bool uncompleted;
if (eq->type == HIFC_AEQ)
uncompleted = aeq_irq_handler(eq);
else
uncompleted = ceq_irq_handler(eq);
set_eq_cons_idx(eq, uncompleted ? HIFC_EQ_NOT_ARMED : HIFC_EQ_ARMED);
return uncompleted;
}
static void reschedule_eq_handler(struct hifc_eq *eq)
{
if (eq->type == HIFC_AEQ) {
struct hifc_aeqs *aeqs = aeq_to_aeqs(eq);
struct workqueue_struct *workq = aeqs->workq;
struct hifc_eq_work *aeq_work = &eq->aeq_work;
queue_work(workq, &aeq_work->work);
} else {
tasklet_schedule(&eq->ceq_tasklet);
}
}
/**
* ceq_tasklet - ceq tasklet for the event
* @ceq_data: data that will be used by the tasklet(ceq)
**/
static void ceq_tasklet(ulong ceq_data)
{
struct hifc_ceq_tasklet_data *ceq_tasklet_data =
(struct hifc_ceq_tasklet_data *)ceq_data;
struct hifc_eq *eq = (struct hifc_eq *)ceq_tasklet_data->data;
eq->soft_intr_jif = jiffies;
if (eq_irq_handler(ceq_tasklet_data->data))
reschedule_eq_handler(ceq_tasklet_data->data);
}
/**
* eq_irq_work - eq work for the event
* @work: the work that is associated with the eq
**/
static void eq_irq_work(struct work_struct *work)
{
struct hifc_eq_work *aeq_work =
container_of(work, struct hifc_eq_work, work);
if (eq_irq_handler(aeq_work->data))
reschedule_eq_handler(aeq_work->data);
}
struct hifc_ceq_ctrl_reg {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_id;
u16 q_id;
u32 ctrl0;
u32 ctrl1;
};
static int set_ceq_ctrl_reg(struct hifc_hwdev *hwdev, u16 q_id,
u32 ctrl0, u32 ctrl1)
{
struct hifc_ceq_ctrl_reg ceq_ctrl = {0};
u16 in_size = sizeof(ceq_ctrl);
u16 out_size = sizeof(ceq_ctrl);
int err;
err = hifc_global_func_id_get(hwdev, &ceq_ctrl.func_id);
if (err)
return err;
ceq_ctrl.q_id = q_id;
ceq_ctrl.ctrl0 = ctrl0;
ceq_ctrl.ctrl1 = ctrl1;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_CEQ_CTRL_REG_WR_BY_UP,
&ceq_ctrl, in_size,
&ceq_ctrl, &out_size, 0);
if (err || !out_size || ceq_ctrl.status) {
sdk_err(hwdev->dev_hdl, "Failed to set ceq %d ctrl reg, err: %d status: 0x%x, out_size: 0x%x\n",
q_id, err, ceq_ctrl.status, out_size);
return -EFAULT;
}
return 0;
}
/**
* set_eq_ctrls - setting eq's ctrls registers
* @eq: the event queue for setting
* Return: 0 - success, negative - failure
**/
static int set_eq_ctrls(struct hifc_eq *eq)
{
enum hifc_eq_type type = eq->type;
struct hifc_hwif *hwif = eq->hwdev->hwif;
struct irq_info *eq_irq = &eq->eq_irq;
u32 addr, val, ctrl0, ctrl1, page_size_val, elem_size;
u32 pci_intf_idx = HIFC_PCI_INTF_IDX(hwif);
int err;
if (type == HIFC_AEQ) {
/* set ctrl0 */
addr = HIFC_CSR_AEQ_CTRL_0_ADDR(eq->q_id);
val = hifc_hwif_read_reg(hwif, addr);
val = AEQ_CTRL_0_CLEAR(val, INTR_IDX) &
AEQ_CTRL_0_CLEAR(val, DMA_ATTR) &
AEQ_CTRL_0_CLEAR(val, PCI_INTF_IDX) &
AEQ_CTRL_0_CLEAR(val, INTR_MODE);
ctrl0 = AEQ_CTRL_0_SET(eq_irq->msix_entry_idx, INTR_IDX) |
AEQ_CTRL_0_SET(AEQ_DMA_ATTR_DEFAULT, DMA_ATTR) |
AEQ_CTRL_0_SET(pci_intf_idx, PCI_INTF_IDX) |
AEQ_CTRL_0_SET(HIFC_INTR_MODE_ARMED, INTR_MODE);
val |= ctrl0;
hifc_hwif_write_reg(hwif, addr, val);
/* set ctrl1 */
addr = HIFC_CSR_AEQ_CTRL_1_ADDR(eq->q_id);
page_size_val = EQ_SET_HW_PAGE_SIZE_VAL(eq);
elem_size = EQ_SET_HW_ELEM_SIZE_VAL(eq);
ctrl1 = AEQ_CTRL_1_SET(eq->eq_len, LEN) |
AEQ_CTRL_1_SET(elem_size, ELEM_SIZE) |
AEQ_CTRL_1_SET(page_size_val, PAGE_SIZE);
hifc_hwif_write_reg(hwif, addr, ctrl1);
} else {
ctrl0 = CEQ_CTRL_0_SET(eq_irq->msix_entry_idx, INTR_IDX) |
CEQ_CTRL_0_SET(CEQ_DMA_ATTR_DEFAULT, DMA_ATTR) |
CEQ_CTRL_0_SET(CEQ_LMT_KICK_DEFAULT, LIMIT_KICK) |
CEQ_CTRL_0_SET(pci_intf_idx, PCI_INTF_IDX) |
CEQ_CTRL_0_SET(HIFC_INTR_MODE_ARMED, INTR_MODE);
page_size_val = EQ_SET_HW_PAGE_SIZE_VAL(eq);
ctrl1 = CEQ_CTRL_1_SET(eq->eq_len, LEN) |
CEQ_CTRL_1_SET(page_size_val, PAGE_SIZE);
/* set ceq ctrl reg through mgmt cpu */
err = set_ceq_ctrl_reg(eq->hwdev, eq->q_id, ctrl0, ctrl1);
if (err)
return err;
}
return 0;
}
/**
* ceq_elements_init - Initialize all the elements in the ceq
* @eq: the event queue
* @init_val: value to init with it the elements
**/
static void ceq_elements_init(struct hifc_eq *eq, u32 init_val)
{
u32 i;
u32 *ceqe;
for (i = 0; i < eq->eq_len; i++) {
ceqe = GET_CEQ_ELEM(eq, i);
*(ceqe) = cpu_to_be32(init_val);
}
wmb(); /* Write the init values */
}
/**
* aeq_elements_init - initialize all the elements in the aeq
* @eq: the event queue
* @init_val: value to init with it the elements
**/
static void aeq_elements_init(struct hifc_eq *eq, u32 init_val)
{
struct hifc_aeq_elem *aeqe;
u32 i;
for (i = 0; i < eq->eq_len; i++) {
aeqe = GET_AEQ_ELEM(eq, i);
aeqe->desc = cpu_to_be32(init_val);
}
wmb(); /* Write the init values */
}
static void free_eq_pages_desc(struct hifc_eq *eq)
{
kfree(eq->virt_addr_for_free);
kfree(eq->dma_addr_for_free);
kfree(eq->virt_addr);
kfree(eq->dma_addr);
}
static int alloc_eq_pages_desc(struct hifc_eq *eq)
{
u64 dma_addr_size, virt_addr_size;
int err;
dma_addr_size = eq->num_pages * sizeof(*eq->dma_addr);
virt_addr_size = eq->num_pages * sizeof(*eq->virt_addr);
eq->dma_addr = kzalloc(dma_addr_size, GFP_KERNEL);
if (!eq->dma_addr)
return -ENOMEM;
eq->virt_addr = kzalloc(virt_addr_size, GFP_KERNEL);
if (!eq->virt_addr) {
err = -ENOMEM;
goto virt_addr_alloc_err;
}
eq->dma_addr_for_free = kzalloc(dma_addr_size, GFP_KERNEL);
if (!eq->dma_addr_for_free) {
err = -ENOMEM;
goto dma_addr_free_alloc_err;
}
eq->virt_addr_for_free = kzalloc(virt_addr_size, GFP_KERNEL);
if (!eq->virt_addr_for_free) {
err = -ENOMEM;
goto virt_addr_free_alloc_err;
}
return 0;
virt_addr_free_alloc_err:
kfree(eq->dma_addr_for_free);
dma_addr_free_alloc_err:
kfree(eq->virt_addr);
virt_addr_alloc_err:
kfree(eq->dma_addr);
return err;
}
#define IS_ALIGN(x, a) (((x) & ((a) - 1)) == 0)
static int init_eq_elements(struct hifc_eq *eq)
{
u32 init_val;
eq->num_elem_in_pg = GET_EQ_NUM_ELEMS(eq, eq->page_size);
if (!IS_ALIGN(eq->num_elem_in_pg, eq->num_elem_in_pg)) {
sdk_err(eq->hwdev->dev_hdl, "Number element in eq page != power of 2\n");
return -EINVAL;
}
init_val = EQ_WRAPPED(eq);
if (eq->type == HIFC_AEQ)
aeq_elements_init(eq, init_val);
else
ceq_elements_init(eq, init_val);
return 0;
}
/**
* alloc_eq_pages - allocate the pages for the queue
* @eq: the event queue
* Return: 0 - success, negative - failure
**/
static int alloc_eq_pages(struct hifc_eq *eq)
{
struct hifc_hwif *hwif = eq->hwdev->hwif;
u16 pg_num, i;
u32 reg;
int err;
u8 flag = 0;
err = alloc_eq_pages_desc(eq);
if (err) {
sdk_err(eq->hwdev->dev_hdl, "Failed to alloc eq pages description\n");
return err;
}
for (pg_num = 0; pg_num < eq->num_pages; pg_num++) {
eq->virt_addr_for_free[pg_num] = dma_zalloc_coherent
(eq->hwdev->dev_hdl, eq->page_size,
&eq->dma_addr_for_free[pg_num], GFP_KERNEL);
if (!eq->virt_addr_for_free[pg_num]) {
err = -ENOMEM;
goto dma_alloc_err;
}
eq->dma_addr[pg_num] = eq->dma_addr_for_free[pg_num];
eq->virt_addr[pg_num] = eq->virt_addr_for_free[pg_num];
if (!IS_ALIGN(eq->dma_addr_for_free[pg_num],
eq->page_size)) {
sdk_info(eq->hwdev->dev_hdl,
"Address is not aligned to %u-bytes as hardware required\n",
eq->page_size);
sdk_info(eq->hwdev->dev_hdl, "Change eq's page size %u\n",
((eq->page_size) >> 1));
eq->dma_addr[pg_num] = ALIGN
(eq->dma_addr_for_free[pg_num],
(u64)((eq->page_size) >> 1));
eq->virt_addr[pg_num] = eq->virt_addr_for_free[pg_num] +
((u64)eq->dma_addr[pg_num]
- (u64)eq->dma_addr_for_free[pg_num]);
flag = 1;
}
reg = HIFC_EQ_HI_PHYS_ADDR_REG(eq->type, eq->q_id, pg_num);
hifc_hwif_write_reg(hwif, reg,
upper_32_bits(eq->dma_addr[pg_num]));
reg = HIFC_EQ_LO_PHYS_ADDR_REG(eq->type, eq->q_id, pg_num);
hifc_hwif_write_reg(hwif, reg,
lower_32_bits(eq->dma_addr[pg_num]));
}
if (flag) {
eq->page_size = eq->page_size >> 1;
eq->eq_len = eq->eq_len >> 1;
}
err = init_eq_elements(eq);
if (err) {
sdk_err(eq->hwdev->dev_hdl, "Failed to init eq elements\n");
goto dma_alloc_err;
}
return 0;
dma_alloc_err:
for (i = 0; i < pg_num; i++)
dma_free_coherent(eq->hwdev->dev_hdl, eq->page_size,
eq->virt_addr_for_free[i],
eq->dma_addr_for_free[i]);
free_eq_pages_desc(eq);
return err;
}
/**
* free_eq_pages - free the pages of the queue
* @eq: the event queue
**/
static void free_eq_pages(struct hifc_eq *eq)
{
struct hifc_hwdev *hwdev = eq->hwdev;
u16 pg_num;
for (pg_num = 0; pg_num < eq->num_pages; pg_num++)
dma_free_coherent(hwdev->dev_hdl, eq->orig_page_size,
eq->virt_addr_for_free[pg_num],
eq->dma_addr_for_free[pg_num]);
free_eq_pages_desc(eq);
}
static inline u32 get_page_size(struct hifc_eq *eq)
{
u32 total_size;
u16 count, n = 0;
total_size = ALIGN((eq->eq_len * eq->elem_size), EQ_MIN_PAGE_SIZE);
if (total_size <= (HIFC_EQ_MAX_PAGES * EQ_MIN_PAGE_SIZE))
return EQ_MIN_PAGE_SIZE;
count = (u16)(ALIGN((total_size / HIFC_EQ_MAX_PAGES),
EQ_MIN_PAGE_SIZE) / EQ_MIN_PAGE_SIZE);
if (!(count & (count - 1)))
return EQ_MIN_PAGE_SIZE * count;
while (count) {
count >>= 1;
n++;
}
return EQ_MIN_PAGE_SIZE << n;
}
static int request_eq_irq(struct hifc_eq *eq, enum hifc_eq_type type,
struct irq_info *entry)
{
int err = 0;
if (type == HIFC_AEQ) {
struct hifc_eq_work *aeq_work = &eq->aeq_work;
INIT_WORK(&aeq_work->work, eq_irq_work);
} else {
tasklet_init(&eq->ceq_tasklet, ceq_tasklet,
(ulong)(&eq->ceq_tasklet_data));
}
if (type == HIFC_AEQ) {
snprintf(eq->irq_name, sizeof(eq->irq_name),
"hifc_aeq%d@pci:%s", eq->q_id,
pci_name(eq->hwdev->pcidev_hdl));
err = request_irq(entry->irq_id, aeq_interrupt, 0UL,
eq->irq_name, eq);
} else {
snprintf(eq->irq_name, sizeof(eq->irq_name),
"hifc_ceq%d@pci:%s", eq->q_id,
pci_name(eq->hwdev->pcidev_hdl));
err = request_irq(entry->irq_id, ceq_interrupt, 0UL,
eq->irq_name, eq);
}
return err;
}
/**
* init_eq - initialize eq
* @eq: the event queue
* @hwdev: the pointer to hw device
* @q_id: Queue id number
* @q_len: the number of EQ elements
* @type: the type of the event queue, ceq or aeq
* @entry: msix entry associated with the event queue
* Return: 0 - Success, Negative - failure
**/
static int init_eq(struct hifc_eq *eq, struct hifc_hwdev *hwdev, u16 q_id,
u32 q_len, enum hifc_eq_type type, struct irq_info *entry)
{
int err = 0;
eq->hwdev = hwdev;
eq->q_id = q_id;
eq->type = type;
eq->eq_len = q_len;
/* clear eq_len to force eqe drop in hardware */
if (eq->type == HIFC_AEQ)
hifc_hwif_write_reg(eq->hwdev->hwif,
HIFC_CSR_AEQ_CTRL_1_ADDR(eq->q_id), 0);
else
set_ceq_ctrl_reg(eq->hwdev, eq->q_id, 0, 0);
eq->cons_idx = 0;
eq->wrapped = 0;
eq->elem_size = (type == HIFC_AEQ) ?
HIFC_AEQE_SIZE : HIFC_CEQE_SIZE;
eq->page_size = get_page_size(eq);
eq->orig_page_size = eq->page_size;
eq->num_pages = GET_EQ_NUM_PAGES(eq, eq->page_size);
if (eq->num_pages > HIFC_EQ_MAX_PAGES) {
sdk_err(hwdev->dev_hdl, "Number pages:%d too many pages for eq\n",
eq->num_pages);
return -EINVAL;
}
err = alloc_eq_pages(eq);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to allocate pages for eq\n");
return err;
}
eq->eq_irq.msix_entry_idx = entry->msix_entry_idx;
eq->eq_irq.irq_id = entry->irq_id;
err = set_eq_ctrls(eq);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to allocate pages for eq\n");
goto init_eq_ctrls_err;
}
hifc_hwif_write_reg(eq->hwdev->hwif, EQ_PROD_IDX_REG_ADDR(eq), 0);
set_eq_cons_idx(eq, HIFC_EQ_ARMED);
err = request_eq_irq(eq, type, entry);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to request irq for the eq, err: %d\n",
err);
goto req_irq_err;
}
hifc_set_msix_state(hwdev, entry->msix_entry_idx, HIFC_MSIX_ENABLE);
return 0;
init_eq_ctrls_err:
req_irq_err:
free_eq_pages(eq);
return err;
}
/**
* remove_eq - remove eq
* @eq: the event queue
**/
static void remove_eq(struct hifc_eq *eq)
{
struct irq_info *entry = &eq->eq_irq;
hifc_set_msix_state(eq->hwdev, entry->msix_entry_idx,
HIFC_MSIX_DISABLE);
synchronize_irq(entry->irq_id);
free_irq(entry->irq_id, eq);
if (eq->type == HIFC_AEQ) {
struct hifc_eq_work *aeq_work = &eq->aeq_work;
cancel_work_sync(&aeq_work->work);
/* clear eq_len to avoid hw access host memory */
hifc_hwif_write_reg(eq->hwdev->hwif,
HIFC_CSR_AEQ_CTRL_1_ADDR(eq->q_id), 0);
} else {
tasklet_kill(&eq->ceq_tasklet);
set_ceq_ctrl_reg(eq->hwdev, eq->q_id, 0, 0);
}
/* update cons_idx to avoid invalid interrupt */
eq->cons_idx = hifc_hwif_read_reg(eq->hwdev->hwif,
EQ_PROD_IDX_REG_ADDR(eq));
set_eq_cons_idx(eq, HIFC_EQ_NOT_ARMED);
free_eq_pages(eq);
}
/**
* hifc_aeqs_init - init all the aeqs
* @hwdev: the pointer to hw device
* @num_ceqs: number of AEQs
* @msix_entries: msix entries associated with the event queues
* Return: 0 - Success, Negative - failure
**/
int hifc_aeqs_init(struct hifc_hwdev *hwdev, u16 num_aeqs,
struct irq_info *msix_entries)
{
struct hifc_aeqs *aeqs;
int err;
u16 i, q_id;
aeqs = kzalloc(sizeof(*aeqs), GFP_KERNEL);
if (!aeqs)
return -ENOMEM;
hwdev->aeqs = aeqs;
aeqs->hwdev = hwdev;
aeqs->num_aeqs = num_aeqs;
aeqs->workq = create_singlethread_workqueue(HIFC_EQS_WQ_NAME);
if (!aeqs->workq) {
sdk_err(hwdev->dev_hdl, "Failed to initialize aeq workqueue\n");
err = -ENOMEM;
goto create_work_err;
}
if (g_aeq_len < HIFC_MIN_AEQ_LEN || g_aeq_len > HIFC_MAX_AEQ_LEN) {
sdk_warn(hwdev->dev_hdl, "Module Parameter g_aeq_len value %d out of range, resetting to %d\n",
g_aeq_len, HIFC_DEFAULT_AEQ_LEN);
g_aeq_len = HIFC_DEFAULT_AEQ_LEN;
}
for (q_id = 0; q_id < num_aeqs; q_id++) {
err = init_eq(&aeqs->aeq[q_id], hwdev, q_id, g_aeq_len,
HIFC_AEQ, &msix_entries[q_id]);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init aeq %d\n",
q_id);
goto init_aeq_err;
}
}
return 0;
init_aeq_err:
for (i = 0; i < q_id; i++)
remove_eq(&aeqs->aeq[i]);
destroy_workqueue(aeqs->workq);
create_work_err:
kfree(aeqs);
return err;
}
/**
* hifc_aeqs_free - free all the aeqs
* @hwdev: the pointer to hw device
**/
void hifc_aeqs_free(struct hifc_hwdev *hwdev)
{
struct hifc_aeqs *aeqs = hwdev->aeqs;
enum hifc_aeq_type aeq_event = HIFC_HW_INTER_INT;
enum hifc_aeq_sw_type sw_aeq_event = HIFC_STATELESS_EVENT;
u16 q_id;
for (q_id = 0; q_id < aeqs->num_aeqs; q_id++)
remove_eq(&aeqs->aeq[q_id]);
for (; sw_aeq_event < HIFC_MAX_AEQ_SW_EVENTS; sw_aeq_event++)
hifc_aeq_unregister_swe_cb(hwdev, sw_aeq_event);
for (; aeq_event < HIFC_MAX_AEQ_EVENTS; aeq_event++)
hifc_aeq_unregister_hw_cb(hwdev, aeq_event);
destroy_workqueue(aeqs->workq);
kfree(aeqs);
}
/**
* hifc_ceqs_init - init all the ceqs
* @hwdev: the pointer to hw device
* @num_ceqs: number of CEQs
* @msix_entries: msix entries associated with the event queues
* Return: 0 - Success, Negative - failure
**/
int hifc_ceqs_init(struct hifc_hwdev *hwdev, u16 num_ceqs,
struct irq_info *msix_entries)
{
struct hifc_ceqs *ceqs;
int err;
u16 i, q_id;
ceqs = kzalloc(sizeof(*ceqs), GFP_KERNEL);
if (!ceqs)
return -ENOMEM;
hwdev->ceqs = ceqs;
ceqs->hwdev = hwdev;
ceqs->num_ceqs = num_ceqs;
if (g_ceq_len < HIFC_MIN_CEQ_LEN || g_ceq_len > HIFC_MAX_CEQ_LEN) {
sdk_warn(hwdev->dev_hdl, "Module Parameter g_ceq_len value %d out of range, resetting to %d\n",
g_ceq_len, HIFC_DEFAULT_CEQ_LEN);
g_ceq_len = HIFC_DEFAULT_CEQ_LEN;
}
if (!g_num_ceqe_in_tasklet) {
sdk_warn(hwdev->dev_hdl, "Module Parameter g_num_ceqe_in_tasklet can not be zero, resetting to %d\n",
HIFC_TASK_PROCESS_EQE_LIMIT);
g_num_ceqe_in_tasklet = HIFC_TASK_PROCESS_EQE_LIMIT;
}
for (q_id = 0; q_id < num_ceqs; q_id++) {
err = init_eq(&ceqs->ceq[q_id], hwdev, q_id, g_ceq_len,
HIFC_CEQ, &msix_entries[q_id]);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init ceq %d\n",
q_id);
goto init_ceq_err;
}
}
return 0;
init_ceq_err:
for (i = 0; i < q_id; i++)
remove_eq(&ceqs->ceq[i]);
kfree(ceqs);
return err;
}
/**
* hifc_ceqs_free - free all the ceqs
* @hwdev: the pointer to hw device
**/
void hifc_ceqs_free(struct hifc_hwdev *hwdev)
{
struct hifc_ceqs *ceqs = hwdev->ceqs;
enum hifc_ceq_event ceq_event = HIFC_CMDQ;
u16 q_id;
for (q_id = 0; q_id < ceqs->num_ceqs; q_id++)
remove_eq(&ceqs->ceq[q_id]);
for (; ceq_event < HIFC_MAX_CEQ_EVENTS; ceq_event++)
hifc_ceq_unregister_cb(hwdev, ceq_event);
kfree(ceqs);
}
void hifc_get_ceq_irqs(struct hifc_hwdev *hwdev, struct irq_info *irqs,
u16 *num_irqs)
{
struct hifc_ceqs *ceqs = hwdev->ceqs;
u16 q_id;
for (q_id = 0; q_id < ceqs->num_ceqs; q_id++) {
irqs[q_id].irq_id = ceqs->ceq[q_id].eq_irq.irq_id;
irqs[q_id].msix_entry_idx =
ceqs->ceq[q_id].eq_irq.msix_entry_idx;
}
*num_irqs = ceqs->num_ceqs;
}
void hifc_get_aeq_irqs(struct hifc_hwdev *hwdev, struct irq_info *irqs,
u16 *num_irqs)
{
struct hifc_aeqs *aeqs = hwdev->aeqs;
u16 q_id;
for (q_id = 0; q_id < aeqs->num_aeqs; q_id++) {
irqs[q_id].irq_id = aeqs->aeq[q_id].eq_irq.irq_id;
irqs[q_id].msix_entry_idx =
aeqs->aeq[q_id].eq_irq.msix_entry_idx;
}
*num_irqs = aeqs->num_aeqs;
}
void hifc_dump_aeq_info(struct hifc_hwdev *hwdev)
{
struct hifc_aeq_elem *aeqe_pos;
struct hifc_eq *eq;
u32 addr, ci, pi;
int q_id;
for (q_id = 0; q_id < hwdev->aeqs->num_aeqs; q_id++) {
eq = &hwdev->aeqs->aeq[q_id];
addr = EQ_CONS_IDX_REG_ADDR(eq);
ci = hifc_hwif_read_reg(hwdev->hwif, addr);
addr = EQ_PROD_IDX_REG_ADDR(eq);
pi = hifc_hwif_read_reg(hwdev->hwif, addr);
aeqe_pos = GET_CURR_AEQ_ELEM(eq);
sdk_err(hwdev->dev_hdl, "Aeq id: %d, ci: 0x%08x, pi: 0x%x, work_state: 0x%x, wrap: %d, desc: 0x%x\n",
q_id, ci, pi, work_busy(&eq->aeq_work.work),
eq->wrapped, be32_to_cpu(aeqe_pos->desc));
}
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
*/
#ifndef HIFC_EQS_H
#define HIFC_EQS_H
#define HIFC_MAX_AEQS 3
#define HIFC_MAX_CEQS 32
#define HIFC_EQ_MAX_PAGES 8
#define HIFC_AEQE_SIZE 64
#define HIFC_CEQE_SIZE 4
#define HIFC_AEQE_DESC_SIZE 4
#define HIFC_AEQE_DATA_SIZE \
(HIFC_AEQE_SIZE - HIFC_AEQE_DESC_SIZE)
#define HIFC_DEFAULT_AEQ_LEN 4096
#define HIFC_DEFAULT_CEQ_LEN 8192
#define HIFC_MIN_AEQ_LEN 64
#define HIFC_MAX_AEQ_LEN (512 * 1024)
#define HIFC_MIN_CEQ_LEN 64
#define HIFC_MAX_CEQ_LEN (1024 * 1024)
#define HIFC_CEQ_ID_CMDQ 0
#define EQ_IRQ_NAME_LEN 64
/* EQ registers */
#define HIFC_AEQ_MTT_OFF_BASE_ADDR 0x200
#define HIFC_CEQ_MTT_OFF_BASE_ADDR 0x400
#define HIFC_EQ_MTT_OFF_STRIDE 0x40
#define HIFC_CSR_AEQ_MTT_OFF(id) \
(HIFC_AEQ_MTT_OFF_BASE_ADDR + (id) * HIFC_EQ_MTT_OFF_STRIDE)
#define HIFC_CSR_CEQ_MTT_OFF(id) \
(HIFC_CEQ_MTT_OFF_BASE_ADDR + (id) * HIFC_EQ_MTT_OFF_STRIDE)
#define HIFC_CSR_EQ_PAGE_OFF_STRIDE 8
#define HIFC_AEQ_HI_PHYS_ADDR_REG(q_id, pg_num) \
(HIFC_CSR_AEQ_MTT_OFF(q_id) + \
(pg_num) * HIFC_CSR_EQ_PAGE_OFF_STRIDE)
#define HIFC_AEQ_LO_PHYS_ADDR_REG(q_id, pg_num) \
(HIFC_CSR_AEQ_MTT_OFF(q_id) + \
(pg_num) * HIFC_CSR_EQ_PAGE_OFF_STRIDE + 4)
#define HIFC_CEQ_HI_PHYS_ADDR_REG(q_id, pg_num) \
(HIFC_CSR_CEQ_MTT_OFF(q_id) + \
(pg_num) * HIFC_CSR_EQ_PAGE_OFF_STRIDE)
#define HIFC_CEQ_LO_PHYS_ADDR_REG(q_id, pg_num) \
(HIFC_CSR_CEQ_MTT_OFF(q_id) + \
(pg_num) * HIFC_CSR_EQ_PAGE_OFF_STRIDE + 4)
#define HIFC_EQ_HI_PHYS_ADDR_REG(type, q_id, pg_num) \
((u32)((type == HIFC_AEQ) ? \
HIFC_AEQ_HI_PHYS_ADDR_REG(q_id, pg_num) : \
HIFC_CEQ_HI_PHYS_ADDR_REG(q_id, pg_num)))
#define HIFC_EQ_LO_PHYS_ADDR_REG(type, q_id, pg_num) \
((u32)((type == HIFC_AEQ) ? \
HIFC_AEQ_LO_PHYS_ADDR_REG(q_id, pg_num) : \
HIFC_CEQ_LO_PHYS_ADDR_REG(q_id, pg_num)))
#define HIFC_AEQ_CTRL_0_ADDR_BASE 0xE00
#define HIFC_AEQ_CTRL_1_ADDR_BASE 0xE04
#define HIFC_AEQ_CONS_IDX_0_ADDR_BASE 0xE08
#define HIFC_AEQ_CONS_IDX_1_ADDR_BASE 0xE0C
#define HIFC_EQ_OFF_STRIDE 0x80
#define HIFC_CSR_AEQ_CTRL_0_ADDR(idx) \
(HIFC_AEQ_CTRL_0_ADDR_BASE + (idx) * HIFC_EQ_OFF_STRIDE)
#define HIFC_CSR_AEQ_CTRL_1_ADDR(idx) \
(HIFC_AEQ_CTRL_1_ADDR_BASE + (idx) * HIFC_EQ_OFF_STRIDE)
#define HIFC_CSR_AEQ_CONS_IDX_ADDR(idx) \
(HIFC_AEQ_CONS_IDX_0_ADDR_BASE + (idx) * HIFC_EQ_OFF_STRIDE)
#define HIFC_CSR_AEQ_PROD_IDX_ADDR(idx) \
(HIFC_AEQ_CONS_IDX_1_ADDR_BASE + (idx) * HIFC_EQ_OFF_STRIDE)
#define HIFC_CEQ_CTRL_0_ADDR_BASE 0x1000
#define HIFC_CEQ_CTRL_1_ADDR_BASE 0x1004
#define HIFC_CEQ_CONS_IDX_0_ADDR_BASE 0x1008
#define HIFC_CEQ_CONS_IDX_1_ADDR_BASE 0x100C
#define HIFC_CSR_CEQ_CTRL_0_ADDR(idx) \
(HIFC_CEQ_CTRL_0_ADDR_BASE + (idx) * HIFC_EQ_OFF_STRIDE)
#define HIFC_CSR_CEQ_CTRL_1_ADDR(idx) \
(HIFC_CEQ_CTRL_1_ADDR_BASE + (idx) * HIFC_EQ_OFF_STRIDE)
#define HIFC_CSR_CEQ_CONS_IDX_ADDR(idx) \
(HIFC_CEQ_CONS_IDX_0_ADDR_BASE + (idx) * HIFC_EQ_OFF_STRIDE)
#define HIFC_CSR_CEQ_PROD_IDX_ADDR(idx) \
(HIFC_CEQ_CONS_IDX_1_ADDR_BASE + (idx) * HIFC_EQ_OFF_STRIDE)
enum hifc_eq_type {
HIFC_AEQ,
HIFC_CEQ
};
enum hifc_eq_intr_mode {
HIFC_INTR_MODE_ARMED,
HIFC_INTR_MODE_ALWAYS,
};
enum hifc_eq_ci_arm_state {
HIFC_EQ_NOT_ARMED,
HIFC_EQ_ARMED,
};
struct hifc_eq_work {
struct work_struct work;
void *data;
};
struct hifc_ceq_tasklet_data {
void *data;
};
struct hifc_eq {
struct hifc_hwdev *hwdev;
u16 q_id;
enum hifc_eq_type type;
u32 page_size;
u32 orig_page_size;
u32 eq_len;
u32 cons_idx;
u16 wrapped;
u16 elem_size;
u16 num_pages;
u32 num_elem_in_pg;
struct irq_info eq_irq;
char irq_name[EQ_IRQ_NAME_LEN];
dma_addr_t *dma_addr;
u8 **virt_addr;
dma_addr_t *dma_addr_for_free;
u8 **virt_addr_for_free;
struct hifc_eq_work aeq_work;
struct tasklet_struct ceq_tasklet;
struct hifc_ceq_tasklet_data ceq_tasklet_data;
u64 hard_intr_jif;
u64 soft_intr_jif;
};
struct hifc_aeq_elem {
u8 aeqe_data[HIFC_AEQE_DATA_SIZE];
u32 desc;
};
enum hifc_aeq_cb_state {
HIFC_AEQ_HW_CB_REG = 0,
HIFC_AEQ_HW_CB_RUNNING,
HIFC_AEQ_SW_CB_REG,
HIFC_AEQ_SW_CB_RUNNING,
};
struct hifc_aeqs {
struct hifc_hwdev *hwdev;
hifc_aeq_hwe_cb aeq_hwe_cb[HIFC_MAX_AEQ_EVENTS];
hifc_aeq_swe_cb aeq_swe_cb[HIFC_MAX_AEQ_SW_EVENTS];
unsigned long aeq_hw_cb_state[HIFC_MAX_AEQ_EVENTS];
unsigned long aeq_sw_cb_state[HIFC_MAX_AEQ_SW_EVENTS];
struct hifc_eq aeq[HIFC_MAX_AEQS];
u16 num_aeqs;
struct workqueue_struct *workq;
};
enum hifc_ceq_cb_state {
HIFC_CEQ_CB_REG = 0,
HIFC_CEQ_CB_RUNNING,
};
struct hifc_ceqs {
struct hifc_hwdev *hwdev;
hifc_ceq_event_cb ceq_cb[HIFC_MAX_CEQ_EVENTS];
void *ceq_data[HIFC_MAX_CEQ_EVENTS];
unsigned long ceq_cb_state[HIFC_MAX_CEQ_EVENTS];
struct hifc_eq ceq[HIFC_MAX_CEQS];
u16 num_ceqs;
};
int hifc_aeqs_init(struct hifc_hwdev *hwdev, u16 num_aeqs,
struct irq_info *msix_entries);
void hifc_aeqs_free(struct hifc_hwdev *hwdev);
int hifc_ceqs_init(struct hifc_hwdev *hwdev, u16 num_ceqs,
struct irq_info *msix_entries);
void hifc_ceqs_free(struct hifc_hwdev *hwdev);
void hifc_get_ceq_irqs(struct hifc_hwdev *hwdev, struct irq_info *irqs,
u16 *num_irqs);
void hifc_get_aeq_irqs(struct hifc_hwdev *hwdev, struct irq_info *irqs,
u16 *num_irqs);
void hifc_dump_aeq_info(struct hifc_hwdev *hwdev);
#endif
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef HIFC_HW_H_
#define HIFC_HW_H_
#ifndef __BIG_ENDIAN__
#define __BIG_ENDIAN__ 0x4321
#endif
#ifndef __LITTLE_ENDIAN__
#define __LITTLE_ENDIAN__ 0x1234
#endif
enum hifc_mod_type {
HIFC_MOD_COMM = 0, /* HW communication module */
HIFC_MOD_L2NIC = 1, /* L2NIC module*/
HIFC_MOD_FCOE = 6,
HIFC_MOD_CFGM = 7, /* Configuration module */
HIFC_MOD_FC = 10,
HIFC_MOD_HILINK = 14,
HIFC_MOD_HW_MAX = 16, /* hardware max module id */
/* Software module id, for PF/VF and multi-host */
HIFC_MOD_MAX,
};
struct hifc_cmd_buf {
void *buf;
dma_addr_t dma_addr;
u16 size;
};
enum hifc_ack_type {
HIFC_ACK_TYPE_CMDQ,
HIFC_ACK_TYPE_SHARE_CQN,
HIFC_ACK_TYPE_APP_CQN,
HIFC_MOD_ACK_MAX = 15,
};
int hifc_msg_to_mgmt_sync(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size, u32 timeout);
/* PF/VF send msg to uP by api cmd, and return immediately */
int hifc_msg_to_mgmt_async(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size);
int hifc_api_cmd_write_nack(void *hwdev, u8 dest,
void *cmd, u16 size);
int hifc_api_cmd_read_ack(void *hwdev, u8 dest,
void *cmd, u16 size, void *ack, u16 ack_size);
/* PF/VF send cmd to ucode by cmdq, and return if success.
* timeout=0, use default timeout.
*/
int hifc_cmdq_direct_resp(void *hwdev, enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in,
u64 *out_param, u32 timeout);
/* 1. whether need the timeout parameter
* 2. out_param indicates the status of the microcode processing command
*/
/* PF/VF send cmd to ucode by cmdq, and return detailed result.
* timeout=0, use default timeout.
*/
int hifc_cmdq_detail_resp(void *hwdev, enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in,
struct hifc_cmd_buf *buf_out, u32 timeout);
/* PF/VF send cmd to ucode by cmdq, and return immediately
*/
int hifc_cmdq_async(void *hwdev, enum hifc_ack_type ack_type,
enum hifc_mod_type mod, u8 cmd,
struct hifc_cmd_buf *buf_in);
int hifc_ppf_tmr_start(void *hwdev);
int hifc_ppf_tmr_stop(void *hwdev);
enum hifc_ceq_event {
HIFC_CMDQ = 3,
HIFC_MAX_CEQ_EVENTS = 6,
};
typedef void (*hifc_ceq_event_cb)(void *handle, u32 ceqe_data);
int hifc_ceq_register_cb(void *hwdev, enum hifc_ceq_event event,
hifc_ceq_event_cb callback);
void hifc_ceq_unregister_cb(void *hwdev, enum hifc_ceq_event event);
enum hifc_aeq_type {
HIFC_HW_INTER_INT = 0,
HIFC_MBX_FROM_FUNC = 1,
HIFC_MSG_FROM_MGMT_CPU = 2,
HIFC_API_RSP = 3,
HIFC_API_CHAIN_STS = 4,
HIFC_MBX_SEND_RSLT = 5,
HIFC_MAX_AEQ_EVENTS
};
enum hifc_aeq_sw_type {
HIFC_STATELESS_EVENT = 0,
HIFC_STATEFULL_EVENT = 1,
HIFC_MAX_AEQ_SW_EVENTS
};
typedef void (*hifc_aeq_hwe_cb)(void *handle, u8 *data, u8 size);
int hifc_aeq_register_hw_cb(void *hwdev, enum hifc_aeq_type event,
hifc_aeq_hwe_cb hwe_cb);
void hifc_aeq_unregister_hw_cb(void *hwdev, enum hifc_aeq_type event);
typedef u8 (*hifc_aeq_swe_cb)(void *handle, u8 event, u64 data);
int hifc_aeq_register_swe_cb(void *hwdev, enum hifc_aeq_sw_type event,
hifc_aeq_swe_cb aeq_swe_cb);
void hifc_aeq_unregister_swe_cb(void *hwdev, enum hifc_aeq_sw_type event);
typedef void (*hifc_mgmt_msg_cb)(void *hwdev, void *pri_handle,
u8 cmd, void *buf_in, u16 in_size, void *buf_out, u16 *out_size);
int hifc_register_mgmt_msg_cb(void *hwdev,
enum hifc_mod_type mod, void *pri_handle,
hifc_mgmt_msg_cb callback);
void hifc_unregister_mgmt_msg_cb(void *hwdev, enum hifc_mod_type mod);
struct hifc_cmd_buf *hifc_alloc_cmd_buf(void *hwdev);
void hifc_free_cmd_buf(void *hwdev, struct hifc_cmd_buf *buf);
int hifc_alloc_db_addr(void *hwdev, void __iomem **db_base,
void __iomem **dwqe_base);
void hifc_free_db_addr(void *hwdev, void __iomem *db_base,
void __iomem *dwqe_base);
struct nic_interrupt_info {
u32 lli_set;
u32 interrupt_coalesc_set;
u16 msix_index;
u8 lli_credit_limit;
u8 lli_timer_cfg;
u8 pending_limt;
u8 coalesc_timer_cfg;
u8 resend_timer_cfg;
};
int hifc_get_interrupt_cfg(void *hwdev,
struct nic_interrupt_info *interrupt_info);
int hifc_set_interrupt_cfg(void *hwdev,
struct nic_interrupt_info interrupt_info);
/* The driver code implementation interface*/
void hifc_misx_intr_clear_resend_bit(void *hwdev,
u16 msix_idx, u8 clear_resend_en);
struct hifc_sq_attr {
u8 dma_attr_off;
u8 pending_limit;
u8 coalescing_time;
u8 intr_en;
u16 intr_idx;
u32 l2nic_sqn;
u64 ci_dma_base;
};
int hifc_set_ci_table(void *hwdev, u16 q_id, struct hifc_sq_attr *attr);
int hifc_set_root_ctxt(void *hwdev, u16 rq_depth, u16 sq_depth, int rx_buf_sz);
int hifc_clean_root_ctxt(void *hwdev);
void hifc_record_pcie_error(void *hwdev);
int hifc_func_rx_tx_flush(void *hwdev);
int hifc_func_tmr_bitmap_set(void *hwdev, bool enable);
struct hifc_init_para {
/* Record hifc_pcidev or NDIS_Adapter pointer address*/
void *adapter_hdl;
/* Record pcidev or Handler pointer address
* for example: ioremap interface input parameter
*/
void *pcidev_hdl;
/* Record pcidev->dev or Handler pointer address which used to
* dma address application or dev_err print the parameter
*/
void *dev_hdl;
void *cfg_reg_base; /* Configure virtual address, bar0/1*/
/* interrupt configuration register address, bar2/3 */
void *intr_reg_base;
u64 db_base_phy;
void *db_base; /* the doorbell address, bar4/5 higher 4M space*/
void *dwqe_mapping;/* direct wqe 4M, follow the doorbell address space*/
void **hwdev;
void *chip_node;
/* In bmgw x86 host, driver can't send message to mgmt cpu directly,
* need to trasmit message ppf mbox to bmgw arm host.
