sdma_v4_0.c 66.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_ucode.h"
#include "amdgpu_trace.h"

30 31 32 33
#include "sdma0/sdma0_4_2_offset.h"
#include "sdma0/sdma0_4_2_sh_mask.h"
#include "sdma1/sdma1_4_2_offset.h"
#include "sdma1/sdma1_4_2_sh_mask.h"
34
#include "hdp/hdp_4_0_offset.h"
35
#include "sdma0/sdma0_4_1_default.h"
36 37 38 39 40

#include "soc15_common.h"
#include "soc15.h"
#include "vega10_sdma_pkt_open.h"

41 42 43
#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"

44 45
MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 47
MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 49
MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50
MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51
MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52
MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
53

54 55 56
#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L

57 58 59 60 61
#define WREG32_SDMA(instance, offset, value) \
	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
#define RREG32_SDMA(instance, offset) \
	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))

62 63 64 65 66
static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);

67 68 69 70 71 72 73 74 75 76 77 78 79
static const struct soc15_reg_golden golden_settings_sdma_4[] = {
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
80
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
81 82 83 84 85 86 87 88 89 90 91
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
92 93
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
94 95
};

96 97 98 99 100
static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
101 102
};

103
static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
104 105 106 107
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
108 109
};

110
static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
111 112 113 114 115 116 117 118 119
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
120 121
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
122 123
};

124 125 126 127 128
static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
};

static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
129 130 131 132 133
{
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
134
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
135
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
136
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
137
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 139
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
140
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
141
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
142
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 144 145 146 147 148 149 150 151 152 153 154
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
156
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000),
157 158 159
};

static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
160 161 162 163
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
164
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
166
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 169 170 171
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 174 175 176 177 178 179 180 181 182 183 184 185
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
186
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000),
187 188
};

189
static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
190
{
191 192
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
193 194
};

195 196 197 198 199 200
static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
{
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
};

201 202
static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
		u32 instance, u32 offset)
203
{
204 205
	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
206 207 208 209 210 211
}

static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
{
	switch (adev->asic_type) {
	case CHIP_VEGA10:
212
		soc15_program_register_sequence(adev,
213
						 golden_settings_sdma_4,
214
						 ARRAY_SIZE(golden_settings_sdma_4));
215
		soc15_program_register_sequence(adev,
216
						 golden_settings_sdma_vg10,
217
						 ARRAY_SIZE(golden_settings_sdma_vg10));
218
		break;
219
	case CHIP_VEGA12:
220 221 222 223 224 225
		soc15_program_register_sequence(adev,
						golden_settings_sdma_4,
						ARRAY_SIZE(golden_settings_sdma_4));
		soc15_program_register_sequence(adev,
						golden_settings_sdma_vg12,
						ARRAY_SIZE(golden_settings_sdma_vg12));
226
		break;
227 228
	case CHIP_VEGA20:
		soc15_program_register_sequence(adev,
229 230 231 232 233 234 235 236
						golden_settings_sdma0_4_2_init,
						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
		soc15_program_register_sequence(adev,
						golden_settings_sdma0_4_2,
						ARRAY_SIZE(golden_settings_sdma0_4_2));
		soc15_program_register_sequence(adev,
						golden_settings_sdma1_4_2,
						ARRAY_SIZE(golden_settings_sdma1_4_2));
237
		break;
238
	case CHIP_RAVEN:
239
		soc15_program_register_sequence(adev,
240 241 242 243 244 245 246 247 248 249
						golden_settings_sdma_4_1,
						ARRAY_SIZE(golden_settings_sdma_4_1));
		if (adev->rev_id >= 8)
			soc15_program_register_sequence(adev,
							golden_settings_sdma_rv2,
							ARRAY_SIZE(golden_settings_sdma_rv2));
		else
			soc15_program_register_sequence(adev,
							golden_settings_sdma_rv1,
							ARRAY_SIZE(golden_settings_sdma_rv1));
250
		break;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	default:
		break;
	}
}

/**
 * sdma_v4_0_init_microcode - load ucode images from disk
 *
 * @adev: amdgpu_device pointer
 *
 * Use the firmware interface to load the ucode images into
 * the driver (not loaded into hw).
 * Returns 0 on success, error on failure.
 */

// emulation only, won't work on real chip
// vega10 real chip need to use PSP to load firmware
static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
{
	const char *chip_name;
	char fw_name[30];
	int err = 0, i;
	struct amdgpu_firmware_info *info = NULL;
	const struct common_firmware_header *header = NULL;
	const struct sdma_firmware_header_v1_0 *hdr;

	DRM_DEBUG("\n");

	switch (adev->asic_type) {
	case CHIP_VEGA10:
		chip_name = "vega10";
		break;
283 284 285
	case CHIP_VEGA12:
		chip_name = "vega12";
		break;
286 287 288
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
289
	case CHIP_RAVEN:
290 291
		if (adev->rev_id >= 8)
			chip_name = "raven2";
292 293
		else if (adev->pdev->device == 0x15d8)
			chip_name = "picasso";
294 295
		else
			chip_name = "raven";
296
		break;
297 298
	default:
		BUG();
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		if (i == 0)
			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
		else
			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
		if (err)
			goto out;
		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
		if (err)
			goto out;
		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
		if (adev->sdma.instance[i].feature_version >= 20)
			adev->sdma.instance[i].burst_nop = true;
		DRM_DEBUG("psp_load == '%s'\n",
318
				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
319 320 321 322 323 324 325 326 327 328 329 330

