diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index af50f9bbe68edda370017ef127d842d3d1ec97b4..4d880b3d1f35548083613a18d695d68029382c81 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -1014,49 +1014,6 @@ and is between 256 and 4096 characters. It is defined in the file
 
 	mga=		[HW,DRM]
 
-	migration_cost=
-			[KNL,SMP] debug: override scheduler migration costs
-			Format: <level-1-usecs>,<level-2-usecs>,...
-			This debugging option can be used to override the
-			default scheduler migration cost matrix. The numbers
-			are indexed by 'CPU domain distance'.
-			E.g. migration_cost=1000,2000,3000 on an SMT NUMA
-			box will set up an intra-core migration cost of
-			1 msec, an inter-core migration cost of 2 msecs,
-			and an inter-node migration cost of 3 msecs.
-
-			WARNING: using the wrong values here can break
-			scheduler performance, so it's only for scheduler
-			development purposes, not production environments.
-
-	migration_debug=
-			[KNL,SMP] migration cost auto-detect verbosity
-			Format=<0|1|2>
-			If a system's migration matrix reported at bootup
-			seems erroneous then this option can be used to
-			increase verbosity of the detection process.
-			We default to 0 (no extra messages), 1 will print
-			some more information, and 2 will be really
-			verbose (probably only useful if you also have a
-			serial console attached to the system).
-
-	migration_factor=
-			[KNL,SMP] multiply/divide migration costs by a factor
-			Format=<percent>
-			This debug option can be used to proportionally
-			increase or decrease the auto-detected migration
-			costs for all entries of the migration matrix.
-			E.g. migration_factor=150 will increase migration
-			costs by 50%. (and thus the scheduler will be less
-			eager migrating cache-hot tasks)
-			migration_factor=80 will decrease migration costs
-			by 20%. (thus the scheduler will be more eager to
-			migrate tasks)
-
-			WARNING: using the wrong values here can break
-			scheduler performance, so it's only for scheduler
-			development purposes, not production environments.
-
 	mousedev.tap_time=
 			[MOUSE] Maximum time between finger touching and
 			leaving touchpad surface for touch to be considered
diff --git a/arch/i386/kernel/smpboot.c b/arch/i386/kernel/smpboot.c
index 88baed1e7e83a1469ecc33f1ed5e6e1c17a00af4..0b2954534b8e71f3216f23a7ae8c933e0bc48d7c 100644
--- a/arch/i386/kernel/smpboot.c
+++ b/arch/i386/kernel/smpboot.c
@@ -941,17 +941,6 @@ static int __cpuinit __smp_prepare_cpu(int cpu)
 }
 #endif
 
-static void smp_tune_scheduling(void)
-{
-	if (cpu_khz) {
-		/* cache size in kB */
-		long cachesize = boot_cpu_data.x86_cache_size;
-
-		if (cachesize > 0)
-			max_cache_size = cachesize * 1024;
-	}
-}
-
 /*
  * Cycle through the processors sending APIC IPIs to boot each.
  */
@@ -980,7 +969,6 @@ static void __init smp_boot_cpus(unsigned int max_cpus)
 	x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
 
 	current_thread_info()->cpu = 0;
-	smp_tune_scheduling();
 
 	set_cpu_sibling_map(0);
 