*/
void *ppf_hwdev;
};
#ifndef IFNAMSIZ
#define IFNAMSIZ 16
#endif
#define MAX_FUNCTION_NUM 512
#define HIFC_MAX_PF_NUM 16
#define HIFC_MAX_COS 8
#define INIT_FAILED 0
#define INIT_SUCCESS 1
#define MAX_DRV_BUF_SIZE 4096
struct hifc_cmd_get_light_module_abs {
u8 status;
u8 version;
u8 rsvd0[6];
u8 port_id;
u8 abs_status; /* 0:present, 1:absent */
u8 rsv[2];
};
#define SFP_INFO_MAX_SIZE 512
struct hifc_cmd_get_sfp_qsfp_info {
u8 status;
u8 version;
u8 rsvd0[6];
u8 port_id;
u8 wire_type;
u16 out_len;
u8 sfp_qsfp_info[SFP_INFO_MAX_SIZE];
};
#define HIFC_MAX_PORT_ID 4
struct hifc_port_routine_cmd {
bool up_send_sfp_info;
bool up_send_sfp_abs;
struct hifc_cmd_get_sfp_qsfp_info sfp_info;
struct hifc_cmd_get_light_module_abs abs;
};
struct card_node {
struct list_head node;
struct list_head func_list;
char chip_name[IFNAMSIZ];
void *log_info;
void *dbgtool_info;
void *func_handle_array[MAX_FUNCTION_NUM];
unsigned char dp_bus_num;
u8 func_num;
struct attribute dbgtool_attr_file;
bool cos_up_setted;
u8 cos_up[HIFC_MAX_COS];
bool ppf_state;
u8 pf_bus_num[HIFC_MAX_PF_NUM];
struct hifc_port_routine_cmd rt_cmd[HIFC_MAX_PORT_ID];
/* mutex used for copy sfp info */
struct mutex sfp_mutex;
};
enum hifc_hwdev_init_state {
HIFC_HWDEV_NONE_INITED = 0,
HIFC_HWDEV_CLP_INITED,
HIFC_HWDEV_AEQ_INITED,
HIFC_HWDEV_MGMT_INITED,
HIFC_HWDEV_MBOX_INITED,
HIFC_HWDEV_CMDQ_INITED,
HIFC_HWDEV_COMM_CH_INITED,
HIFC_HWDEV_ALL_INITED,
HIFC_HWDEV_MAX_INVAL_INITED
};
enum hifc_func_cap {
/* send message to mgmt cpu directly */
HIFC_FUNC_MGMT = 1 << 0,
/* setting port attribute, pause/speed etc. */
HIFC_FUNC_PORT = 1 << 1,
/* Enable SR-IOV in default */
HIFC_FUNC_SRIOV_EN_DFLT = 1 << 2,
/* Can't change VF num */
HIFC_FUNC_SRIOV_NUM_FIX = 1 << 3,
/* Fcorce pf/vf link up */
HIFC_FUNC_FORCE_LINK_UP = 1 << 4,
/* Support rate limit */
HIFC_FUNC_SUPP_RATE_LIMIT = 1 << 5,
HIFC_FUNC_SUPP_DFX_REG = 1 << 6,
/* Support promisc/multicast/all-multi */
HIFC_FUNC_SUPP_RX_MODE = 1 << 7,
/* Set vf mac and vlan by ip link */
HIFC_FUNC_SUPP_SET_VF_MAC_VLAN = 1 << 8,
/* Support set mac by ifconfig */
HIFC_FUNC_SUPP_CHANGE_MAC = 1 << 9,
/* OVS don't support SCTP_CRC/HW_VLAN/LRO */
HIFC_FUNC_OFFLOAD_OVS_UNSUPP = 1 << 10,
};
#define FUNC_SUPPORT_MGMT(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & HIFC_FUNC_MGMT))
#define FUNC_SUPPORT_PORT_SETTING(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & HIFC_FUNC_PORT))
#define FUNC_SUPPORT_DCB(hwdev) \
(FUNC_SUPPORT_PORT_SETTING(hwdev))
#define FUNC_ENABLE_SRIOV_IN_DEFAULT(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_SRIOV_EN_DFLT))
#define FUNC_SRIOV_FIX_NUM_VF(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_SRIOV_NUM_FIX))
#define FUNC_SUPPORT_RX_MODE(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_SUPP_RX_MODE))
#define FUNC_SUPPORT_RATE_LIMIT(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_SUPP_RATE_LIMIT))
#define FUNC_SUPPORT_SET_VF_MAC_VLAN(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_SUPP_SET_VF_MAC_VLAN))
#define FUNC_SUPPORT_CHANGE_MAC(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_SUPP_CHANGE_MAC))
#define FUNC_FORCE_LINK_UP(hwdev) \
(!!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_FORCE_LINK_UP))
#define FUNC_SUPPORT_SCTP_CRC(hwdev) \
(!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_OFFLOAD_OVS_UNSUPP))
#define FUNC_SUPPORT_HW_VLAN(hwdev) \
(!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_OFFLOAD_OVS_UNSUPP))
#define FUNC_SUPPORT_LRO(hwdev) \
(!(hifc_get_func_feature_cap(hwdev) & \
HIFC_FUNC_OFFLOAD_OVS_UNSUPP))
int hifc_init_hwdev(struct hifc_init_para *para);
void hifc_free_hwdev(void *hwdev);
int hifc_stateful_init(void *hwdev);
void hifc_stateful_deinit(void *hwdev);
bool hifc_is_hwdev_mod_inited(void *hwdev, enum hifc_hwdev_init_state state);
u64 hifc_get_func_feature_cap(void *hwdev);
int hifc_slq_init(void *dev, int num_wqs);
void hifc_slq_uninit(void *dev);
int hifc_slq_alloc(void *dev, u16 wqebb_size, u16 q_depth,
u16 page_size, u64 *cla_addr, void **handle);
void hifc_slq_free(void *dev, void *handle);
u64 hifc_slq_get_addr(void *handle, u16 index);
u64 hifc_slq_get_first_pageaddr(void *handle);
typedef void (*comm_up_self_msg_proc)(void *handle, void *buf_in,
u16 in_size, void *buf_out,
u16 *out_size);
void hifc_comm_recv_mgmt_self_cmd_reg(void *hwdev, u8 cmd,
comm_up_self_msg_proc proc);
void hifc_comm_recv_up_self_cmd_unreg(void *hwdev, u8 cmd);
/* defined by chip */
enum hifc_fault_type {
FAULT_TYPE_CHIP,
FAULT_TYPE_UCODE,
FAULT_TYPE_MEM_RD_TIMEOUT,
FAULT_TYPE_MEM_WR_TIMEOUT,
FAULT_TYPE_REG_RD_TIMEOUT,
FAULT_TYPE_REG_WR_TIMEOUT,
FAULT_TYPE_PHY_FAULT,
FAULT_TYPE_MAX,
};
/* defined by chip */
enum hifc_fault_err_level {
/* default err_level=FAULT_LEVEL_FATAL if
* type==FAULT_TYPE_MEM_RD_TIMEOUT || FAULT_TYPE_MEM_WR_TIMEOUT ||
* FAULT_TYPE_REG_RD_TIMEOUT || FAULT_TYPE_REG_WR_TIMEOUT ||
* FAULT_TYPE_UCODE
* other: err_level in event.chip.err_level if type==FAULT_TYPE_CHIP
*/
FAULT_LEVEL_FATAL,
FAULT_LEVEL_SERIOUS_RESET,
FAULT_LEVEL_SERIOUS_FLR,
FAULT_LEVEL_GENERAL,
FAULT_LEVEL_SUGGESTION,
FAULT_LEVEL_MAX
};
enum hifc_fault_source_type {
/* same as FAULT_TYPE_CHIP */
HIFC_FAULT_SRC_HW_MGMT_CHIP = 0,
/* same as FAULT_TYPE_UCODE */
HIFC_FAULT_SRC_HW_MGMT_UCODE,
/* same as FAULT_TYPE_MEM_RD_TIMEOUT */
HIFC_FAULT_SRC_HW_MGMT_MEM_RD_TIMEOUT,
/* same as FAULT_TYPE_MEM_WR_TIMEOUT */
HIFC_FAULT_SRC_HW_MGMT_MEM_WR_TIMEOUT,
/* same as FAULT_TYPE_REG_RD_TIMEOUT */
HIFC_FAULT_SRC_HW_MGMT_REG_RD_TIMEOUT,
/* same as FAULT_TYPE_REG_WR_TIMEOUT */
HIFC_FAULT_SRC_HW_MGMT_REG_WR_TIMEOUT,
HIFC_FAULT_SRC_SW_MGMT_UCODE,
HIFC_FAULT_SRC_MGMT_WATCHDOG,
HIFC_FAULT_SRC_MGMT_RESET = 8,
HIFC_FAULT_SRC_HW_PHY_FAULT,
HIFC_FAULT_SRC_HOST_HEARTBEAT_LOST = 20,
HIFC_FAULT_SRC_TYPE_MAX,
};
struct hifc_fault_sw_mgmt {
u8 event_id;
u64 event_data;
};
union hifc_fault_hw_mgmt {
u32 val[4];
/* valid only type==FAULT_TYPE_CHIP */
struct {
u8 node_id;
/* enum hifc_fault_err_level */
u8 err_level;
u16 err_type;
u32 err_csr_addr;
u32 err_csr_value;
/* func_id valid only err_level==FAULT_LEVEL_SERIOUS_FLR
*/
u16 func_id;
u16 rsvd2;
} chip;
/* valid only type==FAULT_TYPE_UCODE */
struct {
u8 cause_id;
u8 core_id;
u8 c_id;
u8 rsvd3;
u32 epc;
u32 rsvd4;
u32 rsvd5;
} ucode;
/* valid only type==FAULT_TYPE_MEM_RD_TIMEOUT ||
* FAULT_TYPE_MEM_WR_TIMEOUT
*/
struct {
u32 err_csr_ctrl;
u32 err_csr_data;
u32 ctrl_tab;
u32 mem_index;
} mem_timeout;
/* valid only type==FAULT_TYPE_REG_RD_TIMEOUT ||
* FAULT_TYPE_REG_WR_TIMEOUT
*/
struct {
u32 err_csr;
u32 rsvd6;
u32 rsvd7;
u32 rsvd8;
} reg_timeout;
struct {
/* 0: read; 1: write */
u8 op_type;
u8 port_id;
u8 dev_ad;
u8 rsvd9;
u32 csr_addr;
u32 op_data;
u32 rsvd10;
} phy_fault;
};
/* defined by chip */
struct hifc_fault_event {
/* enum hifc_fault_type */
u8 type;
u8 rsvd0[3];
union hifc_fault_hw_mgmt event;
};
struct hifc_fault_recover_info {
u8 fault_src; /* enum hifc_fault_source_type */
u8 fault_lev; /* enum hifc_fault_err_level */
u8 rsvd0[2];
union {
union hifc_fault_hw_mgmt hw_mgmt;
struct hifc_fault_sw_mgmt sw_mgmt;
u32 mgmt_rsvd[4];
u32 host_rsvd[4];
} fault_data;
};
struct hifc_dcb_state {
u8 dcb_on;
u8 default_cos;
u8 up_cos[8];
};
enum link_err_type {
LINK_ERR_MODULE_UNRECOGENIZED,
LINK_ERR_NUM,
};
enum port_module_event_type {
HIFC_PORT_MODULE_CABLE_PLUGGED,
HIFC_PORT_MODULE_CABLE_UNPLUGGED,
HIFC_PORT_MODULE_LINK_ERR,
HIFC_PORT_MODULE_MAX_EVENT,
};
struct hifc_port_module_event {
enum port_module_event_type type;
enum link_err_type err_type;
};
struct hifc_event_link_info {
u8 valid;
u8 port_type;
u8 autoneg_cap;
u8 autoneg_state;
u8 duplex;
u8 speed;
};
struct hifc_mctp_host_info {
u8 major_cmd;
u8 sub_cmd;
u8 rsvd[2];
u32 data_len;
void *data;
};
enum hifc_event_type {
HIFC_EVENT_LINK_DOWN = 0,
HIFC_EVENT_LINK_UP = 1,
HIFC_EVENT_HEART_LOST = 2,
HIFC_EVENT_FAULT = 3,
HIFC_EVENT_NOTIFY_VF_DCB_STATE = 4,
HIFC_EVENT_DCB_STATE_CHANGE = 5,
HIFC_EVENT_FMW_ACT_NTC = 6,
HIFC_EVENT_PORT_MODULE_EVENT = 7,
HIFC_EVENT_MCTP_GET_HOST_INFO,
HIFC_EVENT_MULTI_HOST_MGMT,
HIFC_EVENT_INIT_MIGRATE_PF,
};
struct hifc_event_info {
enum hifc_event_type type;
union {
struct hifc_event_link_info link_info;
struct hifc_fault_event info;
struct hifc_dcb_state dcb_state;
struct hifc_port_module_event module_event;
u8 vf_default_cos;
struct hifc_mctp_host_info mctp_info;
};
};
enum hifc_ucode_event_type {
HIFC_INTERNAL_TSO_FATAL_ERROR = 0x0,
HIFC_INTERNAL_LRO_FATAL_ERROR = 0x1,
HIFC_INTERNAL_TX_FATAL_ERROR = 0x2,
HIFC_INTERNAL_RX_FATAL_ERROR = 0x3,
HIFC_INTERNAL_OTHER_FATAL_ERROR = 0x4,
HIFC_NIC_FATAL_ERROR_MAX = 0x8,
};
typedef void (*hifc_event_handler)(void *handle,
struct hifc_event_info *event);
/* only register once */
void hifc_event_register(void *dev, void *pri_handle,
hifc_event_handler callback);
void hifc_event_unregister(void *dev);
void hifc_detect_hw_present(void *hwdev);
void hifc_set_chip_absent(void *hwdev);
int hifc_get_chip_present_flag(void *hwdev);
void hifc_set_pcie_order_cfg(void *handle);
int hifc_get_mgmt_channel_status(void *handle);
struct hifc_board_info {
u32 board_type;
u32 port_num;
u32 port_speed;
u32 pcie_width;
u32 host_num;
u32 pf_num;
u32 vf_total_num;
u32 tile_num;
u32 qcm_num;
u32 core_num;
u32 work_mode;
u32 service_mode;
u32 pcie_mode;
u32 cfg_addr;
u32 boot_sel;
u32 board_id;
};
int hifc_get_board_info(void *hwdev, struct hifc_board_info *info);
int hifc_get_card_present_state(void *hwdev, bool *card_present_state);
#endif
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/semaphore.h>
#include <linux/interrupt.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_hwif.h"
#include "hifc_api_cmd.h"
#include "hifc_mgmt.h"
#include "hifc_eqs.h"
#include "hifc_wq.h"
#include "hifc_cmdq.h"
#include "hifc_hwif.h"
#define HIFC_DEAULT_EQ_MSIX_PENDING_LIMIT 0
#define HIFC_DEAULT_EQ_MSIX_COALESC_TIMER_CFG 0xFF
#define HIFC_DEAULT_EQ_MSIX_RESEND_TIMER_CFG 7
#define HIFC_FLR_TIMEOUT 1000
#define HIFC_HT_GPA_PAGE_SIZE 4096UL
#define HIFC_PPF_HT_GPA_SET_RETRY_TIMES 10
#define HIFC_GET_SFP_INFO_REAL_TIME 0x1
#define HIFC_GLB_SO_RO_CFG_SHIFT 0x0
#define HIFC_GLB_SO_RO_CFG_MASK 0x1
#define HIFC_DISABLE_ORDER 0
#define HIFC_GLB_DMA_SO_RO_GET(val, member) \
(((val) >> HIFC_GLB_##member##_SHIFT) & HIFC_GLB_##member##_MASK)
#define HIFC_GLB_DMA_SO_R0_CLEAR(val, member) \
((val) & (~(HIFC_GLB_##member##_MASK << HIFC_GLB_##member##_SHIFT)))
#define HIFC_GLB_DMA_SO_R0_SET(val, member) \
(((val) & HIFC_GLB_##member##_MASK) << HIFC_GLB_##member##_SHIFT)
#define HIFC_MGMT_CHANNEL_STATUS_SHIFT 0x0
#define HIFC_MGMT_CHANNEL_STATUS_MASK 0x1
#define HIFC_ACTIVE_STATUS_MASK 0x80000000
#define HIFC_ACTIVE_STATUS_CLEAR 0x7FFFFFFF
#define HIFC_GET_MGMT_CHANNEL_STATUS(val, member) \
(((val) >> HIFC_##member##_SHIFT) & HIFC_##member##_MASK)
#define HIFC_CLEAR_MGMT_CHANNEL_STATUS(val, member) \
((val) & (~(HIFC_##member##_MASK << HIFC_##member##_SHIFT)))
#define HIFC_SET_MGMT_CHANNEL_STATUS(val, member) \
(((val) & HIFC_##member##_MASK) << HIFC_##member##_SHIFT)
#define HIFC_BOARD_IS_PHY(hwdev) \
((hwdev)->board_info.board_type == 4 && \
(hwdev)->board_info.board_id == 24)
struct comm_info_ht_gpa_set {
u8 status;
u8 version;
u8 rsvd0[6];
u32 rsvd1;
u32 rsvd2;
u64 page_pa0;
u64 page_pa1;
};
struct hifc_cons_idx_attr {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_idx;
u8 dma_attr_off;
u8 pending_limit;
u8 coalescing_time;
u8 intr_en;
u16 intr_idx;
u32 l2nic_sqn;
u32 sq_id;
u64 ci_addr;
};
struct hifc_clear_doorbell {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_idx;
u8 ppf_idx;
u8 rsvd1;
};
struct hifc_clear_resource {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_idx;
u8 ppf_idx;
u8 rsvd1;
};
struct hifc_msix_config {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_id;
u16 msix_index;
u8 pending_cnt;
u8 coalesct_timer_cnt;
u8 lli_tmier_cnt;
u8 lli_credit_cnt;
u8 resend_timer_cnt;
u8 rsvd1[3];
};
enum func_tmr_bitmap_status {
FUNC_TMR_BITMAP_DISABLE,
FUNC_TMR_BITMAP_ENABLE,
};
struct hifc_func_tmr_bitmap_op {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_idx;
u8 op_id; /* 0:start; 1:stop */
u8 ppf_idx;
u32 rsvd1;
};
struct hifc_ppf_tmr_op {
u8 status;
u8 version;
u8 rsvd0[6];
u8 ppf_idx;
u8 op_id; /* 0: stop timer; 1:start timer */
u8 rsvd1[2];
u32 rsvd2;
};
struct hifc_cmd_set_res_state {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_idx;
u8 state;
u8 rsvd1;
u32 rsvd2;
};
int hifc_hw_rx_buf_size[] = {
HIFC_RX_BUF_SIZE_32B,
HIFC_RX_BUF_SIZE_64B,
HIFC_RX_BUF_SIZE_96B,
HIFC_RX_BUF_SIZE_128B,
HIFC_RX_BUF_SIZE_192B,
HIFC_RX_BUF_SIZE_256B,
HIFC_RX_BUF_SIZE_384B,
HIFC_RX_BUF_SIZE_512B,
HIFC_RX_BUF_SIZE_768B,
HIFC_RX_BUF_SIZE_1K,
HIFC_RX_BUF_SIZE_1_5K,
HIFC_RX_BUF_SIZE_2K,
HIFC_RX_BUF_SIZE_3K,
HIFC_RX_BUF_SIZE_4K,
HIFC_RX_BUF_SIZE_8K,
HIFC_RX_BUF_SIZE_16K,
};
struct hifc_comm_board_info {
u8 status;
u8 version;
u8 rsvd0[6];
struct hifc_board_info info;
u32 rsvd1[4];
};
#define PHY_DOING_INIT_TIMEOUT (15 * 1000)
struct hifc_phy_init_status {
u8 status;
u8 version;
u8 rsvd0[6];
u8 init_status;
u8 rsvd1[3];
};
enum phy_init_status_type {
PHY_INIT_DOING = 0,
PHY_INIT_SUCCESS = 1,
PHY_INIT_FAIL = 2,
PHY_NONSUPPORT = 3,
};
struct hifc_update_active {
u8 status;
u8 version;
u8 rsvd0[6];
u32 update_flag;
u32 update_status;
};
struct hifc_mgmt_watchdog_info {
u8 status;
u8 version;
u8 rsvd0[6];
u32 curr_time_h;
u32 curr_time_l;
u32 task_id;
u32 rsv;
u32 reg[13];
u32 pc;
u32 lr;
u32 cpsr;
u32 stack_top;
u32 stack_bottom;
u32 sp;
u32 curr_used;
u32 peak_used;
u32 is_overflow;
u32 stack_actlen;
u8 data[1024];
};
struct hifc_fmw_act_ntc {
u8 status;
u8 version;
u8 rsvd0[6];
u32 rsvd1[5];
};
#define HIFC_PAGE_SIZE_HW(pg_size) ((u8)ilog2((u32)((pg_size) >> 12)))
struct hifc_wq_page_size {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_idx;
u8 ppf_idx;
/* real_size=4KB*2^page_size, range(0~20) must be checked by driver */
u8 page_size;
u32 rsvd1;
};
#define MAX_PCIE_DFX_BUF_SIZE (1024)
struct hifc_pcie_dfx_ntc {
u8 status;
u8 version;
u8 rsvd0[6];
int len;
u32 rsvd;
};
struct hifc_pcie_dfx_info {
u8 status;
u8 version;
u8 rsvd0[6];
u8 host_id;
u8 last;
u8 rsvd[2];
u32 offset;
u8 data[MAX_PCIE_DFX_BUF_SIZE];
};
struct hifc_reg_info {
u8 status;
u8 version;
u8 rsvd0[6];
u32 reg_addr;
u32 val_length;
u32 data[2];
};
#define HIFC_DMA_ATTR_ENTRY_ST_SHIFT 0
#define HIFC_DMA_ATTR_ENTRY_AT_SHIFT 8
#define HIFC_DMA_ATTR_ENTRY_PH_SHIFT 10
#define HIFC_DMA_ATTR_ENTRY_NO_SNOOPING_SHIFT 12
#define HIFC_DMA_ATTR_ENTRY_TPH_EN_SHIFT 13
#define HIFC_DMA_ATTR_ENTRY_ST_MASK 0xFF
#define HIFC_DMA_ATTR_ENTRY_AT_MASK 0x3
#define HIFC_DMA_ATTR_ENTRY_PH_MASK 0x3
#define HIFC_DMA_ATTR_ENTRY_NO_SNOOPING_MASK 0x1
#define HIFC_DMA_ATTR_ENTRY_TPH_EN_MASK 0x1
#define HIFC_DMA_ATTR_ENTRY_SET(val, member) \
(((u32)(val) & HIFC_DMA_ATTR_ENTRY_##member##_MASK) << \
HIFC_DMA_ATTR_ENTRY_##member##_SHIFT)
#define HIFC_DMA_ATTR_ENTRY_CLEAR(val, member) \
((val) & (~(HIFC_DMA_ATTR_ENTRY_##member##_MASK \
<< HIFC_DMA_ATTR_ENTRY_##member##_SHIFT)))
#define HIFC_PCIE_ST_DISABLE 0
#define HIFC_PCIE_AT_DISABLE 0
#define HIFC_PCIE_PH_DISABLE 0
#define PCIE_MSIX_ATTR_ENTRY 0
#define HIFC_CHIP_PRESENT 1
#define HIFC_CHIP_ABSENT 0
struct hifc_cmd_fault_event {
u8 status;
u8 version;
u8 rsvd0[6];
struct hifc_fault_event event;
};
#define HEARTBEAT_DRV_MAGIC_ACK 0x5A5A5A5A
struct hifc_heartbeat_event {
u8 status;
u8 version;
u8 rsvd0[6];
u8 mgmt_init_state;
u8 rsvd1[3];
u32 heart; /* increased every event */
u32 drv_heart;
};
static void hifc_set_mgmt_channel_status(void *handle, bool state)
{
struct hifc_hwdev *hwdev = handle;
u32 val;
if (!hwdev || hifc_func_type(hwdev) == TYPE_VF ||
!(hwdev->feature_cap & HIFC_FUNC_SUPP_DFX_REG))
return;
val = hifc_hwif_read_reg(hwdev->hwif, HIFC_ICPL_RESERVD_ADDR);
val = HIFC_CLEAR_MGMT_CHANNEL_STATUS(val, MGMT_CHANNEL_STATUS);
val |= HIFC_SET_MGMT_CHANNEL_STATUS((u32)state, MGMT_CHANNEL_STATUS);
hifc_hwif_write_reg(hwdev->hwif, HIFC_ICPL_RESERVD_ADDR, val);
}
static void hifc_enable_mgmt_channel(void *hwdev, void *buf_out)
{
struct hifc_hwdev *dev = hwdev;
struct hifc_update_active *active_info = buf_out;
if (!active_info || hifc_func_type(hwdev) == TYPE_VF ||
!(dev->feature_cap & HIFC_FUNC_SUPP_DFX_REG))
return;
if ((!active_info->status) &&
(active_info->update_status & HIFC_ACTIVE_STATUS_MASK)) {
active_info->update_status &= HIFC_ACTIVE_STATUS_CLEAR;
return;
}
hifc_set_mgmt_channel_status(hwdev, false);
}
int hifc_set_wq_page_size(struct hifc_hwdev *hwdev, u16 func_idx,
u32 page_size);
#define HIFC_QUEUE_MIN_DEPTH 6
#define HIFC_QUEUE_MAX_DEPTH 12
#define HIFC_MAX_RX_BUFFER_SIZE 15
#define ROOT_CTX_QPS_VALID(root_ctxt) \
((root_ctxt)->rq_depth >= HIFC_QUEUE_MIN_DEPTH && \
(root_ctxt)->rq_depth <= HIFC_QUEUE_MAX_DEPTH && \
(root_ctxt)->sq_depth >= HIFC_QUEUE_MIN_DEPTH && \
(root_ctxt)->sq_depth <= HIFC_QUEUE_MAX_DEPTH && \
(root_ctxt)->rx_buf_sz <= HIFC_MAX_RX_BUFFER_SIZE)
struct hifc_mgmt_status_log {
u8 status;
const char *log;
};
struct hifc_mgmt_status_log mgmt_status_log[] = {
{HIFC_MGMT_STATUS_ERR_PARAM, "Invalid parameter"},
{HIFC_MGMT_STATUS_ERR_FAILED, "Operation failed"},
{HIFC_MGMT_STATUS_ERR_PORT, "Invalid port"},
{HIFC_MGMT_STATUS_ERR_TIMEOUT, "Operation time out"},
{HIFC_MGMT_STATUS_ERR_NOMATCH, "Version not match"},
{HIFC_MGMT_STATUS_ERR_EXIST, "Entry exists"},
{HIFC_MGMT_STATUS_ERR_NOMEM, "Out of memory"},
{HIFC_MGMT_STATUS_ERR_INIT, "Feature not initialized"},
{HIFC_MGMT_STATUS_ERR_FAULT, "Invalid address"},
{HIFC_MGMT_STATUS_ERR_PERM, "Operation not permitted"},
{HIFC_MGMT_STATUS_ERR_EMPTY, "Table empty"},
{HIFC_MGMT_STATUS_ERR_FULL, "Table full"},
{HIFC_MGMT_STATUS_ERR_NOT_FOUND, "Not found"},
{HIFC_MGMT_STATUS_ERR_BUSY, "Device or resource busy "},
{HIFC_MGMT_STATUS_ERR_RESOURCE, "No resources for operation "},
{HIFC_MGMT_STATUS_ERR_CONFIG, "Invalid configuration"},
{HIFC_MGMT_STATUS_ERR_UNAVAIL, "Feature unavailable"},
{HIFC_MGMT_STATUS_ERR_CRC, "CRC check failed"},
{HIFC_MGMT_STATUS_ERR_NXIO, "No such device or address"},
{HIFC_MGMT_STATUS_ERR_ROLLBACK, "Chip rollback fail"},
{HIFC_MGMT_STATUS_ERR_LEN, "Length too short or too long"},
{HIFC_MGMT_STATUS_ERR_UNSUPPORT, "Feature not supported"},
};
static void __print_status_info(struct hifc_hwdev *dev,
enum hifc_mod_type mod, u8 cmd, int index)
{
if (mod == HIFC_MOD_COMM) {
sdk_err(dev->dev_hdl, "Mgmt process mod(0x%x) cmd(0x%x) fail: %s",
mod, cmd, mgmt_status_log[index].log);
} else if (mod == HIFC_MOD_L2NIC ||
mod == HIFC_MOD_HILINK) {
sdk_err(dev->dev_hdl, "Mgmt process mod(0x%x) cmd(0x%x) fail: %s",
mod, cmd, mgmt_status_log[index].log);
}
}
static bool hifc_status_need_special_handle(enum hifc_mod_type mod,
u8 cmd, u8 status)
{
if (mod == HIFC_MOD_L2NIC) {
/* optical module isn't plugged in */
if (((cmd == HIFC_PORT_CMD_GET_STD_SFP_INFO) ||
(cmd == HIFC_PORT_CMD_GET_SFP_INFO)) &&
(status == HIFC_MGMT_STATUS_ERR_NXIO))
return true;
if ((cmd == HIFC_PORT_CMD_SET_MAC ||
cmd == HIFC_PORT_CMD_UPDATE_MAC) &&
status == HIFC_MGMT_STATUS_ERR_EXIST)
return true;
}
return false;
}
static bool print_status_info_valid(enum hifc_mod_type mod,
const void *buf_out)
{
if (!buf_out)
return false;
if (mod != HIFC_MOD_COMM && mod != HIFC_MOD_L2NIC &&
mod != HIFC_MOD_HILINK)
return false;
return true;
}
static void hifc_print_status_info(void *hwdev, enum hifc_mod_type mod,
u8 cmd, const void *buf_out)
{
struct hifc_hwdev *dev = hwdev;
int i, size;
u8 status;
if (!print_status_info_valid(mod, buf_out))
return;
status = *(u8 *)buf_out;
if (!status)
return;
if (hifc_status_need_special_handle(mod, cmd, status))
return;
size = sizeof(mgmt_status_log) / sizeof(mgmt_status_log[0]);
for (i = 0; i < size; i++) {
if (status == mgmt_status_log[i].status) {
__print_status_info(dev, mod, cmd, i);
return;
}
}
if (mod == HIFC_MOD_COMM) {
sdk_err(dev->dev_hdl, "Mgmt process mod(0x%x) cmd(0x%x) return driver unknown status(0x%x)\n",
mod, cmd, status);
} else if (mod == HIFC_MOD_L2NIC || mod == HIFC_MOD_HILINK) {
sdk_err(dev->dev_hdl, "Mgmt process mod(0x%x) cmd(0x%x) return driver unknown status(0x%x)\n",
mod, cmd, status);
}
}
void hifc_set_chip_present(void *hwdev)
{
((struct hifc_hwdev *)hwdev)->chip_present_flag = HIFC_CHIP_PRESENT;
}
void hifc_set_chip_absent(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
sdk_err(dev->dev_hdl, "Card not present\n");
dev->chip_present_flag = HIFC_CHIP_ABSENT;
}
int hifc_get_chip_present_flag(void *hwdev)
{
int flag;
if (!hwdev)
return -EINVAL;
flag = ((struct hifc_hwdev *)hwdev)->chip_present_flag;
return flag;
}
void hifc_force_complete_all(void *hwdev)
{
struct hifc_hwdev *dev = (struct hifc_hwdev *)hwdev;
struct hifc_recv_msg *recv_resp_msg;
set_bit(HIFC_HWDEV_STATE_BUSY, &dev->func_state);
if (hifc_func_type(dev) != TYPE_VF &&
hifc_is_hwdev_mod_inited(dev, HIFC_HWDEV_MGMT_INITED)) {
recv_resp_msg = &dev->pf_to_mgmt->recv_resp_msg_from_mgmt;
if (dev->pf_to_mgmt->event_flag == SEND_EVENT_START) {
complete(&recv_resp_msg->recv_done);
dev->pf_to_mgmt->event_flag = SEND_EVENT_TIMEOUT;
}
}
/* only flush sync cmdq to avoid blocking remove */
if (hifc_is_hwdev_mod_inited(dev, HIFC_HWDEV_CMDQ_INITED))
hifc_cmdq_flush_cmd(hwdev,
&dev->cmdqs->cmdq[HIFC_CMDQ_SYNC]);
clear_bit(HIFC_HWDEV_STATE_BUSY, &dev->func_state);
}
void hifc_detect_hw_present(void *hwdev)
{
u32 addr, attr1;
addr = HIFC_CSR_FUNC_ATTR1_ADDR;
attr1 = hifc_hwif_read_reg(((struct hifc_hwdev *)hwdev)->hwif, addr);
if (attr1 == HIFC_PCIE_LINK_DOWN) {
hifc_set_chip_absent(hwdev);
hifc_force_complete_all(hwdev);
}
}
void hifc_record_pcie_error(void *hwdev)
{
struct hifc_hwdev *dev = (struct hifc_hwdev *)hwdev;
if (!hwdev)
return;
atomic_inc(&dev->hw_stats.fault_event_stats.pcie_fault_stats);
}
static inline void __set_heartbeat_ehd_detect_delay(struct hifc_hwdev *hwdev,
u32 delay_ms)
{
hwdev->heartbeat_ehd.start_detect_jiffies =
jiffies + msecs_to_jiffies(delay_ms);
}
static int __pf_to_mgmt_pre_handle(struct hifc_hwdev *hwdev,
enum hifc_mod_type mod, u8 cmd)
{
if (hifc_get_mgmt_channel_status(hwdev)) {
if (mod == HIFC_MOD_COMM || mod == HIFC_MOD_L2NIC)
return HIFC_DEV_BUSY_ACTIVE_FW;
else
return -EBUSY;
}
/* Set channel invalid, don't allowed to send other cmd */
if (mod == HIFC_MOD_COMM && cmd == HIFC_MGMT_CMD_ACTIVATE_FW) {
hifc_set_mgmt_channel_status(hwdev, true);
/* stop heartbeat enhanced detection temporary, and will
* restart in firmware active event when mgmt is resetted
*/
__set_heartbeat_ehd_detect_delay(hwdev,
HIFC_DEV_ACTIVE_FW_TIMEOUT);
}
return 0;
}
static void __pf_to_mgmt_after_handle(struct hifc_hwdev *hwdev,
enum hifc_mod_type mod, u8 cmd,
int sw_status, void *mgmt_status)
{
/* if activate fw is failed, set channel valid */
if (mod == HIFC_MOD_COMM &&
cmd == HIFC_MGMT_CMD_ACTIVATE_FW) {
if (sw_status)
hifc_set_mgmt_channel_status(hwdev, false);
else
hifc_enable_mgmt_channel(hwdev, mgmt_status);
}
}
int hifc_pf_msg_to_mgmt_sync(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size, u32 timeout)
{
int err;
if (!hwdev)
return -EINVAL;
if (!((struct hifc_hwdev *)hwdev)->chip_present_flag)
return -EPERM;
if (!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_MGMT_INITED))
return -EPERM;
if (in_size > HIFC_MSG_TO_MGMT_MAX_LEN)
return -EINVAL;
err = __pf_to_mgmt_pre_handle(hwdev, mod, cmd);
if (err)
return err;
err = hifc_pf_to_mgmt_sync(hwdev, mod, cmd, buf_in, in_size,
buf_out, out_size, timeout);
__pf_to_mgmt_after_handle(hwdev, mod, cmd, err, buf_out);
return err;
}
static bool is_sfp_info_cmd_cached(struct hifc_hwdev *hwdev,
enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_cmd_get_sfp_qsfp_info *sfp_info;
struct hifc_port_routine_cmd *rt_cmd;
struct card_node *chip_node = hwdev->chip_node;
sfp_info = buf_in;
if (!chip_node->rt_cmd || sfp_info->port_id >= HIFC_MAX_PORT_ID ||
*out_size < sizeof(*sfp_info))
return false;
if (sfp_info->version == HIFC_GET_SFP_INFO_REAL_TIME)
return false;
rt_cmd = &chip_node->rt_cmd[sfp_info->port_id];
mutex_lock(&chip_node->sfp_mutex);
memcpy(buf_out, &rt_cmd->sfp_info, sizeof(*sfp_info));
mutex_unlock(&chip_node->sfp_mutex);
return true;
}
static bool is_sfp_abs_cmd_cached(struct hifc_hwdev *hwdev,
enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_cmd_get_light_module_abs *abs;
struct hifc_port_routine_cmd *rt_cmd;
struct card_node *chip_node = hwdev->chip_node;
abs = buf_in;
if (!chip_node->rt_cmd || abs->port_id >= HIFC_MAX_PORT_ID ||
*out_size < sizeof(*abs))
return false;
if (abs->version == HIFC_GET_SFP_INFO_REAL_TIME)
return false;
rt_cmd = &chip_node->rt_cmd[abs->port_id];
mutex_lock(&chip_node->sfp_mutex);
memcpy(buf_out, &rt_cmd->abs, sizeof(*abs));
mutex_unlock(&chip_node->sfp_mutex);
return true;
}
static bool driver_processed_cmd(struct hifc_hwdev *hwdev,
enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct card_node *chip_node = hwdev->chip_node;
if (mod == HIFC_MOD_L2NIC) {
if (cmd == HIFC_PORT_CMD_GET_SFP_INFO &&
chip_node->rt_cmd->up_send_sfp_info) {
return is_sfp_info_cmd_cached(hwdev, mod, cmd, buf_in,
in_size, buf_out,
out_size);
} else if (cmd == HIFC_PORT_CMD_GET_SFP_ABS &&
chip_node->rt_cmd->up_send_sfp_abs) {
return is_sfp_abs_cmd_cached(hwdev, mod, cmd, buf_in,
in_size, buf_out,
out_size);
}
}
return false;
}
static int send_sync_mgmt_msg(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size, u32 timeout)
{
unsigned long end;
end = jiffies + msecs_to_jiffies(HIFC_DEV_ACTIVE_FW_TIMEOUT);
do {
if (!hifc_get_mgmt_channel_status(hwdev) ||
!hifc_get_chip_present_flag(hwdev))
break;
msleep(1000);
} while (time_before(jiffies, end));
if (driver_processed_cmd(hwdev, mod, cmd, buf_in, in_size, buf_out,
out_size))
return 0;
return hifc_pf_msg_to_mgmt_sync(hwdev, mod, cmd, buf_in, in_size,
buf_out, out_size, timeout);
}
int hifc_msg_to_mgmt_sync(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size, u32 timeout)
{
struct hifc_hwdev *dev = hwdev;
int err;
if (!hwdev)
return -EINVAL;
if (!(dev->chip_present_flag))
return -EPERM;
err = send_sync_mgmt_msg(hwdev, mod, cmd, buf_in, in_size,
buf_out, out_size, timeout);
hifc_print_status_info(hwdev, mod, cmd, buf_out);
return err;
}
/* PF/VF send msg to uP by api cmd, and return immediately */
int hifc_msg_to_mgmt_async(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size)
{
int err;
if (!hwdev)
return -EINVAL;
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag) ||
!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_MGMT_INITED) ||
hifc_get_mgmt_channel_status(hwdev))
return -EPERM;
if (hifc_func_type(hwdev) == TYPE_VF) {
err = -EFAULT;
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Mailbox don't support async cmd\n");
} else {
err = hifc_pf_to_mgmt_async(hwdev, mod, cmd, buf_in, in_size);
}
return err;
}
int hifc_msg_to_mgmt_no_ack(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size)
{
struct hifc_hwdev *dev = hwdev;
int err;
if (!hwdev)
return -EINVAL;
if (!(dev->chip_present_flag))
return -EPERM;
err = hifc_pf_to_mgmt_no_ack(hwdev, mod, cmd, buf_in, in_size);
return err;
}
/**
* hifc_cpu_to_be32 - convert data to big endian 32 bit format
* @data: the data to convert
* @len: length of data to convert, must be Multiple of 4B
**/
void hifc_cpu_to_be32(void *data, int len)
{
int i, chunk_sz = sizeof(u32);
u32 *mem = data;
if (!data)
return;
len = len / chunk_sz;
for (i = 0; i < len; i++) {
*mem = cpu_to_be32(*mem);
mem++;
}
}
/**
* hifc_cpu_to_be32 - convert data from big endian 32 bit format
* @data: the data to convert
* @len: length of data to convert
**/
void hifc_be32_to_cpu(void *data, int len)
{
int i, chunk_sz = sizeof(u32);
u32 *mem = data;
if (!data)
return;
len = len / chunk_sz;
for (i = 0; i < len; i++) {
*mem = be32_to_cpu(*mem);
mem++;
}
}
/**
* hifc_set_sge - set dma area in scatter gather entry
* @sge: scatter gather entry
* @addr: dma address
* @len: length of relevant data in the dma address
**/
void hifc_set_sge(struct hifc_sge *sge, dma_addr_t addr, u32 len)
{
sge->hi_addr = upper_32_bits(addr);
sge->lo_addr = lower_32_bits(addr);
sge->len = len;
}
int hifc_set_ci_table(void *hwdev, u16 q_id, struct hifc_sq_attr *attr)
{
struct hifc_cons_idx_attr cons_idx_attr = {0};
u16 out_size = sizeof(cons_idx_attr);
int err;
if (!hwdev || !attr)
return -EINVAL;
err = hifc_global_func_id_get(hwdev, &cons_idx_attr.func_idx);
if (err)
return err;
cons_idx_attr.dma_attr_off = attr->dma_attr_off;
cons_idx_attr.pending_limit = attr->pending_limit;
cons_idx_attr.coalescing_time = attr->coalescing_time;
if (attr->intr_en) {
cons_idx_attr.intr_en = attr->intr_en;
cons_idx_attr.intr_idx = attr->intr_idx;
}
cons_idx_attr.l2nic_sqn = attr->l2nic_sqn;
cons_idx_attr.sq_id = q_id;
cons_idx_attr.ci_addr = attr->ci_dma_base;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_L2NIC_SQ_CI_ATTR_SET,
&cons_idx_attr, sizeof(cons_idx_attr),
&cons_idx_attr, &out_size, 0);
if (err || !out_size || cons_idx_attr.status) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to set ci attribute table, err: %d, status: 0x%x, out_size: 0x%x\n",
err, cons_idx_attr.status, out_size);
return -EFAULT;
}
return 0;
}
static int hifc_set_cmdq_depth(struct hifc_hwdev *hwdev, u16 cmdq_depth)
{
struct hifc_root_ctxt root_ctxt = {0};
u16 out_size = sizeof(root_ctxt);
int err;
err = hifc_global_func_id_get(hwdev, &root_ctxt.func_idx);
if (err)
return err;
root_ctxt.ppf_idx = hifc_ppf_idx(hwdev);
root_ctxt.set_cmdq_depth = 1;
root_ctxt.cmdq_depth = (u8)ilog2(cmdq_depth);
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_VAT_SET,
&root_ctxt, sizeof(root_ctxt),
&root_ctxt, &out_size, 0);
if (err || !out_size || root_ctxt.status) {
sdk_err(hwdev->dev_hdl, "Failed to set cmdq depth, err: %d, status: 0x%x, out_size: 0x%x\n",
err, root_ctxt.status, out_size);
return -EFAULT;
}
return 0;
}
static u16 get_hw_rx_buf_size(int rx_buf_sz)
{
#define DEFAULT_RX_BUF_SIZE ((u16)0xB)
u16 num_hw_types =
sizeof(hifc_hw_rx_buf_size) /
sizeof(hifc_hw_rx_buf_size[0]);
u16 i;