		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
			info->fw = adev->sdma.instance[i].fw;
			header = (const struct common_firmware_header *)info->fw->data;
			adev->firmware.fw_size +=
				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
		}
	}
out:
	if (err) {
331
		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
		for (i = 0; i < adev->sdma.num_instances; i++) {
			release_firmware(adev->sdma.instance[i].fw);
			adev->sdma.instance[i].fw = NULL;
		}
	}
	return err;
}

/**
 * sdma_v4_0_ring_get_rptr - get the current read pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current rptr from the hardware (VEGA10+).
 */
static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
{
349
	u64 *rptr;
350 351

	/* XXX check if swapping is necessary on BE */
352
	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
	return ((*rptr) >> 2);
}

/**
 * sdma_v4_0_ring_get_wptr - get the current write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current wptr from the hardware (VEGA10+).
 */
static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
368
	u64 wptr;
369 370 371

	if (ring->use_doorbell) {
		/* XXX check if swapping is necessary on BE */
372 373
		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
374 375
	} else {
		u32 lowbit, highbit;
376

377 378
		lowbit = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR) >> 2;
		highbit = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI) >> 2;
379 380

		DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
381
				ring->me, highbit, lowbit);
382 383 384
		wptr = highbit;
		wptr = wptr << 32;
		wptr |= lowbit;
385 386
	}

387
	return wptr >> 2;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
}

/**
 * sdma_v4_0_ring_set_wptr - commit the write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Write the wptr back to the hardware (VEGA10+).
 */
static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;

	DRM_DEBUG("Setting write pointer\n");
	if (ring->use_doorbell) {
403 404
		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];

405 406 407 408 409 410 411 412
		DRM_DEBUG("Using doorbell -- "
				"wptr_offs == 0x%08x "
				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
				ring->wptr_offs,
				lower_32_bits(ring->wptr << 2),
				upper_32_bits(ring->wptr << 2));
		/* XXX check if swapping is necessary on BE */
413
		WRITE_ONCE(*wb, (ring->wptr << 2));
414 415 416 417 418 419
		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
				ring->doorbell_index, ring->wptr << 2);
		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
	} else {
		DRM_DEBUG("Not using doorbell -- "
				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
420
				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
421
				ring->me,
422
				lower_32_bits(ring->wptr << 2),
423
				ring->me,
424
				upper_32_bits(ring->wptr << 2));
425 426 427 428
		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
			    lower_32_bits(ring->wptr << 2));
		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
			    upper_32_bits(ring->wptr << 2));
429 430 431
	}
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/**
 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current wptr from the hardware (VEGA10+).
 */
static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	u64 wptr;

	if (ring->use_doorbell) {
		/* XXX check if swapping is necessary on BE */
		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
	} else {
		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
		wptr = wptr << 32;
		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
	}

	return wptr >> 2;
}

/**
 * sdma_v4_0_ring_set_wptr - commit the write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Write the wptr back to the hardware (VEGA10+).
 */
static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;

	if (ring->use_doorbell) {
		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];

		/* XXX check if swapping is necessary on BE */
		WRITE_ONCE(*wb, (ring->wptr << 2));
		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
	} else {
		uint64_t wptr = ring->wptr << 2;

		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
			    lower_32_bits(wptr));
		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
			    upper_32_bits(wptr));
	}
}

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
	int i;

	for (i = 0; i < count; i++)
		if (sdma && sdma->burst_nop && (i == 0))
			amdgpu_ring_write(ring, ring->funcs->nop |
				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
		else
			amdgpu_ring_write(ring, ring->funcs->nop);
}

/**
 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 *
 * @ring: amdgpu ring pointer
 * @ib: IB object to schedule
 *
 * Schedule an IB in the DMA ring (VEGA10).
 */
static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
505
					struct amdgpu_ib *ib,
506
					unsigned vmid, bool ctx_switch)
507
{
508 509
	/* IB packet must end on a 8 DW boundary */
	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
510

511
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
512
			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
513 514 515 516 517 518
	/* base must be 32 byte aligned */
	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
	amdgpu_ring_write(ring, ib->length_dw);
	amdgpu_ring_write(ring, 0);
	amdgpu_ring_write(ring, 0);
519 520 521

}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
				   int mem_space, int hdp,
				   uint32_t addr0, uint32_t addr1,
				   uint32_t ref, uint32_t mask,
				   uint32_t inv)
{
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
	if (mem_space) {
		/* memory */
		amdgpu_ring_write(ring, addr0);
		amdgpu_ring_write(ring, addr1);
	} else {
		/* registers */
		amdgpu_ring_write(ring, addr0 << 2);
		amdgpu_ring_write(ring, addr1 << 2);
	}
	amdgpu_ring_write(ring, ref); /* reference */
	amdgpu_ring_write(ring, mask); /* mask */
	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
}

547 548 549 550 551 552 553 554 555
/**
 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 *
 * @ring: amdgpu ring pointer
 *
 * Emit an hdp flush packet on the requested DMA ring.
 */
static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
556
	struct amdgpu_device *adev = ring->adev;
557
	u32 ref_and_mask = 0;
558
	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
559

560
	if (ring->me == 0)
561 562 563 564
		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
	else
		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;

565 566 567 568
	sdma_v4_0_wait_reg_mem(ring, 0, 1,
			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
			       ref_and_mask, ref_and_mask, 10);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

