cfq-iosched.c 107.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
10
#include <linux/slab.h>
A
Al Viro 已提交
11 12
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
13
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
14
#include <linux/rbtree.h>
15
#include <linux/ioprio.h>
16
#include <linux/blktrace_api.h>
17
#include "blk.h"
18
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
19

T
Tejun Heo 已提交
20
static struct blkio_policy_type blkio_policy_cfq __maybe_unused;
21

L
Linus Torvalds 已提交
22 23 24
/*
 * tunables
 */
25
/* max queue in one round of service */
S
Shaohua Li 已提交
26
static const int cfq_quantum = 8;
27
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28 29 30 31
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
32
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
33
static int cfq_slice_async = HZ / 25;
34
static const int cfq_slice_async_rq = 2;
35
static int cfq_slice_idle = HZ / 125;
36
static int cfq_group_idle = HZ / 125;
37 38
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
39

40
/*
41
 * offset from end of service tree
42
 */
43
#define CFQ_IDLE_DELAY		(HZ / 5)
44 45 46 47 48 49

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52
#define CFQ_SERVICE_SHIFT       12
53

54
#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
55
#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
56
#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
57
#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
58

59 60 61
#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
L
Linus Torvalds 已提交
62

63
static struct kmem_cache *cfq_pool;
L
Linus Torvalds 已提交
64

65 66 67 68
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

69
#define sample_valid(samples)	((samples) > 80)
70
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
71

72 73 74 75 76 77 78 79
struct cfq_ttime {
	unsigned long last_end_request;

	unsigned long ttime_total;
	unsigned long ttime_samples;
	unsigned long ttime_mean;
};

80 81 82 83 84 85 86 87 88
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
89
	unsigned count;
90
	unsigned total_weight;
91
	u64 min_vdisktime;
92
	struct cfq_ttime ttime;
93
};
94 95
#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
			.ttime = {.last_end_request = jiffies,},}
96

97 98 99 100 101
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
102
	int ref;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

126 127
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
128
	unsigned int allocated_slice;
129
	unsigned int slice_dispatch;
130 131
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
132 133 134
	unsigned long slice_end;
	long slice_resid;

135 136
	/* pending priority requests */
	int prio_pending;
137 138 139 140 141
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
142
	unsigned short ioprio_class;
143

144 145
	pid_t pid;

146
	u32 seek_history;
147 148
	sector_t last_request_pos;

149
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
150
	struct cfq_queue *new_cfqq;
151
	struct cfq_group *cfqg;
152 153
	/* Number of sectors dispatched from queue in single dispatch round */
	unsigned long nr_sectors;
154 155
};

156
/*
157
 * First index in the service_trees.
158 159 160 161
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
162 163
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
164
	CFQ_PRIO_NR,
165 166
};

167 168 169 170 171 172 173 174 175
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
struct cfqg_stats {
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
	/* number of ios merged */
	struct blkg_rwstat		merged;
	/* total time spent on device in ns, may not be accurate w/ queueing */
	struct blkg_rwstat		service_time;
	/* total time spent waiting in scheduler queue in ns */
	struct blkg_rwstat		wait_time;
	/* number of IOs queued up */
	struct blkg_rwstat		queued;
	/* total sectors transferred */
	struct blkg_stat		sectors;
	/* total disk time and nr sectors dispatched by this group */
	struct blkg_stat		time;
#ifdef CONFIG_DEBUG_BLK_CGROUP
	/* time not charged to this cgroup */
	struct blkg_stat		unaccounted_time;
	/* sum of number of ios queued across all samples */
	struct blkg_stat		avg_queue_size_sum;
	/* count of samples taken for average */
	struct blkg_stat		avg_queue_size_samples;
	/* how many times this group has been removed from service tree */
	struct blkg_stat		dequeue;
	/* total time spent waiting for it to be assigned a timeslice. */
	struct blkg_stat		group_wait_time;
	/* time spent idling for this blkio_group */
	struct blkg_stat		idle_time;
	/* total time with empty current active q with other requests queued */
	struct blkg_stat		empty_time;
	/* fields after this shouldn't be cleared on stat reset */
	uint64_t			start_group_wait_time;
	uint64_t			start_idle_time;
	uint64_t			start_empty_time;
	uint16_t			flags;
#endif	/* CONFIG_DEBUG_BLK_CGROUP */
#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
};

218 219
/* This is per cgroup per device grouping structure */
struct cfq_group {
220 221 222 223 224
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
225
	unsigned int weight;
226
	unsigned int new_weight;
227
	unsigned int dev_weight;
228 229 230 231

	/* number of cfqq currently on this group */
	int nr_cfqq;

