xfs_file.c 42.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
L
Linus Torvalds 已提交
40 41

#include <linux/dcache.h>
42
#include <linux/falloc.h>
43
#include <linux/pagevec.h>
44
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
45

46
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
		mutex_lock(&VFS_I(ip)->i_mutex);
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

82
/*
83 84 85 86 87
 * xfs_iozero clears the specified range supplied via the page cache (except in
 * the DAX case). Writes through the page cache will allocate blocks over holes,
 * though the callers usually map the holes first and avoid them. If a block is
 * not completely zeroed, then it will be read from disk before being partially
 * zeroed.
88
 *
89 90 91
 * In the DAX case, we can just directly write to the underlying pages. This
 * will not allocate blocks, but will avoid holes and unwritten extents and so
 * not do unnecessary work.
92
 */
93
int
94 95 96 97 98 99 100
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
101 102
	int			status = 0;

103 104 105 106 107 108 109 110 111 112 113

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

114 115 116 117 118 119 120 121 122 123 124
		if (IS_DAX(VFS_I(ip))) {
			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
						     xfs_get_blocks_direct);
			if (status)
				break;
		} else {
			status = pagecache_write_begin(NULL, mapping, pos, bytes,
						AOP_FLAG_UNINTERRUPTIBLE,
						&page, &fsdata);
			if (status)
				break;
125

126
			zero_user(page, offset, bytes);
127

128 129 130 131 132
			status = pagecache_write_end(NULL, mapping, pos, bytes,
						bytes, page, fsdata);
			WARN_ON(status <= 0); /* can't return less than zero! */
			status = 0;
		}
133 134 135 136
		pos += bytes;
		count -= bytes;
	} while (count);

137
	return status;
138 139
}

140 141 142 143 144 145 146 147 148 149 150
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
	if (error) {
151
		xfs_trans_cancel(tp);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
		ip->i_d.di_mode &= ~S_ISUID;
		if (ip->i_d.di_mode & S_IXGRP)
			ip->i_d.di_mode &= ~S_ISGID;
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
173
	return xfs_trans_commit(tp);
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
202
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 204
}

205 206 207
STATIC int
xfs_file_fsync(
	struct file		*file,
208 209
	loff_t			start,
	loff_t			end,
210 211
	int			datasync)
{
212 213
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
214
	struct xfs_mount	*mp = ip->i_mount;
215 216
	int			error = 0;
	int			log_flushed = 0;
217
	xfs_lsn_t		lsn = 0;
218

C
Christoph Hellwig 已提交
219
	trace_xfs_file_fsync(ip);
220

221 222 223 224
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

225
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
226
		return -EIO;
227 228 229

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

230 231 232 233 234 235 236 237 238 239 240 241 242 243
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

244
	/*
245 246 247 248 249 250 251 252 253 254 255
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
256 257
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
258 259
	if (xfs_ipincount(ip)) {
		if (!datasync ||
260
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
261 262
			lsn = ip->i_itemp->ili_last_lsn;
	}
263

264
	if (lsn) {
265
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
266 267 268
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
269

270 271 272 273 274 275 276 277 278 279 280 281
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
282

D
Dave Chinner 已提交
283
	return error;
284 285
}

286
STATIC ssize_t
A
Al Viro 已提交
287
xfs_file_read_iter(
288
	struct kiocb		*iocb,
A
Al Viro 已提交
289
	struct iov_iter		*to)
290 291 292
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
293 294
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
A
Al Viro 已提交
295
	size_t			size = iov_iter_count(to);
296
	ssize_t			ret = 0;
297
	int			ioflags = 0;
298
	xfs_fsize_t		n;
A
Al Viro 已提交
299
	loff_t			pos = iocb->ki_pos;
300 301 302

	XFS_STATS_INC(xs_read_calls);

303
	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
D
Dave Chinner 已提交
304
		ioflags |= XFS_IO_ISDIRECT;
305
	if (file->f_mode & FMODE_NOCMTIME)
D
Dave Chinner 已提交
306
		ioflags |= XFS_IO_INVIS;
307