diff --git a/arch/ia64/kernel/setup.c b/arch/ia64/kernel/setup.c
index eaa6a24bc0b6e61b284d38aef67fa2db6e31f1c2..188fb73c68456e3e2f1bd70e8f947b1b0754f869 100644
--- a/arch/ia64/kernel/setup.c
+++ b/arch/ia64/kernel/setup.c
@@ -805,7 +805,6 @@ static void __cpuinit
 get_max_cacheline_size (void)
 {
 	unsigned long line_size, max = 1;
-	unsigned int cache_size = 0;
 	u64 l, levels, unique_caches;
         pal_cache_config_info_t cci;
         s64 status;
@@ -835,8 +834,6 @@ get_max_cacheline_size (void)
 		line_size = 1 << cci.pcci_line_size;
 		if (line_size > max)
 			max = line_size;
-		if (cache_size < cci.pcci_cache_size)
-			cache_size = cci.pcci_cache_size;
 		if (!cci.pcci_unified) {
 			status = ia64_pal_cache_config_info(l,
 						    /* cache_type (instruction)= */ 1,
@@ -853,9 +850,6 @@ get_max_cacheline_size (void)
 			ia64_i_cache_stride_shift = cci.pcci_stride;
 	}
   out:
-#ifdef CONFIG_SMP
-	max_cache_size = max(max_cache_size, cache_size);
-#endif
 	if (max > ia64_max_cacheline_size)
 		ia64_max_cacheline_size = max;
 }
diff --git a/arch/mips/kernel/smp.c b/arch/mips/kernel/smp.c
index 67edfa7ed93a643d4a59af04d9a6c98a8d1ca12f..a1b017f2dbb3a834706d44d2ff42e34bf65b8a9e 100644
--- a/arch/mips/kernel/smp.c
+++ b/arch/mips/kernel/smp.c
@@ -51,16 +51,6 @@ int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 EXPORT_SYMBOL(phys_cpu_present_map);
 EXPORT_SYMBOL(cpu_online_map);
 
-/* This happens early in bootup, can't really do it better */
-static void smp_tune_scheduling (void)
-{
-	struct cache_desc *cd = &current_cpu_data.scache;
-	unsigned long cachesize = cd->linesz * cd->sets * cd->ways;
-
-	if (cachesize > max_cache_size)
-		max_cache_size = cachesize;
-}
-
 extern void __init calibrate_delay(void);
 extern ATTRIB_NORET void cpu_idle(void);
 
@@ -228,7 +218,6 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
 {
 	init_new_context(current, &init_mm);
 	current_thread_info()->cpu = 0;
-	smp_tune_scheduling();
 	plat_prepare_cpus(max_cpus);
 #ifndef CONFIG_HOTPLUG_CPU
 	cpu_present_map = cpu_possible_map;
diff --git a/arch/sparc/kernel/smp.c b/arch/sparc/kernel/smp.c
index 4d9ad59031bb244f3df459338f9e5b9d6c9a6235..4fea3ac7bff08d1b13cd4e54f2d2be6b08198d1a 100644
--- a/arch/sparc/kernel/smp.c
+++ b/arch/sparc/kernel/smp.c
@@ -68,16 +68,6 @@ void __cpuinit smp_store_cpu_info(int id)
 	cpu_data(id).prom_node = cpu_node;
 	cpu_data(id).mid = cpu_get_hwmid(cpu_node);
 
-	/* this is required to tune the scheduler correctly */
-	/* is it possible to have CPUs with different cache sizes? */
-	if (id == boot_cpu_id) {
-		int cache_line,cache_nlines;
-		cache_line = 0x20;
-		cache_line = prom_getintdefault(cpu_node, "ecache-line-size", cache_line);
-		cache_nlines = 0x8000;
-		cache_nlines = prom_getintdefault(cpu_node, "ecache-nlines", cache_nlines);
-		max_cache_size = cache_line * cache_nlines;
-	}
 	if (cpu_data(id).mid < 0)
 		panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
 }
diff --git a/arch/sparc64/kernel/smp.c b/arch/sparc64/kernel/smp.c
index 4dcd7d0b60f2d8abb8e8ad7630df207cfc39ad21..40e40f968d61abd9ef8192aeb1a6f2a9b318c7e7 100644
--- a/arch/sparc64/kernel/smp.c
+++ b/arch/sparc64/kernel/smp.c
@@ -1163,32 +1163,6 @@ int setup_profiling_timer(unsigned int multiplier)
 	return -EINVAL;
 }
 