232
	/*
233
	 * Per group busy queues average. Useful for workload slice calc. We
234 235 236 237 238 239 240 241 242 243 244
	 * create the array for each prio class but at run time it is used
	 * only for RT and BE class and slot for IDLE class remains unused.
	 * This is primarily done to avoid confusion and a gcc warning.
	 */
	unsigned int busy_queues_avg[CFQ_PRIO_NR];
	/*
	 * rr lists of queues with requests. We maintain service trees for
	 * RT and BE classes. These trees are subdivided in subclasses
	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
	 * class there is no subclassification and all the cfq queues go on
	 * a single tree service_tree_idle.
245 246 247 248
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
249 250 251 252

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
253

254 255
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;
S
Shaohua Li 已提交
256
	struct cfq_ttime ttime;
257
	struct cfqg_stats stats;
258
};
259

260 261 262 263
struct cfq_io_cq {
	struct io_cq		icq;		/* must be the first member */
	struct cfq_queue	*cfqq[2];
	struct cfq_ttime	ttime;
T
Tejun Heo 已提交
264 265 266 267
	int			ioprio;		/* the current ioprio */
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	uint64_t		blkcg_id;	/* the current blkcg ID */
#endif
268 269
};

270 271 272
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
273
struct cfq_data {
274
	struct request_queue *queue;
275 276
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
277
	struct cfq_group *root_group;
278

279 280
	/*
	 * The priority currently being served
281
	 */
282
	enum wl_prio_t serving_prio;
283 284
	enum wl_type_t serving_type;
	unsigned long workload_expires;
285
	struct cfq_group *serving_group;
286 287 288 289 290 291 292 293

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

294
	unsigned int busy_queues;
295
	unsigned int busy_sync_queues;
296

297 298
	int rq_in_driver;
	int rq_in_flight[2];
299 300 301 302 303

	/*
	 * queue-depth detection
	 */
	int rq_queued;
304
	int hw_tag;
305 306 307 308 309 310 311 312
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
313

314 315 316 317
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
318
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
319

320
	struct cfq_queue *active_queue;
321
	struct cfq_io_cq *active_cic;
322

323 324 325 326 327
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
328

J
Jens Axboe 已提交
329
	sector_t last_position;
L
Linus Torvalds 已提交
330 331 332 333 334

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
335
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
336 337
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
338 339 340
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
341
	unsigned int cfq_group_idle;
342
	unsigned int cfq_latency;
343

344 345 346 347
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
348

349
	unsigned long last_delayed_sync;
L
Linus Torvalds 已提交
350 351
};

352 353
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

354 355
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
356
					    enum wl_type_t type)
357
{
358 359 360
	if (!cfqg)
		return NULL;

361
	if (prio == IDLE_WORKLOAD)
362
		return &cfqg->service_tree_idle;
363

364
	return &cfqg->service_trees[prio][type];
365 366
}

J
Jens Axboe 已提交
367
enum cfqq_state_flags {
368 369
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
370
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
371 372 373 374
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
375
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
376
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
377
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
378
	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
379
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
380
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
J
Jens Axboe 已提交
381 382 383 384 385
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
386
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
387 388 389
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
390
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
391 392 393
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
394
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
395 396 397 398
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
399
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
400 401 402 403
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
404
CFQ_CFQQ_FNS(slice_new);
405
CFQ_CFQQ_FNS(sync);
406
CFQ_CFQQ_FNS(coop);
407
CFQ_CFQQ_FNS(split_coop);
408
CFQ_CFQQ_FNS(deep);
409
CFQ_CFQQ_FNS(wait_busy);
J
Jens Axboe 已提交
410 411
#undef CFQ_CFQQ_FNS

412
#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
413

414 415 416 417 418
/* cfqg stats flags */
enum cfqg_stats_flags {
	CFQG_stats_waiting = 0,
	CFQG_stats_idling,
	CFQG_stats_empty,
419 420
};

421 422
#define CFQG_FLAG_FNS(name)						\
static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
423
{									\
424
	stats->flags |= (1 << CFQG_stats_##name);			\
425
}									\
426
static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
427
{									\
428
	stats->flags &= ~(1 << CFQG_stats_##name);			\
429
}									\
430
static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
431
{									\
432
	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
433 434
}									\

435 436 437 438
CFQG_FLAG_FNS(waiting)
CFQG_FLAG_FNS(idling)
CFQG_FLAG_FNS(empty)
#undef CFQG_FLAG_FNS
439 440

/* This should be called with the queue_lock held. */
441
static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
442 443 444
{
	unsigned long long now;

445
	if (!cfqg_stats_waiting(stats))
446 447 448 449 450 451
		return;

	now = sched_clock();
	if (time_after64(now, stats->start_group_wait_time))
		blkg_stat_add(&stats->group_wait_time,
			      now - stats->start_group_wait_time);
452
	cfqg_stats_clear_waiting(stats);
453 454 455
}

/* This should be called with the queue_lock held. */
456 457
static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
						 struct cfq_group *curr_cfqg)
458
{
459
	struct cfqg_stats *stats = &cfqg->stats;
460

461
	if (cfqg_stats_waiting(stats))
462
		return;
463
	if (cfqg == curr_cfqg)
464
		return;
465 466
	stats->start_group_wait_time = sched_clock();
	cfqg_stats_mark_waiting(stats);
467 468 469
}