for (i = 0; i < num_hw_types; i++) {
if (hifc_hw_rx_buf_size[i] == rx_buf_sz)
return i;
}
pr_err("Chip can't support rx buf size of %d\n", rx_buf_sz);
return DEFAULT_RX_BUF_SIZE;
}
int hifc_set_root_ctxt(void *hwdev, u16 rq_depth, u16 sq_depth, int rx_buf_sz)
{
struct hifc_root_ctxt root_ctxt = {0};
u16 out_size = sizeof(root_ctxt);
int err;
if (!hwdev)
return -EINVAL;
err = hifc_global_func_id_get(hwdev, &root_ctxt.func_idx);
if (err)
return err;
root_ctxt.ppf_idx = hifc_ppf_idx(hwdev);
root_ctxt.set_cmdq_depth = 0;
root_ctxt.cmdq_depth = 0;
root_ctxt.lro_en = 1;
root_ctxt.rq_depth = (u16)ilog2(rq_depth);
root_ctxt.rx_buf_sz = get_hw_rx_buf_size(rx_buf_sz);
root_ctxt.sq_depth = (u16)ilog2(sq_depth);
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_VAT_SET,
&root_ctxt, sizeof(root_ctxt),
&root_ctxt, &out_size, 0);
if (err || !out_size || root_ctxt.status) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to set root context, err: %d, status: 0x%x, out_size: 0x%x\n",
err, root_ctxt.status, out_size);
return -EFAULT;
}
return 0;
}
int hifc_clean_root_ctxt(void *hwdev)
{
struct hifc_root_ctxt root_ctxt = {0};
u16 out_size = sizeof(root_ctxt);
int err;
if (!hwdev)
return -EINVAL;
err = hifc_global_func_id_get(hwdev, &root_ctxt.func_idx);
if (err)
return err;
root_ctxt.ppf_idx = hifc_ppf_idx(hwdev);
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_VAT_SET,
&root_ctxt, sizeof(root_ctxt),
&root_ctxt, &out_size, 0);
if (err || !out_size || root_ctxt.status) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to set root context, err: %d, status: 0x%x, out_size: 0x%x\n",
err, root_ctxt.status, out_size);
return -EFAULT;
}
return 0;
}
static int wait_for_flr_finish(struct hifc_hwif *hwif)
{
u32 cnt = 0;
enum hifc_pf_status status;
while (cnt < HIFC_FLR_TIMEOUT) {
status = hifc_get_pf_status(hwif);
if (status == HIFC_PF_STATUS_FLR_FINISH_FLAG) {
hifc_set_pf_status(hwif, HIFC_PF_STATUS_ACTIVE_FLAG);
return 0;
}
usleep_range(9900, 10000);
cnt++;
}
return -EFAULT;
}
#define HIFC_WAIT_CMDQ_IDLE_TIMEOUT 5000
static int wait_cmdq_stop(struct hifc_hwdev *hwdev)
{
enum hifc_cmdq_type cmdq_type;
struct hifc_cmdqs *cmdqs = hwdev->cmdqs;
u32 cnt = 0;
int err = 0;
if (!(cmdqs->status & HIFC_CMDQ_ENABLE))
return 0;
cmdqs->status &= ~HIFC_CMDQ_ENABLE;
while (cnt < HIFC_WAIT_CMDQ_IDLE_TIMEOUT && hwdev->chip_present_flag) {
err = 0;
cmdq_type = HIFC_CMDQ_SYNC;
for (; cmdq_type < HIFC_MAX_CMDQ_TYPES; cmdq_type++) {
if (!hifc_cmdq_idle(&cmdqs->cmdq[cmdq_type])) {
err = -EBUSY;
break;
}
}
if (!err)
return 0;
usleep_range(500, 1000);
cnt++;
}
cmdq_type = HIFC_CMDQ_SYNC;
for (; cmdq_type < HIFC_MAX_CMDQ_TYPES; cmdq_type++) {
if (!hifc_cmdq_idle(&cmdqs->cmdq[cmdq_type]))
sdk_err(hwdev->dev_hdl, "Cmdq %d busy\n", cmdq_type);
}
cmdqs->status |= HIFC_CMDQ_ENABLE;
return err;
}
static int hifc_pf_rx_tx_flush(struct hifc_hwdev *hwdev)
{
struct hifc_hwif *hwif = hwdev->hwif;
struct hifc_clear_doorbell clear_db = {0};
struct hifc_clear_resource clr_res = {0};
u16 out_size, func_id;
int err;
int ret = 0;
/* wait ucode stop I/O */
msleep(100);
err = wait_cmdq_stop(hwdev);
if (err) {
sdk_warn(hwdev->dev_hdl, "CMDQ is still working, please check CMDQ timeout value is reasonable\n");
ret = err;
}
hifc_disable_doorbell(hwif);
out_size = sizeof(clear_db);
func_id = hifc_global_func_id_hw(hwdev);
clear_db.func_idx = func_id;
clear_db.ppf_idx = HIFC_HWIF_PPF_IDX(hwif);
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_FLUSH_DOORBELL, &clear_db,
sizeof(clear_db), &clear_db, &out_size, 0);
if (err || !out_size || clear_db.status) {
sdk_warn(hwdev->dev_hdl, "Failed to flush doorbell, err: %d, status: 0x%x, out_size: 0x%x\n",
err, clear_db.status, out_size);
if (err)
ret = err;
else
ret = -EFAULT;
}
hifc_set_pf_status(hwif, HIFC_PF_STATUS_FLR_START_FLAG);
clr_res.func_idx = func_id;
clr_res.ppf_idx = HIFC_HWIF_PPF_IDX(hwif);
err = hifc_msg_to_mgmt_no_ack(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_START_FLR, &clr_res,
sizeof(clr_res));
if (err) {
sdk_warn(hwdev->dev_hdl, "Failed to notice flush message\n");
ret = err;
}
err = wait_for_flr_finish(hwif);
if (err) {
sdk_warn(hwdev->dev_hdl, "Wait firmware FLR timeout\n");
ret = err;
}
hifc_enable_doorbell(hwif);
err = hifc_reinit_cmdq_ctxts(hwdev);
if (err) {
sdk_warn(hwdev->dev_hdl, "Failed to reinit cmdq\n");
ret = err;
}
return ret;
}
int hifc_func_rx_tx_flush(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
if (!hwdev)
return -EINVAL;
if (!dev->chip_present_flag)
return 0;
return hifc_pf_rx_tx_flush(dev);
}
int hifc_get_interrupt_cfg(void *hwdev,
struct nic_interrupt_info *interrupt_info)
{
struct hifc_hwdev *nic_hwdev = hwdev;
struct hifc_msix_config msix_cfg = {0};
u16 out_size = sizeof(msix_cfg);
int err;
if (!hwdev || !interrupt_info)
return -EINVAL;
err = hifc_global_func_id_get(hwdev, &msix_cfg.func_id);
if (err)
return err;
msix_cfg.msix_index = interrupt_info->msix_index;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_MSI_CTRL_REG_RD_BY_UP,
&msix_cfg, sizeof(msix_cfg),
&msix_cfg, &out_size, 0);
if (err || !out_size || msix_cfg.status) {
sdk_err(nic_hwdev->dev_hdl, "Failed to get interrupt config, err: %d, status: 0x%x, out size: 0x%x\n",
err, msix_cfg.status, out_size);
return -EINVAL;
}
interrupt_info->lli_credit_limit = msix_cfg.lli_credit_cnt;
interrupt_info->lli_timer_cfg = msix_cfg.lli_tmier_cnt;
interrupt_info->pending_limt = msix_cfg.pending_cnt;
interrupt_info->coalesc_timer_cfg = msix_cfg.coalesct_timer_cnt;
interrupt_info->resend_timer_cfg = msix_cfg.resend_timer_cnt;
return 0;
}
int hifc_set_interrupt_cfg(void *hwdev,
struct nic_interrupt_info interrupt_info)
{
struct hifc_hwdev *nic_hwdev = hwdev;
struct hifc_msix_config msix_cfg = {0};
struct nic_interrupt_info temp_info;
u16 out_size = sizeof(msix_cfg);
int err;
if (!hwdev)
return -EINVAL;
temp_info.msix_index = interrupt_info.msix_index;
err = hifc_get_interrupt_cfg(hwdev, &temp_info);
if (err)
return -EINVAL;
err = hifc_global_func_id_get(hwdev, &msix_cfg.func_id);
if (err)
return err;
msix_cfg.msix_index = (u16)interrupt_info.msix_index;
msix_cfg.lli_credit_cnt = temp_info.lli_credit_limit;
msix_cfg.lli_tmier_cnt = temp_info.lli_timer_cfg;
msix_cfg.pending_cnt = temp_info.pending_limt;
msix_cfg.coalesct_timer_cnt = temp_info.coalesc_timer_cfg;
msix_cfg.resend_timer_cnt = temp_info.resend_timer_cfg;
if (interrupt_info.lli_set) {
msix_cfg.lli_credit_cnt = interrupt_info.lli_credit_limit;
msix_cfg.lli_tmier_cnt = interrupt_info.lli_timer_cfg;
}
if (interrupt_info.interrupt_coalesc_set) {
msix_cfg.pending_cnt = interrupt_info.pending_limt;
msix_cfg.coalesct_timer_cnt = interrupt_info.coalesc_timer_cfg;
msix_cfg.resend_timer_cnt = interrupt_info.resend_timer_cfg;
}
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_MSI_CTRL_REG_WR_BY_UP,
&msix_cfg, sizeof(msix_cfg),
&msix_cfg, &out_size, 0);
if (err || !out_size || msix_cfg.status) {
sdk_err(nic_hwdev->dev_hdl, "Failed to set interrupt config, err: %d, status: 0x%x, out size: 0x%x\n",
err, msix_cfg.status, out_size);
return -EINVAL;
}
return 0;
}
#define HIFC_MSIX_CNT_RESEND_TIMER_SHIFT 29
#define HIFC_MSIX_CNT_RESEND_TIMER_MASK 0x7U
#define HIFC_MSIX_CNT_SET(val, member) \
(((val) & HIFC_MSIX_CNT_##member##_MASK) << \
HIFC_MSIX_CNT_##member##_SHIFT)
void hifc_misx_intr_clear_resend_bit(void *hwdev, u16 msix_idx,
u8 clear_resend_en)
{
struct hifc_hwif *hwif;
u32 msix_ctrl = 0, addr;
if (!hwdev)
return;
hwif = ((struct hifc_hwdev *)hwdev)->hwif;
msix_ctrl = HIFC_MSIX_CNT_SET(clear_resend_en, RESEND_TIMER);
addr = HIFC_CSR_MSIX_CNT_ADDR(msix_idx);
hifc_hwif_write_reg(hwif, addr, msix_ctrl);
}
static int init_aeqs_msix_attr(struct hifc_hwdev *hwdev)
{
struct hifc_aeqs *aeqs = hwdev->aeqs;
struct nic_interrupt_info info = {0};
struct hifc_eq *eq;
u16 q_id;
int err;
info.lli_set = 0;
info.interrupt_coalesc_set = 1;
info.pending_limt = HIFC_DEAULT_EQ_MSIX_PENDING_LIMIT;
info.coalesc_timer_cfg = HIFC_DEAULT_EQ_MSIX_COALESC_TIMER_CFG;
info.resend_timer_cfg = HIFC_DEAULT_EQ_MSIX_RESEND_TIMER_CFG;
for (q_id = 0; q_id < aeqs->num_aeqs; q_id++) {
eq = &aeqs->aeq[q_id];
info.msix_index = eq->eq_irq.msix_entry_idx;
err = hifc_set_interrupt_cfg(hwdev, info);
if (err) {
sdk_err(hwdev->dev_hdl, "Set msix attr for aeq %d failed\n",
q_id);
return -EFAULT;
}
}
return 0;
}
static int init_ceqs_msix_attr(struct hifc_hwdev *hwdev)
{
struct hifc_ceqs *ceqs = hwdev->ceqs;
struct nic_interrupt_info info = {0};
struct hifc_eq *eq;
u16 q_id;
int err;
info.lli_set = 0;
info.interrupt_coalesc_set = 1;
info.pending_limt = HIFC_DEAULT_EQ_MSIX_PENDING_LIMIT;
info.coalesc_timer_cfg = HIFC_DEAULT_EQ_MSIX_COALESC_TIMER_CFG;
info.resend_timer_cfg = HIFC_DEAULT_EQ_MSIX_RESEND_TIMER_CFG;
for (q_id = 0; q_id < ceqs->num_ceqs; q_id++) {
eq = &ceqs->ceq[q_id];
info.msix_index = eq->eq_irq.msix_entry_idx;
err = hifc_set_interrupt_cfg(hwdev, info);
if (err) {
sdk_err(hwdev->dev_hdl, "Set msix attr for ceq %d failed\n",
q_id);
return -EFAULT;
}
}
return 0;
}
/**
* set_pf_dma_attr_entry - set the dma attributes for entry
* @hwdev: the pointer to hw device
* @entry_idx: the entry index in the dma table
* @st: PCIE TLP steering tag
* @at: PCIE TLP AT field
* @ph: PCIE TLP Processing Hint field
* @no_snooping: PCIE TLP No snooping
* @tph_en: PCIE TLP Processing Hint Enable
**/
static void set_pf_dma_attr_entry(struct hifc_hwdev *hwdev, u32 entry_idx,
u8 st, u8 at, u8 ph,
enum hifc_pcie_nosnoop no_snooping,
enum hifc_pcie_tph tph_en)
{
u32 addr, val, dma_attr_entry;
/* Read Modify Write */
addr = HIFC_CSR_DMA_ATTR_TBL_ADDR(entry_idx);
val = hifc_hwif_read_reg(hwdev->hwif, addr);
val = HIFC_DMA_ATTR_ENTRY_CLEAR(val, ST) &
HIFC_DMA_ATTR_ENTRY_CLEAR(val, AT) &
HIFC_DMA_ATTR_ENTRY_CLEAR(val, PH) &
HIFC_DMA_ATTR_ENTRY_CLEAR(val, NO_SNOOPING) &
HIFC_DMA_ATTR_ENTRY_CLEAR(val, TPH_EN);
dma_attr_entry = HIFC_DMA_ATTR_ENTRY_SET(st, ST) |
HIFC_DMA_ATTR_ENTRY_SET(at, AT) |
HIFC_DMA_ATTR_ENTRY_SET(ph, PH) |
HIFC_DMA_ATTR_ENTRY_SET(no_snooping, NO_SNOOPING) |
HIFC_DMA_ATTR_ENTRY_SET(tph_en, TPH_EN);
val |= dma_attr_entry;
hifc_hwif_write_reg(hwdev->hwif, addr, val);
}
/**
* dma_attr_table_init - initialize the the default dma attributes
* @hwdev: the pointer to hw device
* Return: 0 - success, negative - failure
**/
static int dma_attr_table_init(struct hifc_hwdev *hwdev)
{
int err = 0;
set_pf_dma_attr_entry(hwdev, PCIE_MSIX_ATTR_ENTRY,
HIFC_PCIE_ST_DISABLE,
HIFC_PCIE_AT_DISABLE,
HIFC_PCIE_PH_DISABLE,
HIFC_PCIE_SNOOP,
HIFC_PCIE_TPH_DISABLE);
return err;
}
static int resources_state_set(struct hifc_hwdev *hwdev,
enum hifc_res_state state)
{
struct hifc_cmd_set_res_state res_state = {0};
u16 out_size = sizeof(res_state);
int err;
err = hifc_global_func_id_get(hwdev, &res_state.func_idx);
if (err)
return err;
res_state.state = state;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_RES_STATE_SET,
&res_state, sizeof(res_state),
&res_state, &out_size, 0);
if (err || !out_size || res_state.status) {
sdk_err(hwdev->dev_hdl, "Failed to set resources state, err: %d, status: 0x%x, out_size: 0x%x\n",
err, res_state.status, out_size);
return -EFAULT;
}
return 0;
}
static void comm_mgmt_msg_handler(void *hwdev, void *pri_handle, u8 cmd,
void *buf_in, u16 in_size, void *buf_out,
u16 *out_size)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt = pri_handle;
u8 cmd_idx;
u32 *mem;
u16 i;
for (cmd_idx = 0; cmd_idx < pf_to_mgmt->proc.cmd_num; cmd_idx++) {
if (cmd == pf_to_mgmt->proc.info[cmd_idx].cmd) {
if (!pf_to_mgmt->proc.info[cmd_idx].proc) {
sdk_warn(pf_to_mgmt->hwdev->dev_hdl,
"PF recv up comm msg handle null, cmd(0x%x)\n",
cmd);
} else {
pf_to_mgmt->proc.info[cmd_idx].proc(hwdev,
buf_in, in_size, buf_out, out_size);
}
return;
}
}
sdk_warn(pf_to_mgmt->hwdev->dev_hdl, "Received mgmt cpu event: 0x%x\n",
cmd);
mem = buf_in;
for (i = 0; i < (in_size / sizeof(u32)); i++) {
pr_info("0x%x\n", *mem);
mem++;
}
*out_size = 0;
}
static int hifc_comm_aeqs_init(struct hifc_hwdev *hwdev)
{
struct irq_info aeq_irqs[HIFC_MAX_AEQS] = {{0} };
u16 num_aeqs, resp_num_irq = 0, i;
int err;
num_aeqs = HIFC_HWIF_NUM_AEQS(hwdev->hwif);
if (num_aeqs > HIFC_MAX_AEQS) {
sdk_warn(hwdev->dev_hdl, "Adjust aeq num to %d\n",
HIFC_MAX_AEQS);
num_aeqs = HIFC_MAX_AEQS;
}
err = hifc_alloc_irqs(hwdev, SERVICE_T_INTF, num_aeqs, aeq_irqs,
&resp_num_irq);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to alloc aeq irqs, num_aeqs: %d\n",
num_aeqs);
return err;
}
if (resp_num_irq < num_aeqs) {
sdk_warn(hwdev->dev_hdl, "Adjust aeq num to %d\n",
resp_num_irq);
num_aeqs = resp_num_irq;
}
err = hifc_aeqs_init(hwdev, num_aeqs, aeq_irqs);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init aeqs\n");
goto aeqs_init_err;
}
set_bit(HIFC_HWDEV_AEQ_INITED, &hwdev->func_state);
return 0;
aeqs_init_err:
for (i = 0; i < num_aeqs; i++)
hifc_free_irq(hwdev, SERVICE_T_INTF, aeq_irqs[i].irq_id);
return err;
}
static void hifc_comm_aeqs_free(struct hifc_hwdev *hwdev)
{
struct irq_info aeq_irqs[HIFC_MAX_AEQS] = {{0} };
u16 num_irqs, i;
clear_bit(HIFC_HWDEV_AEQ_INITED, &hwdev->func_state);
hifc_get_aeq_irqs(hwdev, aeq_irqs, &num_irqs);
hifc_aeqs_free(hwdev);
for (i = 0; i < num_irqs; i++)
hifc_free_irq(hwdev, SERVICE_T_INTF, aeq_irqs[i].irq_id);
}
static int hifc_comm_ceqs_init(struct hifc_hwdev *hwdev)
{
struct irq_info ceq_irqs[HIFC_MAX_CEQS] = {{0} };
u16 num_ceqs, resp_num_irq = 0, i;
int err;
num_ceqs = HIFC_HWIF_NUM_CEQS(hwdev->hwif);
if (num_ceqs > HIFC_MAX_CEQS) {
sdk_warn(hwdev->dev_hdl, "Adjust ceq num to %d\n",
HIFC_MAX_CEQS);
num_ceqs = HIFC_MAX_CEQS;
}
err = hifc_alloc_irqs(hwdev, SERVICE_T_INTF, num_ceqs, ceq_irqs,
&resp_num_irq);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to alloc ceq irqs, num_ceqs: %d\n",
num_ceqs);
return err;
}
if (resp_num_irq < num_ceqs) {
sdk_warn(hwdev->dev_hdl, "Adjust ceq num to %d\n",
resp_num_irq);
num_ceqs = resp_num_irq;
}
err = hifc_ceqs_init(hwdev, num_ceqs, ceq_irqs);
if (err) {
sdk_err(hwdev->dev_hdl,
"Failed to init ceqs, err:%d\n", err);
goto ceqs_init_err;
}
return 0;
ceqs_init_err:
for (i = 0; i < num_ceqs; i++)
hifc_free_irq(hwdev, SERVICE_T_INTF, ceq_irqs[i].irq_id);
return err;
}
static void hifc_comm_ceqs_free(struct hifc_hwdev *hwdev)
{
struct irq_info ceq_irqs[HIFC_MAX_CEQS] = {{0} };
u16 num_irqs;
int i;
hifc_get_ceq_irqs(hwdev, ceq_irqs, &num_irqs);
hifc_ceqs_free(hwdev);
for (i = 0; i < num_irqs; i++)
hifc_free_irq(hwdev, SERVICE_T_INTF, ceq_irqs[i].irq_id);
}
static int hifc_comm_pf_to_mgmt_init(struct hifc_hwdev *hwdev)
{
int err;
if (hifc_func_type(hwdev) == TYPE_VF ||
!FUNC_SUPPORT_MGMT(hwdev))
return 0; /* VF do not support send msg to mgmt directly */
err = hifc_pf_to_mgmt_init(hwdev);
if (err)
return err;
hifc_aeq_register_hw_cb(hwdev, HIFC_MSG_FROM_MGMT_CPU,
hifc_mgmt_msg_aeqe_handler);
hifc_register_mgmt_msg_cb(hwdev, HIFC_MOD_COMM,
hwdev->pf_to_mgmt, comm_mgmt_msg_handler);
set_bit(HIFC_HWDEV_MGMT_INITED, &hwdev->func_state);
return 0;
}
static void hifc_comm_pf_to_mgmt_free(struct hifc_hwdev *hwdev)
{
if (hifc_func_type(hwdev) == TYPE_VF ||
!FUNC_SUPPORT_MGMT(hwdev))
return; /* VF do not support send msg to mgmt directly */
hifc_unregister_mgmt_msg_cb(hwdev, HIFC_MOD_COMM);
hifc_aeq_unregister_hw_cb(hwdev, HIFC_MSG_FROM_MGMT_CPU);
hifc_pf_to_mgmt_free(hwdev);
}
static int hifc_comm_clp_to_mgmt_init(struct hifc_hwdev *hwdev)
{
int err;
if (hifc_func_type(hwdev) == TYPE_VF ||
!FUNC_SUPPORT_MGMT(hwdev))
return 0;
err = hifc_clp_pf_to_mgmt_init(hwdev);
if (err)
return err;
set_bit(HIFC_HWDEV_CLP_INITED, &hwdev->func_state);
return 0;
}
static void hifc_comm_clp_to_mgmt_free(struct hifc_hwdev *hwdev)
{
if (hifc_func_type(hwdev) == TYPE_VF ||
!FUNC_SUPPORT_MGMT(hwdev))
return;
clear_bit(HIFC_HWDEV_CLP_INITED, &hwdev->func_state);
hifc_clp_pf_to_mgmt_free(hwdev);
}
static int hifc_comm_cmdqs_init(struct hifc_hwdev *hwdev)
{
int err;
err = hifc_cmdqs_init(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init cmd queues\n");
return err;
}
hifc_ceq_register_cb(hwdev, HIFC_CMDQ, hifc_cmdq_ceq_handler);
err = hifc_set_cmdq_depth(hwdev, HIFC_CMDQ_DEPTH);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to set cmdq depth\n");
goto set_cmdq_depth_err;
}
return 0;
set_cmdq_depth_err:
hifc_cmdqs_free(hwdev);
return err;
}
static void hifc_comm_cmdqs_free(struct hifc_hwdev *hwdev)
{
hifc_ceq_unregister_cb(hwdev, HIFC_CMDQ);
hifc_cmdqs_free(hwdev);
}
static int hifc_sync_mgmt_func_state(struct hifc_hwdev *hwdev)
{
int err;
hifc_set_pf_status(hwdev->hwif, HIFC_PF_STATUS_ACTIVE_FLAG);
err = resources_state_set(hwdev, HIFC_RES_ACTIVE);
if (err) {
sdk_err(hwdev->dev_hdl,
"Failed to set function resources state\n");
goto resources_state_set_err;
}
hwdev->heartbeat_ehd.en = false;
if (HIFC_FUNC_TYPE(hwdev) == TYPE_PPF) {
/* heartbeat synchronize must be after set pf active status */
hifc_comm_recv_mgmt_self_cmd_reg(
hwdev, HIFC_MGMT_CMD_HEARTBEAT_EVENT,
mgmt_heartbeat_event_handler);
}
return 0;
resources_state_set_err:
hifc_set_pf_status(hwdev->hwif, HIFC_PF_STATUS_INIT);
return err;
}
static void hifc_unsync_mgmt_func_state(struct hifc_hwdev *hwdev)
{
hifc_set_pf_status(hwdev->hwif, HIFC_PF_STATUS_INIT);
hwdev->heartbeat_ehd.en = false;
if (HIFC_FUNC_TYPE(hwdev) == TYPE_PPF) {
hifc_comm_recv_up_self_cmd_unreg(
hwdev, HIFC_MGMT_CMD_HEARTBEAT_EVENT);
}
resources_state_set(hwdev, HIFC_RES_CLEAN);
}
int hifc_set_vport_enable(void *hwdev, bool enable)
{
struct hifc_hwdev *nic_hwdev = (struct hifc_hwdev *)hwdev;
struct hifc_vport_state en_state = {0};
u16 out_size = sizeof(en_state);
int err;
if (!hwdev)
return -EINVAL;
err = hifc_global_func_id_get(hwdev, &en_state.func_id);
if (err)
return err;
en_state.state = enable ? 1 : 0;
err = l2nic_msg_to_mgmt_sync(hwdev, HIFC_PORT_CMD_SET_VPORT_ENABLE,
&en_state, sizeof(en_state),
&en_state, &out_size);
if (err || !out_size || en_state.status) {
sdk_err(nic_hwdev->dev_hdl, "Failed to set vport state, err: %d, status: 0x%x, out size: 0x%x\n",
err, en_state.status, out_size);
return -EINVAL;
}
return 0;
}
int hifc_l2nic_reset_base(struct hifc_hwdev *hwdev, u16 reset_flag)
{
struct hifc_l2nic_reset l2nic_reset = {0};
u16 out_size = sizeof(l2nic_reset);
int err = 0;
err = hifc_set_vport_enable(hwdev, false);
if (err)
return err;
msleep(100);
sdk_info(hwdev->dev_hdl, "L2nic reset flag 0x%x\n", reset_flag);
err = hifc_global_func_id_get(hwdev, &l2nic_reset.func_id);
if (err)
return err;
l2nic_reset.reset_flag = reset_flag;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_L2NIC_RESET, &l2nic_reset,
sizeof(l2nic_reset), &l2nic_reset,
&out_size, 0);
if (err || !out_size || l2nic_reset.status) {
sdk_err(hwdev->dev_hdl, "Failed to reset L2NIC resources, err: %d, status: 0x%x, out_size: 0x%x\n",
err, l2nic_reset.status, out_size);
return -EIO;
}
return 0;
}
static int hifc_l2nic_reset(struct hifc_hwdev *hwdev)
{
return hifc_l2nic_reset_base(hwdev, 0);
}
static int __get_func_misc_info(struct hifc_hwdev *hwdev)
{
int err;
err = hifc_get_board_info(hwdev, &hwdev->board_info);
if (err) {
sdk_err(hwdev->dev_hdl, "Get board info failed\n");
return err;
}
return 0;
}
static int init_func_mode(struct hifc_hwdev *hwdev)
{
int err;
err = __get_func_misc_info(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to get function msic information\n");
return err;
}
err = hifc_l2nic_reset(hwdev);
if (err)
return err;
return 0;
}
static int __init_eqs_msix_attr(struct hifc_hwdev *hwdev)
{
int err;
err = init_aeqs_msix_attr(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init aeqs msix attr\n");
return err;
}
err = init_ceqs_msix_attr(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init ceqs msix attr\n");
return err;
}
return 0;
}
static int init_cmdqs_channel(struct hifc_hwdev *hwdev)
{
u16 func_id;
int err;
dma_attr_table_init(hwdev);
err = hifc_comm_ceqs_init(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init completion event queues\n");
return err;
}
err = __init_eqs_msix_attr(hwdev);
if (err)
goto init_eqs_msix_err;
/* set default wq page_size */
hwdev->wq_page_size = HIFC_DEFAULT_WQ_PAGE_SIZE;
err = hifc_global_func_id_get(hwdev, &func_id);
if (err)
goto get_func_id_err;
err = hifc_set_wq_page_size(hwdev, func_id, hwdev->wq_page_size);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to set wq page size\n");
goto init_wq_pg_size_err;
}
err = hifc_comm_cmdqs_init(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init cmd queues\n");
goto cmdq_init_err;
}
set_bit(HIFC_HWDEV_CMDQ_INITED, &hwdev->func_state);
return 0;
cmdq_init_err:
if (HIFC_FUNC_TYPE(hwdev) != TYPE_VF)
hifc_set_wq_page_size(hwdev, func_id, HIFC_HW_WQ_PAGE_SIZE);
init_wq_pg_size_err:
get_func_id_err:
init_eqs_msix_err:
hifc_comm_ceqs_free(hwdev);
return err;
}
static int init_mgmt_channel(struct hifc_hwdev *hwdev)
{
int err;
err = hifc_comm_clp_to_mgmt_init(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init clp\n");
return err;
}
err = hifc_comm_aeqs_init(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init async event queues\n");
goto aeqs_init_err;
}
err = hifc_comm_pf_to_mgmt_init(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init msg\n");
goto msg_init_err;
}
return err;
msg_init_err:
hifc_comm_aeqs_free(hwdev);
aeqs_init_err:
hifc_comm_clp_to_mgmt_free(hwdev);
return err;
}
/* initialize communication channel */
int hifc_init_comm_ch(struct hifc_hwdev *hwdev)
{
int err;
err = init_mgmt_channel(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init mgmt channel\n");
return err;
}
err = init_func_mode(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init function mode\n");
goto func_mode_err;
}
err = init_cmdqs_channel(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to init cmdq channel\n");
goto init_cmdqs_channel_err;
}
err = hifc_sync_mgmt_func_state(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to synchronize mgmt function state\n");
goto sync_mgmt_func_err;
}
err = hifc_aeq_register_swe_cb(hwdev, HIFC_STATELESS_EVENT,
hifc_nic_sw_aeqe_handler);
if (err) {
sdk_err(hwdev->dev_hdl,
"Failed to register ucode aeqe handler\n");
goto register_ucode_aeqe_err;
}
set_bit(HIFC_HWDEV_COMM_CH_INITED, &hwdev->func_state);
return 0;
register_ucode_aeqe_err:
hifc_unsync_mgmt_func_state(hwdev);
sync_mgmt_func_err:
return err;
init_cmdqs_channel_err:
func_mode_err:
return err;
}
static void __uninit_comm_module(struct hifc_hwdev *hwdev,
enum hifc_hwdev_init_state init_state)
{
u16 func_id;
switch (init_state) {
case HIFC_HWDEV_COMM_CH_INITED:
hifc_aeq_unregister_swe_cb(hwdev,
HIFC_STATELESS_EVENT);
hifc_unsync_mgmt_func_state(hwdev);
break;
case HIFC_HWDEV_CMDQ_INITED:
hifc_comm_cmdqs_free(hwdev);
/* VF can set page size of 256K only, any other value
* will return error in pf, pf will set all vf's page
* size to 4K when disable sriov
*/
if (HIFC_FUNC_TYPE(hwdev) != TYPE_VF) {
func_id = hifc_global_func_id_hw(hwdev);
hifc_set_wq_page_size(hwdev, func_id,
HIFC_HW_WQ_PAGE_SIZE);
}
hifc_comm_ceqs_free(hwdev);
break;
case HIFC_HWDEV_MBOX_INITED:
break;
case HIFC_HWDEV_MGMT_INITED:
hifc_comm_pf_to_mgmt_free(hwdev);
break;
case HIFC_HWDEV_AEQ_INITED:
hifc_comm_aeqs_free(hwdev);
break;
case HIFC_HWDEV_CLP_INITED:
hifc_comm_clp_to_mgmt_free(hwdev);
break;
default:
break;
}
}
#define HIFC_FUNC_STATE_BUSY_TIMEOUT 300
void hifc_uninit_comm_ch(struct hifc_hwdev *hwdev)
{
enum hifc_hwdev_init_state init_state = HIFC_HWDEV_COMM_CH_INITED;
int cnt;
while (init_state > HIFC_HWDEV_NONE_INITED) {
if (!test_bit(init_state, &hwdev->func_state)) {
init_state--;
continue;
}
clear_bit(init_state, &hwdev->func_state);
cnt = 0;
while (test_bit(HIFC_HWDEV_STATE_BUSY, &hwdev->func_state) &&
cnt++ <= HIFC_FUNC_STATE_BUSY_TIMEOUT)
usleep_range(900, 1000);
__uninit_comm_module(hwdev, init_state);
init_state--;
}
}
int hifc_slq_init(void *dev, int num_wqs)
{
struct hifc_hwdev *hwdev = dev;
int err;
if (!dev)
return -EINVAL;
hwdev->wqs = kzalloc(sizeof(*hwdev->wqs), GFP_KERNEL);
if (!hwdev->wqs)
return -ENOMEM;
err = hifc_wqs_alloc(hwdev->wqs, num_wqs, hwdev->dev_hdl);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to alloc wqs\n");
kfree(hwdev->wqs);
hwdev->wqs = NULL;
}
return err;
}
void hifc_slq_uninit(void *dev)
{
struct hifc_hwdev *hwdev = dev;
if (!hwdev)
return;
hifc_wqs_free(hwdev->wqs);
kfree(hwdev->wqs);
}
int hifc_slq_alloc(void *dev, u16 wqebb_size, u16 q_depth, u16 page_size,
u64 *cla_addr, void **handle)
{
struct hifc_hwdev *hwdev = dev;
struct hifc_wq *wq;
int err;
if (!dev || !cla_addr || !handle)
return -EINVAL;
wq = kzalloc(sizeof(*wq), GFP_KERNEL);
if (!wq)
return -ENOMEM;
err = hifc_wq_allocate(hwdev->wqs, wq, wqebb_size, hwdev->wq_page_size,
q_depth, 0);
if (err) {
sdk_err(hwdev->dev_hdl, "Failed to alloc wq\n");
kfree(wq);
return -EFAULT;
}
*cla_addr = wq->block_paddr;
*handle = wq;
return 0;
}
void hifc_slq_free(void *dev, void *handle)
{
struct hifc_hwdev *hwdev = dev;
if (!hwdev || !handle)
return;
hifc_wq_free(hwdev->wqs, handle);
kfree(handle);
}
u64 hifc_slq_get_addr(void *handle, u16 index)
{
if (!handle)
return 0; /* NULL of wqe addr */
return (u64)hifc_get_wqebb_addr(handle, index);
}
u64 hifc_slq_get_first_pageaddr(void *handle)
{
struct hifc_wq *wq = handle;
if (!handle)
return 0; /* NULL of wqe addr */
return hifc_get_first_wqe_page_addr(wq);
}
int hifc_func_tmr_bitmap_set(void *hwdev, bool en)
{
struct hifc_func_tmr_bitmap_op bitmap_op = {0};
u16 out_size = sizeof(bitmap_op);
int err;
if (!hwdev)
return -EINVAL;
err = hifc_global_func_id_get(hwdev, &bitmap_op.func_idx);
if (err)
return err;
bitmap_op.ppf_idx = hifc_ppf_idx(hwdev);
if (en)
bitmap_op.op_id = FUNC_TMR_BITMAP_ENABLE;
else
bitmap_op.op_id = FUNC_TMR_BITMAP_DISABLE;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_FUNC_TMR_BITMAT_SET,
&bitmap_op, sizeof(bitmap_op),
&bitmap_op, &out_size, 0);
if (err || !out_size || bitmap_op.status) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to set timer bitmap, err: %d, status: 0x%x, out_size: 0x%x\n",
err, bitmap_op.status, out_size);
return -EFAULT;
}
return 0;
}
int ppf_ht_gpa_set(struct hifc_hwdev *hwdev, struct hifc_page_addr *pg0,
struct hifc_page_addr *pg1)
{
struct comm_info_ht_gpa_set ht_gpa_set = {0};
u16 out_size = sizeof(ht_gpa_set);
int ret;
pg0->virt_addr = dma_zalloc_coherent(hwdev->dev_hdl,
HIFC_HT_GPA_PAGE_SIZE,
&pg0->phys_addr, GFP_KERNEL);
if (!pg0->virt_addr) {
sdk_err(hwdev->dev_hdl, "Alloc pg0 page addr failed\n");
return -EFAULT;
}
pg1->virt_addr = dma_zalloc_coherent(hwdev->dev_hdl,
HIFC_HT_GPA_PAGE_SIZE,
&pg1->phys_addr, GFP_KERNEL);
if (!pg1->virt_addr) {
sdk_err(hwdev->dev_hdl, "Alloc pg1 page addr failed\n");
return -EFAULT;
}
ht_gpa_set.page_pa0 = pg0->phys_addr;
ht_gpa_set.page_pa1 = pg1->phys_addr;
sdk_info(hwdev->dev_hdl, "PPF ht gpa set: page_addr0.pa=0x%llx, page_addr1.pa=0x%llx\n",
pg0->phys_addr, pg1->phys_addr);
ret = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_PPF_HT_GPA_SET,
&ht_gpa_set, sizeof(ht_gpa_set),
&ht_gpa_set, &out_size, 0);
if (ret || !out_size || ht_gpa_set.status) {
sdk_warn(hwdev->dev_hdl, "PPF ht gpa set failed, ret: %d, status: 0x%x, out_size: 0x%x\n",
ret, ht_gpa_set.status, out_size);
return -EFAULT;
}
hwdev->page_pa0.phys_addr = pg0->phys_addr;
hwdev->page_pa0.virt_addr = pg0->virt_addr;
hwdev->page_pa1.phys_addr = pg1->phys_addr;
hwdev->page_pa1.virt_addr = pg1->virt_addr;
return 0;
}
int hifc_ppf_ht_gpa_init(struct hifc_hwdev *hwdev)
{
int ret;
int i;
int j;
int size;
struct hifc_page_addr page_addr0[HIFC_PPF_HT_GPA_SET_RETRY_TIMES];
struct hifc_page_addr page_addr1[HIFC_PPF_HT_GPA_SET_RETRY_TIMES];
size = HIFC_PPF_HT_GPA_SET_RETRY_TIMES * sizeof(page_addr0[0]);
memset(page_addr0, 0, size);
memset(page_addr1, 0, size);
for (i = 0; i < HIFC_PPF_HT_GPA_SET_RETRY_TIMES; i++) {
ret = ppf_ht_gpa_set(hwdev, &page_addr0[i], &page_addr1[i]);
if (!ret)
break;
}
for (j = 0; j < i; j++) {
if (page_addr0[j].virt_addr) {
dma_free_coherent(hwdev->dev_hdl,
HIFC_HT_GPA_PAGE_SIZE,
page_addr0[j].virt_addr,
page_addr0[j].phys_addr);
page_addr0[j].virt_addr = NULL;
}
if (page_addr1[j].virt_addr) {
dma_free_coherent(hwdev->dev_hdl,
HIFC_HT_GPA_PAGE_SIZE,
page_addr1[j].virt_addr,
page_addr1[j].phys_addr);
page_addr1[j].virt_addr = NULL;
}
}
if (i >= HIFC_PPF_HT_GPA_SET_RETRY_TIMES) {
sdk_err(hwdev->dev_hdl, "PPF ht gpa init failed, retry times: %d\n",
i);
return -EFAULT;
}
return 0;
}
void hifc_ppf_ht_gpa_deinit(struct hifc_hwdev *hwdev)
{
if (hwdev->page_pa0.virt_addr) {
dma_free_coherent(hwdev->dev_hdl, HIFC_HT_GPA_PAGE_SIZE,
hwdev->page_pa0.virt_addr,
hwdev->page_pa0.phys_addr);
hwdev->page_pa0.virt_addr = NULL;
}
if (hwdev->page_pa1.virt_addr) {
dma_free_coherent(hwdev->dev_hdl, HIFC_HT_GPA_PAGE_SIZE,
hwdev->page_pa1.virt_addr,
hwdev->page_pa1.phys_addr);
hwdev->page_pa1.virt_addr = NULL;
}
}
static int set_ppf_tmr_status(struct hifc_hwdev *hwdev,
enum ppf_tmr_status status)
{
struct hifc_ppf_tmr_op op = {0};
u16 out_size = sizeof(op);
int err = 0;
if (!hwdev)
return -EINVAL;
if (hifc_func_type(hwdev) != TYPE_PPF)
return -EFAULT;
if (status == HIFC_PPF_TMR_FLAG_START) {
err = hifc_ppf_ht_gpa_init(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "PPF ht gpa init fail!\n");
return -EFAULT;
}
} else {
hifc_ppf_ht_gpa_deinit(hwdev);
}
op.op_id = status;
op.ppf_idx = hifc_ppf_idx(hwdev);
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_PPF_TMR_SET, &op,
sizeof(op), &op, &out_size, 0);
if (err || !out_size || op.status) {
sdk_err(hwdev->dev_hdl, "Failed to set ppf timer, err: %d, status: 0x%x, out_size: 0x%x\n",
err, op.status, out_size);
return -EFAULT;
}
return 0;
}
int hifc_ppf_tmr_start(void *hwdev)
{
if (!hwdev) {
pr_err("Hwdev pointer is NULL for starting ppf timer\n");
return -EINVAL;
}
return set_ppf_tmr_status(hwdev, HIFC_PPF_TMR_FLAG_START);
}
int hifc_ppf_tmr_stop(void *hwdev)
{
if (!hwdev) {
pr_err("Hwdev pointer is NULL for stop ppf timer\n");
return -EINVAL;
}
return set_ppf_tmr_status(hwdev, HIFC_PPF_TMR_FLAG_STOP);