308
	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
309 310 311
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
312 313
		/* DIO must be aligned to device logical sector size */
		if ((pos | size) & target->bt_logical_sectormask) {
D
Dave Chinner 已提交
314
			if (pos == i_size_read(inode))
315
				return 0;
E
Eric Sandeen 已提交
316
			return -EINVAL;
317 318 319
		}
	}

D
Dave Chinner 已提交
320
	n = mp->m_super->s_maxbytes - pos;
321
	if (n <= 0 || size == 0)
322 323 324 325 326 327 328 329
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

330
	/*
331 332 333 334 335 336 337 338
	 * Locking is a bit tricky here. If we take an exclusive lock for direct
	 * IO, we effectively serialise all new concurrent read IO to this file
	 * and block it behind IO that is currently in progress because IO in
	 * progress holds the IO lock shared. We only need to hold the lock
	 * exclusive to blow away the page cache, so only take lock exclusively
	 * if the page cache needs invalidation. This allows the normal direct
	 * IO case of no page cache pages to proceeed concurrently without
	 * serialisation.
339 340
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
D
Dave Chinner 已提交
341
	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
342
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
343 344
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

345 346 347 348 349 350 351 352 353 354 355
		/*
		 * The generic dio code only flushes the range of the particular
		 * I/O. Because we take an exclusive lock here, this whole
		 * sequence is considerably more expensive for us. This has a
		 * noticeable performance impact for any file with cached pages,
		 * even when outside of the range of the particular I/O.
		 *
		 * Hence, amortize the cost of the lock against a full file
		 * flush and reduce the chances of repeated iolock cycles going
		 * forward.
		 */
356
		if (inode->i_mapping->nrpages) {
357
			ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
358 359 360 361
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
362 363 364 365 366 367

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
368
			ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
369 370
			WARN_ON_ONCE(ret);
			ret = 0;
371
		}
372
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
373
	}
374

D
Dave Chinner 已提交
375
	trace_xfs_file_read(ip, size, pos, ioflags);
376

A
Al Viro 已提交
377
	ret = generic_file_read_iter(iocb, to);
378 379 380
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

381
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
382 383 384
	return ret;
}

385 386
STATIC ssize_t
xfs_file_splice_read(
387 388 389 390
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
391
	unsigned int		flags)
392
{
393 394
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
	int			ioflags = 0;
395 396 397
	ssize_t			ret;

	XFS_STATS_INC(xs_read_calls);
398 399

	if (infilp->f_mode & FMODE_NOCMTIME)
D
Dave Chinner 已提交
400
		ioflags |= XFS_IO_INVIS;
401

402 403 404
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

405
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
406 407 408

	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);

409 410 411 412 413
	/* for dax, we need to avoid the page cache */
	if (IS_DAX(VFS_I(ip)))
		ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
	else
		ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
414 415 416
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

417
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
418 419 420 421
	return ret;
}

/*
422 423 424 425
 * This routine is called to handle zeroing any space in the last block of the
 * file that is beyond the EOF.  We do this since the size is being increased
 * without writing anything to that block and we don't want to read the
 * garbage on the disk.
426 427 428
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
429 430
	struct xfs_inode	*ip,
	xfs_fsize_t		offset,
431 432
	xfs_fsize_t		isize,
	bool			*did_zeroing)
433
{
434 435 436 437 438 439 440
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	int			zero_len;
	int			nimaps = 1;
	int			error = 0;
	struct xfs_bmbt_irec	imap;
441

442
	xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
443
	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
444
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
445
	if (error)
446
		return error;
447

448
	ASSERT(nimaps > 0);
449

450 451 452 453
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
454
	if (imap.br_startblock == HOLESTARTBLOCK)
455 456 457 458 459
		return 0;

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
460
	*did_zeroing = true;
461
	return xfs_iozero(ip, isize, zero_len);
462 463 464
}

/*
465 466 467 468 469 470 471 472 473
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
474 475 476
 */
int					/* error (positive) */
xfs_zero_eof(
477 478
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
479 480
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
481
{
482 483 484 485 486 487 488 489 490 491 492 493
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		start_zero_fsb;
	xfs_fileoff_t		end_zero_fsb;
	xfs_fileoff_t		zero_count_fsb;
	xfs_fileoff_t		last_fsb;
	xfs_fileoff_t		zero_off;
	xfs_fsize_t		zero_len;
	int			nimaps;
	int			error = 0;
	struct xfs_bmbt_irec	imap;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
494 495 496 497
	ASSERT(offset > isize);