/* This should be called with the queue_lock held. */
470
static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
471 472 473
{
	unsigned long long now;

474
	if (!cfqg_stats_empty(stats))
475 476 477 478 479 480
		return;

	now = sched_clock();
	if (time_after64(now, stats->start_empty_time))
		blkg_stat_add(&stats->empty_time,
			      now - stats->start_empty_time);
481
	cfqg_stats_clear_empty(stats);
482 483
}

484
static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
485
{
486
	blkg_stat_add(&cfqg->stats.dequeue, 1);
487 488
}

489
static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
490
{
491
	struct cfqg_stats *stats = &cfqg->stats;
492 493 494 495 496 497 498 499 500

	if (blkg_rwstat_sum(&stats->queued))
		return;

	/*
	 * group is already marked empty. This can happen if cfqq got new
	 * request in parent group and moved to this group while being added
	 * to service tree. Just ignore the event and move on.
	 */
501
	if (cfqg_stats_empty(stats))
502 503 504
		return;

	stats->start_empty_time = sched_clock();
505
	cfqg_stats_mark_empty(stats);
506 507
}

508
static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
509
{
510
	struct cfqg_stats *stats = &cfqg->stats;
511

512
	if (cfqg_stats_idling(stats)) {
513 514 515 516 517
		unsigned long long now = sched_clock();

		if (time_after64(now, stats->start_idle_time))
			blkg_stat_add(&stats->idle_time,
				      now - stats->start_idle_time);
518
		cfqg_stats_clear_idling(stats);
519 520 521
	}
}

522
static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
523
{
524
	struct cfqg_stats *stats = &cfqg->stats;
525

526
	BUG_ON(cfqg_stats_idling(stats));
527 528

	stats->start_idle_time = sched_clock();
529
	cfqg_stats_mark_idling(stats);
530 531
}

532
static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
533
{
534
	struct cfqg_stats *stats = &cfqg->stats;
535 536 537 538

	blkg_stat_add(&stats->avg_queue_size_sum,
		      blkg_rwstat_sum(&stats->queued));
	blkg_stat_add(&stats->avg_queue_size_samples, 1);
539
	cfqg_stats_update_group_wait_time(stats);
540 541 542 543
}

#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */

T
Tejun Heo 已提交
544 545 546 547 548 549 550
static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
551 552 553 554

#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */

#ifdef CONFIG_CFQ_GROUP_IOSCHED
555

556 557 558 559 560 561 562
static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
{
	return blkg_to_pdata(blkg, &blkio_policy_cfq);
}

static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
{
563
	return pdata_to_blkg(cfqg);
564 565 566 567 568 569 570 571 572 573 574 575
}

static inline void cfqg_get(struct cfq_group *cfqg)
{
	return blkg_get(cfqg_to_blkg(cfqg));
}

static inline void cfqg_put(struct cfq_group *cfqg)
{
	return blkg_put(cfqg_to_blkg(cfqg));
}

V
Vivek Goyal 已提交
576 577 578
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
579
			blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
V
Vivek Goyal 已提交
580 581 582

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
583
			blkg_path(cfqg_to_blkg((cfqg))), ##args)	\
V
Vivek Goyal 已提交
584

585 586
static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
					    struct cfq_group *curr_cfqg, int rw)
587
{
588 589 590
	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
	cfqg_stats_end_empty_time(&cfqg->stats);
	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
591 592
}

593 594
static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
			unsigned long time, unsigned long unaccounted_time)
595
{
596
	blkg_stat_add(&cfqg->stats.time, time);
597
#ifdef CONFIG_DEBUG_BLK_CGROUP
598
	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
599
#endif
600 601
}

602
static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
603
{
604
	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
605 606
}

607
static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
608
{
609
	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
610 611
}

612 613
static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
					      uint64_t bytes, int rw)
614
{
615 616 617
	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
618 619
}

620 621
static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
			uint64_t start_time, uint64_t io_start_time, int rw)
622
{
623
	struct cfqg_stats *stats = &cfqg->stats;
624 625 626 627 628 629 630
	unsigned long long now = sched_clock();

	if (time_after64(now, io_start_time))
		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
	if (time_after64(io_start_time, start_time))
		blkg_rwstat_add(&stats->wait_time, rw,
				io_start_time - start_time);
631 632
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
static void cfqg_stats_reset(struct blkio_group *blkg)
{
	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
	struct cfqg_stats *stats = &cfqg->stats;