}
int hifc_set_wq_page_size(struct hifc_hwdev *hwdev, u16 func_idx,
u32 page_size)
{
struct hifc_wq_page_size page_size_info = {0};
u16 out_size = sizeof(page_size_info);
int err;
page_size_info.func_idx = func_idx;
page_size_info.ppf_idx = hifc_ppf_idx(hwdev);
page_size_info.page_size = HIFC_PAGE_SIZE_HW(page_size);
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_PAGESIZE_SET,
&page_size_info, sizeof(page_size_info),
&page_size_info, &out_size, 0);
if (err || !out_size || page_size_info.status) {
sdk_err(hwdev->dev_hdl, "Failed to set wq page size, err: %d, status: 0x%x, out_size: 0x%0x\n",
err, page_size_info.status, out_size);
return -EFAULT;
}
return 0;
}
bool hifc_mgmt_event_ack_first(u8 mod, u8 cmd)
{
if ((mod == HIFC_MOD_COMM && cmd == HIFC_MGMT_CMD_GET_HOST_INFO) ||
(mod == HIFC_MOD_COMM && cmd == HIFC_MGMT_CMD_HEARTBEAT_EVENT))
return false;
if (mod == HIFC_MOD_COMM || mod == HIFC_MOD_L2NIC ||
mod == HIFC_MOD_HILINK)
return true;
return false;
}
#define FAULT_SHOW_STR_LEN 16
static void chip_fault_show(struct hifc_hwdev *hwdev,
struct hifc_fault_event *event)
{
char fault_level[FAULT_LEVEL_MAX][FAULT_SHOW_STR_LEN + 1] = {
"fatal", "reset", "flr", "general", "suggestion"};
char level_str[FAULT_SHOW_STR_LEN + 1];
struct hifc_fault_event_stats *fault;
u8 node_id, level;
u32 pos, base;
fault = &hwdev->hw_stats.fault_event_stats;
memset(level_str, 0, FAULT_SHOW_STR_LEN + 1);
level = event->event.chip.err_level;
if (level < FAULT_LEVEL_MAX)
strncpy(level_str, fault_level[level],
FAULT_SHOW_STR_LEN);
else
strncpy(level_str, "Unknown", FAULT_SHOW_STR_LEN);
if (level == FAULT_LEVEL_SERIOUS_FLR) {
sdk_err(hwdev->dev_hdl, "err_level: %d [%s], flr func_id: %d\n",
level, level_str, event->event.chip.func_id);
atomic_inc(&fault->fault_type_stat[event->type]);
}
sdk_err(hwdev->dev_hdl, "module_id: 0x%x, err_type: 0x%x, err_level: %d[%s], err_csr_addr: 0x%08x, err_csr_value: 0x%08x\n",
event->event.chip.node_id,
event->event.chip.err_type, level, level_str,
event->event.chip.err_csr_addr,
event->event.chip.err_csr_value);
node_id = event->event.chip.node_id;
atomic_inc(&fault->chip_fault_stats[node_id][level]);
base = event->event.chip.node_id * FAULT_LEVEL_MAX *
HIFC_CHIP_ERROR_TYPE_MAX;
pos = base + HIFC_CHIP_ERROR_TYPE_MAX * level +
event->event.chip.err_type;
if (pos < HIFC_CHIP_FAULT_SIZE)
hwdev->chip_fault_stats[pos]++;
}
static void fault_report_show(struct hifc_hwdev *hwdev,
struct hifc_fault_event *event)
{
char fault_type[FAULT_TYPE_MAX][FAULT_SHOW_STR_LEN + 1] = {
"chip", "ucode", "mem rd timeout", "mem wr timeout",
"reg rd timeout", "reg wr timeout", "phy fault"};
char type_str[FAULT_SHOW_STR_LEN + 1];
struct hifc_fault_event_stats *fault;
sdk_err(hwdev->dev_hdl, "Fault event report received, func_id: %d.\n",
hifc_global_func_id(hwdev));
memset(type_str, 0, FAULT_SHOW_STR_LEN + 1);
if (event->type < FAULT_TYPE_MAX)
strncpy(type_str, fault_type[event->type], FAULT_SHOW_STR_LEN);
else
strncpy(type_str, "Unknown", FAULT_SHOW_STR_LEN);
sdk_err(hwdev->dev_hdl, "Fault type: %d [%s]\n", event->type, type_str);
sdk_err(hwdev->dev_hdl, "Fault val[0]: 0x%08x, val[1]: 0x%08x, val[2]: 0x%08x, val[3]: 0x%08x\n",
event->event.val[0], event->event.val[1], event->event.val[2],
event->event.val[3]);
fault = &hwdev->hw_stats.fault_event_stats;
switch (event->type) {
case FAULT_TYPE_CHIP:
chip_fault_show(hwdev, event);
break;
case FAULT_TYPE_UCODE:
atomic_inc(&fault->fault_type_stat[event->type]);
sdk_err(hwdev->dev_hdl, "cause_id: %d, core_id: %d, c_id: %d, epc: 0x%08x\n",
event->event.ucode.cause_id, event->event.ucode.core_id,
event->event.ucode.c_id, event->event.ucode.epc);
break;
case FAULT_TYPE_MEM_RD_TIMEOUT:
case FAULT_TYPE_MEM_WR_TIMEOUT:
atomic_inc(&fault->fault_type_stat[event->type]);
sdk_err(hwdev->dev_hdl, "err_csr_ctrl: 0x%08x, err_csr_data: 0x%08x, ctrl_tab: 0x%08x, mem_index: 0x%08x\n",
event->event.mem_timeout.err_csr_ctrl,
event->event.mem_timeout.err_csr_data,
event->event.mem_timeout.ctrl_tab,
event->event.mem_timeout.mem_index);
break;
case FAULT_TYPE_REG_RD_TIMEOUT:
case FAULT_TYPE_REG_WR_TIMEOUT:
atomic_inc(&fault->fault_type_stat[event->type]);
sdk_err(hwdev->dev_hdl, "err_csr: 0x%08x\n",
event->event.reg_timeout.err_csr);
break;
case FAULT_TYPE_PHY_FAULT:
atomic_inc(&fault->fault_type_stat[event->type]);
sdk_err(hwdev->dev_hdl, "op_type: %u, port_id: %u, dev_ad: %u, csr_addr: 0x%08x, op_data: 0x%08x\n",
event->event.phy_fault.op_type,
event->event.phy_fault.port_id,
event->event.phy_fault.dev_ad,
event->event.phy_fault.csr_addr,
event->event.phy_fault.op_data);
break;
default:
break;
}
}
static void hifc_refresh_history_fault(struct hifc_hwdev *hwdev,
struct hifc_fault_recover_info *info)
{
if (!hwdev->history_fault_flag) {
hwdev->history_fault_flag = true;
memcpy(&hwdev->history_fault, info,
sizeof(struct hifc_fault_recover_info));
} else {
if (hwdev->history_fault.fault_lev >= info->fault_lev)
memcpy(&hwdev->history_fault, info,
sizeof(struct hifc_fault_recover_info));
}
}
static void fault_event_handler(struct hifc_hwdev *hwdev, void *buf_in,
u16 in_size, void *buf_out, u16 *out_size)
{
struct hifc_cmd_fault_event *fault_event;
struct hifc_event_info event_info;
struct hifc_fault_info_node *fault_node;
if (in_size != sizeof(*fault_event)) {
sdk_err(hwdev->dev_hdl, "Invalid fault event report, length: %d, should be %ld.\n",
in_size, sizeof(*fault_event));
return;
}
fault_event = buf_in;
fault_report_show(hwdev, &fault_event->event);
if (hwdev->event_callback) {
event_info.type = HIFC_EVENT_FAULT;
memcpy(&event_info.info, &fault_event->event,
sizeof(event_info.info));
hwdev->event_callback(hwdev->event_pri_handle, &event_info);
}
/* refresh history fault info */
fault_node = kzalloc(sizeof(*fault_node), GFP_KERNEL);
if (!fault_node) {
sdk_err(hwdev->dev_hdl, "Malloc fault node memory failed\n");
return;
}
if (fault_event->event.type <= FAULT_TYPE_REG_WR_TIMEOUT)
fault_node->info.fault_src = fault_event->event.type;
else if (fault_event->event.type == FAULT_TYPE_PHY_FAULT)
fault_node->info.fault_src = HIFC_FAULT_SRC_HW_PHY_FAULT;
if (fault_node->info.fault_src == HIFC_FAULT_SRC_HW_MGMT_CHIP)
fault_node->info.fault_lev =
fault_event->event.event.chip.err_level;
else
fault_node->info.fault_lev = FAULT_LEVEL_FATAL;
memcpy(&fault_node->info.fault_data.hw_mgmt, &fault_event->event.event,
sizeof(union hifc_fault_hw_mgmt));
hifc_refresh_history_fault(hwdev, &fault_node->info);
down(&hwdev->fault_list_sem);
kfree(fault_node);
up(&hwdev->fault_list_sem);
}
static void heartbeat_lost_event_handler(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_fault_info_node *fault_node;
struct hifc_event_info event_info = {0};
atomic_inc(&hwdev->hw_stats.heart_lost_stats);
sdk_err(hwdev->dev_hdl, "Heart lost report received, func_id: %d\n",
hifc_global_func_id(hwdev));
if (hwdev->event_callback) {
event_info.type = HIFC_EVENT_HEART_LOST;
hwdev->event_callback(hwdev->event_pri_handle, &event_info);
}
/* refresh history fault info */
fault_node = kzalloc(sizeof(*fault_node), GFP_KERNEL);
if (!fault_node) {
sdk_err(hwdev->dev_hdl, "Malloc fault node memory failed\n");
return;
}
fault_node->info.fault_src = HIFC_FAULT_SRC_HOST_HEARTBEAT_LOST;
fault_node->info.fault_lev = FAULT_LEVEL_FATAL;
hifc_refresh_history_fault(hwdev, &fault_node->info);
down(&hwdev->fault_list_sem);
kfree(fault_node);
up(&hwdev->fault_list_sem);
}
static void sw_watchdog_timeout_info_show(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_mgmt_watchdog_info *watchdog_info;
u32 *dump_addr, *reg, stack_len, i, j;
if (in_size != sizeof(*watchdog_info)) {
sdk_err(hwdev->dev_hdl, "Invalid mgmt watchdog report, length: %d, should be %ld.\n",
in_size, sizeof(*watchdog_info));
return;
}
watchdog_info = buf_in;
sdk_err(hwdev->dev_hdl, "Mgmt deadloop time: 0x%x 0x%x, task id: 0x%x, sp: 0x%x\n",
watchdog_info->curr_time_h, watchdog_info->curr_time_l,
watchdog_info->task_id, watchdog_info->sp);
sdk_err(hwdev->dev_hdl, "Stack current used: 0x%x, peak used: 0x%x, overflow flag: 0x%x, top: 0x%x, bottom: 0x%x\n",
watchdog_info->curr_used, watchdog_info->peak_used,
watchdog_info->is_overflow, watchdog_info->stack_top,
watchdog_info->stack_bottom);
sdk_err(hwdev->dev_hdl, "Mgmt pc: 0x%08x, lr: 0x%08x, cpsr:0x%08x\n",
watchdog_info->pc, watchdog_info->lr, watchdog_info->cpsr);
sdk_err(hwdev->dev_hdl, "Mgmt register info\n");
for (i = 0; i < 3; i++) {
reg = watchdog_info->reg + (u64)(u32)(4 * i);
sdk_err(hwdev->dev_hdl, "0x%08x 0x%08x 0x%08x 0x%08x\n",
*(reg), *(reg + 1), *(reg + 2), *(reg + 3));
}
sdk_err(hwdev->dev_hdl, "0x%08x\n", watchdog_info->reg[12]);
if (watchdog_info->stack_actlen <= 1024) {
stack_len = watchdog_info->stack_actlen;
} else {
sdk_err(hwdev->dev_hdl, "Oops stack length: 0x%x is wrong\n",
watchdog_info->stack_actlen);
stack_len = 1024;
}
sdk_err(hwdev->dev_hdl, "Mgmt dump stack, 16Bytes per line(start from sp)\n");
for (i = 0; i < (stack_len / 16); i++) {
dump_addr = (u32 *)(watchdog_info->data + ((u64)(u32)(i * 16)));
sdk_err(hwdev->dev_hdl, "0x%08x 0x%08x 0x%08x 0x%08x\n",
*dump_addr, *(dump_addr + 1), *(dump_addr + 2),
*(dump_addr + 3));
}
for (j = 0; j < ((stack_len % 16) / 4); j++) {
dump_addr = (u32 *)(watchdog_info->data +
((u64)(u32)(i * 16 + j * 4)));
sdk_err(hwdev->dev_hdl, "0x%08x ", *dump_addr);
}
*out_size = sizeof(*watchdog_info);
watchdog_info = buf_out;
watchdog_info->status = 0;
}
static void mgmt_watchdog_timeout_event_handler(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_fault_info_node *fault_node;
sw_watchdog_timeout_info_show(hwdev, buf_in, in_size,
buf_out, out_size);
/* refresh history fault info */
fault_node = kzalloc(sizeof(*fault_node), GFP_KERNEL);
if (!fault_node) {
sdk_err(hwdev->dev_hdl, "Malloc fault node memory failed\n");
return;
}
fault_node->info.fault_src = HIFC_FAULT_SRC_MGMT_WATCHDOG;
fault_node->info.fault_lev = FAULT_LEVEL_FATAL;
hifc_refresh_history_fault(hwdev, &fault_node->info);
down(&hwdev->fault_list_sem);
kfree(fault_node);
up(&hwdev->fault_list_sem);
}
static void mgmt_reset_event_handler(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
sdk_info(hwdev->dev_hdl, "Mgmt is reset\n");
/* mgmt reset only occurred when hot update or Mgmt deadloop,
* if Mgmt deadloop, mgmt will report an event with
* mod=0, cmd=0x56, and will reported fault to os,
* so mgmt reset event don't need to report fault
*/
}
static void hifc_fmw_act_ntc_handler(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_event_info event_info = {0};
struct hifc_fmw_act_ntc *notice_info;
if (in_size != sizeof(*notice_info)) {
sdk_err(hwdev->dev_hdl, "Invalid mgmt firmware active notice, length: %d, should be %ld.\n",
in_size, sizeof(*notice_info));
return;
}
/* mgmt is active now, restart heartbeat enhanced detection */
__set_heartbeat_ehd_detect_delay(hwdev, 0);
if (!hwdev->event_callback)
return;
event_info.type = HIFC_EVENT_FMW_ACT_NTC;
hwdev->event_callback(hwdev->event_pri_handle, &event_info);
*out_size = sizeof(*notice_info);
notice_info = buf_out;
notice_info->status = 0;
}
static void hifc_pcie_dfx_event_handler(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_pcie_dfx_ntc *notice_info = buf_in;
struct hifc_pcie_dfx_info *dfx_info;
u16 size = 0;
u16 cnt = 0;
u32 num = 0;
u32 i, j;
int err;
u32 *reg;
if (in_size != sizeof(*notice_info)) {
sdk_err(hwdev->dev_hdl, "Invalid mgmt firmware active notice, length: %d, should be %ld.\n",
in_size, sizeof(*notice_info));
return;
}
dfx_info = kzalloc(sizeof(*dfx_info), GFP_KERNEL);
if (!dfx_info) {
sdk_err(hwdev->dev_hdl, "Malloc dfx_info memory failed\n");
return;
}
((struct hifc_pcie_dfx_ntc *)buf_out)->status = 0;
*out_size = sizeof(*notice_info);
num = (u32)(notice_info->len / 1024);
sdk_info(hwdev->dev_hdl, "INFO LEN: %d\n", notice_info->len);
sdk_info(hwdev->dev_hdl, "PCIE DFX:\n");
dfx_info->host_id = 0;
for (i = 0; i < num; i++) {
dfx_info->offset = i * MAX_PCIE_DFX_BUF_SIZE;
if (i == (num - 1))
dfx_info->last = 1;
size = sizeof(*dfx_info);
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_PCIE_DFX_GET,
dfx_info, sizeof(*dfx_info),
dfx_info, &size, 0);
if (err || dfx_info->status || !size) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to get pcie dfx info, err: %d, status: 0x%x, out size: 0x%x\n",
err, dfx_info->status, size);
kfree(dfx_info);
return;
}
reg = (u32 *)dfx_info->data;
for (j = 0; j < 256; j = j + 8) {
/*lint -save -e661 -e662*/
sdk_info(hwdev->dev_hdl, "0x%04x: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
cnt, reg[j], reg[(u32)(j + 1)],
reg[(u32)(j + 2)], reg[(u32)(j + 3)],
reg[(u32)(j + 4)], reg[(u32)(j + 5)],
reg[(u32)(j + 6)], reg[(u32)(j + 7)]);
/*lint -restore*/
cnt = cnt + 32;
}
memset(dfx_info->data, 0, MAX_PCIE_DFX_BUF_SIZE);
}
kfree(dfx_info);
}
struct hifc_mctp_get_host_info {
u8 status;
u8 version;
u8 rsvd0[6];
u8 huawei_cmd;
u8 sub_cmd;
u8 rsvd[2];
u32 actual_len;
u8 data[1024];
};
static void hifc_mctp_get_host_info_event_handler(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_event_info event_info = {0};
struct hifc_mctp_get_host_info *mctp_out, *mctp_in;
struct hifc_mctp_host_info *host_info;
if (in_size != sizeof(*mctp_in)) {
sdk_err(hwdev->dev_hdl, "Invalid mgmt mctp info, length: %d, should be %ld\n",
in_size, sizeof(*mctp_in));
return;
}
*out_size = sizeof(*mctp_out);
mctp_out = buf_out;
mctp_out->status = 0;
if (!hwdev->event_callback) {
mctp_out->status = HIFC_MGMT_STATUS_ERR_INIT;
return;
}
mctp_in = buf_in;
host_info = &event_info.mctp_info;
host_info->major_cmd = mctp_in->huawei_cmd;
host_info->sub_cmd = mctp_in->sub_cmd;
host_info->data = mctp_out->data;
event_info.type = HIFC_EVENT_MCTP_GET_HOST_INFO;
hwdev->event_callback(hwdev->event_pri_handle, &event_info);
mctp_out->actual_len = host_info->data_len;
}
char *__hw_to_char_fec[HILINK_FEC_MAX_TYPE] = {"RS-FEC", "BASE-FEC", "NO-FEC"};
char *__hw_to_char_port_type[LINK_PORT_MAX_TYPE] = {
"Unknown", "Fibre", "Electric", "Direct Attach Copper", "AOC",
"Back plane", "BaseT"
};
static void __get_port_type(struct hifc_hwdev *hwdev,
struct hifc_link_info *info, char **port_type)
{
if (info->cable_absent) {
sdk_info(hwdev->dev_hdl, "Cable unpresent\n");
return;
}
if (info->port_type < LINK_PORT_MAX_TYPE)
*port_type = __hw_to_char_port_type[info->port_type];
else
sdk_info(hwdev->dev_hdl, "Unknown port type: %u\n",
info->port_type);
if (info->port_type == LINK_PORT_FIBRE) {
if (info->port_sub_type == FIBRE_SUBTYPE_SR)
*port_type = "Fibre-SR";
else if (info->port_sub_type == FIBRE_SUBTYPE_LR)
*port_type = "Fibre-LR";
}
}
static void __print_cable_info(struct hifc_hwdev *hwdev,
struct hifc_link_info *info)
{
char tmp_str[512] = {0};
char tmp_vendor[17] = {0};
char *port_type = "Unknown port type";
int i;
__get_port_type(hwdev, info, &port_type);
for (i = sizeof(info->vendor_name) - 1; i >= 0; i--) {
if (info->vendor_name[i] == ' ')
info->vendor_name[i] = '\0';
else
break;
}
memcpy(tmp_vendor, info->vendor_name,
sizeof(info->vendor_name));
snprintf(tmp_str, sizeof(tmp_str) - 1,
"Vendor: %s, %s, length: %um, max_speed: %uGbps",
tmp_vendor, port_type, info->cable_length,
info->cable_max_speed);
if (info->port_type == LINK_PORT_FIBRE ||
info->port_type == LINK_PORT_AOC) {
snprintf(tmp_str, sizeof(tmp_str) - 1,
"%s, %s, Temperature: %u", tmp_str,
info->sfp_type ? "SFP" : "QSFP", info->cable_temp);
if (info->sfp_type) {
snprintf(tmp_str, sizeof(tmp_str) - 1,
"%s, rx power: %uuW, tx power: %uuW",
tmp_str, info->power[0], info->power[1]);
} else {
snprintf(tmp_str, sizeof(tmp_str) - 1,
"%s, rx power: %uuw %uuW %uuW %uuW",
tmp_str, info->power[0], info->power[1],
info->power[2], info->power[3]);
}
}
sdk_info(hwdev->dev_hdl, "Cable information: %s\n",
tmp_str);
}
static void __hi30_lane_info(struct hifc_hwdev *hwdev,
struct hilink_lane *lane)
{
struct hi30_ffe_data *ffe_data;
struct hi30_ctle_data *ctle_data;
ffe_data = (struct hi30_ffe_data *)lane->hi30_ffe;
ctle_data = (struct hi30_ctle_data *)lane->hi30_ctle;
sdk_info(hwdev->dev_hdl, "TX_FFE: PRE1=%s%d; PRE2=%s%d; MAIN=%d; POST1=%s%d; POST1X=%s%d\n",
(ffe_data->PRE1 & 0x10) ? "-" : "",
(int)(ffe_data->PRE1 & 0xf),
(ffe_data->PRE2 & 0x10) ? "-" : "",
(int)(ffe_data->PRE2 & 0xf),
(int)ffe_data->MAIN,
(ffe_data->POST1 & 0x10) ? "-" : "",
(int)(ffe_data->POST1 & 0xf),
(ffe_data->POST2 & 0x10) ? "-" : "",
(int)(ffe_data->POST2 & 0xf));
sdk_info(hwdev->dev_hdl, "RX_CTLE: Gain1~3=%u %u %u; Boost1~3=%u %u %u; Zero1~3=%u %u %u; Squelch1~3=%u %u %u\n",
ctle_data->ctlebst[0], ctle_data->ctlebst[1],
ctle_data->ctlebst[2], ctle_data->ctlecmband[0],
ctle_data->ctlecmband[1], ctle_data->ctlecmband[2],
ctle_data->ctlermband[0], ctle_data->ctlermband[1],
ctle_data->ctlermband[2], ctle_data->ctleza[0],
ctle_data->ctleza[1], ctle_data->ctleza[2]);
}
static void __print_hi30_status(struct hifc_hwdev *hwdev,
struct hifc_link_info *info)
{
struct hilink_lane *lane;
int lane_used_num = 0, i;
for (i = 0; i < HILINK_MAX_LANE; i++) {
lane = (struct hilink_lane *)(info->lane2 + i * sizeof(*lane));
if (!lane->lane_used)
continue;
__hi30_lane_info(hwdev, lane);
lane_used_num++;
}
/* in new firmware, all lane info setted in lane2 */
if (lane_used_num)
return;
/* compatible old firmware */
__hi30_lane_info(hwdev, (struct hilink_lane *)info->lane1);
}
static void __print_link_info(struct hifc_hwdev *hwdev,
struct hifc_link_info *info,
enum hilink_info_print_event type)
{
char *fec = "None";
if (info->fec < HILINK_FEC_MAX_TYPE)
fec = __hw_to_char_fec[info->fec];
else
sdk_info(hwdev->dev_hdl, "Unknown fec type: %u\n",
info->fec);
if (type == HILINK_EVENT_LINK_UP || !info->an_state) {
sdk_info(hwdev->dev_hdl, "Link information: speed %dGbps, %s, autoneg %s\n",
info->speed, fec, info->an_state ? "on" : "off");
} else {
sdk_info(hwdev->dev_hdl, "Link information: antoneg: %s\n",
info->an_state ? "on" : "off");
}
}
static char *hilink_info_report_type[HILINK_EVENT_MAX_TYPE] = {
"", "link up", "link down", "cable plugged"
};
void print_hilink_info(struct hifc_hwdev *hwdev,
enum hilink_info_print_event type,
struct hifc_link_info *info)
{
__print_cable_info(hwdev, info);
__print_link_info(hwdev, info, type);
__print_hi30_status(hwdev, info);
if (type == HILINK_EVENT_LINK_UP)
return;
if (type == HILINK_EVENT_CABLE_PLUGGED) {
sdk_info(hwdev->dev_hdl, "alos: %u, rx_los: %u\n",
info->alos, info->rx_los);
return;
}
sdk_info(hwdev->dev_hdl, "PMA ctrl: %s, MAC tx %s, MAC rx %s, PMA debug info reg: 0x%x, PMA signal ok reg: 0x%x, RF/LF status reg: 0x%x\n",
info->pma_status == 1 ? "off" : "on",
info->mac_tx_en ? "enable" : "disable",
info->mac_rx_en ? "enable" : "disable", info->pma_dbg_info_reg,
info->pma_signal_ok_reg, info->rf_lf_status_reg);
sdk_info(hwdev->dev_hdl, "alos: %u, rx_los: %u, PCS block counter reg: 0x%x, PCS link: 0x%x, MAC link: 0x%x PCS_err_cnt: 0x%x\n",
info->alos, info->rx_los, info->pcs_err_blk_cnt_reg,
info->pcs_link_reg, info->mac_link_reg, info->pcs_err_cnt);
}
static void hifc_print_hilink_info(struct hifc_hwdev *hwdev, void *buf_in,
u16 in_size, void *buf_out, u16 *out_size)
{
struct hifc_hilink_link_info *hilink_info = buf_in;
struct hifc_link_info *info;
enum hilink_info_print_event type;
if (in_size != sizeof(*hilink_info)) {
sdk_err(hwdev->dev_hdl, "Invalid hilink info message size %d, should be %ld\n",
in_size, sizeof(*hilink_info));
return;
}
((struct hifc_hilink_link_info *)buf_out)->status = 0;
*out_size = sizeof(*hilink_info);
info = &hilink_info->info;
type = hilink_info->info_type;
if (type < HILINK_EVENT_LINK_UP || type >= HILINK_EVENT_MAX_TYPE) {
sdk_info(hwdev->dev_hdl, "Invalid hilink info report, type: %d\n",
type);
return;
}
sdk_info(hwdev->dev_hdl, "Hilink info report after %s\n",
hilink_info_report_type[type]);
print_hilink_info(hwdev, type, info);
}
static void __port_sfp_info_event(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_cmd_get_sfp_qsfp_info *sfp_info = buf_in;
struct hifc_port_routine_cmd *rt_cmd;
struct card_node *chip_node = hwdev->chip_node;
if (in_size != sizeof(*sfp_info)) {
sdk_err(hwdev->dev_hdl, "Invalid sfp info cmd, length: %d, should be %ld\n",
in_size, sizeof(*sfp_info));
return;
}
if (sfp_info->port_id >= HIFC_MAX_PORT_ID) {
sdk_err(hwdev->dev_hdl, "Invalid sfp port id: %d, max port is %d\n",
sfp_info->port_id, HIFC_MAX_PORT_ID - 1);
return;
}
if (!chip_node->rt_cmd)
return;
rt_cmd = &chip_node->rt_cmd[sfp_info->port_id];
mutex_lock(&chip_node->sfp_mutex);
memcpy(&rt_cmd->sfp_info, sfp_info, sizeof(rt_cmd->sfp_info));
rt_cmd->up_send_sfp_info = true;
mutex_unlock(&chip_node->sfp_mutex);
}
static void __port_sfp_abs_event(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_cmd_get_light_module_abs *sfp_abs = buf_in;
struct hifc_port_routine_cmd *rt_cmd;
struct card_node *chip_node = hwdev->chip_node;
if (in_size != sizeof(*sfp_abs)) {
sdk_err(hwdev->dev_hdl, "Invalid sfp absent cmd, length: %d, should be %ld\n",
in_size, sizeof(*sfp_abs));
return;
}
if (sfp_abs->port_id >= HIFC_MAX_PORT_ID) {
sdk_err(hwdev->dev_hdl, "Invalid sfp port id: %d, max port is %d\n",
sfp_abs->port_id, HIFC_MAX_PORT_ID - 1);
return;
}
if (!chip_node->rt_cmd)
return;
rt_cmd = &chip_node->rt_cmd[sfp_abs->port_id];
mutex_lock(&chip_node->sfp_mutex);
memcpy(&rt_cmd->abs, sfp_abs, sizeof(rt_cmd->abs));
rt_cmd->up_send_sfp_abs = true;
mutex_unlock(&chip_node->sfp_mutex);
}
static void mgmt_heartbeat_enhanced_event(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_heartbeat_event *hb_event = buf_in;
struct hifc_heartbeat_event *hb_event_out = buf_out;
struct hifc_hwdev *dev = hwdev;
if (in_size != sizeof(*hb_event)) {
sdk_err(dev->dev_hdl, "Invalid data size from mgmt for heartbeat event: %d\n",
in_size);
return;
}
if (dev->heartbeat_ehd.last_heartbeat != hb_event->heart) {
dev->heartbeat_ehd.last_update_jiffies = jiffies;
dev->heartbeat_ehd.last_heartbeat = hb_event->heart;
}
hb_event_out->drv_heart = HEARTBEAT_DRV_MAGIC_ACK;
hb_event_out->status = 0;
*out_size = sizeof(*hb_event_out);
}
struct dev_event_handler {
u8 mod;
u8 cmd;
void (*handler)(struct hifc_hwdev *hwdev, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size);
};
struct dev_event_handler dev_cmd_handler[] = {
{
.mod = HIFC_MOD_L2NIC,
.cmd = HIFC_PORT_CMD_GET_SFP_INFO,
.handler = __port_sfp_info_event,
},
{
.mod = HIFC_MOD_L2NIC,
.cmd = HIFC_PORT_CMD_GET_SFP_ABS,
.handler = __port_sfp_abs_event,
},
{
.mod = HIFC_MOD_HILINK,
.cmd = HIFC_HILINK_CMD_GET_LINK_INFO,
.handler = hifc_print_hilink_info,
},
{
.mod = HIFC_MOD_COMM,
.cmd = HIFC_MGMT_CMD_FAULT_REPORT,
.handler = fault_event_handler,
},
{
.mod = HIFC_MOD_L2NIC,
.cmd = HIFC_MGMT_CMD_HEART_LOST_REPORT,
.handler = heartbeat_lost_event_handler,
},
{
.mod = HIFC_MOD_COMM,
.cmd = HIFC_MGMT_CMD_WATCHDOG_INFO,
.handler = mgmt_watchdog_timeout_event_handler,
},
{
.mod = HIFC_MOD_L2NIC,
.cmd = HIFC_PORT_CMD_MGMT_RESET,
.handler = mgmt_reset_event_handler,
},
{
.mod = HIFC_MOD_COMM,
.cmd = HIFC_MGMT_CMD_FMW_ACT_NTC,
.handler = hifc_fmw_act_ntc_handler,
},
{
.mod = HIFC_MOD_COMM,
.cmd = HIFC_MGMT_CMD_PCIE_DFX_NTC,
.handler = hifc_pcie_dfx_event_handler,
},
{
.mod = HIFC_MOD_COMM,
.cmd = HIFC_MGMT_CMD_GET_HOST_INFO,
.handler = hifc_mctp_get_host_info_event_handler,
},
{
.mod = HIFC_MOD_COMM,
.cmd = HIFC_MGMT_CMD_HEARTBEAT_EVENT,
.handler = mgmt_heartbeat_enhanced_event,
},
};
/* public process for this event:
* pf link change event
* pf heart lost event ,TBD
* pf fault report event
* vf link change event
* vf heart lost event, TBD
* vf fault report event, TBD
*/
static void _event_handler(struct hifc_hwdev *hwdev, enum hifc_mod_type mod,
u8 cmd, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
u32 i, size = sizeof(dev_cmd_handler) / sizeof(dev_cmd_handler[0]);
if (!hwdev)
return;
*out_size = 0;
for (i = 0; i < size; i++) {
if (cmd == dev_cmd_handler[i].cmd &&
mod == dev_cmd_handler[i].mod) {
dev_cmd_handler[i].handler(hwdev, buf_in, in_size,
buf_out, out_size);
break;
}
}
/* can't find this event cmd */
if (i == size)
sdk_warn(hwdev->dev_hdl, "Unsupported mod(%d) event cmd(%d) to process\n",
mod, cmd);
}
/* pf link change event */
static void pf_nic_event_handler(void *hwdev, void *pri_handle, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
_event_handler(hwdev, HIFC_MOD_L2NIC, cmd, buf_in, in_size,
buf_out, out_size);
}
static void pf_hilink_event_handler(void *hwdev, void *pri_handle, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
_event_handler(hwdev, HIFC_MOD_HILINK, cmd, buf_in, in_size,
buf_out, out_size);
}
/* pf fault report event */
void pf_fault_event_handler(void *hwdev, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
_event_handler(hwdev, HIFC_MOD_COMM, HIFC_MGMT_CMD_FAULT_REPORT,
buf_in, in_size, buf_out, out_size);
}
void mgmt_watchdog_event_handler(void *hwdev, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
_event_handler(hwdev, HIFC_MOD_COMM, HIFC_MGMT_CMD_WATCHDOG_INFO,
buf_in, in_size, buf_out, out_size);
}
void mgmt_fmw_act_event_handler(void *hwdev, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
_event_handler(hwdev, HIFC_MOD_COMM, HIFC_MGMT_CMD_FMW_ACT_NTC,
buf_in, in_size, buf_out, out_size);
}
void mgmt_pcie_dfx_event_handler(void *hwdev, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
_event_handler(hwdev, HIFC_MOD_COMM, HIFC_MGMT_CMD_PCIE_DFX_NTC,
buf_in, in_size, buf_out, out_size);
}
void mgmt_get_mctp_event_handler(void *hwdev, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
_event_handler(hwdev, HIFC_MOD_COMM, HIFC_MGMT_CMD_GET_HOST_INFO,
buf_in, in_size, buf_out, out_size);
}
void mgmt_heartbeat_event_handler(void *hwdev, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
_event_handler(hwdev, HIFC_MOD_COMM, HIFC_MGMT_CMD_HEARTBEAT_EVENT,
buf_in, in_size, buf_out, out_size);
}
static void pf_event_register(struct hifc_hwdev *hwdev)
{
if (hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_MGMT_INITED)) {
hifc_register_mgmt_msg_cb(hwdev, HIFC_MOD_L2NIC,
hwdev, pf_nic_event_handler);
hifc_register_mgmt_msg_cb(hwdev, HIFC_MOD_HILINK,
hwdev,
pf_hilink_event_handler);
hifc_comm_recv_mgmt_self_cmd_reg(hwdev,
HIFC_MGMT_CMD_FAULT_REPORT,
pf_fault_event_handler);
hifc_comm_recv_mgmt_self_cmd_reg(hwdev,
HIFC_MGMT_CMD_WATCHDOG_INFO,
mgmt_watchdog_event_handler);
hifc_comm_recv_mgmt_self_cmd_reg(hwdev,
HIFC_MGMT_CMD_FMW_ACT_NTC,
mgmt_fmw_act_event_handler);
hifc_comm_recv_mgmt_self_cmd_reg(hwdev,
HIFC_MGMT_CMD_PCIE_DFX_NTC,
mgmt_pcie_dfx_event_handler);
hifc_comm_recv_mgmt_self_cmd_reg(hwdev,
HIFC_MGMT_CMD_GET_HOST_INFO,
mgmt_get_mctp_event_handler);
}
}
void hifc_event_register(void *dev, void *pri_handle,
hifc_event_handler callback)
{
struct hifc_hwdev *hwdev = dev;
if (!dev) {
pr_err("Hwdev pointer is NULL for register event\n");
return;
}
hwdev->event_callback = callback;
hwdev->event_pri_handle = pri_handle;
pf_event_register(hwdev);
}
void hifc_event_unregister(void *dev)
{
struct hifc_hwdev *hwdev = dev;
hwdev->event_callback = NULL;
hwdev->event_pri_handle = NULL;
hifc_unregister_mgmt_msg_cb(hwdev, HIFC_MOD_L2NIC);
hifc_unregister_mgmt_msg_cb(hwdev, HIFC_MOD_HILINK);
hifc_comm_recv_up_self_cmd_unreg(hwdev,
HIFC_MGMT_CMD_FAULT_REPORT);
hifc_comm_recv_up_self_cmd_unreg(hwdev,
HIFC_MGMT_CMD_WATCHDOG_INFO);
hifc_comm_recv_up_self_cmd_unreg(hwdev,
HIFC_MGMT_CMD_FMW_ACT_NTC);
hifc_comm_recv_up_self_cmd_unreg(hwdev,
HIFC_MGMT_CMD_PCIE_DFX_NTC);
hifc_comm_recv_up_self_cmd_unreg(hwdev,
HIFC_MGMT_CMD_GET_HOST_INFO);
}
/* 0 - heartbeat lost, 1 - normal */
static u8 hifc_get_heartbeat_status(struct hifc_hwdev *hwdev)
{
struct hifc_hwif *hwif = hwdev->hwif;
u32 attr1;
/* suprise remove should be set 1 */
if (!hifc_get_chip_present_flag(hwdev))
return 1;
attr1 = hifc_hwif_read_reg(hwif, HIFC_CSR_FUNC_ATTR1_ADDR);
if (attr1 == HIFC_PCIE_LINK_DOWN) {
sdk_err(hwdev->dev_hdl, "Detect pcie is link down\n");
hifc_set_chip_absent(hwdev);
hifc_force_complete_all(hwdev);
/* should notify chiperr to pangea
* when detecting pcie link down
*/
return 1;
}
return HIFC_AF1_GET(attr1, MGMT_INIT_STATUS);
}
static void hifc_heartbeat_event_handler(struct work_struct *work)
{
struct hifc_hwdev *hwdev =
container_of(work, struct hifc_hwdev, timer_work);
u16 out = 0;
_event_handler(hwdev, HIFC_MOD_L2NIC, HIFC_MGMT_CMD_HEART_LOST_REPORT,
NULL, 0, &out, &out);
}
static bool __detect_heartbeat_ehd_lost(struct hifc_hwdev *hwdev)
{
struct hifc_heartbeat_enhanced *hb_ehd = &hwdev->heartbeat_ehd;
u64 update_time;
bool hb_ehd_lost = false;
if (!hb_ehd->en)
return false;
if (time_after(jiffies, hb_ehd->start_detect_jiffies)) {
update_time = jiffies_to_msecs(jiffies -
hb_ehd->last_update_jiffies);
if (update_time > HIFC_HEARBEAT_ENHANCED_LOST) {
sdk_warn(hwdev->dev_hdl, "Heartbeat enhanced lost for %d millisecond\n",
(u32)update_time);
hb_ehd_lost = true;
}
} else {
/* mgmt may not report heartbeart enhanced event and won't
* update last_update_jiffies
*/
hb_ehd->last_update_jiffies = jiffies;
}
return hb_ehd_lost;
}
static void hifc_heartbeat_timer_handler(struct timer_list *t)
{
struct hifc_hwdev *hwdev = from_timer(hwdev, t, heartbeat_timer);
if (__detect_heartbeat_ehd_lost(hwdev) ||
!hifc_get_heartbeat_status(hwdev)) {
hwdev->heartbeat_lost = 1;
queue_work(hwdev->workq, &hwdev->timer_work);
} else {
mod_timer(&hwdev->heartbeat_timer,
jiffies + msecs_to_jiffies(HIFC_HEARTBEAT_PERIOD));
}
}
void add_to_timer(struct timer_list *timer, long period)
{
if (!timer)
return;
add_timer(timer);
}
void delete_timer(struct timer_list *timer)
{
if (!timer)
return;
del_timer_sync(timer);
}
void hifc_init_heartbeat(struct hifc_hwdev *hwdev)
{
timer_setup(&hwdev->heartbeat_timer, hifc_heartbeat_timer_handler, 0);
hwdev->heartbeat_timer.expires =
jiffies + msecs_to_jiffies(HIFC_HEARTBEAT_START_EXPIRE);
add_to_timer(&hwdev->heartbeat_timer, HIFC_HEARTBEAT_PERIOD);
INIT_WORK(&hwdev->timer_work, hifc_heartbeat_event_handler);
}
void hifc_destroy_heartbeat(struct hifc_hwdev *hwdev)