/**
 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 *
 * @ring: amdgpu ring pointer
 * @fence: amdgpu fence object
 *
 * Add a DMA fence packet to the ring to write
 * the fence seq number and DMA trap packet to generate
 * an interrupt if needed (VEGA10).
 */
static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
				      unsigned flags)
{
	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
	/* write the fence */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
	/* zero in first two bits */
	BUG_ON(addr & 0x3);
	amdgpu_ring_write(ring, lower_32_bits(addr));
	amdgpu_ring_write(ring, upper_32_bits(addr));
	amdgpu_ring_write(ring, lower_32_bits(seq));

	/* optionally write high bits as well */
	if (write64bit) {
		addr += 4;
		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
		/* zero in first two bits */
		BUG_ON(addr & 0x3);
		amdgpu_ring_write(ring, lower_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(seq));
	}

	/* generate an interrupt */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
}


/**
 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the gfx async dma ring buffers (VEGA10).
 */
static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
{
	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
	u32 rb_cntl, ib_cntl;
	int i;

	if ((adev->mman.buffer_funcs_ring == sdma0) ||
	    (adev->mman.buffer_funcs_ring == sdma1))
626
			amdgpu_ttm_set_buffer_funcs_status(adev, false);
627 628

	for (i = 0; i < adev->sdma.num_instances; i++) {
629
		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
630
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
631 632
		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
633
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
634
		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	}

	sdma0->ready = false;
	sdma1->ready = false;
}

/**
 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the compute async dma queues (VEGA10).
 */
static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
{
	/* XXX todo */
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/**
 * sdma_v4_0_page_stop - stop the page async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the page async dma ring buffers (VEGA10).
 */
static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
{
	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
	u32 rb_cntl, ib_cntl;
	int i;

	for (i = 0; i < adev->sdma.num_instances; i++) {
		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
					RB_ENABLE, 0);
		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
					IB_ENABLE, 0);
		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
	}

	sdma0->ready = false;
	sdma1->ready = false;
}

682 683 684 685 686 687 688 689 690 691
/**
 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs context switch.
 *
 * Halt or unhalt the async dma engines context switch (VEGA10).
 */
static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
{
692
	u32 f32_cntl, phase_quantum = 0;
693 694
	int i;

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	if (amdgpu_sdma_phase_quantum) {
		unsigned value = amdgpu_sdma_phase_quantum;
		unsigned unit = 0;

		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
			value = (value + 1) >> 1;
			unit++;
		}
		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
			WARN_ONCE(1,
			"clamping sdma_phase_quantum to %uK clock cycles\n",
				  value << unit);
		}
		phase_quantum =
			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
	}

719
	for (i = 0; i < adev->sdma.num_instances; i++) {
720
		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
721 722
		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
723
		if (enable && amdgpu_sdma_phase_quantum) {
724 725 726
			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
727
		}
728
		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	}

}

/**
 * sdma_v4_0_enable - stop the async dma engines
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs.
 *
 * Halt or unhalt the async dma engines (VEGA10).
 */
static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
{
	u32 f32_cntl;
	int i;

	if (enable == false) {
		sdma_v4_0_gfx_stop(adev);
		sdma_v4_0_rlc_stop(adev);
749 750
		if (adev->sdma.has_page_queue)
			sdma_v4_0_page_stop(adev);
751 752 753
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
754
		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
755
		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
756
		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
757 758 759
	}
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
/**
 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
 */
static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
{
	/* Set ring buffer size in dwords */
	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);

	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
#ifdef __BIG_ENDIAN
	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
				RPTR_WRITEBACK_SWAP_ENABLE, 1);
#endif
	return rb_cntl;
}

777 778 779 780
/**
 * sdma_v4_0_gfx_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
781
 * @i: instance to resume
782 783 784 785
 *
 * Set up the gfx DMA ring buffers and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
786
static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
787
{
788
	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
789 790
	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
	u32 wb_offset;
791 792
	u32 doorbell;
	u32 doorbell_offset;
793
	u64 wptr_gpu_addr;
794

795
	wb_offset = (ring->rptr_offs * 4);
796

797
	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
798
	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
799
	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
800

801
	/* Initialize the ring buffer's read and write pointers */
802 803 804 805
	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
806

807
	/* set the wb address whether it's enabled or not */
808
	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
809
	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
810
	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
811
	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
812

813 814
	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
				RPTR_WRITEBACK_ENABLE, 1);
815

816 817
	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
818

819
	ring->wptr = 0;
820

821
	/* before programing wptr to a less value, need set minor_ptr_update first */
822
	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
823

824 825
	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
826

827 828 829 830 831
	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
				 ring->use_doorbell);
	doorbell_offset = REG_SET_FIELD(doorbell_offset,
					SDMA0_GFX_DOORBELL_OFFSET,
					OFFSET, ring->doorbell_index);
832 833
	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
834 835 836
	adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
					      ring->doorbell_index);

837
	sdma_v4_0_ring_set_wptr(ring);
838 839

	/* set minor_ptr_update to 0 after wptr programed */
840
	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
841 842 843

	/* setup the wptr shadow polling */
	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
844 845 846 847 848
	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
		    lower_32_bits(wptr_gpu_addr));
	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
		    upper_32_bits(wptr_gpu_addr));
	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
849 850 851
	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
852
	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
853

854 855
	/* enable DMA RB */
	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
856
	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
857

858
	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
859
	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
860
#ifdef __BIG_ENDIAN
861
	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
862
#endif
863
	/* enable DMA IBs */
864
	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
865