	/* queued stats shouldn't be cleared */
	blkg_rwstat_reset(&stats->service_bytes);
	blkg_rwstat_reset(&stats->serviced);
	blkg_rwstat_reset(&stats->merged);
	blkg_rwstat_reset(&stats->service_time);
	blkg_rwstat_reset(&stats->wait_time);
	blkg_stat_reset(&stats->time);
#ifdef CONFIG_DEBUG_BLK_CGROUP
	blkg_stat_reset(&stats->unaccounted_time);
	blkg_stat_reset(&stats->avg_queue_size_sum);
	blkg_stat_reset(&stats->avg_queue_size_samples);
	blkg_stat_reset(&stats->dequeue);
	blkg_stat_reset(&stats->group_wait_time);
	blkg_stat_reset(&stats->idle_time);
	blkg_stat_reset(&stats->empty_time);
#endif
}

656 657 658 659 660 661 662
#else	/* CONFIG_CFQ_GROUP_IOSCHED */

static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
static inline void cfqg_get(struct cfq_group *cfqg) { }
static inline void cfqg_put(struct cfq_group *cfqg) { }

663 664
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
665
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
666

667 668 669 670 671 672 673 674 675 676
static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
			struct cfq_group *curr_cfqg, int rw) { }
static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
			unsigned long time, unsigned long unaccounted_time) { }
static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
					      uint64_t bytes, int rw) { }
static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
			uint64_t start_time, uint64_t io_start_time, int rw) { }
677

678 679
#endif	/* CONFIG_CFQ_GROUP_IOSCHED */

680 681 682
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

683 684 685 686 687 688 689 690 691 692
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \

693 694 695 696 697 698 699 700 701 702 703 704
static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
	struct cfq_ttime *ttime, bool group_idle)
{
	unsigned long slice;
	if (!sample_valid(ttime->ttime_samples))
		return false;
	if (group_idle)
		slice = cfqd->cfq_group_idle;
	else
		slice = cfqd->cfq_slice_idle;
	return ttime->ttime_mean > slice;
}
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static inline bool iops_mode(struct cfq_data *cfqd)
{
	/*
	 * If we are not idling on queues and it is a NCQ drive, parallel
	 * execution of requests is on and measuring time is not possible
	 * in most of the cases until and unless we drive shallower queue
	 * depths and that becomes a performance bottleneck. In such cases
	 * switch to start providing fairness in terms of number of IOs.
	 */
	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
		return true;
	else
		return false;
}

721 722 723 724 725 726 727 728 729
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

730 731 732 733 734 735 736 737 738 739

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

740 741 742
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
743 744
{
	if (wl == IDLE_WORKLOAD)
745
		return cfqg->service_tree_idle.count;
746

747 748 749
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
750 751
}

752 753 754 755 756 757 758
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

759
static void cfq_dispatch_insert(struct request_queue *, struct request *);
760
static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
761
				       struct cfq_io_cq *cic, struct bio *bio,
762
				       gfp_t gfp_mask);
763

764 765 766 767 768 769
static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
{
	/* cic->icq is the first member, %NULL will convert to %NULL */
	return container_of(icq, struct cfq_io_cq, icq);
}

770 771 772 773 774 775 776 777
static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
					       struct io_context *ioc)
{
	if (ioc)
		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
	return NULL;
}

778
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
779
{
780
	return cic->cfqq[is_sync];
781 782
}

783 784
static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
				bool is_sync)
785
{
786
	cic->cfqq[is_sync] = cfqq;
787 788
}

789
static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
790
{
791
	return cic->icq.q->elevator->elevator_data;
792 793
}

794 795 796 797
/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
798
static inline bool cfq_bio_sync(struct bio *bio)
799
{
800
	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
801
}
L
Linus Torvalds 已提交
802

A
Andrew Morton 已提交
803 804 805 806
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
807
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
808
{
809 810
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
811
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
812
	}
A
Andrew Morton 已提交
813 814
}

815 816 817 818 819
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
820
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
821
				 unsigned short prio)
822
{
823
	const int base_slice = cfqd->cfq_slice[sync];
824

825 826 827 828
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
829

830 831 832 833
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
834 835
}

836 837 838 839
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

840
	d = d * CFQ_WEIGHT_DEFAULT;
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	struct cfq_group *cfqg;

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
869 870
		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
						  cfqg->vdisktime);
871 872 873
	}
}

874 875 876 877 878 879
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

880 881
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
882
{
883 884 885
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
886
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
887

888 889 890
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
891
		cfq_hist_divisor;
892 893 894 895 896 897 898 899 900
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
901 902
}

903
static inline unsigned
904
cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
905
{
906 907
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
908 909 910 911 912 913
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
914 915
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
916 917 918
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
919 920 921 922 923 924 925
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
926
			slice = max(slice * group_slice / expect_latency,
927 928 929
				    low_slice);
		}
	}
930 931 932 933 934 935
	return slice;
}

static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
936
	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
937

938
	cfqq->slice_start = jiffies;
939
	cfqq->slice_end = jiffies + slice;
940
	cfqq->allocated_slice = slice;
941
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
942 943 944 945 946 947 948
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
949
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
950 951
{
	if (cfq_cfqq_slice_new(cfqq))
S
Shaohua Li 已提交
952
		return false;
953
	if (time_before(jiffies, cfqq->slice_end))
S
Shaohua Li 已提交
954
		return false;
955