-static void __init smp_tune_scheduling(void)
-{
-	unsigned int smallest = ~0U;
-	int i;
-
-	for (i = 0; i < NR_CPUS; i++) {
-		unsigned int val = cpu_data(i).ecache_size;
-
-		if (val && val < smallest)
-			smallest = val;
-	}
-
-	/* Any value less than 256K is nonsense.  */
-	if (smallest < (256U * 1024U))
-		smallest = 256 * 1024;
-
-	max_cache_size = smallest;
-
-	if (smallest < 1U * 1024U * 1024U)
-		printk(KERN_INFO "Using max_cache_size of %uKB\n",
-		       smallest / 1024U);
-	else
-		printk(KERN_INFO "Using max_cache_size of %uMB\n",
-		       smallest / 1024U / 1024U);
-}
-
 /* Constrain the number of cpus to max_cpus.  */
 void __init smp_prepare_cpus(unsigned int max_cpus)
 {
@@ -1206,7 +1180,6 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
 	}
 
 	cpu_data(boot_cpu_id).udelay_val = loops_per_jiffy;
-	smp_tune_scheduling();
 }
 
 void __devinit smp_prepare_boot_cpu(void)
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 7e74262f98e1ff577931a2bd4eab9d99299c1ea1..8764cda0feca036356213e4ecb36e3c449805374 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -754,12 +754,6 @@ struct sched_domain {
 extern int partition_sched_domains(cpumask_t *partition1,
 				    cpumask_t *partition2);
 
-/*
- * Maximum cache size the migration-costs auto-tuning code will
- * search from:
- */
-extern unsigned int max_cache_size;
-
 #endif	/* CONFIG_SMP */
 
 
diff --git a/kernel/sched.c b/kernel/sched.c
index ac054d9a0719fbe8ace297f6ff251c3253efa5d9..46b23f0fee24fb73db6d7c6e0397f6e77049822b 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -5797,483 +5797,6 @@ init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
 