866
	ring->ready = true;
867 868
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/**
 * sdma_v4_0_page_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 * @i: instance to resume
 *
 * Set up the page DMA ring buffers and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
{
	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
	u32 wb_offset;
	u32 doorbell;
	u32 doorbell_offset;
	u64 wptr_gpu_addr;

	wb_offset = (ring->rptr_offs * 4);

	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);

	/* Initialize the ring buffer's read and write pointers */
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);

	/* set the wb address whether it's enabled or not */
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);

	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
				RPTR_WRITEBACK_ENABLE, 1);

	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);

	ring->wptr = 0;

	/* before programing wptr to a less value, need set minor_ptr_update first */
	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);

	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);

	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
				 ring->use_doorbell);
	doorbell_offset = REG_SET_FIELD(doorbell_offset,
					SDMA0_PAGE_DOORBELL_OFFSET,
					OFFSET, ring->doorbell_index);
	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
	/* TODO: enable doorbell support */
	/*adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
					      ring->doorbell_index);*/

	sdma_v4_0_ring_set_wptr(ring);

	/* set minor_ptr_update to 0 after wptr programed */
	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);

	/* setup the wptr shadow polling */
	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
		    lower_32_bits(wptr_gpu_addr));
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
		    upper_32_bits(wptr_gpu_addr));
	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);

	/* enable DMA RB */
	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);

	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
#ifdef __BIG_ENDIAN
	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
#endif
	/* enable DMA IBs */
	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);

	ring->ready = true;
}

962 963 964 965 966 967
static void
sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
{
	uint32_t def, data;

	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
968
		/* enable idle interrupt */
969 970 971 972 973 974 975 976 977 978 979 980 981 982
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;

		if (data != def)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
	} else {
		/* disable idle interrupt */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
		if (data != def)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
	}
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
{
	uint32_t def, data;

	/* Enable HW based PG. */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
	if (data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);

	/* enable interrupt */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
	if (data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);

	/* Configure hold time to filter in-valid power on/off request. Use default right now */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
	/* Configure switch time for hysteresis purpose. Use default right now */
	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
	if(data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
}

static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
{
	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
		return;

	switch (adev->asic_type) {
	case CHIP_RAVEN:
		sdma_v4_1_init_power_gating(adev);
1018
		sdma_v4_1_update_power_gating(adev, true);
1019 1020 1021 1022 1023 1024
		break;
	default:
		break;
	}
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/**
 * sdma_v4_0_rlc_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the compute DMA queues and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
{
1035 1036
	sdma_v4_0_init_pg(adev);

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	return 0;
}

/**
 * sdma_v4_0_load_microcode - load the sDMA ME ucode
 *
 * @adev: amdgpu_device pointer
 *
 * Loads the sDMA0/1 ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
{
	const struct sdma_firmware_header_v1_0 *hdr;
	const __le32 *fw_data;
	u32 fw_size;
	int i, j;

	/* halt the MEs */
	sdma_v4_0_enable(adev, false);

	for (i = 0; i < adev->sdma.num_instances; i++) {
		if (!adev->sdma.instance[i].fw)
			return -EINVAL;

		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
		amdgpu_ucode_print_sdma_hdr(&hdr->header);
		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;

		fw_data = (const __le32 *)
			(adev->sdma.instance[i].fw->data +
				le32_to_cpu(hdr->header.ucode_array_offset_bytes));

1070
		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1071 1072

		for (j = 0; j < fw_size; j++)
1073 1074
			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
				    le32_to_cpup(fw_data++));
1075

1076 1077
		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
			    adev->sdma.instance[i].fw_version);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	}

	return 0;
}

/**
 * sdma_v4_0_start - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the DMA engines and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_start(struct amdgpu_device *adev)
{
1093 1094
	struct amdgpu_ring *ring;
	int i, r;
1095

1096
	if (amdgpu_sriov_vf(adev)) {
1097
		sdma_v4_0_ctx_switch_enable(adev, false);
1098
		sdma_v4_0_enable(adev, false);
1099 1100 1101 1102 1103 1104 1105
	} else {

		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
			r = sdma_v4_0_load_microcode(adev);
			if (r)
				return r;
		}
1106

1107 1108 1109 1110
		/* unhalt the MEs */
		sdma_v4_0_enable(adev, true);
		/* enable sdma ring preemption */
		sdma_v4_0_ctx_switch_enable(adev, true);
1111 1112
	}

1113
	/* start the gfx rings and rlc compute queues */
1114 1115 1116
	for (i = 0; i < adev->sdma.num_instances; i++) {
		uint32_t temp;

1117
		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1118
		sdma_v4_0_gfx_resume(adev, i);
1119 1120
		if (adev->sdma.has_page_queue)
			sdma_v4_0_page_resume(adev, i);
1121

1122
		/* set utc l1 enable flag always to 1 */
1123
		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1124
		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1125
		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1126 1127 1128

		if (!amdgpu_sriov_vf(adev)) {
			/* unhalt engine */
1129
			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1130
			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1131
			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1132 1133 1134
		}
	}

1135 1136 1137 1138 1139
	if (amdgpu_sriov_vf(adev)) {
		sdma_v4_0_ctx_switch_enable(adev, true);
		sdma_v4_0_enable(adev, true);
	} else {
		r = sdma_v4_0_rlc_resume(adev);
1140 1141 1142 1143
		if (r)
			return r;
	}