{
delete_timer(&hwdev->heartbeat_timer);
}
u8 hifc_nic_sw_aeqe_handler(void *handle, u8 event, u64 data)
{
struct hifc_hwdev *hwdev = (struct hifc_hwdev *)handle;
u8 event_level = FAULT_LEVEL_MAX;
switch (event) {
case HIFC_INTERNAL_TSO_FATAL_ERROR:
case HIFC_INTERNAL_LRO_FATAL_ERROR:
case HIFC_INTERNAL_TX_FATAL_ERROR:
case HIFC_INTERNAL_RX_FATAL_ERROR:
case HIFC_INTERNAL_OTHER_FATAL_ERROR:
atomic_inc(&hwdev->hw_stats.nic_ucode_event_stats[event]);
sdk_err(hwdev->dev_hdl, "SW aeqe event type: 0x%x, data: 0x%llx\n",
event, data);
event_level = FAULT_LEVEL_FATAL;
break;
default:
sdk_err(hwdev->dev_hdl, "Unsupported sw event %d to process.\n",
event);
}
return event_level;
}
void hifc_set_pcie_order_cfg(void *handle)
{
struct hifc_hwdev *hwdev = handle;
u32 val;
if (!hwdev)
return;
val = hifc_hwif_read_reg(hwdev->hwif,
HIFC_GLB_DMA_SO_RO_REPLACE_ADDR);
if (HIFC_GLB_DMA_SO_RO_GET(val, SO_RO_CFG)) {
val = HIFC_GLB_DMA_SO_R0_CLEAR(val, SO_RO_CFG);
val |= HIFC_GLB_DMA_SO_R0_SET(HIFC_DISABLE_ORDER, SO_RO_CFG);
hifc_hwif_write_reg(hwdev->hwif,
HIFC_GLB_DMA_SO_RO_REPLACE_ADDR, val);
}
}
int hifc_get_board_info(void *hwdev, struct hifc_board_info *info)
{
struct hifc_comm_board_info board_info = {0};
u16 out_size = sizeof(board_info);
int err;
if (!hwdev || !info)
return -EINVAL;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_GET_BOARD_INFO,
&board_info, sizeof(board_info),
&board_info, &out_size, 0);
if (err || board_info.status || !out_size) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to get board info, err: %d, status: 0x%x, out size: 0x%x\n",
err, board_info.status, out_size);
return -EFAULT;
}
memcpy(info, &board_info.info, sizeof(*info));
return 0;
}
int hifc_get_phy_init_status(void *hwdev,
enum phy_init_status_type *init_status)
{
struct hifc_phy_init_status phy_info = {0};
u16 out_size = sizeof(phy_info);
int err;
if (!hwdev || !init_status)
return -EINVAL;
err = hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_GET_PHY_INIT_STATUS,
&phy_info, sizeof(phy_info),
&phy_info, &out_size, 0);
if ((phy_info.status != HIFC_MGMT_CMD_UNSUPPORTED &&
phy_info.status) || err || !out_size) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to get phy info, err: %d, status: 0x%x, out size: 0x%x\n",
err, phy_info.status, out_size);
return -EFAULT;
}
*init_status = phy_info.init_status;
return phy_info.status;
}
int hifc_phy_init_status_judge(void *hwdev)
{
enum phy_init_status_type init_status;
int ret;
unsigned long end;
/* It's not a phy, so don't judge phy status */
if (!HIFC_BOARD_IS_PHY((struct hifc_hwdev *)hwdev))
return 0;
end = jiffies + msecs_to_jiffies(PHY_DOING_INIT_TIMEOUT);
do {
ret = hifc_get_phy_init_status(hwdev, &init_status);
if (ret == HIFC_MGMT_CMD_UNSUPPORTED)
return 0;
else if (ret)
return -EFAULT;
switch (init_status) {
case PHY_INIT_SUCCESS:
sdk_info(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Phy init is success\n");
return 0;
case PHY_NONSUPPORT:
sdk_info(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Phy init is nonsupport\n");
return 0;
case PHY_INIT_FAIL:
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Phy init is failed\n");
return -EIO;
case PHY_INIT_DOING:
msleep(250);
break;
default:
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Phy init is invalid, init_status: %d\n",
init_status);
return -EINVAL;
}
} while (time_before(jiffies, end));
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Phy init is timeout\n");
return -ETIMEDOUT;
}
int hifc_get_mgmt_channel_status(void *handle)
{
struct hifc_hwdev *hwdev = handle;
u32 val;
if (!hwdev)
return true;
if (hifc_func_type(hwdev) == TYPE_VF ||
!(hwdev->feature_cap & HIFC_FUNC_SUPP_DFX_REG))
return false;
val = hifc_hwif_read_reg(hwdev->hwif, HIFC_ICPL_RESERVD_ADDR);
return HIFC_GET_MGMT_CHANNEL_STATUS(val, MGMT_CHANNEL_STATUS);
}
#define HIFC_RED_REG_TIME_OUT 3000
int hifc_read_reg(void *hwdev, u32 reg_addr, u32 *val)
{
struct hifc_reg_info reg_info = {0};
u16 out_size = sizeof(reg_info);
int err;
if (!hwdev || !val)
return -EINVAL;
reg_info.reg_addr = reg_addr;
reg_info.val_length = sizeof(u32);
err = hifc_pf_msg_to_mgmt_sync(hwdev, HIFC_MOD_COMM,
HIFC_MGMT_CMD_REG_READ,
&reg_info, sizeof(reg_info),
&reg_info, &out_size,
HIFC_RED_REG_TIME_OUT);
if (reg_info.status || err || !out_size) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Failed to read reg, err: %d, status: 0x%x, out size: 0x%x\n",
err, reg_info.status, out_size);
return -EFAULT;
}
*val = reg_info.data[0];
return 0;
}
void hifc_swe_fault_handler(struct hifc_hwdev *hwdev, u8 level,
u8 event, u64 val)
{
struct hifc_fault_info_node *fault_node;
if (level < FAULT_LEVEL_MAX) {
fault_node = kzalloc(sizeof(*fault_node), GFP_KERNEL);
if (!fault_node) {
sdk_err(hwdev->dev_hdl, "Malloc fault node memory failed\n");
return;
}
fault_node->info.fault_src = HIFC_FAULT_SRC_SW_MGMT_UCODE;
fault_node->info.fault_lev = level;
fault_node->info.fault_data.sw_mgmt.event_id = event;
fault_node->info.fault_data.sw_mgmt.event_data = val;
hifc_refresh_history_fault(hwdev, &fault_node->info);
down(&hwdev->fault_list_sem);
kfree(fault_node);
up(&hwdev->fault_list_sem);
}
}
void hifc_set_func_deinit_flag(void *hwdev)
{
struct hifc_hwdev *dev = hwdev;
set_bit(HIFC_HWDEV_FUNC_DEINIT, &dev->func_state);
}
int hifc_get_card_present_state(void *hwdev, bool *card_present_state)
{
u32 addr, attr1;
if (!hwdev || !card_present_state)
return -EINVAL;
addr = HIFC_CSR_FUNC_ATTR1_ADDR;
attr1 = hifc_hwif_read_reg(((struct hifc_hwdev *)hwdev)->hwif, addr);
if (attr1 == HIFC_PCIE_LINK_DOWN) {
sdk_warn(((struct hifc_hwdev *)hwdev)->dev_hdl, "Card is not present\n");
*card_present_state = (bool)0;
} else {
*card_present_state = (bool)1;
}
return 0;
}
void hifc_disable_mgmt_msg_report(void *hwdev)
{
struct hifc_hwdev *hw_dev = (struct hifc_hwdev *)hwdev;
hifc_set_pf_status(hw_dev->hwif, HIFC_PF_STATUS_INIT);
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef HIFC_HWDEV_H_
#define HIFC_HWDEV_H_
/* to use 0-level CLA, page size must be: 64B(wqebb) * 4096(max_q_depth) */
#define HIFC_DEFAULT_WQ_PAGE_SIZE 0x40000
#define HIFC_HW_WQ_PAGE_SIZE 0x1000
#define HIFC_MSG_TO_MGMT_MAX_LEN 2016
#define HIFC_MGMT_STATUS_ERR_OK 0 /* Ok */
#define HIFC_MGMT_STATUS_ERR_PARAM 1 /* Invalid parameter */
#define HIFC_MGMT_STATUS_ERR_FAILED 2 /* Operation failed */
#define HIFC_MGMT_STATUS_ERR_PORT 3 /* Invalid port */
#define HIFC_MGMT_STATUS_ERR_TIMEOUT 4 /* Operation time out */
#define HIFC_MGMT_STATUS_ERR_NOMATCH 5 /* Version not match */
#define HIFC_MGMT_STATUS_ERR_EXIST 6 /* Entry exists */
#define HIFC_MGMT_STATUS_ERR_NOMEM 7 /* Out of memory */
#define HIFC_MGMT_STATUS_ERR_INIT 8 /* Feature not initialized */
#define HIFC_MGMT_STATUS_ERR_FAULT 9 /* Invalid address */
#define HIFC_MGMT_STATUS_ERR_PERM 10 /* Operation not permitted */
#define HIFC_MGMT_STATUS_ERR_EMPTY 11 /* Table empty */
#define HIFC_MGMT_STATUS_ERR_FULL 12 /* Table full */
#define HIFC_MGMT_STATUS_ERR_NOT_FOUND 13 /* Not found */
#define HIFC_MGMT_STATUS_ERR_BUSY 14 /* Device or resource busy */
#define HIFC_MGMT_STATUS_ERR_RESOURCE 15 /* No resources for operation */
#define HIFC_MGMT_STATUS_ERR_CONFIG 16 /* Invalid configuration */
#define HIFC_MGMT_STATUS_ERR_UNAVAIL 17 /* Feature unavailable */
#define HIFC_MGMT_STATUS_ERR_CRC 18 /* CRC check failed */
#define HIFC_MGMT_STATUS_ERR_NXIO 19 /* No such device or address */
#define HIFC_MGMT_STATUS_ERR_ROLLBACK 20 /* Chip rollback fail */
#define HIFC_MGMT_STATUS_ERR_LEN 32 /* Length too short or too long */
#define HIFC_MGMT_STATUS_ERR_UNSUPPORT 0xFF /* Feature not supported*/
/* Qe buffer relates define */
enum hifc_rx_buf_size {
HIFC_RX_BUF_SIZE_32B = 0x20,
HIFC_RX_BUF_SIZE_64B = 0x40,
HIFC_RX_BUF_SIZE_96B = 0x60,
HIFC_RX_BUF_SIZE_128B = 0x80,
HIFC_RX_BUF_SIZE_192B = 0xC0,
HIFC_RX_BUF_SIZE_256B = 0x100,
HIFC_RX_BUF_SIZE_384B = 0x180,
HIFC_RX_BUF_SIZE_512B = 0x200,
HIFC_RX_BUF_SIZE_768B = 0x300,
HIFC_RX_BUF_SIZE_1K = 0x400,
HIFC_RX_BUF_SIZE_1_5K = 0x600,
HIFC_RX_BUF_SIZE_2K = 0x800,
HIFC_RX_BUF_SIZE_3K = 0xC00,
HIFC_RX_BUF_SIZE_4K = 0x1000,
HIFC_RX_BUF_SIZE_8K = 0x2000,
HIFC_RX_BUF_SIZE_16K = 0x4000,
};
enum hifc_res_state {
HIFC_RES_CLEAN = 0,
HIFC_RES_ACTIVE = 1,
};
enum ppf_tmr_status {
HIFC_PPF_TMR_FLAG_STOP,
HIFC_PPF_TMR_FLAG_START,
};
struct cfg_mgmt_info;
struct hifc_hwif;
struct hifc_wqs;
struct hifc_aeqs;
struct hifc_ceqs;
struct hifc_msg_pf_to_mgmt;
struct hifc_cmdqs;
struct hifc_root_ctxt {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_idx;
u16 rsvd1;
u8 set_cmdq_depth;
u8 cmdq_depth;
u8 lro_en;
u8 rsvd2;
u8 ppf_idx;
u8 rsvd3;
u16 rq_depth;
u16 rx_buf_sz;
u16 sq_depth;
};
struct hifc_page_addr {
void *virt_addr;
u64 phys_addr;
};
#define HIFC_PCIE_LINK_DOWN 0xFFFFFFFF
#define HIFC_DEV_ACTIVE_FW_TIMEOUT (35 * 1000)
#define HIFC_DEV_BUSY_ACTIVE_FW 0xFE
#define HIFC_HW_WQ_NAME "hifc_hardware"
#define HIFC_HEARTBEAT_PERIOD 1000
#define HIFC_HEARTBEAT_START_EXPIRE 5000
#define HIFC_CHIP_ERROR_TYPE_MAX 1024
#define HIFC_CHIP_FAULT_SIZE \
(HIFC_NODE_ID_MAX * FAULT_LEVEL_MAX * HIFC_CHIP_ERROR_TYPE_MAX)
#define HIFC_CSR_DMA_ATTR_TBL_BASE 0xC80
#define HIFC_CSR_DMA_ATTR_TBL_STRIDE 0x4
#define HIFC_CSR_DMA_ATTR_TBL_ADDR(idx) \
(HIFC_CSR_DMA_ATTR_TBL_BASE \
+ (idx) * HIFC_CSR_DMA_ATTR_TBL_STRIDE)
/* MSI-X registers */
#define HIFC_CSR_MSIX_CNT_BASE 0x2004
#define HIFC_CSR_MSIX_STRIDE 0x8
#define HIFC_CSR_MSIX_CNT_ADDR(idx) \
(HIFC_CSR_MSIX_CNT_BASE + (idx) * HIFC_CSR_MSIX_STRIDE)
enum hifc_node_id {
HIFC_NODE_ID_IPSU = 4,
HIFC_NODE_ID_MGMT_HOST = 21, /*Host CPU send API to uP */
HIFC_NODE_ID_MAX = 22
};
#define HIFC_HWDEV_INIT_MODES_MASK ((1UL << HIFC_HWDEV_ALL_INITED) - 1)
enum hifc_hwdev_func_state {
HIFC_HWDEV_FUNC_INITED = HIFC_HWDEV_ALL_INITED,
HIFC_HWDEV_FUNC_DEINIT,
HIFC_HWDEV_STATE_BUSY = 31,
};
struct hifc_cqm_stats {
atomic_t cqm_cmd_alloc_cnt;
atomic_t cqm_cmd_free_cnt;
atomic_t cqm_send_cmd_box_cnt;
atomic_t cqm_db_addr_alloc_cnt;
atomic_t cqm_db_addr_free_cnt;
atomic_t cqm_fc_srq_create_cnt;
atomic_t cqm_qpc_mpt_create_cnt;
atomic_t cqm_nonrdma_queue_create_cnt;
atomic_t cqm_qpc_mpt_delete_cnt;
atomic_t cqm_nonrdma_queue_delete_cnt;
atomic_t cqm_aeq_callback_cnt[112];
};
struct hifc_link_event_stats {
atomic_t link_down_stats;
atomic_t link_up_stats;
};
struct hifc_fault_event_stats {
atomic_t chip_fault_stats[HIFC_NODE_ID_MAX][FAULT_LEVEL_MAX];
atomic_t fault_type_stat[FAULT_TYPE_MAX];
atomic_t pcie_fault_stats;
};
struct hifc_hw_stats {
atomic_t heart_lost_stats;
atomic_t nic_ucode_event_stats[HIFC_NIC_FATAL_ERROR_MAX];
struct hifc_cqm_stats cqm_stats;
struct hifc_link_event_stats link_event_stats;
struct hifc_fault_event_stats fault_event_stats;
};
struct hifc_fault_info_node {
struct list_head list;
struct hifc_hwdev *hwdev;
struct hifc_fault_recover_info info;
};
enum heartbeat_support_state {
HEARTBEAT_NOT_SUPPORT = 0,
HEARTBEAT_SUPPORT,
};
/* 25s for max 5 heartbeat event lost */
#define HIFC_HEARBEAT_ENHANCED_LOST 25000
struct hifc_heartbeat_enhanced {
bool en; /* enable enhanced heartbeat or not */
unsigned long last_update_jiffies;
u32 last_heartbeat;
unsigned long start_detect_jiffies;
};
#define HIFC_CMD_VER_FUNC_ID 2
#define HIFC_GLB_DMA_SO_RO_REPLACE_ADDR 0x488C
#define HIFC_ICPL_RESERVD_ADDR 0x9204
#define l2nic_msg_to_mgmt_sync(hwdev, cmd, buf_in, in_size, buf_out, out_size)\
hifc_msg_to_mgmt_sync(hwdev, HIFC_MOD_L2NIC, cmd, \
buf_in, in_size, \
buf_out, out_size, 0)
struct hifc_hwdev {
void *adapter_hdl; /* pointer to hifc_pcidev or NDIS_Adapter */
void *pcidev_hdl; /* pointer to pcidev or Handler */
void *dev_hdl; /* pointer to pcidev->dev or Handler, for
* sdk_err() or dma_alloc()
*/
u32 wq_page_size;
void *cqm_hdl;
void *chip_node;
struct hifc_hwif *hwif; /* include void __iomem *bar */
struct cfg_mgmt_info *cfg_mgmt;
struct hifc_wqs *wqs; /* for FC slq */
struct hifc_aeqs *aeqs;
struct hifc_ceqs *ceqs;
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
struct hifc_clp_pf_to_mgmt *clp_pf_to_mgmt;
struct hifc_cmdqs *cmdqs;
struct hifc_page_addr page_pa0;
struct hifc_page_addr page_pa1;
hifc_event_handler event_callback;
void *event_pri_handle;
bool history_fault_flag;
struct hifc_fault_recover_info history_fault;
struct semaphore fault_list_sem;
struct work_struct timer_work;
struct workqueue_struct *workq;
struct timer_list heartbeat_timer;
/* true represent heartbeat lost, false represent heartbeat restore */
u32 heartbeat_lost;
int chip_present_flag;
struct hifc_heartbeat_enhanced heartbeat_ehd;
struct hifc_hw_stats hw_stats;
u8 *chip_fault_stats;
u32 statufull_ref_cnt;
ulong func_state;
u64 feature_cap; /* enum hifc_func_cap */
/* In bmgw x86 host, driver can't send message to mgmt cpu directly,
* need to trasmit message ppf mbox to bmgw arm host.
*/
struct hifc_board_info board_info;
};
int hifc_init_comm_ch(struct hifc_hwdev *hwdev);
void hifc_uninit_comm_ch(struct hifc_hwdev *hwdev);
enum hifc_set_arm_type {
HIFC_SET_ARM_CMDQ,
HIFC_SET_ARM_SQ,
HIFC_SET_ARM_TYPE_NUM,
};
/* up to driver event */
#define HIFC_PORT_CMD_MGMT_RESET 0x0
struct hifc_vport_state {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_id;
u16 rsvd1;
u8 state;
u8 rsvd2[3];
};
struct hifc_l2nic_reset {
u8 status;
u8 version;
u8 rsvd0[6];
u16 func_id;
u16 reset_flag;
};
/* HILINK module interface */
/* cmd of mgmt CPU message for HILINK module */
enum hifc_hilink_cmd {
HIFC_HILINK_CMD_GET_LINK_INFO = 0x3,
HIFC_HILINK_CMD_SET_LINK_SETTINGS = 0x8,
};
enum hilink_info_print_event {
HILINK_EVENT_LINK_UP = 1,
HILINK_EVENT_LINK_DOWN,
HILINK_EVENT_CABLE_PLUGGED,
HILINK_EVENT_MAX_TYPE,
};
enum hifc_link_port_type {
LINK_PORT_FIBRE = 1,
LINK_PORT_ELECTRIC,
LINK_PORT_COPPER,
LINK_PORT_AOC,
LINK_PORT_BACKPLANE,
LINK_PORT_BASET,
LINK_PORT_MAX_TYPE,
};
enum hilink_fibre_subtype {
FIBRE_SUBTYPE_SR = 1,
FIBRE_SUBTYPE_LR,
FIBRE_SUBTYPE_MAX,
};
enum hilink_fec_type {
HILINK_FEC_RSFEC,
HILINK_FEC_BASEFEC,
HILINK_FEC_NOFEC,
HILINK_FEC_MAX_TYPE,
};
/* cmd of mgmt CPU message */
enum hifc_port_cmd {
HIFC_PORT_CMD_SET_MAC = 0x9,
HIFC_PORT_CMD_GET_AUTONEG_CAP = 0xf,
HIFC_PORT_CMD_SET_VPORT_ENABLE = 0x5d,
HIFC_PORT_CMD_UPDATE_MAC = 0xa4,
HIFC_PORT_CMD_GET_SFP_INFO = 0xad,
HIFC_PORT_CMD_GET_STD_SFP_INFO = 0xF0,
HIFC_PORT_CMD_GET_SFP_ABS = 0xFB,
};
struct hi30_ffe_data {
u8 PRE2;
u8 PRE1;
u8 POST1;
u8 POST2;
u8 MAIN;
};
struct hi30_ctle_data {
u8 ctlebst[3];
u8 ctlecmband[3];
u8 ctlermband[3];
u8 ctleza[3];
u8 ctlesqh[3];
u8 ctleactgn[3];
u8 ctlepassgn;
};
#define HILINK_MAX_LANE 4
struct hilink_lane {
u8 lane_used;
u8 hi30_ffe[5];
u8 hi30_ctle[19];
u8 hi30_dfe[14];
u8 rsvd4;
};
struct hifc_link_info {
u8 vendor_name[16];
/* port type:
* 1 - fiber; 2 - electric; 3 - copper; 4 - AOC; 5 - backplane;
* 6 - baseT; 0xffff - unknown
*
* port subtype:
* Only when port_type is fiber:
* 1 - SR; 2 - LR
*/
u32 port_type;
u32 port_sub_type;
u32 cable_length;
u8 cable_temp;
u8 cable_max_speed; /* 1(G)/10(G)/25(G)... */
u8 sfp_type; /* 0 - qsfp; 1 - sfp */
u8 rsvd0;
u32 power[4]; /* uW; if is sfp, only power[2] is valid */
u8 an_state; /* 0 - off; 1 - on */
u8 fec; /* 0 - RSFEC; 1 - BASEFEC; 2 - NOFEC */
u16 speed; /* 1(G)/10(G)/25(G)... */
u8 cable_absent; /* 0 - cable present; 1 - cable unpresent */
u8 alos; /* 0 - yes; 1 - no */
u8 rx_los; /* 0 - yes; 1 - no */
u8 pma_status;
u32 pma_dbg_info_reg; /* pma debug info: */
u32 pma_signal_ok_reg; /* signal ok: */
u32 pcs_err_blk_cnt_reg; /* error block counter: */
u32 rf_lf_status_reg; /* RF/LF status: */
u8 pcs_link_reg; /* pcs link: */
u8 mac_link_reg; /* mac link: */
u8 mac_tx_en;
u8 mac_rx_en;
u32 pcs_err_cnt;
/* struct hifc_hilink_lane: 40 bytes */
u8 lane1[40]; /* 25GE lane in old firmware */
u8 rsvd1[266]; /* hilink machine state */
u8 lane2[HILINK_MAX_LANE * 40]; /* max 4 lane for 40GE/100GE */
u8 rsvd2[2];
};
struct hifc_hilink_link_info {
u8 status;
u8 version;
u8 rsvd0[6];
u16 port_id;
u8 info_type; /* 1: link up 2: link down 3 cable plugged */
u8 rsvd1;
struct hifc_link_info info;
u8 rsvd2[352];
};
int hifc_set_arm_bit(void *hwdev, enum hifc_set_arm_type q_type, u16 q_id);
void hifc_set_chip_present(void *hwdev);
void hifc_force_complete_all(void *hwdev);
void hifc_init_heartbeat(struct hifc_hwdev *hwdev);
void hifc_destroy_heartbeat(struct hifc_hwdev *hwdev);
u8 hifc_nic_sw_aeqe_handler(void *handle, u8 event, u64 data);
int hifc_l2nic_reset_base(struct hifc_hwdev *hwdev, u16 reset_flag);
int hifc_pf_msg_to_mgmt_sync(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size,
void *buf_out, u16 *out_size, u32 timeout);
void hifc_swe_fault_handler(struct hifc_hwdev *hwdev, u8 level,
u8 event, u64 val);
bool hifc_mgmt_event_ack_first(u8 mod, u8 cmd);
int hifc_phy_init_status_judge(void *hwdev);
int hifc_api_csr_rd32(void *hwdev, u8 dest, u32 addr, u32 *val);
int hifc_api_csr_wr32(void *hwdev, u8 dest, u32 addr, u32 val);
void mgmt_heartbeat_event_handler(void *hwdev, void *buf_in, u16 in_size,
void *buf_out, u16 *out_size);
struct hifc_sge {
u32 hi_addr;
u32 lo_addr;
u32 len;
};
void hifc_cpu_to_be32(void *data, int len);
void hifc_be32_to_cpu(void *data, int len);
void hifc_set_sge(struct hifc_sge *sge, dma_addr_t addr, u32 len);
#endif
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/io-mapping.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_hwif.h"
#include "hifc_api_cmd.h"
#include "hifc_mgmt.h"
#include "hifc_eqs.h"
#define WAIT_HWIF_READY_TIMEOUT 10000
#define HIFC_SELFTEST_RESULT 0x883C
u32 hifc_hwif_read_reg(struct hifc_hwif *hwif, u32 reg)
{
return be32_to_cpu(readl(hwif->cfg_regs_base + reg));
}
void hifc_hwif_write_reg(struct hifc_hwif *hwif, u32 reg, u32 val)
{
writel(cpu_to_be32(val), hwif->cfg_regs_base + reg);
}
/**
* hwif_ready - test if the HW initialization passed
* @hwdev: the pointer to hw device
* Return: 0 - success, negative - failure
**/
static int hwif_ready(struct hifc_hwdev *hwdev)
{
u32 addr, attr1;
addr = HIFC_CSR_FUNC_ATTR1_ADDR;
attr1 = hifc_hwif_read_reg(hwdev->hwif, addr);
if (attr1 == HIFC_PCIE_LINK_DOWN)
return -EBUSY;
if (!HIFC_AF1_GET(attr1, MGMT_INIT_STATUS))
return -EBUSY;
return 0;
}
static int wait_hwif_ready(struct hifc_hwdev *hwdev)
{
ulong timeout = 0;
do {
if (!hwif_ready(hwdev))
return 0;
usleep_range(999, 1000);
timeout++;
} while (timeout <= WAIT_HWIF_READY_TIMEOUT);
sdk_err(hwdev->dev_hdl, "Wait for hwif timeout\n");
return -EBUSY;
}
/**
* set_hwif_attr - set the attributes as members in hwif
* @hwif: the hardware interface of a pci function device
* @attr0: the first attribute that was read from the hw
* @attr1: the second attribute that was read from the hw
* @attr2: the third attribute that was read from the hw
**/
static void set_hwif_attr(struct hifc_hwif *hwif, u32 attr0, u32 attr1,
u32 attr2)
{
hwif->attr.func_global_idx = HIFC_AF0_GET(attr0, FUNC_GLOBAL_IDX);
hwif->attr.port_to_port_idx = HIFC_AF0_GET(attr0, P2P_IDX);
hwif->attr.pci_intf_idx = HIFC_AF0_GET(attr0, PCI_INTF_IDX);
hwif->attr.vf_in_pf = HIFC_AF0_GET(attr0, VF_IN_PF);
hwif->attr.func_type = HIFC_AF0_GET(attr0, FUNC_TYPE);
hwif->attr.ppf_idx = HIFC_AF1_GET(attr1, PPF_IDX);
hwif->attr.num_aeqs = BIT(HIFC_AF1_GET(attr1, AEQS_PER_FUNC));
hwif->attr.num_ceqs = BIT(HIFC_AF1_GET(attr1, CEQS_PER_FUNC));
hwif->attr.num_irqs = BIT(HIFC_AF1_GET(attr1, IRQS_PER_FUNC));
hwif->attr.num_dma_attr = BIT(HIFC_AF1_GET(attr1, DMA_ATTR_PER_FUNC));
}
/**
* get_hwif_attr - read and set the attributes as members in hwif
* @hwif: the hardware interface of a pci function device
**/
static void get_hwif_attr(struct hifc_hwif *hwif)
{
u32 addr, attr0, attr1, attr2;
addr = HIFC_CSR_FUNC_ATTR0_ADDR;
attr0 = hifc_hwif_read_reg(hwif, addr);
addr = HIFC_CSR_FUNC_ATTR1_ADDR;
attr1 = hifc_hwif_read_reg(hwif, addr);
addr = HIFC_CSR_FUNC_ATTR2_ADDR;
attr2 = hifc_hwif_read_reg(hwif, addr);
set_hwif_attr(hwif, attr0, attr1, attr2);
}
void hifc_set_pf_status(struct hifc_hwif *hwif, enum hifc_pf_status status)
{
u32 attr5 = HIFC_AF5_SET(status, PF_STATUS);
u32 addr = HIFC_CSR_FUNC_ATTR5_ADDR;
hifc_hwif_write_reg(hwif, addr, attr5);
}
enum hifc_pf_status hifc_get_pf_status(struct hifc_hwif *hwif)
{
u32 attr5 = hifc_hwif_read_reg(hwif, HIFC_CSR_FUNC_ATTR5_ADDR);
return HIFC_AF5_GET(attr5, PF_STATUS);
}
enum hifc_doorbell_ctrl hifc_get_doorbell_ctrl_status(struct hifc_hwif *hwif)
{
u32 attr4 = hifc_hwif_read_reg(hwif, HIFC_CSR_FUNC_ATTR4_ADDR);
return HIFC_AF4_GET(attr4, DOORBELL_CTRL);
}
enum hifc_outbound_ctrl hifc_get_outbound_ctrl_status(struct hifc_hwif *hwif)
{
u32 attr4 = hifc_hwif_read_reg(hwif, HIFC_CSR_FUNC_ATTR4_ADDR);
return HIFC_AF4_GET(attr4, OUTBOUND_CTRL);
}
void hifc_enable_doorbell(struct hifc_hwif *hwif)
{
u32 addr, attr4;
addr = HIFC_CSR_FUNC_ATTR4_ADDR;
attr4 = hifc_hwif_read_reg(hwif, addr);
attr4 = HIFC_AF4_CLEAR(attr4, DOORBELL_CTRL);
attr4 |= HIFC_AF4_SET(ENABLE_DOORBELL, DOORBELL_CTRL);
hifc_hwif_write_reg(hwif, addr, attr4);
}
void hifc_disable_doorbell(struct hifc_hwif *hwif)
{
u32 addr, attr4;
addr = HIFC_CSR_FUNC_ATTR4_ADDR;
attr4 = hifc_hwif_read_reg(hwif, addr);
attr4 = HIFC_AF4_CLEAR(attr4, DOORBELL_CTRL);
attr4 |= HIFC_AF4_SET(DISABLE_DOORBELL, DOORBELL_CTRL);
hifc_hwif_write_reg(hwif, addr, attr4);
}
/**
* set_ppf - try to set hwif as ppf and set the type of hwif in this case
* @hwif: the hardware interface of a pci function device
**/
static void set_ppf(struct hifc_hwif *hwif)
{
struct hifc_func_attr *attr = &hwif->attr;
u32 addr, val, ppf_election;
/* Read Modify Write */
addr = HIFC_CSR_PPF_ELECTION_ADDR;
val = hifc_hwif_read_reg(hwif, addr);
val = HIFC_PPF_ELECTION_CLEAR(val, IDX);
ppf_election = HIFC_PPF_ELECTION_SET(attr->func_global_idx, IDX);
val |= ppf_election;
hifc_hwif_write_reg(hwif, addr, val);
/* Check PPF */
val = hifc_hwif_read_reg(hwif, addr);
attr->ppf_idx = HIFC_PPF_ELECTION_GET(val, IDX);
if (attr->ppf_idx == attr->func_global_idx)
attr->func_type = TYPE_PPF;
}
/**
* get_mpf - get the mpf index into the hwif
* @hwif: the hardware interface of a pci function device
**/
static void get_mpf(struct hifc_hwif *hwif)
{
struct hifc_func_attr *attr = &hwif->attr;
u32 mpf_election, addr;
addr = HIFC_CSR_GLOBAL_MPF_ELECTION_ADDR;
mpf_election = hifc_hwif_read_reg(hwif, addr);
attr->mpf_idx = HIFC_MPF_ELECTION_GET(mpf_election, IDX);
}
/**
* set_mpf - try to set hwif as mpf and set the mpf idx in hwif
* @hwif: the hardware interface of a pci function device
**/
static void set_mpf(struct hifc_hwif *hwif)
{
struct hifc_func_attr *attr = &hwif->attr;
u32 addr, val, mpf_election;
/* Read Modify Write */
addr = HIFC_CSR_GLOBAL_MPF_ELECTION_ADDR;
val = hifc_hwif_read_reg(hwif, addr);
val = HIFC_MPF_ELECTION_CLEAR(val, IDX);
mpf_election = HIFC_MPF_ELECTION_SET(attr->func_global_idx, IDX);
val |= mpf_election;
hifc_hwif_write_reg(hwif, addr, val);
}
static void init_db_area_idx(struct hifc_free_db_area *free_db_area)
{
u32 i;
for (i = 0; i < HIFC_DB_MAX_AREAS; i++)
free_db_area->db_idx[i] = i;
free_db_area->num_free = HIFC_DB_MAX_AREAS;
spin_lock_init(&free_db_area->idx_lock);
}
static int get_db_idx(struct hifc_hwif *hwif, u32 *idx)
{
struct hifc_free_db_area *free_db_area = &hwif->free_db_area;
u32 pos;
u32 pg_idx;
spin_lock(&free_db_area->idx_lock);
retry:
if (free_db_area->num_free == 0) {
spin_unlock(&free_db_area->idx_lock);
return -ENOMEM;
}
free_db_area->num_free--;
pos = free_db_area->alloc_pos++;
pos &= HIFC_DB_MAX_AREAS - 1;
pg_idx = free_db_area->db_idx[pos];
free_db_area->db_idx[pos] = 0xFFFFFFFF;
/* pg_idx out of range */
if (pg_idx >= HIFC_DB_MAX_AREAS)
goto retry;
spin_unlock(&free_db_area->idx_lock);
*idx = pg_idx;
return 0;
}
static void free_db_idx(struct hifc_hwif *hwif, u32 idx)
{
struct hifc_free_db_area *free_db_area = &hwif->free_db_area;
u32 pos;
if (idx >= HIFC_DB_MAX_AREAS)
return;
spin_lock(&free_db_area->idx_lock);
pos = free_db_area->return_pos++;
pos &= HIFC_DB_MAX_AREAS - 1;
free_db_area->db_idx[pos] = idx;
free_db_area->num_free++;
spin_unlock(&free_db_area->idx_lock);
}
void hifc_free_db_addr(void *hwdev, void __iomem *db_base,
void __iomem *dwqe_base)
{
struct hifc_hwif *hwif;
u32 idx;
if (!hwdev || !db_base)
return;
hwif = ((struct hifc_hwdev *)hwdev)->hwif;
idx = DB_IDX(db_base, hwif->db_base);
#if defined(__aarch64__)
/* No need to unmap */
#else
if (dwqe_base)
io_mapping_unmap(dwqe_base);
#endif
free_db_idx(hwif, idx);
}
int hifc_alloc_db_addr(void *hwdev, void __iomem **db_base,
void __iomem **dwqe_base)
{
struct hifc_hwif *hwif;
u64 offset;
u32 idx;
int err;
if (!hwdev || !db_base)
return -EINVAL;
hwif = ((struct hifc_hwdev *)hwdev)->hwif;
err = get_db_idx(hwif, &idx);
if (err)
return -EFAULT;
*db_base = hwif->db_base + idx * HIFC_DB_PAGE_SIZE;
if (!dwqe_base)
return 0;
offset = ((u64)idx) << PAGE_SHIFT;
#if defined(__aarch64__)
*dwqe_base = hwif->dwqe_mapping + offset;
#else
*dwqe_base = io_mapping_map_wc(hwif->dwqe_mapping, offset,
HIFC_DB_PAGE_SIZE);
#endif
if (!(*dwqe_base)) {
hifc_free_db_addr(hwdev, *db_base, NULL);
return -EFAULT;
}
return 0;
}
void hifc_set_msix_state(void *hwdev, u16 msix_idx, enum hifc_msix_state flag)
{
struct hifc_hwif *hwif;
u32 offset = msix_idx * HIFC_PCI_MSIX_ENTRY_SIZE +
HIFC_PCI_MSIX_ENTRY_VECTOR_CTRL;
u32 mask_bits;
if (!hwdev)
return;
hwif = ((struct hifc_hwdev *)hwdev)->hwif;
mask_bits = readl(hwif->intr_regs_base + offset);
mask_bits &= ~HIFC_PCI_MSIX_ENTRY_CTRL_MASKBIT;
if (flag)
mask_bits |= HIFC_PCI_MSIX_ENTRY_CTRL_MASKBIT;
writel(mask_bits, hwif->intr_regs_base + offset);
}
static void disable_all_msix(struct hifc_hwdev *hwdev)
{
u16 num_irqs = hwdev->hwif->attr.num_irqs;
u16 i;
for (i = 0; i < num_irqs; i++)
hifc_set_msix_state(hwdev, i, HIFC_MSIX_DISABLE);
}
static int wait_until_doorbell_and_outbound_enabled(struct hifc_hwif *hwif)
{
enum hifc_doorbell_ctrl db_ctrl;
enum hifc_outbound_ctrl outbound_ctrl;
u32 cnt = 0;
while (cnt < HIFC_WAIT_DOORBELL_AND_OUTBOUND_TIMEOUT) {
db_ctrl = hifc_get_doorbell_ctrl_status(hwif);
outbound_ctrl = hifc_get_outbound_ctrl_status(hwif);
if (outbound_ctrl == ENABLE_OUTBOUND &&
db_ctrl == ENABLE_DOORBELL)
return 0;
usleep_range(900, 1000);
cnt++;
}
return -EFAULT;
}
static void __print_selftest_reg(struct hifc_hwdev *hwdev)
{
u32 addr, attr0, attr1;
addr = HIFC_CSR_FUNC_ATTR1_ADDR;
attr1 = hifc_hwif_read_reg(hwdev->hwif, addr);
if (attr1 == HIFC_PCIE_LINK_DOWN) {
sdk_err(hwdev->dev_hdl, "PCIE is link down\n");
return;
}
addr = HIFC_CSR_FUNC_ATTR0_ADDR;
attr0 = hifc_hwif_read_reg(hwdev->hwif, addr);
if (HIFC_AF0_GET(attr0, FUNC_TYPE) != TYPE_VF &&
!HIFC_AF0_GET(attr0, PCI_INTF_IDX))
sdk_err(hwdev->dev_hdl, "Selftest reg: 0x%08x\n",
hifc_hwif_read_reg(hwdev->hwif,
HIFC_SELFTEST_RESULT));
}
/**
* hifc_init_hwif - initialize the hw interface
* @hwdev: the pointer to hw device
* @cfg_reg_base: configuration base address
* Return: 0 - success, negative - failure
**/
int hifc_init_hwif(struct hifc_hwdev *hwdev, void *cfg_reg_base,
void *intr_reg_base, u64 db_base_phy,
void *db_base, void *dwqe_mapping)
{
struct hifc_hwif *hwif;
int err;
hwif = kzalloc(sizeof(*hwif), GFP_KERNEL);
if (!hwif)
return -ENOMEM;
hwdev->hwif = hwif;
hwif->pdev = hwdev->pcidev_hdl;
hwif->cfg_regs_base = cfg_reg_base;
hwif->intr_regs_base = intr_reg_base;
hwif->db_base_phy = db_base_phy;
hwif->db_base = db_base;
hwif->dwqe_mapping = dwqe_mapping;
init_db_area_idx(&hwif->free_db_area);
err = wait_hwif_ready(hwdev);
if (err) {
sdk_err(hwdev->dev_hdl, "Chip status is not ready\n");
__print_selftest_reg(hwdev);
goto hwif_ready_err;
}
get_hwif_attr(hwif);
err = wait_until_doorbell_and_outbound_enabled(hwif);
if (err) {
sdk_err(hwdev->dev_hdl, "Hw doorbell/outbound is disabled\n");
goto hwif_ready_err;
}
set_ppf(hwif);
if (HIFC_IS_PPF(hwdev))
set_mpf(hwif);
get_mpf(hwif);
disable_all_msix(hwdev);
/* disable mgmt cpu report any event */
hifc_set_pf_status(hwdev->hwif, HIFC_PF_STATUS_INIT);
pr_info("global_func_idx: %d, func_type: %d, host_id: %d, ppf: %d, mpf: %d\n",
hwif->attr.func_global_idx, hwif->attr.func_type,
hwif->attr.pci_intf_idx, hwif->attr.ppf_idx,
hwif->attr.mpf_idx);
return 0;
hwif_ready_err:
kfree(hwif);
return err;
}
/**
* hifc_free_hwif - free the hw interface
* @hwdev: the pointer to hw device
**/
void hifc_free_hwif(struct hifc_hwdev *hwdev)
{
kfree(hwdev->hwif);
}
int hifc_dma_zalloc_coherent_align(void *dev_hdl, u64 size, u64 align,
unsigned flag,
struct hifc_dma_addr_align *mem_align)
{
void *vaddr, *align_vaddr;
dma_addr_t paddr, align_paddr;
u64 real_size = size;
vaddr = dma_zalloc_coherent(dev_hdl, real_size, &paddr, flag);
if (!vaddr)
return -ENOMEM;
align_paddr = ALIGN(paddr, align);
/* align */
if (align_paddr == paddr) {
align_vaddr = vaddr;
goto out;
}
dma_free_coherent(dev_hdl, real_size, vaddr, paddr);
/* realloc memory for align */
real_size = size + align;
vaddr = dma_zalloc_coherent(dev_hdl, real_size, &paddr, flag);
if (!vaddr)
return -ENOMEM;
align_paddr = ALIGN(paddr, align);
align_vaddr = (void *)((u64)vaddr + (align_paddr - paddr));
out:
mem_align->real_size = (u32)real_size;
mem_align->ori_vaddr = vaddr;
mem_align->ori_paddr = paddr;
mem_align->align_vaddr = align_vaddr;
mem_align->align_paddr = align_paddr;
return 0;
}
void hifc_dma_free_coherent_align(void *dev_hdl,
struct hifc_dma_addr_align *mem_align)
{
dma_free_coherent(dev_hdl, mem_align->real_size,
mem_align->ori_vaddr, mem_align->ori_paddr);
}
u16 hifc_global_func_id(void *hwdev)
{
struct hifc_hwif *hwif;
if (!hwdev)
return 0;
hwif = ((struct hifc_hwdev *)hwdev)->hwif;
return hwif->attr.func_global_idx;
}
/**
* get function id from register,used by sriov hot migration process
* @hwdev: the pointer to hw device
**/
u16 hifc_global_func_id_hw(void *hwdev)
{
u32 addr, attr0;
struct hifc_hwdev *dev;
dev = (struct hifc_hwdev *)hwdev;
addr = HIFC_CSR_FUNC_ATTR0_ADDR;
attr0 = hifc_hwif_read_reg(dev->hwif, addr);
return HIFC_AF0_GET(attr0, FUNC_GLOBAL_IDX);
}
/**
* get function id, used by sriov hot migratition process.