 #define SD_NODES_PER_DOMAIN 16
 
-/*
- * Self-tuning task migration cost measurement between source and target CPUs.
- *
- * This is done by measuring the cost of manipulating buffers of varying
- * sizes. For a given buffer-size here are the steps that are taken:
- *
- * 1) the source CPU reads+dirties a shared buffer
- * 2) the target CPU reads+dirties the same shared buffer
- *
- * We measure how long they take, in the following 4 scenarios:
- *
- *  - source: CPU1, target: CPU2 | cost1
- *  - source: CPU2, target: CPU1 | cost2
- *  - source: CPU1, target: CPU1 | cost3
- *  - source: CPU2, target: CPU2 | cost4
- *
- * We then calculate the cost3+cost4-cost1-cost2 difference - this is
- * the cost of migration.
- *
- * We then start off from a small buffer-size and iterate up to larger
- * buffer sizes, in 5% steps - measuring each buffer-size separately, and
- * doing a maximum search for the cost. (The maximum cost for a migration
- * normally occurs when the working set size is around the effective cache
- * size.)
- */
-#define SEARCH_SCOPE		2
-#define MIN_CACHE_SIZE		(64*1024U)
-#define DEFAULT_CACHE_SIZE	(5*1024*1024U)
-#define ITERATIONS		1
-#define SIZE_THRESH		130
-#define COST_THRESH		130
-
-/*
- * The migration cost is a function of 'domain distance'. Domain
- * distance is the number of steps a CPU has to iterate down its
- * domain tree to share a domain with the other CPU. The farther
- * two CPUs are from each other, the larger the distance gets.
- *
- * Note that we use the distance only to cache measurement results,
- * the distance value is not used numerically otherwise. When two
- * CPUs have the same distance it is assumed that the migration
- * cost is the same. (this is a simplification but quite practical)
- */
-#define MAX_DOMAIN_DISTANCE 32
-
-static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
-		{ [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
-/*
- * Architectures may override the migration cost and thus avoid
- * boot-time calibration. Unit is nanoseconds. Mostly useful for
- * virtualized hardware:
- */
-#ifdef CONFIG_DEFAULT_MIGRATION_COST
-			CONFIG_DEFAULT_MIGRATION_COST
-#else
-			-1LL
-#endif
-};
-
-/*
- * Allow override of migration cost - in units of microseconds.
- * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
- * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
- */
-static int __init migration_cost_setup(char *str)
-{
-	int ints[MAX_DOMAIN_DISTANCE+1], i;
-
-	str = get_options(str, ARRAY_SIZE(ints), ints);
-
-	printk("#ints: %d\n", ints[0]);
-	for (i = 1; i <= ints[0]; i++) {
-		migration_cost[i-1] = (unsigned long long)ints[i]*1000;
-		printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
-	}
-	return 1;
-}
-
-__setup ("migration_cost=", migration_cost_setup);
-
-/*
- * Global multiplier (divisor) for migration-cutoff values,
- * in percentiles. E.g. use a value of 150 to get 1.5 times
- * longer cache-hot cutoff times.
- *
- * (We scale it from 100 to 128 to long long handling easier.)
- */
-
-#define MIGRATION_FACTOR_SCALE 128
-
-static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
-
-static int __init setup_migration_factor(char *str)
-{
-	get_option(&str, &migration_factor);
-	migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
-	return 1;
-}
-
-__setup("migration_factor=", setup_migration_factor);
-
-/*
- * Estimated distance of two CPUs, measured via the number of domains
- * we have to pass for the two CPUs to be in the same span:
- */
-static unsigned long domain_distance(int cpu1, int cpu2)
-{
-	unsigned long distance = 0;
-	struct sched_domain *sd;
-
-	for_each_domain(cpu1, sd) {
-		WARN_ON(!cpu_isset(cpu1, sd->span));
-		if (cpu_isset(cpu2, sd->span))
-			return distance;
-		distance++;
-	}
-	if (distance >= MAX_DOMAIN_DISTANCE) {
-		WARN_ON(1);
-		distance = MAX_DOMAIN_DISTANCE-1;
-	}
-
-	return distance;
-}
-
-static unsigned int migration_debug;
-
-static int __init setup_migration_debug(char *str)
-{
-	get_option(&str, &migration_debug);
-	return 1;
-}
-
-__setup("migration_debug=", setup_migration_debug);
-
-/*
- * Maximum cache-size that the scheduler should try to measure.
- * Architectures with larger caches should tune this up during
- * bootup. Gets used in the domain-setup code (i.e. during SMP
- * bootup).
- */
-unsigned int max_cache_size;
-
-static int __init setup_max_cache_size(char *str)
-{
-	get_option(&str, &max_cache_size);
-	return 1;
-}
-