1144 1145
	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
1146

1147 1148 1149 1150 1151 1152
		r = amdgpu_ring_test_ring(ring);
		if (r) {
			ring->ready = false;
			return r;
		}

1153
		if (adev->sdma.has_page_queue) {
1154 1155 1156
			struct amdgpu_ring *page = &adev->sdma.instance[i].page;

			r = amdgpu_ring_test_ring(page);
1157
			if (r) {
1158
				page->ready = false;
1159 1160 1161 1162
				return r;
			}
		}

1163 1164 1165
		if (adev->mman.buffer_funcs_ring == ring)
			amdgpu_ttm_set_buffer_funcs_status(adev, true);
	}
1166

1167
	return r;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
}

/**
 * sdma_v4_0_ring_test_ring - simple async dma engine test
 *
 * @ring: amdgpu_ring structure holding ring information
 *
 * Test the DMA engine by writing using it to write an
 * value to memory. (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	unsigned i;
	unsigned index;
	int r;
	u32 tmp;
	u64 gpu_addr;

1188
	r = amdgpu_device_wb_get(adev, &index);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	if (r) {
		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
		return r;
	}

	gpu_addr = adev->wb.gpu_addr + (index * 4);
	tmp = 0xCAFEDEAD;
	adev->wb.wb[index] = cpu_to_le32(tmp);

	r = amdgpu_ring_alloc(ring, 5);
	if (r) {
		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1201
		amdgpu_device_wb_free(adev, index);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		return r;
	}

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
	amdgpu_ring_write(ring, 0xDEADBEEF);
	amdgpu_ring_commit(ring);

	for (i = 0; i < adev->usec_timeout; i++) {
		tmp = le32_to_cpu(adev->wb.wb[index]);
1215
		if (tmp == 0xDEADBEEF)
1216 1217 1218 1219 1220
			break;
		DRM_UDELAY(1);
	}

	if (i < adev->usec_timeout) {
1221
		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
1222 1223 1224 1225 1226
	} else {
		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
			  ring->idx, tmp);
		r = -EINVAL;
	}
1227
	amdgpu_device_wb_free(adev, index);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

	return r;
}

/**
 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 *
 * Test a simple IB in the DMA ring (VEGA10).
 * Returns 0 on success, error on failure.
 */
static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
	struct amdgpu_device *adev = ring->adev;
	struct amdgpu_ib ib;
	struct dma_fence *f = NULL;
	unsigned index;
	long r;
	u32 tmp = 0;
	u64 gpu_addr;

1250
	r = amdgpu_device_wb_get(adev, &index);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	if (r) {
		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
		return r;
	}

	gpu_addr = adev->wb.gpu_addr + (index * 4);
	tmp = 0xCAFEDEAD;
	adev->wb.wb[index] = cpu_to_le32(tmp);
	memset(&ib, 0, sizeof(ib));
	r = amdgpu_ib_get(adev, NULL, 256, &ib);
	if (r) {
		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
		goto err0;
	}

	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
	ib.ptr[1] = lower_32_bits(gpu_addr);
	ib.ptr[2] = upper_32_bits(gpu_addr);
	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
	ib.ptr[4] = 0xDEADBEEF;
	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.length_dw = 8;

	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
	if (r)
		goto err1;

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	r = dma_fence_wait_timeout(f, false, timeout);
	if (r == 0) {
		DRM_ERROR("amdgpu: IB test timed out\n");
		r = -ETIMEDOUT;
		goto err1;
	} else if (r < 0) {
		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
		goto err1;
	}
	tmp = le32_to_cpu(adev->wb.wb[index]);
	if (tmp == 0xDEADBEEF) {
1292
		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
1293 1294 1295 1296 1297
		r = 0;
	} else {
		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
		r = -EINVAL;
	}
1298
err1:
1299 1300
	amdgpu_ib_free(adev, &ib, NULL);
	dma_fence_put(f);
1301
err0:
1302
	amdgpu_device_wb_free(adev, index);
1303
	return r;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}


/**
 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @src: src addr to copy from
 * @count: number of page entries to update
 *
 * Update PTEs by copying them from the GART using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
				  uint64_t pe, uint64_t src,
				  unsigned count)
{
	unsigned bytes = count * 8;

	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
	ib->ptr[ib->length_dw++] = bytes - 1;
	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
	ib->ptr[ib->length_dw++] = lower_32_bits(src);
	ib->ptr[ib->length_dw++] = upper_32_bits(src);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);

}

/**
 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update PTEs by writing them manually using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
				   uint64_t value, unsigned count,
				   uint32_t incr)
{
	unsigned ndw = count * 2;

	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
	ib->ptr[ib->length_dw++] = ndw - 1;
	for (; ndw > 0; ndw -= 2) {
		ib->ptr[ib->length_dw++] = lower_32_bits(value);
		ib->ptr[ib->length_dw++] = upper_32_bits(value);
		value += incr;
	}
}

/**
 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update the page tables using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
				     uint64_t pe,
				     uint64_t addr, unsigned count,
				     uint32_t incr, uint64_t flags)
{
	/* for physically contiguous pages (vram) */
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1385 1386
	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
	ib->ptr[ib->length_dw++] = incr; /* increment size */
	ib->ptr[ib->length_dw++] = 0;
	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
}

/**
 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
 *
 * @ib: indirect buffer to fill with padding
 *
 */
static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
{
	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
	u32 pad_count;
	int i;