S
Shaohua Li 已提交
956
	return true;
957 958
}

L
Linus Torvalds 已提交
959
/*
J
Jens Axboe 已提交
960
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
961
 * We choose the request that is closest to the head right now. Distance
962
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
963
 */
J
Jens Axboe 已提交
964
static struct request *
965
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
966
{
967
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
968
	unsigned long back_max;
969 970 971
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
972

J
Jens Axboe 已提交
973 974 975 976
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
977

978 979 980
	if (rq_is_sync(rq1) != rq_is_sync(rq2))
		return rq_is_sync(rq1) ? rq1 : rq2;

981 982
	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
983

984 985
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
1002
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
1009
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
1010 1011

	/* Found required data */
1012 1013 1014 1015 1016 1017

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
1018
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1019
		if (d1 < d2)
J
Jens Axboe 已提交
1020
			return rq1;
1021
		else if (d2 < d1)
J
Jens Axboe 已提交
1022
			return rq2;
1023 1024
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
1025
				return rq1;
1026
			else
J
Jens Axboe 已提交
1027
				return rq2;
1028
		}
L
Linus Torvalds 已提交
1029

1030
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
1031
		return rq1;
1032
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
1033 1034
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1035 1036 1037 1038 1039 1040 1041 1042
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
1043
			return rq1;
L
Linus Torvalds 已提交
1044
		else
J
Jens Axboe 已提交
1045
			return rq2;
L
Linus Torvalds 已提交
1046 1047 1048
	}
}

1049 1050 1051
/*
 * The below is leftmost cache rbtree addon
 */
1052
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1053
{
1054 1055 1056 1057
	/* Service tree is empty */
	if (!root->count)
		return NULL;

1058 1059 1060
	if (!root->left)
		root->left = rb_first(&root->rb);

1061 1062 1063 1064
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
1065 1066
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

1078 1079 1080 1081 1082 1083
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

1084 1085 1086 1087
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
1088
	rb_erase_init(n, &root->rb);
1089
	--root->count;
1090 1091
}

L
Linus Torvalds 已提交
1092 1093 1094
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
1095 1096 1097
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
1098
{
1099 1100
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
1101
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
1102

1103
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
1104 1105

	if (rbprev)
J
Jens Axboe 已提交
1106
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
1107

1108
	if (rbnext)
J
Jens Axboe 已提交
1109
		next = rb_entry_rq(rbnext);
1110 1111 1112
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
1113
			next = rb_entry_rq(rbnext);
1114
	}
L
Linus Torvalds 已提交
1115

1116
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
1117 1118
}

1119 1120
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1121
{
1122 1123 1124
	/*
	 * just an approximation, should be ok.
	 */
1125
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1126
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
1164 1165 1166
cfq_update_group_weight(struct cfq_group *cfqg)
{
	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1167
	if (cfqg->new_weight) {
1168
		cfqg->weight = cfqg->new_weight;
1169
		cfqg->new_weight = 0;
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	}
}

static void
cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));

	cfq_update_group_weight(cfqg);
	__cfq_group_service_tree_add(st, cfqg);
	st->total_weight += cfqg->weight;
}

static void
cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1185 1186 1187 1188 1189 1190
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
G
Gui Jianfeng 已提交
1191
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1192 1193 1194 1195 1196
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
L
Lucas De Marchi 已提交
1197
	 * if group does not loose all if it was not continuously backlogged.
1198 1199 1200 1201 1202 1203 1204
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;
1205 1206
	cfq_group_service_tree_add(st, cfqg);
}
1207

1208 1209 1210 1211 1212 1213
static void
cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	st->total_weight -= cfqg->weight;
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
1214 1215 1216
}

static void
1217
cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1218 1219 1220 1221 1222
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
1223

1224 1225 1226 1227
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

V
Vivek Goyal 已提交
1228
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1229
	cfq_group_service_tree_del(st, cfqg);
1230
	cfqg->saved_workload_slice = 0;
1231
	cfqg_stats_update_dequeue(cfqg);
1232 1233
}

1234 1235
static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
						unsigned int *unaccounted_time)
1236
{
1237
	unsigned int slice_used;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
1254 1255
		if (slice_used > cfqq->allocated_slice) {
			*unaccounted_time = slice_used - cfqq->allocated_slice;
1256
			slice_used = cfqq->allocated_slice;
1257 1258 1259 1260
		}
		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
			*unaccounted_time += cfqq->slice_start -
					cfqq->dispatch_start;
1261 1262 1263 1264 1265 1266
	}

	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1267
				struct cfq_queue *cfqq)
1268 1269
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1270
	unsigned int used_sl, charge, unaccounted_sl = 0;
1271 1272 1273 1274
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
1275
	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1276

1277 1278 1279 1280
	if (iops_mode(cfqd))
		charge = cfqq->slice_dispatch;
	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge = cfqq->allocated_slice;
1281 1282