* @hwdev: the pointer to hw device
* @func_id: function id
**/
int hifc_global_func_id_get(void *hwdev, u16 *func_id)
{
*func_id = hifc_global_func_id(hwdev);
return 0;
}
u8 hifc_pcie_itf_id(void *hwdev)
{
struct hifc_hwif *hwif;
if (!hwdev)
return 0;
hwif = ((struct hifc_hwdev *)hwdev)->hwif;
return hwif->attr.pci_intf_idx;
}
EXPORT_SYMBOL(hifc_pcie_itf_id);
enum func_type hifc_func_type(void *hwdev)
{
struct hifc_hwif *hwif;
if (!hwdev)
return 0;
hwif = ((struct hifc_hwdev *)hwdev)->hwif;
return hwif->attr.func_type;
}
u8 hifc_ppf_idx(void *hwdev)
{
struct hifc_hwif *hwif;
if (!hwdev)
return 0;
hwif = ((struct hifc_hwdev *)hwdev)->hwif;
return hwif->attr.ppf_idx;
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef HIFC_HWIF_H
#define HIFC_HWIF_H
#include "hifc_hwdev.h"
#define HIFC_WAIT_DOORBELL_AND_OUTBOUND_TIMEOUT 60000
#define HIFC_CSR_GLOBAL_BASE_ADDR 0x4000
/* HW interface registers */
#define HIFC_CSR_FUNC_ATTR0_ADDR 0x0
#define HIFC_CSR_FUNC_ATTR1_ADDR 0x4
#define HIFC_CSR_FUNC_ATTR2_ADDR 0x8
#define HIFC_CSR_FUNC_ATTR4_ADDR 0x10
#define HIFC_CSR_FUNC_ATTR5_ADDR 0x14
#define HIFC_PCI_MSIX_ENTRY_SIZE 16
#define HIFC_PCI_MSIX_ENTRY_VECTOR_CTRL 12
#define HIFC_PCI_MSIX_ENTRY_CTRL_MASKBIT 1
/* total doorbell or direct wqe size is 512kB, db num: 128, dwqe: 128*/
#define HIFC_DB_DWQE_SIZE 0x00080000
/* db/dwqe page size: 4K */
#define HIFC_DB_PAGE_SIZE 0x00001000ULL
#define HIFC_DB_MAX_AREAS (HIFC_DB_DWQE_SIZE / HIFC_DB_PAGE_SIZE)
#define HIFC_ELECTION_BASE 0x200
#define HIFC_PPF_ELECTION_STRIDE 0x4
#define HIFC_CSR_MAX_PORTS 4
#define HIFC_CSR_PPF_ELECTION_ADDR \
(HIFC_CSR_GLOBAL_BASE_ADDR + HIFC_ELECTION_BASE)
#define HIFC_CSR_GLOBAL_MPF_ELECTION_ADDR \
(HIFC_CSR_GLOBAL_BASE_ADDR + HIFC_ELECTION_BASE + \
HIFC_CSR_MAX_PORTS * HIFC_PPF_ELECTION_STRIDE)
#define DB_IDX(db, db_base) \
((u32)(((ulong)(db) - (ulong)(db_base)) / \
HIFC_DB_PAGE_SIZE))
#define HIFC_AF0_FUNC_GLOBAL_IDX_SHIFT 0
#define HIFC_AF0_P2P_IDX_SHIFT 10
#define HIFC_AF0_PCI_INTF_IDX_SHIFT 14
#define HIFC_AF0_VF_IN_PF_SHIFT 16
#define HIFC_AF0_FUNC_TYPE_SHIFT 24
#define HIFC_AF0_FUNC_GLOBAL_IDX_MASK 0x3FF
#define HIFC_AF0_P2P_IDX_MASK 0xF
#define HIFC_AF0_PCI_INTF_IDX_MASK 0x3
#define HIFC_AF0_VF_IN_PF_MASK 0xFF
#define HIFC_AF0_FUNC_TYPE_MASK 0x1
#define HIFC_AF0_GET(val, member) \
(((val) >> HIFC_AF0_##member##_SHIFT) & HIFC_AF0_##member##_MASK)
#define HIFC_AF1_PPF_IDX_SHIFT 0
#define HIFC_AF1_AEQS_PER_FUNC_SHIFT 8
#define HIFC_AF1_CEQS_PER_FUNC_SHIFT 12
#define HIFC_AF1_IRQS_PER_FUNC_SHIFT 20
#define HIFC_AF1_DMA_ATTR_PER_FUNC_SHIFT 24
#define HIFC_AF1_MGMT_INIT_STATUS_SHIFT 30
#define HIFC_AF1_PF_INIT_STATUS_SHIFT 31
#define HIFC_AF1_PPF_IDX_MASK 0x1F
#define HIFC_AF1_AEQS_PER_FUNC_MASK 0x3
#define HIFC_AF1_CEQS_PER_FUNC_MASK 0x7
#define HIFC_AF1_IRQS_PER_FUNC_MASK 0xF
#define HIFC_AF1_DMA_ATTR_PER_FUNC_MASK 0x7
#define HIFC_AF1_MGMT_INIT_STATUS_MASK 0x1
#define HIFC_AF1_PF_INIT_STATUS_MASK 0x1
#define HIFC_AF1_GET(val, member) \
(((val) >> HIFC_AF1_##member##_SHIFT) & HIFC_AF1_##member##_MASK)
#define HIFC_AF4_OUTBOUND_CTRL_SHIFT 0
#define HIFC_AF4_DOORBELL_CTRL_SHIFT 1
#define HIFC_AF4_OUTBOUND_CTRL_MASK 0x1
#define HIFC_AF4_DOORBELL_CTRL_MASK 0x1
#define HIFC_AF4_GET(val, member) \
(((val) >> HIFC_AF4_##member##_SHIFT) & HIFC_AF4_##member##_MASK)
#define HIFC_AF4_SET(val, member) \
(((val) & HIFC_AF4_##member##_MASK) << HIFC_AF4_##member##_SHIFT)
#define HIFC_AF4_CLEAR(val, member) \
((val) & (~(HIFC_AF4_##member##_MASK << \
HIFC_AF4_##member##_SHIFT)))
#define HIFC_AF5_PF_STATUS_SHIFT 0
#define HIFC_AF5_PF_STATUS_MASK 0xFFFF
#define HIFC_AF5_SET(val, member) \
(((val) & HIFC_AF5_##member##_MASK) << HIFC_AF5_##member##_SHIFT)
#define HIFC_AF5_GET(val, member) \
(((val) >> HIFC_AF5_##member##_SHIFT) & HIFC_AF5_##member##_MASK)
#define HIFC_PPF_ELECTION_IDX_SHIFT 0
#define HIFC_PPF_ELECTION_IDX_MASK 0x1F
#define HIFC_PPF_ELECTION_SET(val, member) \
(((val) & HIFC_PPF_ELECTION_##member##_MASK) << \
HIFC_PPF_ELECTION_##member##_SHIFT)
#define HIFC_PPF_ELECTION_GET(val, member) \
(((val) >> HIFC_PPF_ELECTION_##member##_SHIFT) & \
HIFC_PPF_ELECTION_##member##_MASK)
#define HIFC_PPF_ELECTION_CLEAR(val, member) \
((val) & (~(HIFC_PPF_ELECTION_##member##_MASK \
<< HIFC_PPF_ELECTION_##member##_SHIFT)))
#define HIFC_MPF_ELECTION_IDX_SHIFT 0
#define HIFC_MPF_ELECTION_IDX_MASK 0x1F
#define HIFC_MPF_ELECTION_SET(val, member) \
(((val) & HIFC_MPF_ELECTION_##member##_MASK) << \
HIFC_MPF_ELECTION_##member##_SHIFT)
#define HIFC_MPF_ELECTION_GET(val, member) \
(((val) >> HIFC_MPF_ELECTION_##member##_SHIFT) & \
HIFC_MPF_ELECTION_##member##_MASK)
#define HIFC_MPF_ELECTION_CLEAR(val, member) \
((val) & (~(HIFC_MPF_ELECTION_##member##_MASK \
<< HIFC_MPF_ELECTION_##member##_SHIFT)))
#define HIFC_HWIF_NUM_AEQS(hwif) ((hwif)->attr.num_aeqs)
#define HIFC_HWIF_NUM_CEQS(hwif) ((hwif)->attr.num_ceqs)
#define HIFC_HWIF_PPF_IDX(hwif) ((hwif)->attr.ppf_idx)
#define HIFC_PCI_INTF_IDX(hwif) ((hwif)->attr.pci_intf_idx)
#define HIFC_FUNC_TYPE(dev) ((dev)->hwif->attr.func_type)
#define HIFC_IS_PPF(dev) (HIFC_FUNC_TYPE(dev) == TYPE_PPF)
enum hifc_pcie_nosnoop {
HIFC_PCIE_SNOOP = 0,
HIFC_PCIE_NO_SNOOP = 1,
};
enum hifc_pcie_tph {
HIFC_PCIE_TPH_DISABLE = 0,
HIFC_PCIE_TPH_ENABLE = 1,
};
enum hifc_pf_status {
HIFC_PF_STATUS_INIT = 0X0,
HIFC_PF_STATUS_ACTIVE_FLAG = 0x11,
HIFC_PF_STATUS_FLR_START_FLAG = 0x12,
HIFC_PF_STATUS_FLR_FINISH_FLAG = 0x13,
};
enum hifc_outbound_ctrl {
ENABLE_OUTBOUND = 0x0,
DISABLE_OUTBOUND = 0x1,
};
enum hifc_doorbell_ctrl {
ENABLE_DOORBELL = 0x0,
DISABLE_DOORBELL = 0x1,
};
struct hifc_free_db_area {
u32 db_idx[HIFC_DB_MAX_AREAS];
u32 num_free;
u32 alloc_pos;
u32 return_pos;
/* spinlock for allocating doorbell area */
spinlock_t idx_lock;
};
enum func_type {
TYPE_PF,
TYPE_VF,
TYPE_PPF,
TYPE_UNKNOWN,
};
struct hifc_func_attr {
u16 func_global_idx;
u8 port_to_port_idx;
u8 pci_intf_idx;
u8 vf_in_pf;
enum func_type func_type;
u8 mpf_idx;
u8 ppf_idx;
u16 num_irqs; /* max: 2 ^ 15 */
u8 num_aeqs; /* max: 2 ^ 3 */
u8 num_ceqs; /* max: 2 ^ 7 */
u8 num_dma_attr; /* max: 2 ^ 6 */
};
struct hifc_hwif {
u8 __iomem *cfg_regs_base;
u8 __iomem *intr_regs_base;
u64 db_base_phy;
u8 __iomem *db_base;
#if defined(__aarch64__)
void __iomem *dwqe_mapping;
#else
struct io_mapping *dwqe_mapping;
#endif
struct hifc_free_db_area free_db_area;
struct hifc_func_attr attr;
void *pdev;
};
struct hifc_dma_addr_align {
u32 real_size;
void *ori_vaddr;
dma_addr_t ori_paddr;
void *align_vaddr;
dma_addr_t align_paddr;
};
u32 hifc_hwif_read_reg(struct hifc_hwif *hwif, u32 reg);
void hifc_hwif_write_reg(struct hifc_hwif *hwif, u32 reg, u32 val);
void hifc_set_pf_status(struct hifc_hwif *hwif, enum hifc_pf_status status);
enum hifc_pf_status hifc_get_pf_status(struct hifc_hwif *hwif);
enum hifc_doorbell_ctrl
hifc_get_doorbell_ctrl_status(struct hifc_hwif *hwif);
enum hifc_outbound_ctrl
hifc_get_outbound_ctrl_status(struct hifc_hwif *hwif);
void hifc_enable_doorbell(struct hifc_hwif *hwif);
void hifc_disable_doorbell(struct hifc_hwif *hwif);
int hifc_init_hwif(struct hifc_hwdev *hwdev, void *cfg_reg_base,
void *intr_reg_base, u64 db_base_phy,
void *db_base, void *dwqe_mapping);
void hifc_free_hwif(struct hifc_hwdev *hwdev);
int hifc_dma_zalloc_coherent_align(void *dev_hdl, u64 size, u64 align,
unsigned flag,
struct hifc_dma_addr_align *mem_align);
void hifc_dma_free_coherent_align(void *dev_hdl,
struct hifc_dma_addr_align *mem_align);
#endif
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/semaphore.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_hwif.h"
#include "hifc_api_cmd.h"
#include "hifc_mgmt.h"
#include "hifc_eqs.h"
#define BUF_OUT_DEFAULT_SIZE 1
#define SEGMENT_LEN 48
#define MGMT_MSG_MAX_SEQ_ID (ALIGN(HIFC_MSG_TO_MGMT_MAX_LEN, \
SEGMENT_LEN) / SEGMENT_LEN)
#define MAX_PF_MGMT_BUF_SIZE 2048UL
#define MGMT_MSG_SIZE_MIN 20
#define MGMT_MSG_SIZE_STEP 16
#define MGMT_MSG_RSVD_FOR_DEV 8
#define MGMT_MSG_TIMEOUT 5000 /* millisecond */
#define SYNC_MSG_ID_MASK 0x1FF
#define ASYNC_MSG_ID_MASK 0x1FF
#define ASYNC_MSG_FLAG 0x200
#define MSG_NO_RESP 0xFFFF
#define MAX_MSG_SZ 2016
#define MSG_SZ_IS_VALID(in_size) ((in_size) <= MAX_MSG_SZ)
#define SYNC_MSG_ID(pf_to_mgmt) ((pf_to_mgmt)->sync_msg_id)
#define SYNC_MSG_ID_INC(pf_to_mgmt) (SYNC_MSG_ID(pf_to_mgmt) = \
(SYNC_MSG_ID(pf_to_mgmt) + 1) & SYNC_MSG_ID_MASK)
#define ASYNC_MSG_ID(pf_to_mgmt) ((pf_to_mgmt)->async_msg_id)
#define ASYNC_MSG_ID_INC(pf_to_mgmt) (ASYNC_MSG_ID(pf_to_mgmt) = \
((ASYNC_MSG_ID(pf_to_mgmt) + 1) & ASYNC_MSG_ID_MASK) \
| ASYNC_MSG_FLAG)
static void pf_to_mgmt_send_event_set(struct hifc_msg_pf_to_mgmt *pf_to_mgmt,
int event_flag)
{
spin_lock(&pf_to_mgmt->sync_event_lock);
pf_to_mgmt->event_flag = event_flag;
spin_unlock(&pf_to_mgmt->sync_event_lock);
}
/**
* hifc_register_mgmt_msg_cb - register sync msg handler for a module
* @hwdev: the pointer to hw device
* @mod: module in the chip that this handler will handle its sync messages
* @pri_handle: pri handle function
* @callback: the handler for a sync message that will handle messages
* Return: 0 - success, negative - failure
**/
int hifc_register_mgmt_msg_cb(void *hwdev, enum hifc_mod_type mod,
void *pri_handle, hifc_mgmt_msg_cb callback)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
if (mod >= HIFC_MOD_HW_MAX || !hwdev)
return -EFAULT;
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
if (!pf_to_mgmt)
return -EINVAL;
pf_to_mgmt->recv_mgmt_msg_cb[mod] = callback;
pf_to_mgmt->recv_mgmt_msg_data[mod] = pri_handle;
set_bit(HIFC_MGMT_MSG_CB_REG, &pf_to_mgmt->mgmt_msg_cb_state[mod]);
return 0;
}
/**
* hifc_unregister_mgmt_msg_cb - unregister sync msg handler for a module
* @hwdev: the pointer to hw device
* @mod: module in the chip that this handler will handle its sync messages
**/
void hifc_unregister_mgmt_msg_cb(void *hwdev, enum hifc_mod_type mod)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
if (!hwdev || mod >= HIFC_MOD_HW_MAX)
return;
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
if (!pf_to_mgmt)
return;
clear_bit(HIFC_MGMT_MSG_CB_REG, &pf_to_mgmt->mgmt_msg_cb_state[mod]);
while (test_bit(HIFC_MGMT_MSG_CB_RUNNING,
&pf_to_mgmt->mgmt_msg_cb_state[mod]))
usleep_range(900, 1000);
pf_to_mgmt->recv_mgmt_msg_cb[mod] = NULL;
pf_to_mgmt->recv_mgmt_msg_data[mod] = NULL;
}
void hifc_comm_recv_mgmt_self_cmd_reg(void *hwdev, u8 cmd,
comm_up_self_msg_proc proc)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
u8 cmd_idx;
if (!hwdev || !proc)
return;
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
if (!pf_to_mgmt)
return;
cmd_idx = pf_to_mgmt->proc.cmd_num;
if (cmd_idx >= HIFC_COMM_SELF_CMD_MAX) {
sdk_err(pf_to_mgmt->hwdev->dev_hdl,
"Register recv up process failed(cmd=0x%x)\r\n", cmd);
return;
}
pf_to_mgmt->proc.info[cmd_idx].cmd = cmd;
pf_to_mgmt->proc.info[cmd_idx].proc = proc;
pf_to_mgmt->proc.cmd_num++;
}
void hifc_comm_recv_up_self_cmd_unreg(void *hwdev, u8 cmd)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
u8 cmd_idx;
if (!hwdev)
return;
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
if (!pf_to_mgmt)
return;
cmd_idx = pf_to_mgmt->proc.cmd_num;
if (cmd_idx >= HIFC_COMM_SELF_CMD_MAX) {
sdk_err(pf_to_mgmt->hwdev->dev_hdl,
"Unregister recv up process failed(cmd=0x%x)\r\n", cmd);
return;
}
for (cmd_idx = 0; cmd_idx < HIFC_COMM_SELF_CMD_MAX; cmd_idx++) {
if (cmd == pf_to_mgmt->proc.info[cmd_idx].cmd) {
pf_to_mgmt->proc.info[cmd_idx].cmd = 0;
pf_to_mgmt->proc.info[cmd_idx].proc = NULL;
pf_to_mgmt->proc.cmd_num--;
}
}
}
/**
* mgmt_msg_len - calculate the total message length
* @msg_data_len: the length of the message data
* Return: the total message length
**/
static u16 mgmt_msg_len(u16 msg_data_len)
{
/* u64 - the size of the header */
u16 msg_size;
msg_size = (u16)(MGMT_MSG_RSVD_FOR_DEV + sizeof(u64) + msg_data_len);
if (msg_size > MGMT_MSG_SIZE_MIN)
msg_size = MGMT_MSG_SIZE_MIN +
ALIGN((msg_size - MGMT_MSG_SIZE_MIN),
MGMT_MSG_SIZE_STEP);
else
msg_size = MGMT_MSG_SIZE_MIN;
return msg_size;
}
/**
* prepare_header - prepare the header of the message
* @pf_to_mgmt: PF to MGMT channel
* @header: pointer of the header to prepare
* @msg_len: the length of the message
* @mod: module in the chip that will get the message
* @ack_type: message ack type
* @direction: the direction of the original message
* @cmd: vmd type
* @msg_id: message id
**/
static void prepare_header(struct hifc_msg_pf_to_mgmt *pf_to_mgmt,
u64 *header, u16 msg_len, enum hifc_mod_type mod,
enum hifc_msg_ack_type ack_type,
enum hifc_msg_direction_type direction,
enum hifc_mgmt_cmd cmd, u32 msg_id)
{
struct hifc_hwif *hwif = pf_to_mgmt->hwdev->hwif;
*header = HIFC_MSG_HEADER_SET(msg_len, MSG_LEN) |
HIFC_MSG_HEADER_SET(mod, MODULE) |
HIFC_MSG_HEADER_SET(msg_len, SEG_LEN) |
HIFC_MSG_HEADER_SET(ack_type, NO_ACK) |
HIFC_MSG_HEADER_SET(0, ASYNC_MGMT_TO_PF) |
HIFC_MSG_HEADER_SET(0, SEQID) |
HIFC_MSG_HEADER_SET(LAST_SEGMENT, LAST) |
HIFC_MSG_HEADER_SET(direction, DIRECTION) |
HIFC_MSG_HEADER_SET(cmd, CMD) |
HIFC_MSG_HEADER_SET(HIFC_PCI_INTF_IDX(hwif), PCI_INTF_IDX) |
HIFC_MSG_HEADER_SET(hwif->attr.port_to_port_idx, P2P_IDX) |
HIFC_MSG_HEADER_SET(msg_id, MSG_ID);
}
static void clp_prepare_header(struct hifc_hwdev *hwdev,
u64 *header, u16 msg_len, enum hifc_mod_type mod,
enum hifc_msg_ack_type ack_type,
enum hifc_msg_direction_type direction,
enum hifc_mgmt_cmd cmd, u32 msg_id)
{
struct hifc_hwif *hwif = hwdev->hwif;
*header = HIFC_MSG_HEADER_SET(msg_len, MSG_LEN) |
HIFC_MSG_HEADER_SET(mod, MODULE) |
HIFC_MSG_HEADER_SET(msg_len, SEG_LEN) |
HIFC_MSG_HEADER_SET(ack_type, NO_ACK) |
HIFC_MSG_HEADER_SET(0, ASYNC_MGMT_TO_PF) |
HIFC_MSG_HEADER_SET(0, SEQID) |
HIFC_MSG_HEADER_SET(LAST_SEGMENT, LAST) |
HIFC_MSG_HEADER_SET(direction, DIRECTION) |
HIFC_MSG_HEADER_SET(cmd, CMD) |
HIFC_MSG_HEADER_SET(HIFC_PCI_INTF_IDX(hwif), PCI_INTF_IDX) |
HIFC_MSG_HEADER_SET(hwif->attr.port_to_port_idx, P2P_IDX) |
HIFC_MSG_HEADER_SET(msg_id, MSG_ID);
}
/**
* prepare_mgmt_cmd - prepare the mgmt command
* @mgmt_cmd: pointer to the command to prepare
* @header: pointer of the header to prepare
* @msg: the data of the message
* @msg_len: the length of the message
**/
static void prepare_mgmt_cmd(u8 *mgmt_cmd, u64 *header, const void *msg,
int msg_len)
{
memset(mgmt_cmd, 0, MGMT_MSG_RSVD_FOR_DEV);
mgmt_cmd += MGMT_MSG_RSVD_FOR_DEV;
memcpy(mgmt_cmd, header, sizeof(*header));
mgmt_cmd += sizeof(*header);
memcpy(mgmt_cmd, msg, msg_len);
}
/**
* send_msg_to_mgmt_async - send async message
* @pf_to_mgmt: PF to MGMT channel
* @mod: module in the chip that will get the message
* @cmd: command of the message
* @msg: the data of the message
* @msg_len: the length of the message
* @direction: the direction of the original message
* @resp_msg_id: msg id to response for
* Return: 0 - success, negative - failure
**/
static int send_msg_to_mgmt_async(struct hifc_msg_pf_to_mgmt *pf_to_mgmt,
enum hifc_mod_type mod, u8 cmd,
void *msg, u16 msg_len,
enum hifc_msg_direction_type direction,
u16 resp_msg_id)
{
void *mgmt_cmd = pf_to_mgmt->async_msg_buf;
struct hifc_api_cmd_chain *chain;
u64 header;
u16 cmd_size = mgmt_msg_len(msg_len);
if (!hifc_get_chip_present_flag(pf_to_mgmt->hwdev))
return -EFAULT;
if (direction == HIFC_MSG_RESPONSE)
prepare_header(pf_to_mgmt, &header, msg_len, mod, HIFC_MSG_ACK,
direction, cmd, resp_msg_id);
else
prepare_header(pf_to_mgmt, &header, msg_len, mod, HIFC_MSG_ACK,
direction, cmd, ASYNC_MSG_ID(pf_to_mgmt));
prepare_mgmt_cmd((u8 *)mgmt_cmd, &header, msg, msg_len);
chain = pf_to_mgmt->cmd_chain[HIFC_API_CMD_WRITE_ASYNC_TO_MGMT_CPU];
return hifc_api_cmd_write(chain, HIFC_NODE_ID_MGMT_HOST, mgmt_cmd,
cmd_size);
}
int hifc_pf_to_mgmt_async(void *hwdev, enum hifc_mod_type mod,
u8 cmd, void *buf_in, u16 in_size)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
void *dev = ((struct hifc_hwdev *)hwdev)->dev_hdl;
int err;
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
/* Lock the async_msg_buf */
spin_lock_bh(&pf_to_mgmt->async_msg_lock);
ASYNC_MSG_ID_INC(pf_to_mgmt);
err = send_msg_to_mgmt_async(pf_to_mgmt, mod, cmd, buf_in, in_size,
HIFC_MSG_DIRECT_SEND, MSG_NO_RESP);
spin_unlock_bh(&pf_to_mgmt->async_msg_lock);
if (err) {
sdk_err(dev, "Failed to send async mgmt msg\n");
return err;
}
return 0;
}
/**
* send_msg_to_mgmt_sync - send async message
* @pf_to_mgmt: PF to MGMT channel
* @mod: module in the chip that will get the message
* @cmd: command of the message
* @msg: the msg data
* @msg_len: the msg data length
* @direction: the direction of the original message
* @resp_msg_id: msg id to response for
* Return: 0 - success, negative - failure
**/
static int send_msg_to_mgmt_sync(struct hifc_msg_pf_to_mgmt *pf_to_mgmt,
enum hifc_mod_type mod, u8 cmd,
void *msg, u16 msg_len,
enum hifc_msg_ack_type ack_type,
enum hifc_msg_direction_type direction,
u16 resp_msg_id)
{
void *mgmt_cmd = pf_to_mgmt->sync_msg_buf;
struct hifc_api_cmd_chain *chain;
u64 header;
u16 cmd_size = mgmt_msg_len(msg_len);
if (!hifc_get_chip_present_flag(pf_to_mgmt->hwdev))
return -EFAULT;
if (direction == HIFC_MSG_RESPONSE)
prepare_header(pf_to_mgmt, &header, msg_len, mod, ack_type,
direction, cmd, resp_msg_id);
else
prepare_header(pf_to_mgmt, &header, msg_len, mod, ack_type,
direction, cmd, SYNC_MSG_ID_INC(pf_to_mgmt));
if (ack_type == HIFC_MSG_ACK)
pf_to_mgmt_send_event_set(pf_to_mgmt, SEND_EVENT_START);
prepare_mgmt_cmd((u8 *)mgmt_cmd, &header, msg, msg_len);
chain = pf_to_mgmt->cmd_chain[HIFC_API_CMD_WRITE_TO_MGMT_CPU];
return hifc_api_cmd_write(chain, HIFC_NODE_ID_MGMT_HOST, mgmt_cmd,
cmd_size);
}
static inline void msg_to_mgmt_pre(enum hifc_mod_type mod, void *buf_in)
{
struct hifc_msg_head *msg_head;
/* set aeq fix num to 3, need to ensure response aeq id < 3*/
if (mod == HIFC_MOD_COMM || mod == HIFC_MOD_L2NIC) {
msg_head = buf_in;
if (msg_head->resp_aeq_num >= HIFC_MAX_AEQS)
msg_head->resp_aeq_num = 0;
}
}
int hifc_pf_to_mgmt_sync(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size, void *buf_out,
u16 *out_size, u32 timeout)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
void *dev = ((struct hifc_hwdev *)hwdev)->dev_hdl;
struct hifc_recv_msg *recv_msg;
struct completion *recv_done;
ulong timeo;
int err;
ulong ret;
msg_to_mgmt_pre(mod, buf_in);
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
/* Lock the sync_msg_buf */
down(&pf_to_mgmt->sync_msg_lock);
recv_msg = &pf_to_mgmt->recv_resp_msg_from_mgmt;
recv_done = &recv_msg->recv_done;
init_completion(recv_done);
err = send_msg_to_mgmt_sync(pf_to_mgmt, mod, cmd, buf_in, in_size,
HIFC_MSG_ACK, HIFC_MSG_DIRECT_SEND,
MSG_NO_RESP);
if (err) {
sdk_err(dev, "Failed to send sync msg to mgmt, sync_msg_id: %d\n",
pf_to_mgmt->sync_msg_id);
pf_to_mgmt_send_event_set(pf_to_mgmt, SEND_EVENT_FAIL);
goto unlock_sync_msg;
}
timeo = msecs_to_jiffies(timeout ? timeout : MGMT_MSG_TIMEOUT);
ret = wait_for_completion_timeout(recv_done, timeo);
if (!ret) {
sdk_err(dev, "Mgmt response sync cmd timeout, sync_msg_id: %d\n",
pf_to_mgmt->sync_msg_id);
hifc_dump_aeq_info((struct hifc_hwdev *)hwdev);
err = -ETIMEDOUT;
pf_to_mgmt_send_event_set(pf_to_mgmt, SEND_EVENT_TIMEOUT);
goto unlock_sync_msg;
}
pf_to_mgmt_send_event_set(pf_to_mgmt, SEND_EVENT_END);
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag)) {
up(&pf_to_mgmt->sync_msg_lock);
return -ETIMEDOUT;
}
if (buf_out && out_size) {
if (*out_size < recv_msg->msg_len) {
sdk_err(dev, "Invalid response message length: %d for mod %d cmd %d from mgmt, should less than: %d\n",
recv_msg->msg_len, mod, cmd, *out_size);
err = -EFAULT;
goto unlock_sync_msg;
}
if (recv_msg->msg_len)
memcpy(buf_out, recv_msg->msg, recv_msg->msg_len);
*out_size = recv_msg->msg_len;
}
unlock_sync_msg:
up(&pf_to_mgmt->sync_msg_lock);
return err;
}
static int __get_clp_reg(void *hwdev, enum clp_data_type data_type,
enum clp_reg_type reg_type, u32 *reg_addr)
{
struct hifc_hwdev *dev = hwdev;
u32 offset;
offset = HIFC_CLP_REG_GAP * hifc_pcie_itf_id(dev);
switch (reg_type) {
case HIFC_CLP_BA_HOST:
*reg_addr = (data_type == HIFC_CLP_REQ_HOST) ?
HIFC_CLP_REG(REQ_SRAM_BA) :
HIFC_CLP_REG(RSP_SRAM_BA);
break;
case HIFC_CLP_SIZE_HOST:
*reg_addr = HIFC_CLP_REG(SRAM_SIZE);
break;
case HIFC_CLP_LEN_HOST:
*reg_addr = (data_type == HIFC_CLP_REQ_HOST) ?
HIFC_CLP_REG(REQ) : HIFC_CLP_REG(RSP);
break;
case HIFC_CLP_START_REQ_HOST:
*reg_addr = HIFC_CLP_REG(REQ);
break;
case HIFC_CLP_READY_RSP_HOST:
*reg_addr = HIFC_CLP_REG(RSP);
break;
default:
*reg_addr = 0;
break;
}
if (*reg_addr == 0)
return -EINVAL;
*reg_addr += offset;
return 0;
}
static inline int clp_param_valid(struct hifc_hwdev *hwdev,
enum clp_data_type data_type,
enum clp_reg_type reg_type)
{
if (data_type == HIFC_CLP_REQ_HOST &&
reg_type == HIFC_CLP_READY_RSP_HOST)
return -EINVAL;
if (data_type == HIFC_CLP_RSP_HOST &&
reg_type == HIFC_CLP_START_REQ_HOST)
return -EINVAL;
return 0;
}
static u32 get_clp_reg_value(struct hifc_hwdev *hwdev,
enum clp_reg_type reg_type, u32 reg_addr)
{
u32 reg_value;
reg_value = hifc_hwif_read_reg(hwdev->hwif, reg_addr);
switch (reg_type) {
case HIFC_CLP_BA_HOST:
reg_value = ((reg_value >>
HIFC_CLP_OFFSET(SRAM_BASE)) &
HIFC_CLP_MASK(SRAM_BASE));
break;
case HIFC_CLP_SIZE_HOST:
reg_value = ((reg_value >>
HIFC_CLP_OFFSET(SRAM_SIZE)) &
HIFC_CLP_MASK(SRAM_SIZE));
break;
case HIFC_CLP_LEN_HOST:
reg_value = ((reg_value >> HIFC_CLP_OFFSET(LEN)) &
HIFC_CLP_MASK(LEN));
break;
case HIFC_CLP_START_REQ_HOST:
reg_value = ((reg_value >> HIFC_CLP_OFFSET(START)) &
HIFC_CLP_MASK(START));
break;
case HIFC_CLP_READY_RSP_HOST:
reg_value = ((reg_value >> HIFC_CLP_OFFSET(READY)) &
HIFC_CLP_MASK(READY));
break;
default:
break;
}
return reg_value;
}
static int hifc_read_clp_reg(struct hifc_hwdev *hwdev,
enum clp_data_type data_type,
enum clp_reg_type reg_type, u32 *read_value)
{
u32 reg_addr;
int err;
err = clp_param_valid(hwdev, data_type, reg_type);
if (err)
return err;
err = __get_clp_reg(hwdev, data_type, reg_type, &reg_addr);
if (err)
return err;
*read_value = get_clp_reg_value(hwdev, reg_type, reg_addr);
return 0;
}
static int __check_data_type(enum clp_data_type data_type,
enum clp_reg_type reg_type)
{
if (data_type == HIFC_CLP_REQ_HOST &&
reg_type == HIFC_CLP_READY_RSP_HOST)
return -EINVAL;
if (data_type == HIFC_CLP_RSP_HOST &&
reg_type == HIFC_CLP_START_REQ_HOST)
return -EINVAL;
return 0;
}
static int __check_reg_value(enum clp_reg_type reg_type, u32 value)
{
if (reg_type == HIFC_CLP_BA_HOST &&
value > HIFC_CLP_SRAM_BASE_REG_MAX)
return -EINVAL;
if (reg_type == HIFC_CLP_SIZE_HOST &&
value > HIFC_CLP_SRAM_SIZE_REG_MAX)
return -EINVAL;
if (reg_type == HIFC_CLP_LEN_HOST &&
value > HIFC_CLP_LEN_REG_MAX)
return -EINVAL;
if ((reg_type == HIFC_CLP_START_REQ_HOST ||
reg_type == HIFC_CLP_READY_RSP_HOST) &&
value > HIFC_CLP_START_OR_READY_REG_MAX)
return -EINVAL;
return 0;
}
static void hifc_write_clp_reg(struct hifc_hwdev *hwdev,
enum clp_data_type data_type,
enum clp_reg_type reg_type, u32 value)
{
u32 reg_addr, reg_value;
if (__check_data_type(data_type, reg_type))
return;
if (__check_reg_value(reg_type, value))
return;
if (__get_clp_reg(hwdev, data_type, reg_type, &reg_addr))
return;
reg_value = hifc_hwif_read_reg(hwdev->hwif, reg_addr);
switch (reg_type) {
case HIFC_CLP_LEN_HOST:
reg_value = reg_value &
(~(HIFC_CLP_MASK(LEN) << HIFC_CLP_OFFSET(LEN)));
reg_value = reg_value | (value << HIFC_CLP_OFFSET(LEN));
break;
case HIFC_CLP_START_REQ_HOST:
reg_value = reg_value &
(~(HIFC_CLP_MASK(START) <<
HIFC_CLP_OFFSET(START)));
reg_value = reg_value | (value << HIFC_CLP_OFFSET(START));
break;
case HIFC_CLP_READY_RSP_HOST:
reg_value = reg_value &
(~(HIFC_CLP_MASK(READY) <<
HIFC_CLP_OFFSET(READY)));
reg_value = reg_value | (value << HIFC_CLP_OFFSET(READY));
break;
default:
return;
}
hifc_hwif_write_reg(hwdev->hwif, reg_addr, reg_value);
}
static int hifc_read_clp_data(struct hifc_hwdev *hwdev,
void *buf_out, u16 *out_size)
{
int err;
u32 reg = HIFC_CLP_DATA(RSP);
u32 ready, delay_cnt;
u32 *ptr = (u32 *)buf_out;
u32 temp_out_size = 0;
err = hifc_read_clp_reg(hwdev, HIFC_CLP_RSP_HOST,
HIFC_CLP_READY_RSP_HOST, &ready);
if (err)
return err;
delay_cnt = 0;
while (ready == 0) {
usleep_range(9000, 10000);
delay_cnt++;
err = hifc_read_clp_reg(hwdev, HIFC_CLP_RSP_HOST,
HIFC_CLP_READY_RSP_HOST, &ready);
if (err || delay_cnt > HIFC_CLP_DELAY_CNT_MAX) {
sdk_err(hwdev->dev_hdl, "timeout with delay_cnt:%d\n",
delay_cnt);
return -EINVAL;
}
}
err = hifc_read_clp_reg(hwdev, HIFC_CLP_RSP_HOST,
HIFC_CLP_LEN_HOST, &temp_out_size);
if (err)
return err;
if (temp_out_size > HIFC_CLP_SRAM_SIZE_REG_MAX || !temp_out_size) {
sdk_err(hwdev->dev_hdl, "invalid temp_out_size:%d\n",
temp_out_size);
return -EINVAL;
}
*out_size = (u16)(temp_out_size & 0xffff);
for (; temp_out_size > 0; temp_out_size--) {
*ptr = hifc_hwif_read_reg(hwdev->hwif, reg);
ptr++;
reg = reg + 4;
}
hifc_write_clp_reg(hwdev, HIFC_CLP_RSP_HOST,
HIFC_CLP_READY_RSP_HOST, (u32)0x0);
hifc_write_clp_reg(hwdev, HIFC_CLP_RSP_HOST,
HIFC_CLP_LEN_HOST, (u32)0x0);
return 0;
}
static int hifc_write_clp_data(struct hifc_hwdev *hwdev,
void *buf_in, u16 in_size)
{
int err;
u32 reg = HIFC_CLP_DATA(REQ);
u32 start = 1;
u32 delay_cnt = 0;
u32 *ptr = (u32 *)buf_in;
err = hifc_read_clp_reg(hwdev, HIFC_CLP_REQ_HOST,
HIFC_CLP_START_REQ_HOST, &start);
if (err)
return err;
while (start == 1) {
usleep_range(9000, 10000);
delay_cnt++;
err = hifc_read_clp_reg(hwdev, HIFC_CLP_REQ_HOST,
HIFC_CLP_START_REQ_HOST, &start);
if (err || delay_cnt > HIFC_CLP_DELAY_CNT_MAX)
return -EINVAL;
}
hifc_write_clp_reg(hwdev, HIFC_CLP_REQ_HOST,
HIFC_CLP_LEN_HOST, in_size);
hifc_write_clp_reg(hwdev, HIFC_CLP_REQ_HOST,
HIFC_CLP_START_REQ_HOST, (u32)0x1);
for (; in_size > 0; in_size--) {
hifc_hwif_write_reg(hwdev->hwif, reg, *ptr);
ptr++;
reg = reg + 4;
}
return 0;
}
static int hifc_check_clp_init_status(struct hifc_hwdev *hwdev)
{
int err;
u32 reg_value = 0;
err = hifc_read_clp_reg(hwdev, HIFC_CLP_REQ_HOST,
HIFC_CLP_BA_HOST, &reg_value);
if (err || !reg_value) {
sdk_err(hwdev->dev_hdl, "Wrong req ba value:0x%x\n", reg_value);
return -EINVAL;
}
err = hifc_read_clp_reg(hwdev, HIFC_CLP_RSP_HOST,
HIFC_CLP_BA_HOST, &reg_value);
if (err || !reg_value) {
sdk_err(hwdev->dev_hdl, "Wrong rsp ba value:0x%x\n", reg_value);
return -EINVAL;
}
err = hifc_read_clp_reg(hwdev, HIFC_CLP_REQ_HOST,
HIFC_CLP_SIZE_HOST, &reg_value);
if (err || !reg_value) {
sdk_err(hwdev->dev_hdl, "Wrong req size\n");
return -EINVAL;
}
err = hifc_read_clp_reg(hwdev, HIFC_CLP_RSP_HOST,
HIFC_CLP_SIZE_HOST, &reg_value);
if (err || !reg_value) {
sdk_err(hwdev->dev_hdl, "Wrong rsp size\n");
return -EINVAL;
}
return 0;
}
static void hifc_clear_clp_data(struct hifc_hwdev *hwdev,
enum clp_data_type data_type)
{
u32 reg = (data_type == HIFC_CLP_REQ_HOST) ?