	/*
	 * First handle zeroing the block on which isize resides.
498
	 *
499 500
	 * We only zero a part of that block so it is handled specially.
	 */
501
	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
502
		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
503 504
		if (error)
			return error;
505 506 507
	}

	/*
508 509 510 511 512 513 514
	 * Calculate the range between the new size and the old where blocks
	 * needing to be zeroed may exist.
	 *
	 * To get the block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back to a block
	 * boundary.  We subtract 1 in case the size is exactly on a block
	 * boundary.
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
532 533

		xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
534 535
		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
					  &imap, &nimaps, 0);
536 537
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		if (error)
538
			return error;
539

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 */
		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
559 560
		if (error)
			return error;
561

562
		*did_zeroing = true;
563 564 565 566 567 568 569
		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
	}

	return 0;
}

570 571 572
/*
 * Common pre-write limit and setup checks.
 *
573 574 575
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
576 577 578
 */
STATIC ssize_t
xfs_file_aio_write_checks(
579 580
	struct kiocb		*iocb,
	struct iov_iter		*from,
581 582
	int			*iolock)
{
583
	struct file		*file = iocb->ki_filp;
584 585
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
586
	ssize_t			error = 0;
587
	size_t			count = iov_iter_count(from);
588

589
restart:
590 591
	error = generic_write_checks(iocb, from);
	if (error <= 0)
592 593
		return error;

594
	error = xfs_break_layouts(inode, iolock, true);
595 596 597
	if (error)
		return error;

598 599 600 601 602 603 604
	/* For changing security info in file_remove_privs() we need i_mutex */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
		goto restart;
	}
605 606 607
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
608
	 * write.  If zeroing is needed and we are currently holding the
609 610
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
611 612 613 614 615 616 617 618
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
619
	 */
620
	spin_lock(&ip->i_flags_lock);
621
	if (iocb->ki_pos > i_size_read(inode)) {
622 623
		bool	zero = false;

624
		spin_unlock(&ip->i_flags_lock);
625
		if (*iolock == XFS_IOLOCK_SHARED) {
626
			xfs_rw_iunlock(ip, *iolock);
627
			*iolock = XFS_IOLOCK_EXCL;
628
			xfs_rw_ilock(ip, *iolock);
629
			iov_iter_reexpand(from, count);
630 631 632 633 634 635 636 637 638 639

			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
640 641
			goto restart;
		}
642
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
643 644
		if (error)
			return error;
645 646
	} else
		spin_unlock(&ip->i_flags_lock);
647

C
Christoph Hellwig 已提交
648 649 650 651 652 653
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
654 655 656 657 658
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
659

660 661 662 663 664
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
665 666 667
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
668 669
}

670 671 672 673
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
674
 * By separating it from the buffered write path we remove all the tricky to
675 676
 * follow locking changes and looping.
 *
677 678 679 680 681 682 683 684 685 686 687 688 689
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
690
 * hitting it with a big hammer (i.e. inode_dio_wait()).
691
 *
692 693 694 695 696 697
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
698
	struct iov_iter		*from)
699 700 701 702 703 704 705
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
706
	int			unaligned_io = 0;
707
	int			iolock;
708 709
	size_t			count = iov_iter_count(from);
	loff_t			pos = iocb->ki_pos;
710 711
	loff_t			end;
	struct iov_iter		data;
712 713 714
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

715
	/* DIO must be aligned to device logical sector size */
716
	if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
E
Eric Sandeen 已提交
717
		return -EINVAL;
718

719
	/* "unaligned" here means not aligned to a filesystem block */
720 721 722
	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

723 724 725 726 727 728 729 730
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
731
		iolock = XFS_IOLOCK_EXCL;
732
	else
733 734
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
735 736 737 738 739 740

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
741 742 743 744
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
745
	}
746

747
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
748
	if (ret)
749
		goto out;
750 751
	count = iov_iter_count(from);
	pos = iocb->ki_pos;
752
	end = pos + count - 1;
753