	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
	for (i = 0; i < pad_count; i++)
		if (sdma && sdma->burst_nop && (i == 0))
			ib->ptr[ib->length_dw++] =
				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
		else
			ib->ptr[ib->length_dw++] =
				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
}


/**
 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
 *
 * @ring: amdgpu_ring pointer
 *
 * Make sure all previous operations are completed (CIK).
 */
static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
	uint32_t seq = ring->fence_drv.sync_seq;
	uint64_t addr = ring->fence_drv.gpu_addr;

	/* wait for idle */
1431 1432 1433 1434
	sdma_v4_0_wait_reg_mem(ring, 1, 0,
			       addr & 0xfffffffc,
			       upper_32_bits(addr) & 0xffffffff,
			       seq, 0xffffffff, 4);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
}


/**
 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
 *
 * @ring: amdgpu_ring pointer
 * @vm: amdgpu_vm pointer
 *
 * Update the page table base and flush the VM TLB
 * using sDMA (VEGA10).
 */
static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1448
					 unsigned vmid, uint64_t pd_addr)
1449
{
1450
	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1451 1452
}

1453 1454 1455 1456 1457 1458 1459 1460 1461
static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
				     uint32_t reg, uint32_t val)
{
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
	amdgpu_ring_write(ring, reg);
	amdgpu_ring_write(ring, val);
}

1462 1463 1464
static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
					 uint32_t val, uint32_t mask)
{
1465
	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1466 1467
}

1468 1469 1470 1471
static int sdma_v4_0_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1472
	if (adev->asic_type == CHIP_RAVEN) {
1473
		adev->sdma.num_instances = 1;
1474 1475
		adev->sdma.has_page_queue = false;
	} else {
1476
		adev->sdma.num_instances = 2;
1477 1478
		if (adev->asic_type != CHIP_VEGA20)
			adev->sdma.has_page_queue = true;
1479
	}
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

	sdma_v4_0_set_ring_funcs(adev);
	sdma_v4_0_set_buffer_funcs(adev);
	sdma_v4_0_set_vm_pte_funcs(adev);
	sdma_v4_0_set_irq_funcs(adev);

	return 0;
}


static int sdma_v4_0_sw_init(void *handle)
{
	struct amdgpu_ring *ring;
	int r, i;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	/* SDMA trap event */
1497
	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1498 1499 1500 1501 1502
			      &adev->sdma.trap_irq);
	if (r)
		return r;

	/* SDMA trap event */
1503
	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
			      &adev->sdma.trap_irq);
	if (r)
		return r;

	r = sdma_v4_0_init_microcode(adev);
	if (r) {
		DRM_ERROR("Failed to load sdma firmware!\n");
		return r;
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
		ring->ring_obj = NULL;
		ring->use_doorbell = true;

		DRM_INFO("use_doorbell being set to: [%s]\n",
				ring->use_doorbell?"true":"false");

1522 1523 1524 1525 1526 1527 1528 1529 1530
		if (adev->asic_type == CHIP_VEGA10)
			ring->doorbell_index = (i == 0) ?
				(AMDGPU_VEGA10_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
				: (AMDGPU_VEGA10_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
		else
			ring->doorbell_index = (i == 0) ?
				(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
				: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset

1531 1532 1533 1534 1535 1536 1537 1538 1539

		sprintf(ring->name, "sdma%d", i);
		r = amdgpu_ring_init(adev, ring, 1024,
				     &adev->sdma.trap_irq,
				     (i == 0) ?
				     AMDGPU_SDMA_IRQ_TRAP0 :
				     AMDGPU_SDMA_IRQ_TRAP1);
		if (r)
			return r;
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		if (adev->sdma.has_page_queue) {
			ring = &adev->sdma.instance[i].page;
			ring->ring_obj = NULL;
			ring->use_doorbell = false;

			sprintf(ring->name, "page%d", i);
			r = amdgpu_ring_init(adev, ring, 1024,
					     &adev->sdma.trap_irq,
					     (i == 0) ?
					     AMDGPU_SDMA_IRQ_TRAP0 :
					     AMDGPU_SDMA_IRQ_TRAP1);
			if (r)
				return r;
		}
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	}

	return r;
}

static int sdma_v4_0_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int i;

1565
	for (i = 0; i < adev->sdma.num_instances; i++) {
1566
		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1567 1568
		if (adev->sdma.has_page_queue)
			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1569
	}
1570

1571 1572 1573 1574 1575
	for (i = 0; i < adev->sdma.num_instances; i++) {
		release_firmware(adev->sdma.instance[i].fw);
		adev->sdma.instance[i].fw = NULL;
	}

1576 1577 1578 1579 1580 1581 1582 1583
	return 0;
}

static int sdma_v4_0_hw_init(void *handle)
{
	int r;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

R
Rex Zhu 已提交
1584 1585
	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
			adev->powerplay.pp_funcs->set_powergating_by_smu)
1586 1587
		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	sdma_v4_0_init_golden_registers(adev);

	r = sdma_v4_0_start(adev);

	return r;
}

static int sdma_v4_0_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1599 1600 1601
	if (amdgpu_sriov_vf(adev))
		return 0;

1602 1603 1604
	sdma_v4_0_ctx_switch_enable(adev, false);
	sdma_v4_0_enable(adev, false);

R
Rex Zhu 已提交
1605 1606
	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
			&& adev->powerplay.pp_funcs->set_powergating_by_smu)
1607 1608
		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	return 0;
}

static int sdma_v4_0_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return sdma_v4_0_hw_fini(adev);
}

static int sdma_v4_0_resume(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return sdma_v4_0_hw_init(adev);
}

static bool sdma_v4_0_is_idle(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	u32 i;
1630