	/* Can't update vdisktime while group is on service tree */
1283
	cfq_group_service_tree_del(st, cfqg);
1284
	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1285 1286
	/* If a new weight was requested, update now, off tree */
	cfq_group_service_tree_add(st, cfqg);
1287 1288 1289 1290 1291 1292 1293 1294 1295

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
V
Vivek Goyal 已提交
1296 1297 1298

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
1299 1300 1301 1302
	cfq_log_cfqq(cfqq->cfqd, cfqq,
		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
		     used_sl, cfqq->slice_dispatch, charge,
		     iops_mode(cfqd), cfqq->nr_sectors);
1303 1304
	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
	cfqg_stats_set_start_empty_time(cfqg);
1305 1306
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/**
 * cfq_init_cfqg_base - initialize base part of a cfq_group
 * @cfqg: cfq_group to initialize
 *
 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
 * is enabled or not.
 */
static void cfq_init_cfqg_base(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

	cfqg->ttime.last_end_request = jiffies;
}

1326
#ifdef CONFIG_CFQ_GROUP_IOSCHED
1327
static void cfq_init_blkio_group(struct blkio_group *blkg)
1328
{
1329
	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1330

1331
	cfq_init_cfqg_base(cfqg);
1332
	cfqg->weight = blkg->blkcg->cfq_weight;
1333 1334 1335
}

/*
1336 1337
 * Search for the cfq group current task belongs to. request_queue lock must
 * be held.
1338
 */
1339 1340
static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
						struct blkio_cgroup *blkcg)
1341
{
1342
	struct request_queue *q = cfqd->queue;
1343
	struct cfq_group *cfqg = NULL;
1344

1345 1346 1347 1348 1349
	/* avoid lookup for the common case where there's no blkio cgroup */
	if (blkcg == &blkio_root_cgroup) {
		cfqg = cfqd->root_group;
	} else {
		struct blkio_group *blkg;
1350

1351
		blkg = blkg_lookup_create(blkcg, q, false);
1352
		if (!IS_ERR(blkg))
1353
			cfqg = blkg_to_cfqg(blkg);
1354
	}
1355

1356 1357 1358 1359 1360 1361 1362
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
1363
		cfqg = cfqq->cfqd->root_group;
1364 1365

	cfqq->cfqg = cfqg;
1366
	/* cfqq reference on cfqg */
1367
	cfqg_get(cfqg);
1368 1369
}

1370
static u64 cfqg_prfill_weight_device(struct seq_file *sf, void *pdata, int off)
1371
{
1372
	struct cfq_group *cfqg = pdata;
1373 1374

	if (!cfqg->dev_weight)
1375
		return 0;
1376
	return __blkg_prfill_u64(sf, pdata, cfqg->dev_weight);
1377 1378
}

1379 1380
static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
				    struct seq_file *sf)
1381 1382
{
	blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp),
1383
			  cfqg_prfill_weight_device, &blkio_policy_cfq, 0,
1384 1385 1386 1387
			  false);
	return 0;
}

1388 1389
static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
			    struct seq_file *sf)
1390
{
1391
	seq_printf(sf, "%u\n", cgroup_to_blkio_cgroup(cgrp)->cfq_weight);
1392 1393 1394
	return 0;
}

1395 1396
static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
				  const char *buf)
1397 1398 1399
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
	struct blkg_conf_ctx ctx;
1400
	struct cfq_group *cfqg;
1401 1402
	int ret;

1403
	ret = blkg_conf_prep(blkcg, &blkio_policy_cfq, buf, &ctx);
1404 1405 1406 1407
	if (ret)
		return ret;

	ret = -EINVAL;
1408
	cfqg = blkg_to_cfqg(ctx.blkg);
1409
	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1410 1411
		cfqg->dev_weight = ctx.v;
		cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;
1412 1413 1414 1415 1416 1417 1418
		ret = 0;
	}

	blkg_conf_finish(&ctx);
	return ret;
}

1419
static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1420 1421 1422 1423 1424
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
	struct blkio_group *blkg;
	struct hlist_node *n;

1425
	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1426 1427 1428
		return -EINVAL;

	spin_lock_irq(&blkcg->lock);
1429
	blkcg->cfq_weight = (unsigned int)val;
1430 1431

	hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1432
		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1433

1434 1435
		if (cfqg && !cfqg->dev_weight)
			cfqg->new_weight = blkcg->cfq_weight;
1436 1437 1438 1439 1440 1441
	}

	spin_unlock_irq(&blkcg->lock);
	return 0;
}

1442 1443 1444 1445 1446
static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
			   struct seq_file *sf)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);

1447
	blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkio_policy_cfq,
1448 1449 1450 1451 1452 1453 1454 1455 1456
			  cft->private, false);
	return 0;
}

static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
			     struct seq_file *sf)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);

1457
	blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkio_policy_cfq,
1458 1459 1460 1461
			  cft->private, true);
	return 0;
}