HIFC_CLP_DATA(REQ) : HIFC_CLP_DATA(RSP);
u32 count = HIFC_CLP_INPUT_BUFFER_LEN_HOST / HIFC_CLP_DATA_UNIT_HOST;
for (; count > 0; count--) {
hifc_hwif_write_reg(hwdev->hwif, reg, 0x0);
reg = reg + 4;
}
}
int hifc_pf_clp_to_mgmt(void *hwdev, enum hifc_mod_type mod, u8 cmd,
const void *buf_in, u16 in_size,
void *buf_out, u16 *out_size)
{
struct hifc_clp_pf_to_mgmt *clp_pf_to_mgmt;
struct hifc_hwdev *dev = hwdev;
u64 header;
u16 real_size;
u8 *clp_msg_buf;
int err;
clp_pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->clp_pf_to_mgmt;
clp_msg_buf = clp_pf_to_mgmt->clp_msg_buf;
/*4 bytes alignment*/
if (in_size % HIFC_CLP_DATA_UNIT_HOST)
real_size = (in_size + (u16)sizeof(header)
+ HIFC_CLP_DATA_UNIT_HOST);
else
real_size = in_size + (u16)sizeof(header);
real_size = real_size / HIFC_CLP_DATA_UNIT_HOST;
if (real_size >
(HIFC_CLP_INPUT_BUFFER_LEN_HOST / HIFC_CLP_DATA_UNIT_HOST)) {
sdk_err(dev->dev_hdl, "Invalid real_size:%d\n", real_size);
return -EINVAL;
}
down(&clp_pf_to_mgmt->clp_msg_lock);
err = hifc_check_clp_init_status(dev);
if (err) {
sdk_err(dev->dev_hdl, "Check clp init status failed\n");
up(&clp_pf_to_mgmt->clp_msg_lock);
return err;
}
hifc_clear_clp_data(dev, HIFC_CLP_RSP_HOST);
hifc_write_clp_reg(dev, HIFC_CLP_RSP_HOST,
HIFC_CLP_READY_RSP_HOST, 0x0);
/*Send request*/
memset(clp_msg_buf, 0x0, HIFC_CLP_INPUT_BUFFER_LEN_HOST);
clp_prepare_header(dev, &header, in_size, mod, 0, 0, cmd, 0);
memcpy(clp_msg_buf, &header, sizeof(header));
clp_msg_buf += sizeof(header);
memcpy(clp_msg_buf, buf_in, in_size);
clp_msg_buf = clp_pf_to_mgmt->clp_msg_buf;
hifc_clear_clp_data(dev, HIFC_CLP_REQ_HOST);
err = hifc_write_clp_data(hwdev,
clp_pf_to_mgmt->clp_msg_buf, real_size);
if (err) {
sdk_err(dev->dev_hdl, "Send clp request failed\n");
up(&clp_pf_to_mgmt->clp_msg_lock);
return -EINVAL;
}
/*Get response*/
clp_msg_buf = clp_pf_to_mgmt->clp_msg_buf;
memset(clp_msg_buf, 0x0, HIFC_CLP_INPUT_BUFFER_LEN_HOST);
err = hifc_read_clp_data(hwdev, clp_msg_buf, &real_size);
hifc_clear_clp_data(dev, HIFC_CLP_RSP_HOST);
if (err) {
sdk_err(dev->dev_hdl, "Read clp response failed\n");
up(&clp_pf_to_mgmt->clp_msg_lock);
return -EINVAL;
}
real_size = (u16)((real_size * HIFC_CLP_DATA_UNIT_HOST) & 0xffff);
if ((real_size <= sizeof(header)) ||
(real_size > HIFC_CLP_INPUT_BUFFER_LEN_HOST)) {
sdk_err(dev->dev_hdl, "Invalid response size:%d", real_size);
up(&clp_pf_to_mgmt->clp_msg_lock);
return -EINVAL;
}
real_size = real_size - sizeof(header);
if (real_size != *out_size) {
sdk_err(dev->dev_hdl, "Invalid real_size:%d, out_size:%d\n",
real_size, *out_size);
up(&clp_pf_to_mgmt->clp_msg_lock);
return -EINVAL;
}
memcpy(buf_out, (clp_msg_buf + sizeof(header)), real_size);
up(&clp_pf_to_mgmt->clp_msg_lock);
return 0;
}
/* This function is only used by txrx flush */
int hifc_pf_to_mgmt_no_ack(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
void *dev = ((struct hifc_hwdev *)hwdev)->dev_hdl;
int err = -EINVAL;
if (!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_MGMT_INITED)) {
sdk_err(dev, "Mgmt module not initialized\n");
return -EINVAL;
}
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
if (!MSG_SZ_IS_VALID(in_size)) {
sdk_err(dev, "Mgmt msg buffer size: %d is not valid\n",
in_size);
return -EINVAL;
}
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag))
return -EPERM;
/* Lock the sync_msg_buf */
down(&pf_to_mgmt->sync_msg_lock);
err = send_msg_to_mgmt_sync(pf_to_mgmt, mod, cmd, buf_in, in_size,
HIFC_MSG_NO_ACK, HIFC_MSG_DIRECT_SEND,
MSG_NO_RESP);
up(&pf_to_mgmt->sync_msg_lock);
return err;
}
/**
* api cmd write or read bypass defaut use poll, if want to use aeq interrupt,
* please set wb_trigger_aeqe to 1
**/
int hifc_api_cmd_write_nack(void *hwdev, u8 dest, void *cmd, u16 size)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
struct hifc_api_cmd_chain *chain;
if (!hwdev || !size || !cmd)
return -EINVAL;
if (!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_MGMT_INITED) ||
hifc_get_mgmt_channel_status(hwdev))
return -EPERM;
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
chain = pf_to_mgmt->cmd_chain[HIFC_API_CMD_POLL_WRITE];
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag))
return -EPERM;
return hifc_api_cmd_write(chain, dest, cmd, size);
}
int hifc_api_cmd_read_ack(void *hwdev, u8 dest, void *cmd, u16 size, void *ack,
u16 ack_size)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
struct hifc_api_cmd_chain *chain;
if (!hwdev || !cmd || (ack_size && !ack))
return -EINVAL;
if (!hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_MGMT_INITED) ||
hifc_get_mgmt_channel_status(hwdev))
return -EPERM;
pf_to_mgmt = ((struct hifc_hwdev *)hwdev)->pf_to_mgmt;
chain = pf_to_mgmt->cmd_chain[HIFC_API_CMD_POLL_READ];
if (!(((struct hifc_hwdev *)hwdev)->chip_present_flag))
return -EPERM;
return hifc_api_cmd_read(chain, dest, cmd, size, ack, ack_size);
}
static void __send_mgmt_ack(struct hifc_msg_pf_to_mgmt *pf_to_mgmt,
enum hifc_mod_type mod, u8 cmd, void *buf_in,
u16 in_size, u16 msg_id)
{
u16 buf_size;
if (!in_size)
buf_size = BUF_OUT_DEFAULT_SIZE;
else
buf_size = in_size;
spin_lock_bh(&pf_to_mgmt->async_msg_lock);
/* MGMT sent sync msg, send the response */
send_msg_to_mgmt_async(pf_to_mgmt, mod, cmd,
buf_in, buf_size, HIFC_MSG_RESPONSE,
msg_id);
spin_unlock_bh(&pf_to_mgmt->async_msg_lock);
}
/**
* mgmt_recv_msg_handler - handler for message from mgmt cpu
* @pf_to_mgmt: PF to MGMT channel
* @recv_msg: received message details
**/
static void mgmt_recv_msg_handler(struct hifc_msg_pf_to_mgmt *pf_to_mgmt,
enum hifc_mod_type mod, u8 cmd, void *buf_in,
u16 in_size, u16 msg_id, int need_resp)
{
void *dev = pf_to_mgmt->hwdev->dev_hdl;
void *buf_out = pf_to_mgmt->mgmt_ack_buf;
enum hifc_mod_type tmp_mod = mod;
bool ack_first = false;
u16 out_size = 0;
memset(buf_out, 0, MAX_PF_MGMT_BUF_SIZE);
if (mod >= HIFC_MOD_HW_MAX) {
sdk_warn(dev, "Receive illegal message from mgmt cpu, mod = %d\n",
mod);
goto resp;
}
set_bit(HIFC_MGMT_MSG_CB_RUNNING,
&pf_to_mgmt->mgmt_msg_cb_state[tmp_mod]);
if (!pf_to_mgmt->recv_mgmt_msg_cb[mod] ||
!test_bit(HIFC_MGMT_MSG_CB_REG,
&pf_to_mgmt->mgmt_msg_cb_state[tmp_mod])) {
sdk_warn(dev, "Receive mgmt callback is null, mod = %d\n",
mod);
clear_bit(HIFC_MGMT_MSG_CB_RUNNING,
&pf_to_mgmt->mgmt_msg_cb_state[tmp_mod]);
goto resp;
}
ack_first = hifc_mgmt_event_ack_first(mod, cmd);
if (ack_first && need_resp) {
/* send ack to mgmt first to avoid command timeout in
* mgmt(100ms in mgmt);
* mgmt to host command don't need any response data from host,
* just need ack from host
*/
__send_mgmt_ack(pf_to_mgmt, mod, cmd, buf_out, in_size, msg_id);
}
pf_to_mgmt->recv_mgmt_msg_cb[tmp_mod](pf_to_mgmt->hwdev,
pf_to_mgmt->recv_mgmt_msg_data[tmp_mod],
cmd, buf_in, in_size,
buf_out, &out_size);
clear_bit(HIFC_MGMT_MSG_CB_RUNNING,
&pf_to_mgmt->mgmt_msg_cb_state[tmp_mod]);
resp:
if (!ack_first && need_resp)
__send_mgmt_ack(pf_to_mgmt, mod, cmd, buf_out, out_size,
msg_id);
}
/**
* mgmt_resp_msg_handler - handler for response message from mgmt cpu
* @pf_to_mgmt: PF to MGMT channel
* @recv_msg: received message details
**/
static void mgmt_resp_msg_handler(struct hifc_msg_pf_to_mgmt *pf_to_mgmt,
struct hifc_recv_msg *recv_msg)
{
void *dev = pf_to_mgmt->hwdev->dev_hdl;
/* delete async msg */
if (recv_msg->msg_id & ASYNC_MSG_FLAG)
return;
spin_lock(&pf_to_mgmt->sync_event_lock);
if (recv_msg->msg_id == pf_to_mgmt->sync_msg_id &&
pf_to_mgmt->event_flag == SEND_EVENT_START) {
complete(&recv_msg->recv_done);
} else if (recv_msg->msg_id != pf_to_mgmt->sync_msg_id) {
sdk_err(dev, "Send msg id(0x%x) recv msg id(0x%x) dismatch, event state=%d\n",
pf_to_mgmt->sync_msg_id, recv_msg->msg_id,
pf_to_mgmt->event_flag);
} else {
sdk_err(dev, "Wait timeout, send msg id(0x%x) recv msg id(0x%x), event state=%d!\n",
pf_to_mgmt->sync_msg_id, recv_msg->msg_id,
pf_to_mgmt->event_flag);
}
spin_unlock(&pf_to_mgmt->sync_event_lock);
}
static void recv_mgmt_msg_work_handler(struct work_struct *work)
{
struct hifc_mgmt_msg_handle_work *mgmt_work =
container_of(work, struct hifc_mgmt_msg_handle_work, work);
mgmt_recv_msg_handler(mgmt_work->pf_to_mgmt, mgmt_work->mod,
mgmt_work->cmd, mgmt_work->msg,
mgmt_work->msg_len, mgmt_work->msg_id,
!mgmt_work->async_mgmt_to_pf);
kfree(mgmt_work->msg);
kfree(mgmt_work);
}
static bool check_mgmt_seq_id_and_seg_len(struct hifc_recv_msg *recv_msg,
u8 seq_id, u8 seg_len)
{
if (seq_id > MGMT_MSG_MAX_SEQ_ID || seg_len > SEGMENT_LEN)
return false;
if (seq_id == 0) {
recv_msg->seq_id = seq_id;
} else {
if (seq_id != recv_msg->seq_id + 1)
return false;
recv_msg->seq_id = seq_id;
}
return true;
}
/**
* recv_mgmt_msg_handler - handler a message from mgmt cpu
* @pf_to_mgmt: PF to MGMT channel
* @header: the header of the message
* @recv_msg: received message details
**/
static void recv_mgmt_msg_handler(struct hifc_msg_pf_to_mgmt *pf_to_mgmt,
u8 *header, struct hifc_recv_msg *recv_msg)
{
struct hifc_mgmt_msg_handle_work *mgmt_work;
u64 mbox_header = *((u64 *)header);
void *msg_body = header + sizeof(mbox_header);
u8 seq_id, seq_len;
u32 offset;
u64 dir;
/* Don't need to get anything from hw when cmd is async */
dir = HIFC_MSG_HEADER_GET(mbox_header, DIRECTION);
if (dir == HIFC_MSG_RESPONSE &&
HIFC_MSG_HEADER_GET(mbox_header, MSG_ID) & ASYNC_MSG_FLAG)
return;
seq_len = HIFC_MSG_HEADER_GET(mbox_header, SEG_LEN);
seq_id = HIFC_MSG_HEADER_GET(mbox_header, SEQID);
if (!check_mgmt_seq_id_and_seg_len(recv_msg, seq_id, seq_len)) {
sdk_err(pf_to_mgmt->hwdev->dev_hdl,
"Mgmt msg sequence id and segment length check fail, front seq_id: 0x%x, current seq_id: 0x%x, seg len: 0x%x\n",
recv_msg->seq_id, seq_id, seq_len);
/* set seq_id to invalid seq_id */
recv_msg->seq_id = MGMT_MSG_MAX_SEQ_ID;
return;
}
offset = seq_id * SEGMENT_LEN;
memcpy((u8 *)recv_msg->msg + offset, msg_body, seq_len);
if (!HIFC_MSG_HEADER_GET(mbox_header, LAST))
return;
recv_msg->cmd = HIFC_MSG_HEADER_GET(mbox_header, CMD);
recv_msg->mod = HIFC_MSG_HEADER_GET(mbox_header, MODULE);
recv_msg->async_mgmt_to_pf = HIFC_MSG_HEADER_GET(mbox_header,
ASYNC_MGMT_TO_PF);
recv_msg->msg_len = HIFC_MSG_HEADER_GET(mbox_header, MSG_LEN);
recv_msg->msg_id = HIFC_MSG_HEADER_GET(mbox_header, MSG_ID);
recv_msg->seq_id = MGMT_MSG_MAX_SEQ_ID;
if (HIFC_MSG_HEADER_GET(mbox_header, DIRECTION) ==
HIFC_MSG_RESPONSE) {
mgmt_resp_msg_handler(pf_to_mgmt, recv_msg);
return;
}
mgmt_work = kzalloc(sizeof(*mgmt_work), GFP_KERNEL);
if (!mgmt_work) {
sdk_err(pf_to_mgmt->hwdev->dev_hdl,
"Allocate mgmt work memory failed\n");
return;
}
if (recv_msg->msg_len) {
mgmt_work->msg = kzalloc(recv_msg->msg_len, GFP_KERNEL);
if (!mgmt_work->msg) {
sdk_err(pf_to_mgmt->hwdev->dev_hdl, "Allocate mgmt msg memory failed\n");
kfree(mgmt_work);
return;
}
}
mgmt_work->pf_to_mgmt = pf_to_mgmt;
mgmt_work->msg_len = recv_msg->msg_len;
memcpy(mgmt_work->msg, recv_msg->msg, recv_msg->msg_len);
mgmt_work->msg_id = recv_msg->msg_id;
mgmt_work->mod = recv_msg->mod;
mgmt_work->cmd = recv_msg->cmd;
mgmt_work->async_mgmt_to_pf = recv_msg->async_mgmt_to_pf;
INIT_WORK(&mgmt_work->work, recv_mgmt_msg_work_handler);
queue_work(pf_to_mgmt->workq, &mgmt_work->work);
}
/**
* hifc_mgmt_msg_aeqe_handler - handler for a mgmt message event
* @hwdev: the pointer to hw device
* @header: the header of the message
* @size: unused
**/
void hifc_mgmt_msg_aeqe_handler(void *hwdev, u8 *header, u8 size)
{
struct hifc_hwdev *dev = (struct hifc_hwdev *)hwdev;
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
struct hifc_recv_msg *recv_msg;
bool is_send_dir = false;
pf_to_mgmt = dev->pf_to_mgmt;
is_send_dir = (HIFC_MSG_HEADER_GET(*(u64 *)header, DIRECTION) ==
HIFC_MSG_DIRECT_SEND) ? true : false;
recv_msg = is_send_dir ? &pf_to_mgmt->recv_msg_from_mgmt :
&pf_to_mgmt->recv_resp_msg_from_mgmt;
recv_mgmt_msg_handler(pf_to_mgmt, header, recv_msg);
}
/**
* alloc_recv_msg - allocate received message memory
* @recv_msg: pointer that will hold the allocated data
* Return: 0 - success, negative - failure
**/
static int alloc_recv_msg(struct hifc_recv_msg *recv_msg)
{
recv_msg->seq_id = MGMT_MSG_MAX_SEQ_ID;
recv_msg->msg = kzalloc(MAX_PF_MGMT_BUF_SIZE, GFP_KERNEL);
if (!recv_msg->msg)
return -ENOMEM;
return 0;
}
/**
* free_recv_msg - free received message memory
* @recv_msg: pointer that holds the allocated data
**/
static void free_recv_msg(struct hifc_recv_msg *recv_msg)
{
kfree(recv_msg->msg);
}
/**
* alloc_msg_buf - allocate all the message buffers of PF to MGMT channel
* @pf_to_mgmt: PF to MGMT channel
* Return: 0 - success, negative - failure
**/
static int alloc_msg_buf(struct hifc_msg_pf_to_mgmt *pf_to_mgmt)
{
int err;
void *dev = pf_to_mgmt->hwdev->dev_hdl;
err = alloc_recv_msg(&pf_to_mgmt->recv_msg_from_mgmt);
if (err) {
sdk_err(dev, "Failed to allocate recv msg\n");
return err;
}
err = alloc_recv_msg(&pf_to_mgmt->recv_resp_msg_from_mgmt);
if (err) {
sdk_err(dev, "Failed to allocate resp recv msg\n");
goto alloc_msg_for_resp_err;
}
pf_to_mgmt->async_msg_buf = kzalloc(MAX_PF_MGMT_BUF_SIZE, GFP_KERNEL);
if (!pf_to_mgmt->async_msg_buf) {
err = -ENOMEM;
goto async_msg_buf_err;
}
pf_to_mgmt->sync_msg_buf = kzalloc(MAX_PF_MGMT_BUF_SIZE, GFP_KERNEL);
if (!pf_to_mgmt->sync_msg_buf) {
err = -ENOMEM;
goto sync_msg_buf_err;
}
pf_to_mgmt->mgmt_ack_buf = kzalloc(MAX_PF_MGMT_BUF_SIZE, GFP_KERNEL);
if (!pf_to_mgmt->mgmt_ack_buf) {
err = -ENOMEM;
goto ack_msg_buf_err;
}
return 0;
ack_msg_buf_err:
kfree(pf_to_mgmt->sync_msg_buf);
sync_msg_buf_err:
kfree(pf_to_mgmt->async_msg_buf);
async_msg_buf_err:
free_recv_msg(&pf_to_mgmt->recv_resp_msg_from_mgmt);
alloc_msg_for_resp_err:
free_recv_msg(&pf_to_mgmt->recv_msg_from_mgmt);
return err;
}
/**
* free_msg_buf - free all the message buffers of PF to MGMT channel
* @pf_to_mgmt: PF to MGMT channel
**/
static void free_msg_buf(struct hifc_msg_pf_to_mgmt *pf_to_mgmt)
{
kfree(pf_to_mgmt->mgmt_ack_buf);
kfree(pf_to_mgmt->sync_msg_buf);
kfree(pf_to_mgmt->async_msg_buf);
free_recv_msg(&pf_to_mgmt->recv_resp_msg_from_mgmt);
free_recv_msg(&pf_to_mgmt->recv_msg_from_mgmt);
}
/**
* hifc_pf_to_mgmt_init - initialize PF to MGMT channel
* @hwdev: the pointer to hw device
* Return: 0 - success, negative - failure
**/
int hifc_pf_to_mgmt_init(struct hifc_hwdev *hwdev)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
void *dev = hwdev->dev_hdl;
int err;
pf_to_mgmt = kzalloc(sizeof(*pf_to_mgmt), GFP_KERNEL);
if (!pf_to_mgmt)
return -ENOMEM;
hwdev->pf_to_mgmt = pf_to_mgmt;
pf_to_mgmt->hwdev = hwdev;
spin_lock_init(&pf_to_mgmt->async_msg_lock);
spin_lock_init(&pf_to_mgmt->sync_event_lock);
sema_init(&pf_to_mgmt->sync_msg_lock, 1);
pf_to_mgmt->workq = create_singlethread_workqueue(HIFC_MGMT_WQ_NAME);
if (!pf_to_mgmt->workq) {
sdk_err(dev, "Failed to initialize MGMT workqueue\n");
err = -ENOMEM;
goto create_mgmt_workq_err;
}
err = alloc_msg_buf(pf_to_mgmt);
if (err) {
sdk_err(dev, "Failed to allocate msg buffers\n");
goto alloc_msg_buf_err;
}
err = hifc_api_cmd_init(hwdev, pf_to_mgmt->cmd_chain);
if (err) {
sdk_err(dev, "Failed to init the api cmd chains\n");
goto api_cmd_init_err;
}
return 0;
api_cmd_init_err:
free_msg_buf(pf_to_mgmt);
alloc_msg_buf_err:
destroy_workqueue(pf_to_mgmt->workq);
create_mgmt_workq_err:
kfree(pf_to_mgmt);
return err;
}
/**
* hifc_pf_to_mgmt_free - free PF to MGMT channel
* @hwdev: the pointer to hw device
**/
void hifc_pf_to_mgmt_free(struct hifc_hwdev *hwdev)
{
struct hifc_msg_pf_to_mgmt *pf_to_mgmt = hwdev->pf_to_mgmt;
/* destroy workqueue before free related pf_to_mgmt resources in case of
* illegal resource access
*/
destroy_workqueue(pf_to_mgmt->workq);
hifc_api_cmd_free(pf_to_mgmt->cmd_chain);
free_msg_buf(pf_to_mgmt);
kfree(pf_to_mgmt);
}
void hifc_flush_mgmt_workq(void *hwdev)
{
struct hifc_hwdev *dev = (struct hifc_hwdev *)hwdev;
flush_workqueue(dev->aeqs->workq);
if (hifc_func_type(dev) != TYPE_VF &&
hifc_is_hwdev_mod_inited(hwdev, HIFC_HWDEV_MGMT_INITED))
flush_workqueue(dev->pf_to_mgmt->workq);
}
int hifc_clp_pf_to_mgmt_init(struct hifc_hwdev *hwdev)
{
struct hifc_clp_pf_to_mgmt *clp_pf_to_mgmt;
clp_pf_to_mgmt = kzalloc(sizeof(*clp_pf_to_mgmt), GFP_KERNEL);
if (!clp_pf_to_mgmt)
return -ENOMEM;
clp_pf_to_mgmt->clp_msg_buf = kzalloc(HIFC_CLP_INPUT_BUFFER_LEN_HOST,
GFP_KERNEL);
if (!clp_pf_to_mgmt->clp_msg_buf) {
kfree(clp_pf_to_mgmt);
return -ENOMEM;
}
sema_init(&clp_pf_to_mgmt->clp_msg_lock, 1);
hwdev->clp_pf_to_mgmt = clp_pf_to_mgmt;
return 0;
}
void hifc_clp_pf_to_mgmt_free(struct hifc_hwdev *hwdev)
{
struct hifc_clp_pf_to_mgmt *clp_pf_to_mgmt = hwdev->clp_pf_to_mgmt;
kfree(clp_pf_to_mgmt->clp_msg_buf);
kfree(clp_pf_to_mgmt);
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef HIFC_MGMT_H_
#define HIFC_MGMT_H_
#define HIFC_MSG_HEADER_MSG_LEN_SHIFT 0
#define HIFC_MSG_HEADER_MODULE_SHIFT 11
#define HIFC_MSG_HEADER_SEG_LEN_SHIFT 16
#define HIFC_MSG_HEADER_NO_ACK_SHIFT 22
#define HIFC_MSG_HEADER_ASYNC_MGMT_TO_PF_SHIFT 23
#define HIFC_MSG_HEADER_SEQID_SHIFT 24
#define HIFC_MSG_HEADER_LAST_SHIFT 30
#define HIFC_MSG_HEADER_DIRECTION_SHIFT 31
#define HIFC_MSG_HEADER_CMD_SHIFT 32
#define HIFC_MSG_HEADER_PCI_INTF_IDX_SHIFT 48
#define HIFC_MSG_HEADER_P2P_IDX_SHIFT 50
#define HIFC_MSG_HEADER_MSG_ID_SHIFT 54
#define HIFC_MSG_HEADER_MSG_LEN_MASK 0x7FF
#define HIFC_MSG_HEADER_MODULE_MASK 0x1F
#define HIFC_MSG_HEADER_SEG_LEN_MASK 0x3F
#define HIFC_MSG_HEADER_NO_ACK_MASK 0x1
#define HIFC_MSG_HEADER_ASYNC_MGMT_TO_PF_MASK 0x1
#define HIFC_MSG_HEADER_SEQID_MASK 0x3F
#define HIFC_MSG_HEADER_LAST_MASK 0x1
#define HIFC_MSG_HEADER_DIRECTION_MASK 0x1
#define HIFC_MSG_HEADER_CMD_MASK 0xFF
#define HIFC_MSG_HEADER_PCI_INTF_IDX_MASK 0x3
#define HIFC_MSG_HEADER_P2P_IDX_MASK 0xF
#define HIFC_MSG_HEADER_MSG_ID_MASK 0x3FF
#define HIFC_MSG_HEADER_GET(val, member) \
(((val) >> HIFC_MSG_HEADER_##member##_SHIFT) & \
HIFC_MSG_HEADER_##member##_MASK)
#define HIFC_MSG_HEADER_SET(val, member) \
((u64)((val) & HIFC_MSG_HEADER_##member##_MASK) << \
HIFC_MSG_HEADER_##member##_SHIFT)
#define HIFC_MGMT_WQ_NAME "hifc_mgmt"
/*CLP*/
enum clp_data_type {
HIFC_CLP_REQ_HOST = 0,
HIFC_CLP_RSP_HOST = 1
};
enum clp_reg_type {
HIFC_CLP_BA_HOST = 0,
HIFC_CLP_SIZE_HOST = 1,
HIFC_CLP_LEN_HOST = 2,
HIFC_CLP_START_REQ_HOST = 3,
HIFC_CLP_READY_RSP_HOST = 4
};
/* cmd of mgmt CPU message for HW module */
enum hifc_mgmt_cmd {
HIFC_MGMT_CMD_RESET_MGMT = 0x0,
HIFC_MGMT_CMD_START_FLR = 0x1,
HIFC_MGMT_CMD_FLUSH_DOORBELL = 0x2,
HIFC_MGMT_CMD_CMDQ_CTXT_SET = 0x10,
HIFC_MGMT_CMD_VAT_SET = 0x12,
HIFC_MGMT_CMD_L2NIC_SQ_CI_ATTR_SET = 0x14,
HIFC_MGMT_CMD_PPF_TMR_SET = 0x22,
HIFC_MGMT_CMD_PPF_HT_GPA_SET = 0x23,
HIFC_MGMT_CMD_RES_STATE_SET = 0x24,
HIFC_MGMT_CMD_FUNC_TMR_BITMAT_SET = 0x32,
HIFC_MGMT_CMD_CEQ_CTRL_REG_WR_BY_UP = 0x33,
HIFC_MGMT_CMD_MSI_CTRL_REG_WR_BY_UP,
HIFC_MGMT_CMD_MSI_CTRL_REG_RD_BY_UP,
HIFC_MGMT_CMD_FAULT_REPORT = 0x37,
HIFC_MGMT_CMD_HEART_LOST_REPORT = 0x38,
HIFC_MGMT_CMD_SYNC_TIME = 0x46,
HIFC_MGMT_CMD_REG_READ = 0x48,
HIFC_MGMT_CMD_L2NIC_RESET = 0x4b,
HIFC_MGMT_CMD_ACTIVATE_FW = 0x4F,
HIFC_MGMT_CMD_PAGESIZE_SET = 0x50,
HIFC_MGMT_CMD_GET_BOARD_INFO = 0x52,
HIFC_MGMT_CMD_WATCHDOG_INFO = 0x56,
HIFC_MGMT_CMD_FMW_ACT_NTC = 0x57,
HIFC_MGMT_CMD_PCIE_DFX_NTC = 0x65,
HIFC_MGMT_CMD_PCIE_DFX_GET = 0x66,
HIFC_MGMT_CMD_GET_HOST_INFO = 0x67,
HIFC_MGMT_CMD_GET_PHY_INIT_STATUS = 0x6A,
HIFC_MGMT_CMD_HEARTBEAT_EVENT = 0x6C,
};
#define HIFC_CLP_REG_GAP 0x20
#define HIFC_CLP_INPUT_BUFFER_LEN_HOST 2048UL
#define HIFC_CLP_OUTPUT_BUFFER_LEN_HOST 2048UL
#define HIFC_CLP_DATA_UNIT_HOST 4UL
#define HIFC_BAR01_GLOABAL_CTL_OFFSET 0x4000
#define HIFC_BAR01_CLP_OFFSET 0x5000
#define HIFC_CLP_SRAM_SIZE_REG (HIFC_BAR01_GLOABAL_CTL_OFFSET + 0x220)
#define HIFC_CLP_REQ_SRAM_BA_REG (HIFC_BAR01_GLOABAL_CTL_OFFSET + 0x224)
#define HIFC_CLP_RSP_SRAM_BA_REG (HIFC_BAR01_GLOABAL_CTL_OFFSET + 0x228)
#define HIFC_CLP_REQ_REG (HIFC_BAR01_GLOABAL_CTL_OFFSET + 0x22c)
#define HIFC_CLP_RSP_REG (HIFC_BAR01_GLOABAL_CTL_OFFSET + 0x230)
#define HIFC_CLP_REG(member) (HIFC_CLP_##member##_REG)
#define HIFC_CLP_REQ_DATA (HIFC_BAR01_CLP_OFFSET)
#define HIFC_CLP_RSP_DATA (HIFC_BAR01_CLP_OFFSET + 0x1000)
#define HIFC_CLP_DATA(member) (HIFC_CLP_##member##_DATA)
#define HIFC_CLP_SRAM_SIZE_OFFSET 16
#define HIFC_CLP_SRAM_BASE_OFFSET 0
#define HIFC_CLP_LEN_OFFSET 0
#define HIFC_CLP_START_OFFSET 31
#define HIFC_CLP_READY_OFFSET 31
#define HIFC_CLP_OFFSET(member) (HIFC_CLP_##member##_OFFSET)
#define HIFC_CLP_SRAM_SIZE_BIT_LEN 0x7ffUL
#define HIFC_CLP_SRAM_BASE_BIT_LEN 0x7ffffffUL
#define HIFC_CLP_LEN_BIT_LEN 0x7ffUL
#define HIFC_CLP_START_BIT_LEN 0x1UL
#define HIFC_CLP_READY_BIT_LEN 0x1UL
#define HIFC_CLP_MASK(member) (HIFC_CLP_##member##_BIT_LEN)
#define HIFC_CLP_DELAY_CNT_MAX 200UL
#define HIFC_CLP_SRAM_SIZE_REG_MAX 0x3ff
#define HIFC_CLP_SRAM_BASE_REG_MAX 0x7ffffff
#define HIFC_CLP_LEN_REG_MAX 0x3ff
#define HIFC_CLP_START_OR_READY_REG_MAX 0x1
#define HIFC_MGMT_CMD_UNSUPPORTED 0xFF
enum hifc_msg_direction_type {
HIFC_MSG_DIRECT_SEND = 0,
HIFC_MSG_RESPONSE = 1
};
enum hifc_msg_segment_type {
NOT_LAST_SEGMENT = 0,
LAST_SEGMENT = 1,
};
enum hifc_mgmt_msg_type {
ASYNC_MGMT_MSG = 0,
SYNC_MGMT_MSG = 1,
};
enum hifc_msg_ack_type {
HIFC_MSG_ACK = 0,
HIFC_MSG_NO_ACK = 1,
};
struct hifc_recv_msg {
void *msg;
struct completion recv_done;
u16 msg_len;
enum hifc_mod_type mod;
u8 cmd;
u8 seq_id;
u16 msg_id;
int async_mgmt_to_pf;
};
struct hifc_msg_head {
u8 status;
u8 version;
u8 resp_aeq_num;
u8 rsvd0[5];
};
#define HIFC_COMM_SELF_CMD_MAX 8
struct comm_up_self_msg_sub_info {
u8 cmd;
comm_up_self_msg_proc proc;
};
struct comm_up_self_msg_info {
u8 cmd_num;
struct comm_up_self_msg_sub_info info[HIFC_COMM_SELF_CMD_MAX];
};
enum comm_pf_to_mgmt_event_state {
SEND_EVENT_UNINIT = 0,
SEND_EVENT_START,
SEND_EVENT_FAIL,
SEND_EVENT_TIMEOUT,
SEND_EVENT_END,
};
enum hifc_mgmt_msg_cb_state {
HIFC_MGMT_MSG_CB_REG = 0,
HIFC_MGMT_MSG_CB_RUNNING,
};
struct hifc_clp_pf_to_mgmt {
struct semaphore clp_msg_lock;
void *clp_msg_buf;
};
struct hifc_msg_pf_to_mgmt {
struct hifc_hwdev *hwdev;
/* Async cmd can not be scheduling */
spinlock_t async_msg_lock;
struct semaphore sync_msg_lock;
struct workqueue_struct *workq;
void *async_msg_buf;
void *sync_msg_buf;
void *mgmt_ack_buf;
struct hifc_recv_msg recv_msg_from_mgmt;
struct hifc_recv_msg recv_resp_msg_from_mgmt;
u16 async_msg_id;
u16 sync_msg_id;
struct hifc_api_cmd_chain *cmd_chain[HIFC_API_CMD_MAX];
hifc_mgmt_msg_cb recv_mgmt_msg_cb[HIFC_MOD_HW_MAX];
void *recv_mgmt_msg_data[HIFC_MOD_HW_MAX];
unsigned long mgmt_msg_cb_state[HIFC_MOD_HW_MAX];
struct comm_up_self_msg_info proc;
/* lock when sending msg */
spinlock_t sync_event_lock;
enum comm_pf_to_mgmt_event_state event_flag;
};
struct hifc_mgmt_msg_handle_work {
struct work_struct work;
struct hifc_msg_pf_to_mgmt *pf_to_mgmt;
void *msg;
u16 msg_len;
enum hifc_mod_type mod;
u8 cmd;
u16 msg_id;
int async_mgmt_to_pf;
};
/* show each drivers only such as nic_service_cap,
* toe_service_cap structure, but not show service_cap
*/
enum hifc_service_type {
SERVICE_T_NIC = 0,
SERVICE_T_FC = 5,
SERVICE_T_MAX,
/* Only used for interruption resource management,
* mark the request module
*/
SERVICE_T_INTF = (1 << 15),
SERVICE_T_CQM = (1 << 16),
};
/* NIC service capability
* 1, The chip supports NIC RQ is 1K
* 2, PF/VF RQ specifications:
* disable RSS:
* disable VMDq: Each PF/VF at most 8 RQ
* enable the VMDq: Each PF/VF at most 1K RQ
* enable the RSS:
* disable VMDq: each PF at most 64 RQ, VF at most 32 RQ
* enable the VMDq: Each PF/VF at most 1K RQ
*
* 3, The chip supports NIC SQ is 1K
* 4, PF/VF SQ specifications:
* disable RSS:
* disable VMDq: Each PF/VF at most 8 SQ
* enable the VMDq: Each PF/VF at most 1K SQ
* enable the RSS:
* disable VMDq: each PF at most 64 SQ, VF at most 32 SQ
* enable the VMDq: Each PF/VF at most 1K SQ
*/
struct nic_service_cap {
/* PF resources*/
u16 max_sqs;
u16 max_rqs;
/* VF resources, vf obtain through the MailBox mechanism from
* according PF
*/
u16 vf_max_sqs;
u16 vf_max_rqs;
bool lro_en; /* LRO feature enable bit*/
u8 lro_sz; /* LRO context space: n*16B */
u8 tso_sz; /* TSO context space: n*16B */
u16 max_queue_allowed;
};
/* PF FC service resource structure defined*/
struct dev_fc_svc_cap {
/* PF Parent QPC */
u32 max_parent_qpc_num; /* max number is 2048*/
/* PF Child QPC */
u32 max_child_qpc_num; /* max number is 2048*/
/* PF SCQ */
u32 scq_num; /* 16 */
/* PF supports SRQ*/
u32 srq_num; /* Number of SRQ is 2*/
u8 vp_id_start;
u8 vp_id_end;
};
/* FC services*/
struct fc_service_cap {
struct dev_fc_svc_cap dev_fc_cap;
/* Parent QPC */
u32 parent_qpc_size; /* 256B */
/* Child QPC */
u32 child_qpc_size; /* 256B */
/* SQ */
u32 sqe_size; /* 128B(in linked list mode)*/
/* SCQ */
u32 scqc_size; /* Size of the Context 32B*/
u32 scqe_size; /* 64B */
/* SRQ */
u32 srqc_size; /* Size of SRQ Context (64B)*/
u32 srqe_size; /* 32B */
};
bool hifc_support_fc(void *hwdev, struct fc_service_cap *cap);
/* Service interface for obtaining service_cap public fields*/
/* Obtain service_cap.host_oq_id_mask_val*/
u8 hifc_host_oq_id_mask(void *hwdev);
/* Obtain service_cap.dev_cap.max_sqs*/
u16 hifc_func_max_qnum(void *hwdev);
/* The following information is obtained from the bar space
* which is recorded by SDK layer.