1631
	for (i = 0; i < adev->sdma.num_instances; i++) {
1632
		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1633

1634
		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1635
			return false;
1636 1637 1638 1639 1640 1641 1642 1643
	}

	return true;
}

static int sdma_v4_0_wait_for_idle(void *handle)
{
	unsigned i;
1644
	u32 sdma0, sdma1;
1645
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1646

1647
	for (i = 0; i < adev->usec_timeout; i++) {
1648 1649
		sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
		sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;
}

static int sdma_v4_0_soft_reset(void *handle)
{
	/* todo */

	return 0;
}

static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
					struct amdgpu_irq_src *source,
					unsigned type,
					enum amdgpu_interrupt_state state)
{
1670
	unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1;
1671 1672
	u32 sdma_cntl;

1673
	sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL);
1674 1675
	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1676
	WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl);
1677 1678 1679 1680 1681 1682 1683 1684

	return 0;
}

static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
				      struct amdgpu_irq_src *source,
				      struct amdgpu_iv_entry *entry)
{
1685 1686
	uint32_t instance;

1687 1688
	DRM_DEBUG("IH: SDMA trap\n");
	switch (entry->client_id) {
1689
	case SOC15_IH_CLIENTID_SDMA0:
1690
		instance = 0;
1691
		break;
1692
	case SOC15_IH_CLIENTID_SDMA1:
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		instance = 1;
		break;
	default:
		return 0;
	}

	switch (entry->ring_id) {
	case 0:
		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
		break;
	case 1:
		/* XXX compute */
		break;
	case 2:
		/* XXX compute */
		break;
	case 3:
		amdgpu_fence_process(&adev->sdma.instance[instance].page);
1711 1712 1713 1714 1715 1716 1717 1718 1719
		break;
	}
	return 0;
}

static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
					      struct amdgpu_irq_src *source,
					      struct amdgpu_iv_entry *entry)
{
1720 1721
	int instance;

1722
	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

	switch (entry->client_id) {
	case SOC15_IH_CLIENTID_SDMA0:
		instance = 0;
		break;
	case SOC15_IH_CLIENTID_SDMA1:
		instance = 1;
		break;
	default:
		return 0;
	}

	switch (entry->ring_id) {
	case 0:
		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
		break;
	}
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	return 0;
}

static void sdma_v4_0_update_medium_grain_clock_gating(
		struct amdgpu_device *adev,
		bool enable)
{
	uint32_t data, def;

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
		/* enable sdma0 clock gating */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);

1763
		if (adev->sdma.num_instances > 1) {
1764 1765 1766 1767 1768 1769 1770 1771 1772
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1773
			if (def != data)
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
		}
	} else {
		/* disable sdma0 clock gating */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);

		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);

1791
		if (adev->sdma.num_instances > 1) {
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
		}
	}
}


static void sdma_v4_0_update_medium_grain_light_sleep(
		struct amdgpu_device *adev,
		bool enable)
{
	uint32_t data, def;

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
		/* 1-not override: enable sdma0 mem light sleep */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);

		/* 1-not override: enable sdma1 mem light sleep */
1822
		if (adev->sdma.num_instances > 1) {
1823 1824 1825 1826
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1827 1828 1829 1830 1831 1832
		}
	} else {
		/* 0-override:disable sdma0 mem light sleep */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
		if (def != data)
1833
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1834 1835

		/* 0-override:disable sdma1 mem light sleep */
1836
		if (adev->sdma.num_instances > 1) {
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
		}
	}
}

static int sdma_v4_0_set_clockgating_state(void *handle,
					  enum amd_clockgating_state state)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1850 1851 1852
	if (amdgpu_sriov_vf(adev))
		return 0;

1853 1854
	switch (adev->asic_type) {
	case CHIP_VEGA10:
1855
	case CHIP_VEGA12:
1856
	case CHIP_VEGA20:
1857
	case CHIP_RAVEN:
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		sdma_v4_0_update_medium_grain_clock_gating(adev,
				state == AMD_CG_STATE_GATE ? true : false);
		sdma_v4_0_update_medium_grain_light_sleep(adev,
				state == AMD_CG_STATE_GATE ? true : false);
		break;
	default:
		break;
	}
	return 0;
}

static int sdma_v4_0_set_powergating_state(void *handle,
					  enum amd_powergating_state state)
{
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	switch (adev->asic_type) {
	case CHIP_RAVEN:
		sdma_v4_1_update_power_gating(adev,
				state == AMD_PG_STATE_GATE ? true : false);
		break;
	default:
		break;
	}

1883 1884 1885
	return 0;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int data;

	if (amdgpu_sriov_vf(adev))
		*flags = 0;

	/* AMD_CG_SUPPORT_SDMA_MGCG */
	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;