754 755 756
	/*
	 * See xfs_file_read_iter() for why we do a full-file flush here.
	 */
757
	if (mapping->nrpages) {
758
		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
759
		if (ret)
760
			goto out;
761
		/*
762 763 764
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
765
		 */
766
		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
767 768
		WARN_ON_ONCE(ret);
		ret = 0;
769 770
	}

771 772 773 774 775
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
776
		inode_dio_wait(inode);
777
	else if (iolock == XFS_IOLOCK_EXCL) {
778
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
779
		iolock = XFS_IOLOCK_SHARED;
780 781 782 783
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);

784
	data = *from;
785
	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
786 787 788 789 790 791 792 793 794 795 796 797 798

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
					      pos >> PAGE_CACHE_SHIFT,
					      end >> PAGE_CACHE_SHIFT);
	}

	if (ret > 0) {
		pos += ret;
		iov_iter_advance(from, ret);
		iocb->ki_pos = pos;
	}
799 800 801
out:
	xfs_rw_iunlock(ip, iolock);

802 803 804 805 806
	/*
	 * No fallback to buffered IO on errors for XFS. DAX can result in
	 * partial writes, but direct IO will either complete fully or fail.
	 */
	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
807 808 809
	return ret;
}

810
STATIC ssize_t
811
xfs_file_buffered_aio_write(
812
	struct kiocb		*iocb,
813
	struct iov_iter		*from)
814 815 816 817
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
818
	struct xfs_inode	*ip = XFS_I(inode);
819 820
	ssize_t			ret;
	int			enospc = 0;
821
	int			iolock = XFS_IOLOCK_EXCL;
822

823
	xfs_rw_ilock(ip, iolock);
824

825
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
826
	if (ret)
827
		goto out;
828 829

	/* We can write back this queue in page reclaim */
830
	current->backing_dev_info = inode_to_bdi(inode);
831 832

write_retry:
833 834 835
	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
				      iocb->ki_pos, 0);
	ret = generic_perform_write(file, from, iocb->ki_pos);
836
	if (likely(ret >= 0))
837
		iocb->ki_pos += ret;
838

839
	/*
840 841 842 843 844 845 846
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
847
	 */
848 849 850 851 852 853 854
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

855
		enospc = 1;
D
Dave Chinner 已提交
856
		xfs_flush_inodes(ip->i_mount);
857 858 859
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
860
		goto write_retry;
861
	}
862

863
	current->backing_dev_info = NULL;
864 865
out:
	xfs_rw_iunlock(ip, iolock);
866 867 868 869
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
870
xfs_file_write_iter(
871
	struct kiocb		*iocb,
A
Al Viro 已提交
872
	struct iov_iter		*from)
873 874 875 876 877 878
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
879
	size_t			ocount = iov_iter_count(from);
880 881 882 883 884 885

	XFS_STATS_INC(xs_write_calls);

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
886 887
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
888

889
	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
A
Al Viro 已提交
890
		ret = xfs_file_dio_aio_write(iocb, from);
891
	else
A
Al Viro 已提交
892
		ret = xfs_file_buffered_aio_write(iocb, from);
893

894 895
	if (ret > 0) {
		ssize_t err;
896

897
		XFS_STATS_ADD(xs_write_bytes, ret);
898

899
		/* Handle various SYNC-type writes */
900
		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
901 902
		if (err < 0)
			ret = err;
903
	}
904
	return ret;
905 906
}

907 908 909 910 911
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE)

912 913
STATIC long
xfs_file_fallocate(
914 915 916 917
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
918
{
919 920 921
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
922
	enum xfs_prealloc_flags	flags = 0;
923
	uint			iolock = XFS_IOLOCK_EXCL;
924
	loff_t			new_size = 0;
925
	bool			do_file_insert = 0;
926

927 928
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
929
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
930 931
		return -EOPNOTSUPP;

932
	xfs_ilock(ip, iolock);
933
	error = xfs_break_layouts(inode, &iolock, false);
934 935 936
	if (error)
		goto out_unlock;

937 938 939
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

940 941 942 943
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
944 945 946 947
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
948
			error = -EINVAL;
949 950 951
			goto out_unlock;
		}