-__setup("max_cache_size=", setup_max_cache_size);
-
-/*
- * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
- * is the operation that is timed, so we try to generate unpredictable
- * cachemisses that still end up filling the L2 cache:
- */
-static void touch_cache(void *__cache, unsigned long __size)
-{
-	unsigned long size = __size / sizeof(long);
-	unsigned long chunk1 = size / 3;
-	unsigned long chunk2 = 2 * size / 3;
-	unsigned long *cache = __cache;
-	int i;
-
-	for (i = 0; i < size/6; i += 8) {
-		switch (i % 6) {
-			case 0: cache[i]++;
-			case 1: cache[size-1-i]++;
-			case 2: cache[chunk1-i]++;
-			case 3: cache[chunk1+i]++;
-			case 4: cache[chunk2-i]++;
-			case 5: cache[chunk2+i]++;
-		}
-	}
-}
-
-/*
- * Measure the cache-cost of one task migration. Returns in units of nsec.
- */
-static unsigned long long
-measure_one(void *cache, unsigned long size, int source, int target)
-{
-	cpumask_t mask, saved_mask;
-	unsigned long long t0, t1, t2, t3, cost;
-
-	saved_mask = current->cpus_allowed;
-
-	/*
-	 * Flush source caches to RAM and invalidate them:
-	 */
-	sched_cacheflush();
-
-	/*
-	 * Migrate to the source CPU:
-	 */
-	mask = cpumask_of_cpu(source);
-	set_cpus_allowed(current, mask);
-	WARN_ON(smp_processor_id() != source);
-
-	/*
-	 * Dirty the working set:
-	 */
-	t0 = sched_clock();
-	touch_cache(cache, size);
-	t1 = sched_clock();
-
-	/*
-	 * Migrate to the target CPU, dirty the L2 cache and access
-	 * the shared buffer. (which represents the working set
-	 * of a migrated task.)
-	 */
-	mask = cpumask_of_cpu(target);
-	set_cpus_allowed(current, mask);
-	WARN_ON(smp_processor_id() != target);
-
-	t2 = sched_clock();
-	touch_cache(cache, size);
-	t3 = sched_clock();
-
-	cost = t1-t0 + t3-t2;
-
-	if (migration_debug >= 2)
-		printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
-			source, target, t1-t0, t1-t0, t3-t2, cost);
-	/*
-	 * Flush target caches to RAM and invalidate them:
-	 */
-	sched_cacheflush();
-
-	set_cpus_allowed(current, saved_mask);
-
-	return cost;
-}
-
-/*
- * Measure a series of task migrations and return the average
- * result. Since this code runs early during bootup the system
- * is 'undisturbed' and the average latency makes sense.
- *
- * The algorithm in essence auto-detects the relevant cache-size,
- * so it will properly detect different cachesizes for different
- * cache-hierarchies, depending on how the CPUs are connected.
- *
- * Architectures can prime the upper limit of the search range via
- * max_cache_size, otherwise the search range defaults to 20MB...64K.
- */
-static unsigned long long
-measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
-{
-	unsigned long long cost1, cost2;
-	int i;
-
-	/*
-	 * Measure the migration cost of 'size' bytes, over an
-	 * average of 10 runs:
-	 *
-	 * (We perturb the cache size by a small (0..4k)
-	 *  value to compensate size/alignment related artifacts.
-	 *  We also subtract the cost of the operation done on
-	 *  the same CPU.)
-	 */
-	cost1 = 0;
-
-	/*
-	 * dry run, to make sure we start off cache-cold on cpu1,
-	 * and to get any vmalloc pagefaults in advance:
-	 */
-	measure_one(cache, size, cpu1, cpu2);
-	for (i = 0; i < ITERATIONS; i++)
-		cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
-
-	measure_one(cache, size, cpu2, cpu1);
-	for (i = 0; i < ITERATIONS; i++)
-		cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
-
-	/*
-	 * (We measure the non-migrating [cached] cost on both
-	 *  cpu1 and cpu2, to handle CPUs with different speeds)
-	 */
-	cost2 = 0;
-
-	measure_one(cache, size, cpu1, cpu1);
-	for (i = 0; i < ITERATIONS; i++)
-		cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
-
-	measure_one(cache, size, cpu2, cpu2);
-	for (i = 0; i < ITERATIONS; i++)
-		cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
-
-	/*
-	 * Get the per-iteration migration cost:
-	 */
-	do_div(cost1, 2 * ITERATIONS);
-	do_div(cost2, 2 * ITERATIONS);
-
-	return cost1 - cost2;
-}
-
-static unsigned long long measure_migration_cost(int cpu1, int cpu2)
-{
-	unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
-	unsigned int max_size, size, size_found = 0;
-	long long cost = 0, prev_cost;
-	void *cache;
-
-	/*
-	 * Search from max_cache_size*5 down to 64K - the real relevant
-	 * cachesize has to lie somewhere inbetween.
-	 */
-	if (max_cache_size) {
-		max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
-		size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
-	} else {
-		/*