	/* AMD_CG_SUPPORT_SDMA_LS */
	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
		*flags |= AMD_CG_SUPPORT_SDMA_LS;
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
	.name = "sdma_v4_0",
	.early_init = sdma_v4_0_early_init,
	.late_init = NULL,
	.sw_init = sdma_v4_0_sw_init,
	.sw_fini = sdma_v4_0_sw_fini,
	.hw_init = sdma_v4_0_hw_init,
	.hw_fini = sdma_v4_0_hw_fini,
	.suspend = sdma_v4_0_suspend,
	.resume = sdma_v4_0_resume,
	.is_idle = sdma_v4_0_is_idle,
	.wait_for_idle = sdma_v4_0_wait_for_idle,
	.soft_reset = sdma_v4_0_soft_reset,
	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
	.set_powergating_state = sdma_v4_0_set_powergating_state,
1920
	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1921 1922 1923 1924 1925 1926 1927
};

static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
	.type = AMDGPU_RING_TYPE_SDMA,
	.align_mask = 0xf,
	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
	.support_64bit_ptrs = true,
1928
	.vmhub = AMDGPU_MMHUB,
1929 1930 1931 1932 1933
	.get_rptr = sdma_v4_0_ring_get_rptr,
	.get_wptr = sdma_v4_0_ring_get_wptr,
	.set_wptr = sdma_v4_0_ring_set_wptr,
	.emit_frame_size =
		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1934
		3 + /* hdp invalidate */
1935
		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1936 1937 1938
		/* sdma_v4_0_ring_emit_vm_flush */
		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
	.emit_ib = sdma_v4_0_ring_emit_ib,
	.emit_fence = sdma_v4_0_ring_emit_fence,
	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
	.test_ring = sdma_v4_0_ring_test_ring,
	.test_ib = sdma_v4_0_ring_test_ib,
	.insert_nop = sdma_v4_0_ring_insert_nop,
	.pad_ib = sdma_v4_0_ring_pad_ib,
1950
	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1951
	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1952
	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1953 1954
};

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
	.type = AMDGPU_RING_TYPE_SDMA,
	.align_mask = 0xf,
	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
	.support_64bit_ptrs = true,
	.vmhub = AMDGPU_MMHUB,
	.get_rptr = sdma_v4_0_ring_get_rptr,
	.get_wptr = sdma_v4_0_page_ring_get_wptr,
	.set_wptr = sdma_v4_0_page_ring_set_wptr,
	.emit_frame_size =
		6 + /* sdma_v4_0_ring_emit_hdp_flush */
		3 + /* hdp invalidate */
		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
		/* sdma_v4_0_ring_emit_vm_flush */
		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
	.emit_ib = sdma_v4_0_ring_emit_ib,
	.emit_fence = sdma_v4_0_ring_emit_fence,
	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
	.test_ring = sdma_v4_0_ring_test_ring,
	.test_ib = sdma_v4_0_ring_test_ib,
	.insert_nop = sdma_v4_0_ring_insert_nop,
	.pad_ib = sdma_v4_0_ring_pad_ib,
	.emit_wreg = sdma_v4_0_ring_emit_wreg,
	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
};

1987 1988 1989 1990
static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
{
	int i;

1991
	for (i = 0; i < adev->sdma.num_instances; i++) {
1992
		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1993
		adev->sdma.instance[i].ring.me = i;
1994 1995 1996 1997
		if (adev->sdma.has_page_queue) {
			adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
			adev->sdma.instance[i].page.me = i;
		}
1998
	}
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
}

static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
	.set = sdma_v4_0_set_trap_irq_state,
	.process = sdma_v4_0_process_trap_irq,
};

static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
	.process = sdma_v4_0_process_illegal_inst_irq,
};

static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
{
	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
}

/**
 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 * @src_offset: src GPU address
 * @dst_offset: dst GPU address
 * @byte_count: number of bytes to xfer
 *
2025
 * Copy GPU buffers using the DMA engine (VEGA10/12).
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
 * Used by the amdgpu ttm implementation to move pages if
 * registered as the asic copy callback.
 */
static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
				       uint64_t src_offset,
				       uint64_t dst_offset,
				       uint32_t byte_count)
{
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
	ib->ptr[ib->length_dw++] = byte_count - 1;
	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
}

/**
 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 * @src_data: value to write to buffer
 * @dst_offset: dst GPU address
 * @byte_count: number of bytes to xfer
 *
2052
 * Fill GPU buffers using the DMA engine (VEGA10/12).
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
 */
static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
				       uint32_t src_data,
				       uint64_t dst_offset,
				       uint32_t byte_count)
{
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = src_data;
	ib->ptr[ib->length_dw++] = byte_count - 1;
}

static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
	.copy_max_bytes = 0x400000,
	.copy_num_dw = 7,
	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,

	.fill_max_bytes = 0x400000,
	.fill_num_dw = 5,
	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
};

static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
{
2078 2079
	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2080 2081 2082
}

static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2083
	.copy_pte_num_dw = 7,
2084
	.copy_pte = sdma_v4_0_vm_copy_pte,
2085

2086 2087 2088 2089 2090 2091
	.write_pte = sdma_v4_0_vm_write_pte,
	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
};

static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
{
2092
	struct drm_gpu_scheduler *sched;
2093 2094
	unsigned i;

2095 2096
	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
	for (i = 0; i < adev->sdma.num_instances; i++) {
2097 2098 2099 2100
		if (adev->sdma.has_page_queue)
			sched = &adev->sdma.instance[i].page.sched;
		else
			sched = &adev->sdma.instance[i].ring.sched;
2101 2102
		adev->vm_manager.vm_pte_rqs[i] =
			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2103
	}
2104
	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2105 2106
}

2107
const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2108 2109 2110 2111 2112 2113
	.type = AMD_IP_BLOCK_TYPE_SDMA,
	.major = 4,
	.minor = 0,
	.rev = 0,
	.funcs = &sdma_v4_0_ip_funcs,
};