952 953 954 955 956
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
957
			error = -EINVAL;
958 959 960
			goto out_unlock;
		}

961 962 963 964 965
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
987
	} else {
988 989
		flags |= XFS_PREALLOC_SET;

990 991 992
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
993
			error = inode_newsize_ok(inode, new_size);
994 995 996
			if (error)
				goto out_unlock;
		}
997

998 999 1000 1001 1002
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
1003 1004 1005 1006
		if (error)
			goto out_unlock;
	}

1007
	if (file->f_flags & O_DSYNC)
1008 1009 1010
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
1011 1012 1013 1014 1015 1016 1017 1018 1019
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
1020
		error = xfs_setattr_size(ip, &iattr);
1021 1022
		if (error)
			goto out_unlock;
1023 1024
	}

1025 1026 1027 1028 1029 1030 1031 1032 1033
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

1034
out_unlock:
1035
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
1036
	return error;
1037 1038 1039
}


L
Linus Torvalds 已提交
1040
STATIC int
1041
xfs_file_open(
L
Linus Torvalds 已提交
1042
	struct inode	*inode,
1043
	struct file	*file)
L
Linus Torvalds 已提交
1044
{
1045
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
1046
		return -EFBIG;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
1069
	mode = xfs_ilock_data_map_shared(ip);
1070
	if (ip->i_d.di_nextents > 0)
1071
		xfs_dir3_data_readahead(ip, 0, -1);
1072 1073
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1074 1075 1076
}

STATIC int
1077
xfs_file_release(
L
Linus Torvalds 已提交
1078 1079 1080
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
1081
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1082 1083 1084
}

STATIC int
1085
xfs_file_readdir(
A
Al Viro 已提交
1086 1087
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
1088
{
A
Al Viro 已提交
1089
	struct inode	*inode = file_inode(file);
1090
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1103
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1104
	 */
E
Eric Sandeen 已提交
1105
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1106

1107
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1108 1109
}

1110 1111
/*
 * This type is designed to indicate the type of offset we would like
1112
 * to search from page cache for xfs_seek_hole_data().
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1169
 * type for xfs_seek_hole_data().
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

	index = startoff >> PAGE_CACHE_SHIFT;
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
	end = endoff >> PAGE_CACHE_SHIFT;
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1328
STATIC loff_t
1329
xfs_seek_hole_data(
1330
	struct file		*file,
1331 1332
	loff_t			start,
	int			whence)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fsize_t		isize;
	xfs_fileoff_t		fsbno;
	xfs_filblks_t		end;
	uint			lock;
	int			error;

1344 1345 1346
	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

1347
	lock = xfs_ilock_data_map_shared(ip);
1348 1349 1350

	isize = i_size_read(inode);
	if (start >= isize) {
D
Dave Chinner 已提交
1351
		error = -ENXIO;
1352 1353 1354 1355 1356 1357 1358
		goto out_unlock;
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1359
	fsbno = XFS_B_TO_FSBT(mp, start);
1360
	end = XFS_B_TO_FSB(mp, isize);
1361

1362 1363 1364 1365
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1366

1367 1368 1369 1370
		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
				       XFS_BMAPI_ENTIRE);
		if (error)
			goto out_unlock;
1371

1372 1373
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1374
			error = -ENXIO;
1375 1376 1377 1378 1379 1380 1381
			goto out_unlock;
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1392 1393 1394
				goto out;

			/*
1395 1396
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1397 1398 1399
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1400 1401
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1402 1403 1404 1405 1406
					goto out;
			}
		}

		/*
1407 1408
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1409
		 */
1410
		if (nmap == 1) {
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
				offset = isize;
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1424
			error = -ENXIO;
1425 1426 1427
			goto out_unlock;
		}

1428 1429 1430 1431
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1432
		 * if the next reading offset is not at or beyond EOF.
1433 1434 1435 1436
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
		if (start >= isize) {
1437 1438 1439 1440 1441
			if (whence == SEEK_HOLE) {
				offset = isize;
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1442
			error = -ENXIO;
1443 1444
			goto out_unlock;
		}
1445 1446
	}