1462
#ifdef CONFIG_DEBUG_BLK_CGROUP
1463
static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, void *pdata, int off)
1464
{
1465
	struct cfq_group *cfqg = pdata;
1466
	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1467 1468 1469
	u64 v = 0;

	if (samples) {
1470
		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1471 1472
		do_div(v, samples);
	}
1473
	__blkg_prfill_u64(sf, pdata, v);
1474 1475 1476 1477
	return 0;
}

/* print avg_queue_size */
1478 1479
static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *sf)
1480 1481 1482
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);

1483
	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1484
			  &blkio_policy_cfq, 0, false);
1485 1486 1487 1488 1489 1490 1491
	return 0;
}
#endif	/* CONFIG_DEBUG_BLK_CGROUP */

static struct cftype cfq_blkcg_files[] = {
	{
		.name = "weight_device",
1492 1493
		.read_seq_string = cfqg_print_weight_device,
		.write_string = cfqg_set_weight_device,
1494 1495 1496 1497
		.max_write_len = 256,
	},
	{
		.name = "weight",
1498 1499
		.read_seq_string = cfq_print_weight,
		.write_u64 = cfq_set_weight,
1500 1501 1502
	},
	{
		.name = "time",
1503 1504
		.private = offsetof(struct cfq_group, stats.time),
		.read_seq_string = cfqg_print_stat,
1505 1506 1507
	},
	{
		.name = "sectors",
1508 1509
		.private = offsetof(struct cfq_group, stats.sectors),
		.read_seq_string = cfqg_print_stat,
1510 1511 1512
	},
	{
		.name = "io_service_bytes",
1513 1514
		.private = offsetof(struct cfq_group, stats.service_bytes),
		.read_seq_string = cfqg_print_rwstat,
1515 1516 1517
	},
	{
		.name = "io_serviced",
1518 1519
		.private = offsetof(struct cfq_group, stats.serviced),
		.read_seq_string = cfqg_print_rwstat,
1520 1521 1522
	},
	{
		.name = "io_service_time",
1523 1524
		.private = offsetof(struct cfq_group, stats.service_time),
		.read_seq_string = cfqg_print_rwstat,
1525 1526 1527
	},
	{
		.name = "io_wait_time",
1528 1529
		.private = offsetof(struct cfq_group, stats.wait_time),
		.read_seq_string = cfqg_print_rwstat,
1530 1531 1532
	},
	{
		.name = "io_merged",
1533 1534
		.private = offsetof(struct cfq_group, stats.merged),
		.read_seq_string = cfqg_print_rwstat,
1535 1536 1537
	},
	{
		.name = "io_queued",
1538 1539
		.private = offsetof(struct cfq_group, stats.queued),
		.read_seq_string = cfqg_print_rwstat,
1540 1541 1542 1543
	},
#ifdef CONFIG_DEBUG_BLK_CGROUP
	{
		.name = "avg_queue_size",
1544
		.read_seq_string = cfqg_print_avg_queue_size,
1545 1546 1547
	},
	{
		.name = "group_wait_time",
1548 1549
		.private = offsetof(struct cfq_group, stats.group_wait_time),
		.read_seq_string = cfqg_print_stat,
1550 1551 1552
	},
	{
		.name = "idle_time",
1553 1554
		.private = offsetof(struct cfq_group, stats.idle_time),
		.read_seq_string = cfqg_print_stat,
1555 1556 1557
	},
	{
		.name = "empty_time",
1558 1559
		.private = offsetof(struct cfq_group, stats.empty_time),
		.read_seq_string = cfqg_print_stat,
1560 1561 1562
	},
	{
		.name = "dequeue",
1563 1564
		.private = offsetof(struct cfq_group, stats.dequeue),
		.read_seq_string = cfqg_print_stat,
1565 1566 1567
	},
	{
		.name = "unaccounted_time",
1568 1569
		.private = offsetof(struct cfq_group, stats.unaccounted_time),
		.read_seq_string = cfqg_print_stat,
1570 1571 1572 1573
	},
#endif	/* CONFIG_DEBUG_BLK_CGROUP */
	{ }	/* terminate */
};
1574
#else /* GROUP_IOSCHED */
1575 1576
static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
						struct blkio_cgroup *blkcg)
1577
{
1578
	return cfqd->root_group;
1579
}
1580

1581 1582 1583 1584 1585 1586 1587
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

#endif /* GROUP_IOSCHED */

1588
/*
1589
 * The cfqd->service_trees holds all pending cfq_queue's that have
1590 1591 1592
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1593
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1594
				 bool add_front)
1595
{
1596 1597
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1598
	unsigned long rb_key;
1599
	struct cfq_rb_root *service_tree;
1600
	int left;
1601
	int new_cfqq = 1;
1602