-		 * Since we have no estimation about the relevant
-		 * search range
-		 */
-		max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
-		size = MIN_CACHE_SIZE;
-	}
-
-	if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
-		printk("cpu %d and %d not both online!\n", cpu1, cpu2);
-		return 0;
-	}
-
-	/*
-	 * Allocate the working set:
-	 */
-	cache = vmalloc(max_size);
-	if (!cache) {
-		printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
-		return 1000000; /* return 1 msec on very small boxen */
-	}
-
-	while (size <= max_size) {
-		prev_cost = cost;
-		cost = measure_cost(cpu1, cpu2, cache, size);
-
-		/*
-		 * Update the max:
-		 */
-		if (cost > 0) {
-			if (max_cost < cost) {
-				max_cost = cost;
-				size_found = size;
-			}
-		}
-		/*
-		 * Calculate average fluctuation, we use this to prevent
-		 * noise from triggering an early break out of the loop:
-		 */
-		fluct = abs(cost - prev_cost);
-		avg_fluct = (avg_fluct + fluct)/2;
-
-		if (migration_debug)
-			printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
-				"(%8Ld %8Ld)\n",
-				cpu1, cpu2, size,
-				(long)cost / 1000000,
-				((long)cost / 100000) % 10,
-				(long)max_cost / 1000000,
-				((long)max_cost / 100000) % 10,
-				domain_distance(cpu1, cpu2),
-				cost, avg_fluct);
-
-		/*
-		 * If we iterated at least 20% past the previous maximum,
-		 * and the cost has dropped by more than 20% already,
-		 * (taking fluctuations into account) then we assume to
-		 * have found the maximum and break out of the loop early:
-		 */
-		if (size_found && (size*100 > size_found*SIZE_THRESH))
-			if (cost+avg_fluct <= 0 ||
-				max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
-
-				if (migration_debug)
-					printk("-> found max.\n");
-				break;
-			}
-		/*
-		 * Increase the cachesize in 10% steps:
-		 */
-		size = size * 10 / 9;
-	}
-
-	if (migration_debug)
-		printk("[%d][%d] working set size found: %d, cost: %Ld\n",
-			cpu1, cpu2, size_found, max_cost);
-
-	vfree(cache);
-
-	/*
-	 * A task is considered 'cache cold' if at least 2 times
-	 * the worst-case cost of migration has passed.
-	 *
-	 * (this limit is only listened to if the load-balancing
-	 * situation is 'nice' - if there is a large imbalance we
-	 * ignore it for the sake of CPU utilization and
-	 * processing fairness.)
-	 */
-	return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
-}
-
-static void calibrate_migration_costs(const cpumask_t *cpu_map)
-{
-	int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
-	unsigned long j0, j1, distance, max_distance = 0;
-	struct sched_domain *sd;
-
-	j0 = jiffies;
-
-	/*
-	 * First pass - calculate the cacheflush times:
-	 */
-	for_each_cpu_mask(cpu1, *cpu_map) {
-		for_each_cpu_mask(cpu2, *cpu_map) {
-			if (cpu1 == cpu2)
-				continue;
-			distance = domain_distance(cpu1, cpu2);
-			max_distance = max(max_distance, distance);
-			/*
-			 * No result cached yet?
-			 */
-			if (migration_cost[distance] == -1LL)
-				migration_cost[distance] =
-					measure_migration_cost(cpu1, cpu2);
-		}
-	}
-	/*
-	 * Second pass - update the sched domain hierarchy with
-	 * the new cache-hot-time estimations:
-	 */
-	for_each_cpu_mask(cpu, *cpu_map) {
-		distance = 0;
-		for_each_domain(cpu, sd) {
-			sd->cache_hot_time = migration_cost[distance];
-			distance++;
-		}
-	}
-	/*
-	 * Print the matrix:
-	 */
-	if (migration_debug)
-		printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
-			max_cache_size,
-#ifdef CONFIG_X86
-			cpu_khz/1000
-#else
-			-1
-#endif
-		);
-	if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
-		printk("migration_cost=");
-		for (distance = 0; distance <= max_distance; distance++) {
-			if (distance)
-				printk(",");
-			printk("%ld", (long)migration_cost[distance] / 1000);
-		}
-		printk("\n");
-	}
-	j1 = jiffies;
-	if (migration_debug)
-		printk("migration: %ld seconds\n", (j1-j0) / HZ);
-
-	/*
-	 * Move back to the original CPU. NUMA-Q gets confused
-	 * if we migrate to another quad during bootup.
-	 */
-	if (raw_smp_processor_id() != orig_cpu) {
-		cpumask_t mask = cpumask_of_cpu(orig_cpu),
-			saved_mask = current->cpus_allowed;
-
-		set_cpus_allowed(current, mask);
-		set_cpus_allowed(current, saved_mask);
-	}
-}
-
 #ifdef CONFIG_NUMA
 
 /**
@@ -6803,10 +6326,6 @@ static int build_sched_domains(const cpumask_t *cpu_map)
 #endif
 		cpu_attach_domain(sd, i);
 	}
-	/*
-	 * Tune cache-hot values:
-	 */
-	calibrate_migration_costs(cpu_map);
 
 	return 0;