1447 1448
out:
	/*
1449
	 * If at this point we have found the hole we wanted, the returned
1450
	 * offset may be bigger than the file size as it may be aligned to
1451
	 * page boundary for unwritten extents.  We need to deal with this
1452 1453
	 * situation in particular.
	 */
1454 1455
	if (whence == SEEK_HOLE)
		offset = min_t(loff_t, offset, isize);
J
Jie Liu 已提交
1456
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1457 1458

out_unlock:
1459
	xfs_iunlock(ip, lock);
1460 1461

	if (error)
D
Dave Chinner 已提交
1462
		return error;
1463 1464 1465 1466 1467 1468 1469
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1470
	int		whence)
1471
{
1472
	switch (whence) {
1473 1474 1475
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1476
		return generic_file_llseek(file, offset, whence);
1477
	case SEEK_HOLE:
1478
	case SEEK_DATA:
1479
		return xfs_seek_hole_data(file, offset, whence);
1480 1481 1482 1483 1484
	default:
		return -EINVAL;
	}
}

1485 1486 1487 1488 1489
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1490 1491 1492 1493
 *   sb_start_pagefault(vfs, freeze)
 *     i_mmap_lock (XFS - truncate serialisation)
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1494 1495
 */

1496 1497 1498 1499 1500
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1501 1502
 */
STATIC int
1503
xfs_filemap_page_mkwrite(
1504 1505 1506
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1507
	struct inode		*inode = file_inode(vma->vm_file);
1508
	int			ret;
1509

1510
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1511

1512
	sb_start_pagefault(inode->i_sb);
1513
	file_update_time(vma->vm_file);
1514
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	if (IS_DAX(inode)) {
		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
				    xfs_end_io_dax_write);
	} else {
		ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1528 1529
}

1530
STATIC int
1531
xfs_filemap_fault(
1532 1533 1534
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1535
	struct inode		*inode = file_inode(vma->vm_file);
1536
	int			ret;
1537

1538
	trace_xfs_filemap_fault(XFS_I(inode));
1539

1540
	/* DAX can shortcut the normal fault path on write faults! */
1541
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1542
		return xfs_filemap_page_mkwrite(vma, vmf);
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	if (IS_DAX(inode)) {
		/*
		 * we do not want to trigger unwritten extent conversion on read
		 * faults - that is unnecessary overhead and would also require
		 * changes to xfs_get_blocks_direct() to map unwritten extent
		 * ioend for conversion on read-only mappings.
		 */
		ret = __dax_fault(vma, vmf, xfs_get_blocks_direct, NULL);
	} else
		ret = filemap_fault(vma, vmf);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1556

1557 1558 1559
	return ret;
}

M
Matthew Wilcox 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
STATIC int
xfs_filemap_pmd_fault(
	struct vm_area_struct	*vma,
	unsigned long		addr,
	pmd_t			*pmd,
	unsigned int		flags)
{
	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	if (!IS_DAX(inode))
		return VM_FAULT_FALLBACK;

	trace_xfs_filemap_pmd_fault(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vma->vm_file);
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_direct,
				    xfs_end_io_dax_write);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
}

1587 1588
static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
M
Matthew Wilcox 已提交
1589
	.pmd_fault	= xfs_filemap_pmd_fault,
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
M
Matthew Wilcox 已提交
1602
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1603
	return 0;
1604 1605
}

1606
const struct file_operations xfs_file_operations = {
1607
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1608
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1609
	.write_iter	= xfs_file_write_iter,
1610
	.splice_read	= xfs_file_splice_read,
A
Al Viro 已提交
1611
	.splice_write	= iter_file_splice_write,
1612
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1613
#ifdef CONFIG_COMPAT
1614
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1615
#endif
1616 1617 1618 1619
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1620
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1621 1622
};

1623
const struct file_operations xfs_dir_file_operations = {
1624
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1625
	.read		= generic_read_dir,
A
Al Viro 已提交
1626
	.iterate	= xfs_file_readdir,
1627
	.llseek		= generic_file_llseek,
1628
	.unlocked_ioctl	= xfs_file_ioctl,
1629
#ifdef CONFIG_COMPAT
1630
	.compat_ioctl	= xfs_file_compat_ioctl,
1631
#endif
1632
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1633
};