* Here provide parameter query interface for service
*/
/* func_attr.glb_func_idx, global function index */
u16 hifc_global_func_id(void *hwdev);
/* func_attr.intr_num, MSI-X table entry in function*/
enum intr_type {
INTR_TYPE_MSIX,
INTR_TYPE_MSI,
INTR_TYPE_INT,
INTR_TYPE_NONE,
};
u8 hifc_pcie_itf_id(void *hwdev); /* func_attr.itf_idx, pcie interface index */
/* func_attr.func_type, 0-PF 1-VF 2-PPF */
enum func_type hifc_func_type(void *hwdev);
u8 hifc_ppf_idx(void *hwdev);
enum hifc_msix_state {
HIFC_MSIX_ENABLE,
HIFC_MSIX_DISABLE,
};
void hifc_set_msix_state(void *hwdev, u16 msix_idx,
enum hifc_msix_state flag);
/* Defines the IRQ information structure*/
struct irq_info {
u16 msix_entry_idx; /* IRQ corresponding index number */
u32 irq_id; /* the IRQ number from OS */
};
int hifc_alloc_irqs(void *hwdev, enum hifc_service_type type, u16 req_num,
struct irq_info *irq_info_array, u16 *resp_num);
void hifc_free_irq(void *hwdev, enum hifc_service_type type, u32 irq_id);
int hifc_sync_time(void *hwdev, u64 time);
void hifc_disable_mgmt_msg_report(void *hwdev);
void hifc_set_func_deinit_flag(void *hwdev);
void hifc_flush_mgmt_workq(void *hwdev);
int hifc_global_func_id_get(void *hwdev, u16 *func_id);
u16 hifc_global_func_id_hw(void *hwdev);
int hifc_pf_to_mgmt_no_ack(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size);
void hifc_mgmt_msg_aeqe_handler(void *handle, u8 *header, u8 size);
int hifc_pf_to_mgmt_init(struct hifc_hwdev *hwdev);
void hifc_pf_to_mgmt_free(struct hifc_hwdev *hwdev);
int hifc_pf_to_mgmt_sync(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size, void *buf_out,
u16 *out_size, u32 timeout);
int hifc_pf_to_mgmt_async(void *hwdev, enum hifc_mod_type mod, u8 cmd,
void *buf_in, u16 in_size);
int hifc_pf_clp_to_mgmt(void *hwdev, enum hifc_mod_type mod, u8 cmd,
const void *buf_in, u16 in_size,
void *buf_out, u16 *out_size);
int hifc_clp_pf_to_mgmt_init(struct hifc_hwdev *hwdev);
void hifc_clp_pf_to_mgmt_free(struct hifc_hwdev *hwdev);
#endif
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/types.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwdev.h"
#include "hifc_sml.h"
#ifndef HTONL
#define HTONL(x) \
((((x) & 0x000000ff) << 24) \
| (((x) & 0x0000ff00) << 8) \
| (((x) & 0x00ff0000) >> 8) \
| (((x) & 0xff000000) >> 24))
#endif
static void sml_ctr_htonl_n(u32 *node, u32 len)
{
u32 i;
for (i = 0; i < len; i++) {
*node = HTONL(*node);
node++;
}
}
static void hifc_sml_ctr_read_build_req(struct chipif_sml_ctr_rd_req_s *msg,
u8 instance_id, u8 op_id,
u8 ack, u32 ctr_id, u32 init_val)
{
msg->head.value = 0;
msg->head.bs.instance = instance_id;
msg->head.bs.op_id = op_id;
msg->head.bs.ack = ack;
msg->head.value = HTONL(msg->head.value);
msg->ctr_id = ctr_id;
msg->ctr_id = HTONL(msg->ctr_id);
msg->initial = init_val;
}
static void hifc_sml_ctr_write_build_req(struct chipif_sml_ctr_wr_req_s *msg,
u8 instance_id, u8 op_id,
u8 ack, u32 ctr_id,
u64 val1, u64 val2)
{
msg->head.value = 0;
msg->head.bs.instance = instance_id;
msg->head.bs.op_id = op_id;
msg->head.bs.ack = ack;
msg->head.value = HTONL(msg->head.value);
msg->ctr_id = ctr_id;
msg->ctr_id = HTONL(msg->ctr_id);
msg->value1_h = val1 >> 32;
msg->value1_l = val1 & 0xFFFFFFFF;
msg->value2_h = val2 >> 32;
msg->value2_l = val2 & 0xFFFFFFFF;
}
/**
* hifc_sm_ctr_rd32 - small single 32 counter read
* @hwdev: the pointer to hw device
* @node: the node id
* @instance: instance value
* @ctr_id: counter id
* @value: read counter value ptr
* Return: 0 - success, negative - failure
*/
int hifc_sm_ctr_rd32(void *hwdev, u8 node, u8 instance, u32 ctr_id, u32 *value)
{
struct chipif_sml_ctr_rd_req_s req;
union ctr_rd_rsp_u rsp;
int ret;
if (!hwdev || !value)
return -EFAULT;
hifc_sml_ctr_read_build_req(&req, instance, CHIPIF_SM_CTR_OP_READ,
CHIPIF_ACK, ctr_id, 0);
ret = hifc_api_cmd_read_ack(hwdev, node, (u8 *)&req,
(unsigned short)sizeof(req),
(void *)&rsp, (unsigned short)sizeof(rsp));
if (ret) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Sm 32bit counter read fail, err(%d)\n", ret);
return ret;
}
sml_ctr_htonl_n((u32 *)&rsp, 4);
*value = rsp.bs_ss32_rsp.value1;
return 0;
}
/**
* hifc_sm_ctr_rd32_clear - small single 32 counter read and clear to zero
* @hwdev: the pointer to hw device
* @node: the node id
* @instance: instance value
* @ctr_id: counter id
* @value: read counter value ptr
* Return: 0 - success, negative - failure
* according to ACN error code (ERR_OK, ERR_PARAM, ERR_FAILED...etc)
*/
int hifc_sm_ctr_rd32_clear(void *hwdev, u8 node, u8 instance,
u32 ctr_id, u32 *value)
{
struct chipif_sml_ctr_rd_req_s req;
union ctr_rd_rsp_u rsp;
int ret;
if (!hwdev || !value)
return -EFAULT;
hifc_sml_ctr_read_build_req(&req, instance,
CHIPIF_SM_CTR_OP_READ_CLEAR,
CHIPIF_ACK, ctr_id, 0);
ret = hifc_api_cmd_read_ack(hwdev, node, (u8 *)&req,
(unsigned short)sizeof(req),
(void *)&rsp, (unsigned short)sizeof(rsp));
if (ret) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Sm 32bit counter clear fail, err(%d)\n", ret);
return ret;
}
sml_ctr_htonl_n((u32 *)&rsp, 4);
*value = rsp.bs_ss32_rsp.value1;
return 0;
}
/**
* hifc_sm_ctr_wr32 - small single 32 counter write
* @hwdev: the pointer to hw device
* @node: the node id
* @instance: instance value
* @ctr_id: counter id
* @value: write counter value
* Return: 0 - success, negative - failure
*/
int hifc_sm_ctr_wr32(void *hwdev, u8 node, u8 instance, u32 ctr_id, u32 value)
{
struct chipif_sml_ctr_wr_req_s req;
struct chipif_sml_ctr_wr_rsp_s rsp;
if (!hwdev)
return -EFAULT;
hifc_sml_ctr_write_build_req(&req, instance, CHIPIF_SM_CTR_OP_WRITE,
CHIPIF_NOACK, ctr_id, (u64)value, 0ULL);
return hifc_api_cmd_read_ack(hwdev, node, (u8 *)&req,
(unsigned short)sizeof(req), (void *)&rsp,
(unsigned short)sizeof(rsp));
}
/**
* hifc_sm_ctr_rd64 - big counter 64 read
* @hwdev: the pointer to hw device
* @node: the node id
* @instance: instance value
* @ctr_id: counter id
* @value: read counter value ptr
* Return: 0 - success, negative - failure
*/
int hifc_sm_ctr_rd64(void *hwdev, u8 node, u8 instance, u32 ctr_id, u64 *value)
{
struct chipif_sml_ctr_rd_req_s req;
union ctr_rd_rsp_u rsp;
int ret;
if (!hwdev || !value)
return -EFAULT;
hifc_sml_ctr_read_build_req(&req, instance, CHIPIF_SM_CTR_OP_READ,
CHIPIF_ACK, ctr_id, 0);
ret = hifc_api_cmd_read_ack(hwdev, node, (u8 *)&req,
(unsigned short)sizeof(req), (void *)&rsp,
(unsigned short)sizeof(rsp));
if (ret) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Sm 64bit counter read fail err(%d)\n", ret);
return ret;
}
sml_ctr_htonl_n((u32 *)&rsp, 4);
*value = ((u64)rsp.bs_bs64_rsp.value1 << 32) | rsp.bs_bs64_rsp.value2;
return 0;
}
/**
* hifc_sm_ctr_wr64 - big single 64 counter write
* @hwdev: the pointer to hw device
* @node: the node id
* @instance: instance value
* @ctr_id: counter id
* @value: write counter value
* Return: 0 - success, negative - failure
*/
int hifc_sm_ctr_wr64(void *hwdev, u8 node, u8 instance, u32 ctr_id, u64 value)
{
struct chipif_sml_ctr_wr_req_s req;
struct chipif_sml_ctr_wr_rsp_s rsp;
if (!hwdev)
return -EFAULT;
hifc_sml_ctr_write_build_req(&req, instance, CHIPIF_SM_CTR_OP_WRITE,
CHIPIF_NOACK, ctr_id, value, 0ULL);
return hifc_api_cmd_read_ack(hwdev, node, (u8 *)&req,
(unsigned short)sizeof(req), (void *)&rsp,
(unsigned short)sizeof(rsp));
}
/**
* hifc_sm_ctr_rd64_pair - big pair 128 counter read
* @hwdev: the pointer to hw device
* @node: the node id
* @instance: instance value
* @ctr_id: counter id
* @value1: read counter value ptr
* @value2: read counter value ptr
* Return: 0 - success, negative - failure
*/
int hifc_sm_ctr_rd64_pair(void *hwdev, u8 node, u8 instance,
u32 ctr_id, u64 *value1, u64 *value2)
{
struct chipif_sml_ctr_rd_req_s req;
union ctr_rd_rsp_u rsp;
int ret;
if (!hwdev || (0 != (ctr_id & 0x1)) || !value1 || !value2) {
pr_err("Hwdev(0x%p) or value1(0x%p) or value2(0x%p) is NULL or ctr_id(%d) is odd number\n",
hwdev, value1, value2, ctr_id);
return -EFAULT;
}
hifc_sml_ctr_read_build_req(&req, instance, CHIPIF_SM_CTR_OP_READ,
CHIPIF_ACK, ctr_id, 0);
ret = hifc_api_cmd_read_ack(hwdev, node, (u8 *)&req,
(unsigned short)sizeof(req), (void *)&rsp,
(unsigned short)sizeof(rsp));
if (ret) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Sm 64 bit rd pair ret(%d)\n", ret);
return ret;
}
sml_ctr_htonl_n((u32 *)&rsp, 4);
*value1 = ((u64)rsp.bs_bp64_rsp.val1_h << 32) | rsp.bs_bp64_rsp.val1_l;
*value2 = ((u64)rsp.bs_bp64_rsp.val2_h << 32) | rsp.bs_bp64_rsp.val2_l;
return 0;
}
/**
* hifc_sm_ctr_wr64_pair - big pair 128 counter write
* @hwdev: the pointer to hw device
* @node: the node id
* @ctr_id: counter id
* @instance: instance value
* @value1: write counter value
* @value2: write counter value
* Return: 0 - success, negative - failure
*/
int hifc_sm_ctr_wr64_pair(void *hwdev, u8 node, u8 instance,
u32 ctr_id, u64 value1, u64 value2)
{
struct chipif_sml_ctr_wr_req_s req;
struct chipif_sml_ctr_wr_rsp_s rsp;
/* pair pattern ctr_id must be even number */
if (!hwdev || (0 != (ctr_id & 0x1))) {
pr_err("Handle is NULL or ctr_id(%d) is odd number for write 64 bit pair\n",
ctr_id);
return -EFAULT;
}
hifc_sml_ctr_write_build_req(&req, instance, CHIPIF_SM_CTR_OP_WRITE,
CHIPIF_NOACK, ctr_id, value1, value2);
return hifc_api_cmd_read_ack(hwdev, node, (u8 *)&req,
(unsigned short)sizeof(req), (void *)&rsp,
(unsigned short)sizeof(rsp));
}
int hifc_api_csr_rd32(void *hwdev, u8 dest, u32 addr, u32 *val)
{
struct hifc_csr_request_api_data api_data = {0};
u32 csr_val = 0;
u16 in_size = sizeof(api_data);
int ret;
if (!hwdev || !val)
return -EFAULT;
memset(&api_data, 0, sizeof(struct hifc_csr_request_api_data));
api_data.dw0 = 0;
api_data.dw1.bits.operation_id = HIFC_CSR_OPERATION_READ_CSR;
api_data.dw1.bits.need_response = HIFC_CSR_NEED_RESP_DATA;
api_data.dw1.bits.data_size = HIFC_CSR_DATA_SZ_32;
api_data.dw1.val32 = cpu_to_be32(api_data.dw1.val32);
api_data.dw2.bits.csr_addr = addr;
api_data.dw2.val32 = cpu_to_be32(api_data.dw2.val32);
ret = hifc_api_cmd_read_ack(hwdev, dest, (u8 *)(&api_data),
in_size, &csr_val, 4);
if (ret) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Read 32 bit csr fail, dest %d addr 0x%x, ret: 0x%x\n",
dest, addr, ret);
return ret;
}
*val = csr_val;
return 0;
}
int hifc_api_csr_wr32(void *hwdev, u8 dest, u32 addr, u32 val)
{
struct hifc_csr_request_api_data api_data;
u16 in_size = sizeof(api_data);
int ret;
if (!hwdev)
return -EFAULT;
memset(&api_data, 0, sizeof(struct hifc_csr_request_api_data));
api_data.dw1.bits.operation_id = HIFC_CSR_OPERATION_WRITE_CSR;
api_data.dw1.bits.need_response = HIFC_CSR_NO_RESP_DATA;
api_data.dw1.bits.data_size = HIFC_CSR_DATA_SZ_32;
api_data.dw1.val32 = cpu_to_be32(api_data.dw1.val32);
api_data.dw2.bits.csr_addr = addr;
api_data.dw2.val32 = cpu_to_be32(api_data.dw2.val32);
api_data.csr_write_data_h = 0xffffffff;
api_data.csr_write_data_l = val;
ret = hifc_api_cmd_write_nack(hwdev, dest, (u8 *)(&api_data), in_size);
if (ret) {
sdk_err(((struct hifc_hwdev *)hwdev)->dev_hdl,
"Write 32 bit csr fail! dest %d addr 0x%x val 0x%x\n",
dest, addr, val);
return ret;
}
return 0;
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef __CHIPIF_SML_COUNTER_H__
#define __CHIPIF_SML_COUNTER_H__
#define CHIPIF_FUNC_PF 0
#define CHIPIF_FUNC_VF 1
#define CHIPIF_FUNC_PPF 2
#define CHIPIF_ACK 1
#define CHIPIF_NOACK 0
#define CHIPIF_SM_CTR_OP_READ 0x2
#define CHIPIF_SM_CTR_OP_READ_CLEAR 0x6
#define CHIPIF_SM_CTR_OP_WRITE 0x3
#define SMALL_CNT_READ_RSP_SIZE 16
/* request head */
union chipif_sml_ctr_req_head_u {
struct {
u32 pad:15;
u32 ack:1;
u32 op_id:5;
u32 instance:6;
u32 src:5;
} bs;
u32 value;
};
/* counter read request struct */
struct chipif_sml_ctr_rd_req_s {
u32 extra;
union chipif_sml_ctr_req_head_u head;
u32 ctr_id;
u32 initial;
u32 pad;
};
/* counter read response union */
union ctr_rd_rsp_u {
struct {
u32 value1:16;
u32 pad0:16;
u32 pad1[3];
} bs_ss16_rsp;
struct {
u32 value1;
u32 pad[3];
} bs_ss32_rsp;
struct {
u32 value1:20;
u32 pad0:12;
u32 value2:12;
u32 pad1:20;
u32 pad2[2];
} bs_sp_rsp;
struct {
u32 value1;
u32 value2;
u32 pad[2];
} bs_bs64_rsp;
struct {
u32 val1_h;
u32 val1_l;
u32 val2_h;
u32 val2_l;
} bs_bp64_rsp;
};
/* resopnse head */
union sml_ctr_rsp_head_u {
struct {
u32 pad:30; /* reserve */
u32 code:2; /* error code */
} bs;
u32 value;
};
/* counter write request struct */
struct chipif_sml_ctr_wr_req_s {
u32 extra;
union chipif_sml_ctr_req_head_u head;
u32 ctr_id;
u32 rsv1;
u32 rsv2;
u32 value1_h;
u32 value1_l;
u32 value2_h;
u32 value2_l;
};
/* counter write response struct */
struct chipif_sml_ctr_wr_rsp_s {
union sml_ctr_rsp_head_u head;
u32 pad[3];
};
enum HIFC_CSR_API_DATA_OPERATION_ID {
HIFC_CSR_OPERATION_WRITE_CSR = 0x1E,
HIFC_CSR_OPERATION_READ_CSR = 0x1F
};
enum HIFC_CSR_API_DATA_NEED_RESPONSE_DATA {
HIFC_CSR_NO_RESP_DATA = 0,
HIFC_CSR_NEED_RESP_DATA = 1
};
enum HIFC_CSR_API_DATA_DATA_SIZE {
HIFC_CSR_DATA_SZ_32 = 0,
HIFC_CSR_DATA_SZ_64 = 1
};
struct hifc_csr_request_api_data {
u32 dw0;
union {
struct {
u32 reserved1:13;
/* this field indicates the write/read data size:
* 2'b00: 32 bits
* 2'b01: 64 bits
* 2'b10~2'b11:reserved
*/
u32 data_size:2;
/* this field indicates that requestor expect receive a
* response data or not.
* 1'b0: expect not to receive a response data.
* 1'b1: expect to receive a response data.
*/
u32 need_response:1;
/* this field indicates the operation that the requestor
* expected.
* 5'b1_1110: write value to csr space.
* 5'b1_1111: read register from csr space.
*/
u32 operation_id:5;
u32 reserved2:6;
/* this field specifies the Src node ID for this API
* request message.
*/
u32 src_node_id:5;
} bits;
u32 val32;
} dw1;
union {
struct {
/* it specifies the CSR address. */
u32 csr_addr:26;
u32 reserved3:6;
} bits;
u32 val32;
} dw2;
/* if data_size=2'b01, it is high 32 bits of write data. else, it is
* 32'hFFFF_FFFF.
*/
u32 csr_write_data_h;
/* the low 32 bits of write data. */
u32 csr_write_data_l;
};
int hifc_sm_ctr_rd32(void *hwdev, u8 node, u8 instance, u32 ctr_id, u32 *value);
int hifc_sm_ctr_rd64(void *hwdev, u8 node, u8 instance, u32 ctr_id, u64 *value);
int hifc_sm_ctr_rd64_pair(void *hwdev, u8 node, u8 instance,
u32 ctr_id, u64 *value1, u64 *value2);
#endif
// SPDX-License-Identifier: GPL-2.0
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": [COMM]" fmt
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/device.h>
#include <linux/vmalloc.h>
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include "hifc_knl_adp.h"
#include "hifc_hw.h"
#include "hifc_hwif.h"
#include "hifc_wq.h"
#define WQS_MAX_NUM_BLOCKS 128
#define WQS_FREE_BLOCKS_SIZE(wqs) (WQS_MAX_NUM_BLOCKS * \
sizeof((wqs)->free_blocks[0]))
static void wqs_return_block(struct hifc_wqs *wqs, u32 page_idx, u32 block_idx)
{
u32 pos;
spin_lock(&wqs->alloc_blocks_lock);
wqs->num_free_blks++;
pos = wqs->return_blk_pos++;
pos &= WQS_MAX_NUM_BLOCKS - 1;
wqs->free_blocks[pos].page_idx = page_idx;
wqs->free_blocks[pos].block_idx = block_idx;
spin_unlock(&wqs->alloc_blocks_lock);
}
static int wqs_next_block(struct hifc_wqs *wqs, u32 *page_idx,
u32 *block_idx)
{
u32 pos;
spin_lock(&wqs->alloc_blocks_lock);
if (wqs->num_free_blks <= 0) {
spin_unlock(&wqs->alloc_blocks_lock);
return -ENOMEM;
}
wqs->num_free_blks--;
pos = wqs->alloc_blk_pos++;
pos &= WQS_MAX_NUM_BLOCKS - 1;
*page_idx = wqs->free_blocks[pos].page_idx;
*block_idx = wqs->free_blocks[pos].block_idx;
wqs->free_blocks[pos].page_idx = 0xFFFFFFFF;
wqs->free_blocks[pos].block_idx = 0xFFFFFFFF;
spin_unlock(&wqs->alloc_blocks_lock);
return 0;
}
static int queue_alloc_page(void *handle, u64 **vaddr, u64 *paddr,
u64 **shadow_vaddr, u64 page_sz)
{
dma_addr_t dma_addr = 0;
*vaddr = dma_zalloc_coherent(handle, page_sz, &dma_addr,
GFP_KERNEL);
if (!*vaddr) {
sdk_err(handle, "Failed to allocate dma to wqs page\n");
return -ENOMEM;
}
if (!ADDR_4K_ALIGNED(dma_addr)) {
sdk_err(handle, "Cla is not 4k aligned!\n");
goto shadow_vaddr_err;
}
*paddr = (u64)dma_addr;
/* use vzalloc for big mem, shadow_vaddr only used at initialization */
*shadow_vaddr = vzalloc(page_sz);
if (!*shadow_vaddr) {
sdk_err(handle, "Failed to allocate shadow page vaddr\n");
goto shadow_vaddr_err;
}
return 0;
shadow_vaddr_err:
dma_free_coherent(handle, page_sz, *vaddr, dma_addr);
return -ENOMEM;
}
static int wqs_allocate_page(struct hifc_wqs *wqs, u32 page_idx)
{
return queue_alloc_page(wqs->dev_hdl, &wqs->page_vaddr[page_idx],
&wqs->page_paddr[page_idx],
&wqs->shadow_page_vaddr[page_idx],
WQS_PAGE_SIZE);
}
static void wqs_free_page(struct hifc_wqs *wqs, u32 page_idx)
{
dma_free_coherent(wqs->dev_hdl, WQS_PAGE_SIZE,
wqs->page_vaddr[page_idx],
(dma_addr_t)wqs->page_paddr[page_idx]);
vfree(wqs->shadow_page_vaddr[page_idx]);
}
static int cmdq_allocate_page(struct hifc_cmdq_pages *cmdq_pages)
{
return queue_alloc_page(cmdq_pages->dev_hdl,
&cmdq_pages->cmdq_page_vaddr,
&cmdq_pages->cmdq_page_paddr,
&cmdq_pages->cmdq_shadow_page_vaddr,
CMDQ_PAGE_SIZE);
}
static void cmdq_free_page(struct hifc_cmdq_pages *cmdq_pages)
{
dma_free_coherent(cmdq_pages->dev_hdl, CMDQ_PAGE_SIZE,
cmdq_pages->cmdq_page_vaddr,
(dma_addr_t)cmdq_pages->cmdq_page_paddr);
vfree(cmdq_pages->cmdq_shadow_page_vaddr);
}
static int alloc_wqes_shadow(struct hifc_wq *wq)
{
u64 size;
/* if wq->max_wqe_size == 0, we don't need to alloc shadow */
if (wq->max_wqe_size <= wq->wqebb_size)
return 0;
size = (u64)wq->num_q_pages * wq->max_wqe_size;
wq->shadow_wqe = kzalloc(size, GFP_KERNEL);
if (!wq->shadow_wqe) {
pr_err("Failed to allocate shadow wqe\n");
return -ENOMEM;
}
size = wq->num_q_pages * sizeof(wq->prod_idx);
wq->shadow_idx = kzalloc(size, GFP_KERNEL);
if (!wq->shadow_idx) {
pr_err("Failed to allocate shadow index\n");
goto shadow_idx_err;
}
return 0;
shadow_idx_err:
kfree(wq->shadow_wqe);
return -ENOMEM;
}
static void free_wqes_shadow(struct hifc_wq *wq)
{
if (wq->max_wqe_size <= wq->wqebb_size)
return;
kfree(wq->shadow_idx);
kfree(wq->shadow_wqe);
}
static void free_wq_pages(void *handle, struct hifc_wq *wq,
u32 num_q_pages)
{
u32 i;
for (i = 0; i < num_q_pages; i++)
hifc_dma_free_coherent_align(handle, &wq->mem_align[i]);
free_wqes_shadow(wq);
wq->block_vaddr = NULL;
wq->shadow_block_vaddr = NULL;
kfree(wq->mem_align);
}
static int alloc_wq_pages(void *dev_hdl, struct hifc_wq *wq)
{
struct hifc_dma_addr_align *mem_align;
u64 *vaddr, *paddr;
u32 i, num_q_pages;
int err;
vaddr = wq->shadow_block_vaddr;
paddr = wq->block_vaddr;
num_q_pages = ALIGN(WQ_SIZE(wq), wq->wq_page_size) / wq->wq_page_size;
if (num_q_pages > WQ_MAX_PAGES) {
sdk_err(dev_hdl, "Number(%d) wq pages exceeds the limit\n",
num_q_pages);
return -EINVAL;
}
if (num_q_pages & (num_q_pages - 1)) {
sdk_err(dev_hdl, "Wq num(%d) q pages must be power of 2\n",
num_q_pages);
return -EINVAL;
}
wq->num_q_pages = num_q_pages;
err = alloc_wqes_shadow(wq);
if (err) {
sdk_err(dev_hdl, "Failed to allocate wqe shadow\n");
return err;
}
wq->mem_align = kcalloc(wq->num_q_pages, sizeof(*wq->mem_align),
GFP_KERNEL);
if (!wq->mem_align) {
sdk_err(dev_hdl, "Failed to allocate mem_align\n");
free_wqes_shadow(wq);
return -ENOMEM;
}
for (i = 0; i < num_q_pages; i++) {
mem_align = &wq->mem_align[i];
err = hifc_dma_zalloc_coherent_align(dev_hdl, wq->wq_page_size,
wq->wq_page_size,
GFP_KERNEL, mem_align);
if (err) {
sdk_err(dev_hdl, "Failed to allocate wq page\n");
goto alloc_wq_pages_err;
}
*paddr = cpu_to_be64(mem_align->align_paddr);
*vaddr = (u64)mem_align->align_vaddr;
paddr++;
vaddr++;
}
return 0;
alloc_wq_pages_err:
free_wq_pages(dev_hdl, wq, i);
return -ENOMEM;
}
int hifc_wq_allocate(struct hifc_wqs *wqs, struct hifc_wq *wq,
u32 wqebb_size, u32 wq_page_size, u16 q_depth,
u32 max_wqe_size)
{
u32 num_wqebbs_per_page;
int err;
if (wqebb_size == 0) {
sdk_err(wqs->dev_hdl, "Wqebb_size must be >0\n");
return -EINVAL;
}
if (q_depth & (q_depth - 1)) {
sdk_err(wqs->dev_hdl, "Wq q_depth(%d) isn't power of 2\n",
q_depth);
return -EINVAL;
}
if (wq_page_size & (wq_page_size - 1)) {
sdk_err(wqs->dev_hdl, "Wq page_size(%d) isn't power of 2\n",
wq_page_size);
return -EINVAL;
}
num_wqebbs_per_page = ALIGN(wq_page_size, wqebb_size) / wqebb_size;
if (num_wqebbs_per_page & (num_wqebbs_per_page - 1)) {
sdk_err(wqs->dev_hdl, "Num(%d) wqebbs per page isn't power of 2\n",
num_wqebbs_per_page);
return -EINVAL;
}
err = wqs_next_block(wqs, &wq->page_idx, &wq->block_idx);
if (err) {
sdk_err(wqs->dev_hdl, "Failed to get free wqs next block\n");
return err;
}
wq->wqebb_size = wqebb_size;
wq->wq_page_size = wq_page_size;
wq->q_depth = q_depth;
wq->max_wqe_size = max_wqe_size;
wq->num_wqebbs_per_page = num_wqebbs_per_page;
wq->wqebbs_per_page_shift = (u32)ilog2(num_wqebbs_per_page);
wq->block_vaddr = WQ_BASE_VADDR(wqs, wq);
wq->shadow_block_vaddr = WQ_BASE_ADDR(wqs, wq);
wq->block_paddr = WQ_BASE_PADDR(wqs, wq);
err = alloc_wq_pages(wqs->dev_hdl, wq);
if (err) {
sdk_err(wqs->dev_hdl, "Failed to allocate wq pages\n");
goto alloc_wq_pages_err;
}
atomic_set(&wq->delta, q_depth);
wq->cons_idx = 0;
wq->prod_idx = 0;
wq->mask = q_depth - 1;
return 0;
alloc_wq_pages_err:
wqs_return_block(wqs, wq->page_idx, wq->block_idx);
return err;
}
void hifc_wq_free(struct hifc_wqs *wqs, struct hifc_wq *wq)
{
free_wq_pages(wqs->dev_hdl, wq, wq->num_q_pages);
wqs_return_block(wqs, wq->page_idx, wq->block_idx);
}
static void init_wqs_blocks_arr(struct hifc_wqs *wqs)
{
u32 page_idx, blk_idx, pos = 0;
for (page_idx = 0; page_idx < wqs->num_pages; page_idx++) {
for (blk_idx = 0; blk_idx < WQS_BLOCKS_PER_PAGE; blk_idx++) {
wqs->free_blocks[pos].page_idx = page_idx;
wqs->free_blocks[pos].block_idx = blk_idx;
pos++;
}
}
wqs->alloc_blk_pos = 0;
wqs->return_blk_pos = 0;
wqs->num_free_blks = WQS_MAX_NUM_BLOCKS;
spin_lock_init(&wqs->alloc_blocks_lock);
}
void hifc_wq_wqe_pg_clear(struct hifc_wq *wq)
{
u64 *block_vaddr;
u32 pg_idx;
block_vaddr = wq->shadow_block_vaddr;
atomic_set(&wq->delta, wq->q_depth);
wq->cons_idx = 0;
wq->prod_idx = 0;
for (pg_idx = 0; pg_idx < wq->num_q_pages; pg_idx++)
memset((void *)(*(block_vaddr + pg_idx)), 0, wq->wq_page_size);
}
int hifc_cmdq_alloc(struct hifc_cmdq_pages *cmdq_pages,
struct hifc_wq *wq, void *dev_hdl,
int cmdq_blocks, u32 wq_page_size, u32 wqebb_size,
u16 q_depth, u32 max_wqe_size)
{
int i, j, err = -ENOMEM;
if (q_depth & (q_depth - 1)) {
sdk_err(dev_hdl, "Cmdq q_depth(%d) isn't power of 2\n",
q_depth);
return -EINVAL;
}
cmdq_pages->dev_hdl = dev_hdl;
err = cmdq_allocate_page(cmdq_pages);
if (err) {
sdk_err(dev_hdl, "Failed to allocate CMDQ page\n");
return err;
}
for (i = 0; i < cmdq_blocks; i++) {
wq[i].page_idx = 0;
wq[i].block_idx = (u32)i;
wq[i].wqebb_size = wqebb_size;
wq[i].wq_page_size = wq_page_size;
wq[i].q_depth = q_depth;
wq[i].max_wqe_size = max_wqe_size;
wq[i].num_wqebbs_per_page =
ALIGN(wq_page_size, wqebb_size) / wqebb_size;
wq[i].wqebbs_per_page_shift =
(u32)ilog2(wq[i].num_wqebbs_per_page);
wq[i].block_vaddr = CMDQ_BASE_VADDR(cmdq_pages, &wq[i]);
wq[i].shadow_block_vaddr = CMDQ_BASE_ADDR(cmdq_pages, &wq[i]);
wq[i].block_paddr = CMDQ_BASE_PADDR(cmdq_pages, &wq[i]);
err = alloc_wq_pages(cmdq_pages->dev_hdl, &wq[i]);
if (err) {
sdk_err(dev_hdl, "Failed to alloc CMDQ blocks\n");
goto cmdq_block_err;
}
atomic_set(&wq[i].delta, q_depth);
wq[i].cons_idx = 0;
wq[i].prod_idx = 0;
wq[i].mask = q_depth - 1;
}
return 0;
cmdq_block_err:
for (j = 0; j < i; j++)
free_wq_pages(cmdq_pages->dev_hdl, &wq[j], wq[j].num_q_pages);
cmdq_free_page(cmdq_pages);
return err;
}
void hifc_cmdq_free(struct hifc_cmdq_pages *cmdq_pages,
struct hifc_wq *wq, int cmdq_blocks)
{
int i;
for (i = 0; i < cmdq_blocks; i++)
free_wq_pages(cmdq_pages->dev_hdl, &wq[i], wq[i].num_q_pages);
cmdq_free_page(cmdq_pages);
}
static int alloc_page_addr(struct hifc_wqs *wqs)
{
u64 size = wqs->num_pages * sizeof(*wqs->page_paddr);
wqs->page_paddr = kzalloc(size, GFP_KERNEL);
if (!wqs->page_paddr)
return -ENOMEM;
size = wqs->num_pages * sizeof(*wqs->page_vaddr);
wqs->page_vaddr = kzalloc(size, GFP_KERNEL);
if (!wqs->page_vaddr)
goto page_vaddr_err;
size = wqs->num_pages * sizeof(*wqs->shadow_page_vaddr);
wqs->shadow_page_vaddr = kzalloc(size, GFP_KERNEL);
if (!wqs->shadow_page_vaddr)
goto page_shadow_vaddr_err;
return 0;
page_shadow_vaddr_err:
kfree(wqs->page_vaddr);
page_vaddr_err:
kfree(wqs->page_paddr);
return -ENOMEM;
}
static void free_page_addr(struct hifc_wqs *wqs)
{
kfree(wqs->shadow_page_vaddr);
kfree(wqs->page_vaddr);
kfree(wqs->page_paddr);
}
int hifc_wqs_alloc(struct hifc_wqs *wqs, int num_wqs, void *dev_hdl)
{
u32 i, page_idx;
int err;
wqs->dev_hdl = dev_hdl;
wqs->num_pages = WQ_NUM_PAGES(num_wqs);
if (alloc_page_addr(wqs)) {
sdk_err(dev_hdl, "Failed to allocate mem for page addresses\n");
return -ENOMEM;
}
for (page_idx = 0; page_idx < wqs->num_pages; page_idx++) {
err = wqs_allocate_page(wqs, page_idx);
if (err) {
sdk_err(dev_hdl, "Failed wq page allocation\n");
goto wq_allocate_page_err;
}
}
wqs->free_blocks = kzalloc(WQS_FREE_BLOCKS_SIZE(wqs), GFP_KERNEL);
if (!wqs->free_blocks) {
err = -ENOMEM;
goto alloc_blocks_err;
}
init_wqs_blocks_arr(wqs);
return 0;
alloc_blocks_err:
wq_allocate_page_err:
for (i = 0; i < page_idx; i++)
wqs_free_page(wqs, i);
free_page_addr(wqs);
return err;
}
void hifc_wqs_free(struct hifc_wqs *wqs)
{
u32 page_idx;
for (page_idx = 0; page_idx < wqs->num_pages; page_idx++)
wqs_free_page(wqs, page_idx);
free_page_addr(wqs);
kfree(wqs->free_blocks);
}
static void copy_wqe_to_shadow(struct hifc_wq *wq, void *shadow_addr,
int num_wqebbs, u16 prod_idx)
{
u8 *shadow_wqebb_addr, *wqe_page_addr, *wqebb_addr;
u32 i, offset;
u16 idx;
for (i = 0; i < (u32)num_wqebbs; i++) {
offset = i * wq->wqebb_size;
shadow_wqebb_addr = (u8 *)shadow_addr + offset;
idx = MASKED_WQE_IDX(wq, prod_idx + i);
wqe_page_addr = WQ_PAGE_ADDR(wq, idx);
wqebb_addr = wqe_page_addr +
WQE_PAGE_OFF(wq, MASKED_WQE_IDX(wq, idx));
memcpy(shadow_wqebb_addr, wqebb_addr, wq->wqebb_size);
}
}
void *hifc_get_wqebb_addr(struct hifc_wq *wq, u16 index)
{
return WQ_PAGE_ADDR(wq, index) + WQE_PAGE_OFF(wq, index);
}
u64 hifc_get_first_wqe_page_addr(struct hifc_wq *wq)
{
return be64_to_cpu(*wq->block_vaddr);
}
void *hifc_get_wqe(struct hifc_wq *wq, int num_wqebbs, u16 *prod_idx)
{
u32 curr_pg, end_pg;
u16 curr_prod_idx, end_prod_idx;
if (atomic_sub_return(num_wqebbs, &wq->delta) < 0) {
atomic_add(num_wqebbs, &wq->delta);
return NULL;
}
/* use original cur_pi and end_pi, no need queue depth mask as
* WQE_PAGE_NUM will do num_queue_pages mask
*/
curr_prod_idx = (u16)wq->prod_idx;
wq->prod_idx += num_wqebbs;
/* end prod index should points to the last wqebb of wqe,
* therefore minus 1
*/
end_prod_idx = (u16)wq->prod_idx - 1;
curr_pg = WQE_PAGE_NUM(wq, curr_prod_idx);
end_pg = WQE_PAGE_NUM(wq, end_prod_idx);
*prod_idx = MASKED_WQE_IDX(wq, curr_prod_idx);
/* If we only have one page, still need to get shadown wqe when
* wqe rolling-over page
*/
if (curr_pg != end_pg || MASKED_WQE_IDX(wq, end_prod_idx) < *prod_idx) {
u32 offset = curr_pg * wq->max_wqe_size;
u8 *shadow_addr = wq->shadow_wqe + offset;
wq->shadow_idx[curr_pg] = *prod_idx;
return shadow_addr;
}
return WQ_PAGE_ADDR(wq, *prod_idx) + WQE_PAGE_OFF(wq, *prod_idx);
}
void hifc_put_wqe(struct hifc_wq *wq, int num_wqebbs)
{
atomic_add(num_wqebbs, &wq->delta);
wq->cons_idx += num_wqebbs;
}
void *hifc_read_wqe(struct hifc_wq *wq, int num_wqebbs, u16 *cons_idx)
{
u32 curr_pg, end_pg;
u16 curr_cons_idx, end_cons_idx;
if ((atomic_read(&wq->delta) + num_wqebbs) > wq->q_depth)
return NULL;
curr_cons_idx = (u16)wq->cons_idx;
curr_cons_idx = MASKED_WQE_IDX(wq, curr_cons_idx);
end_cons_idx = MASKED_WQE_IDX(wq, curr_cons_idx + num_wqebbs - 1);
curr_pg = WQE_PAGE_NUM(wq, curr_cons_idx);
end_pg = WQE_PAGE_NUM(wq, end_cons_idx);
*cons_idx = curr_cons_idx;
if (curr_pg != end_pg) {
u32 offset = curr_pg * wq->max_wqe_size;
u8 *shadow_addr = wq->shadow_wqe + offset;
copy_wqe_to_shadow(wq, shadow_addr, num_wqebbs, *cons_idx);
return shadow_addr;
}
return WQ_PAGE_ADDR(wq, *cons_idx) + WQE_PAGE_OFF(wq, *cons_idx);
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Huawei Hifc PCI Express Linux driver
* Copyright(c) 2017 Huawei Technologies Co., Ltd
*
*/
#ifndef HIFC_WQ_H
#define HIFC_WQ_H
#define WQS_BLOCKS_PER_PAGE 4
#define WQ_SIZE(wq) (u32)((u64)(wq)->q_depth * (wq)->wqebb_size)
#define WQE_PAGE_NUM(wq, idx) (((idx) >> ((wq)->wqebbs_per_page_shift)) & \
((wq)->num_q_pages - 1))
#define WQE_PAGE_OFF(wq, idx) ((u64)((wq)->wqebb_size) * \
((idx) & ((wq)->num_wqebbs_per_page - 1)))
#define WQ_PAGE_ADDR_SIZE sizeof(u64)
#define WQ_PAGE_ADDR_SIZE_SHIFT 3
#define WQ_PAGE_ADDR(wq, idx) \
(u8 *)(*(u64 *)((u64)((wq)->shadow_block_vaddr) + \
(WQE_PAGE_NUM(wq, idx) << WQ_PAGE_ADDR_SIZE_SHIFT)))
#define WQ_BLOCK_SIZE 4096UL
#define WQS_PAGE_SIZE (WQS_BLOCKS_PER_PAGE * WQ_BLOCK_SIZE)
#define WQ_MAX_PAGES (WQ_BLOCK_SIZE >> WQ_PAGE_ADDR_SIZE_SHIFT)
#define CMDQ_BLOCKS_PER_PAGE 8
#define CMDQ_BLOCK_SIZE 512UL
#define CMDQ_PAGE_SIZE ALIGN((CMDQ_BLOCKS_PER_PAGE * \
CMDQ_BLOCK_SIZE), PAGE_SIZE)
#define ADDR_4K_ALIGNED(addr) (((addr) & 0xfff) == 0)
#define WQ_BASE_VADDR(wqs, wq) \
(u64 *)(((u64)((wqs)->page_vaddr[(wq)->page_idx])) \
+ (wq)->block_idx * WQ_BLOCK_SIZE)
#define WQ_BASE_PADDR(wqs, wq) (((wqs)->page_paddr[(wq)->page_idx]) \
+ (u64)(wq)->block_idx * WQ_BLOCK_SIZE)
#define WQ_BASE_ADDR(wqs, wq) \
(u64 *)(((u64)((wqs)->shadow_page_vaddr[(wq)->page_idx])) \
+ (wq)->block_idx * WQ_BLOCK_SIZE)
#define CMDQ_BASE_VADDR(cmdq_pages, wq) \
(u64 *)(((u64)((cmdq_pages)->cmdq_page_vaddr)) \
+ (wq)->block_idx * CMDQ_BLOCK_SIZE)
#define CMDQ_BASE_PADDR(cmdq_pages, wq) \
(((u64)((cmdq_pages)->cmdq_page_paddr)) \
+ (u64)(wq)->block_idx * CMDQ_BLOCK_SIZE)
#define CMDQ_BASE_ADDR(cmdq_pages, wq) \
(u64 *)(((u64)((cmdq_pages)->cmdq_shadow_page_vaddr)) \
+ (wq)->block_idx * CMDQ_BLOCK_SIZE)
#define MASKED_WQE_IDX(wq, idx) ((idx) & (wq)->mask)
#define WQ_NUM_PAGES(num_wqs) \
(ALIGN((u32)num_wqs, WQS_BLOCKS_PER_PAGE) / WQS_BLOCKS_PER_PAGE)
#define MAX_WQE_SIZE(max_sge, wqebb_size) \
((max_sge <= 2) ? (wqebb_size) : \
((ALIGN(((max_sge) - 2), 4) / 4 + 1) * (wqebb_size)))
struct hifc_free_block {
u32 page_idx;
u32 block_idx;
};
struct hifc_wq {
/* The addresses are 64 bit in the HW */
u64 block_paddr;
u64 *shadow_block_vaddr;
u64 *block_vaddr;
u32 wqebb_size;
u32 wq_page_size;
u16 q_depth;
u32 max_wqe_size;
u32 num_wqebbs_per_page;
/* performance: replace mul/div as shift;
* num_wqebbs_per_page must be power of 2
*/
u32 wqebbs_per_page_shift;
u32 page_idx;
u32 block_idx;
u32 num_q_pages;
struct hifc_dma_addr_align *mem_align;
int cons_idx;
int prod_idx;
atomic_t delta;
u16 mask;
u8 *shadow_wqe;
u16 *shadow_idx;
};
struct hifc_cmdq_pages {
/* The addresses are 64 bit in the HW */
u64 cmdq_page_paddr;
u64 *cmdq_page_vaddr;
u64 *cmdq_shadow_page_vaddr;
void *dev_hdl;
};
struct hifc_wqs {
/* The addresses are 64 bit in the HW */
u64 *page_paddr;
u64 **page_vaddr;
u64 **shadow_page_vaddr;
struct hifc_free_block *free_blocks;
u32 alloc_blk_pos;
u32 return_blk_pos;
int num_free_blks;
/* for allocate blocks */
spinlock_t alloc_blocks_lock;
u32 num_pages;
void *dev_hdl;
};
void hifc_wq_wqe_pg_clear(struct hifc_wq *wq);
int hifc_cmdq_alloc(struct hifc_cmdq_pages *cmdq_pages,
struct hifc_wq *wq, void *dev_hdl,
int cmdq_blocks, u32 wq_page_size, u32 wqebb_size,
u16 q_depth, u32 max_wqe_size);
void hifc_cmdq_free(struct hifc_cmdq_pages *cmdq_pages,
struct hifc_wq *wq, int cmdq_blocks);
int hifc_wqs_alloc(struct hifc_wqs *wqs, int num_wqs, void *dev_hdl);
void hifc_wqs_free(struct hifc_wqs *wqs);
int hifc_wq_allocate(struct hifc_wqs *wqs, struct hifc_wq *wq,
u32 wqebb_size, u32 wq_page_size, u16 q_depth,
u32 max_wqe_size);
void hifc_wq_free(struct hifc_wqs *wqs, struct hifc_wq *wq);
void *hifc_get_wqebb_addr(struct hifc_wq *wq, u16 index);
u64 hifc_get_first_wqe_page_addr(struct hifc_wq *wq);
void *hifc_get_wqe(struct hifc_wq *wq, int num_wqebbs, u16 *prod_idx);
void hifc_put_wqe(struct hifc_wq *wq, int num_wqebbs);
void *hifc_read_wqe(struct hifc_wq *wq, int num_wqebbs, u16 *cons_idx);
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册