1603
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1604
						cfqq_type(cfqq));
1605 1606
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1607
		parent = rb_last(&service_tree->rb);
1608 1609 1610 1611 1612 1613
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1614 1615 1616 1617 1618 1619
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1620
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1621
		rb_key -= cfqq->slice_resid;
1622
		cfqq->slice_resid = 0;
1623 1624
	} else {
		rb_key = -HZ;
1625
		__cfqq = cfq_rb_first(service_tree);
1626 1627
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1628

1629
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1630
		new_cfqq = 0;
1631
		/*
1632
		 * same position, nothing more to do
1633
		 */
1634 1635
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1636
			return;
L
Linus Torvalds 已提交
1637

1638 1639
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1640
	}
1641

1642
	left = 1;
1643
	parent = NULL;
1644 1645
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1646
	while (*p) {
1647
		struct rb_node **n;
1648

1649 1650 1651
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1652
		/*
1653
		 * sort by key, that represents service time.
1654
		 */
1655
		if (time_before(rb_key, __cfqq->rb_key))
1656
			n = &(*p)->rb_left;
1657
		else {
1658
			n = &(*p)->rb_right;
1659
			left = 0;
1660
		}
1661 1662

		p = n;
1663 1664
	}

1665
	if (left)
1666
		service_tree->left = &cfqq->rb_node;
1667

1668 1669
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1670 1671
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1672
	if (add_front || !new_cfqq)
1673
		return;
1674
	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1675 1676
}

1677
static struct cfq_queue *
1678 1679 1680
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1697
		if (sector > blk_rq_pos(cfqq->next_rq))
1698
			n = &(*p)->rb_right;
1699
		else if (sector < blk_rq_pos(cfqq->next_rq))
1700 1701 1702 1703
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1704
		cfqq = NULL;
1705 1706 1707 1708 1709
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1710
	return cfqq;
1711 1712 1713 1714 1715 1716 1717
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1718 1719 1720 1721
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1722 1723 1724 1725 1726 1727

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1728
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1729 1730
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1731 1732
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1733 1734 1735
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1736 1737
}

1738 1739 1740
/*
 * Update cfqq's position in the service tree.
 */
1741
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1742 1743 1744 1745
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1746
	if (cfq_cfqq_on_rr(cfqq)) {
1747
		cfq_service_tree_add(cfqd, cfqq, 0);
1748 1749
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1750 1751
}

L
Linus Torvalds 已提交
1752 1753
/*
 * add to busy list of queues for service, trying to be fair in ordering
1754
 * the pending list according to last request service
L
Linus Torvalds 已提交
1755
 */
J
Jens Axboe 已提交
1756
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1757
{
1758
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1759 1760
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1761
	cfqd->busy_queues++;
1762 1763
	if (cfq_cfqq_sync(cfqq))
		cfqd->busy_sync_queues++;
L
Linus Torvalds 已提交
1764

1765
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1766 1767
}

1768 1769 1770 1771
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1772
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1773
{
1774
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1775 1776
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1777

1778 1779 1780 1781
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1782 1783 1784 1785
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1786

1787
	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1788 1789
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
1790 1791
	if (cfq_cfqq_sync(cfqq))
		cfqd->busy_sync_queues--;
L
Linus Torvalds 已提交
1792 1793 1794 1795 1796
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1797
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1798
{
J
Jens Axboe 已提交
1799 1800
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1801

1802 1803
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1804

J
Jens Axboe 已提交
1805
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1818 1819
}

J
Jens Axboe 已提交
1820
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1821
{
J
Jens Axboe 已提交
1822
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1823
	struct cfq_data *cfqd = cfqq->cfqd;
1824
	struct request *prev;
L
Linus Torvalds 已提交
1825

1826
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1827

1828
	elv_rb_add(&cfqq->sort_list, rq);
1829 1830 1831

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1832 1833 1834 1835

	/*
	 * check if this request is a better next-serve candidate
	 */
1836
	prev = cfqq->next_rq;
1837
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1838 1839 1840 1841 1842 1843 1844

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1845
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1846 1847
}

J
Jens Axboe 已提交
1848
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1849
{
1850 1851
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
1852
	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
J
Jens Axboe 已提交
1853
	cfq_add_rq_rb(rq);
1854 1855
	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
				 rq->cmd_flags);
L
Linus Torvalds 已提交
1856 1857
}

1858 1859
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1860
{
1861
	struct task_struct *tsk = current;
1862
	struct cfq_io_cq *cic;
1863
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1864

1865
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1866 1867 1868 1869
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1870 1871 1872
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1873
		return elv_rb_find(&cfqq->sort_list, sector);
1874
	}
L
Linus Torvalds 已提交
1875 1876 1877 1878

	return NULL;
}

1879
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1880
{
1881
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1882

1883
	cfqd->rq_in_driver++;
1884
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1885
						cfqd->rq_in_driver);
1886

1887
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1888 1889
}

1890
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1891
{
1892 1893
	struct cfq_data *cfqd = q->elevator->elevator_data;

1894 1895
	WARN_ON(!cfqd->rq_in_driver);
	cfqd->rq_in_driver--;
1896
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1897
						cfqd->rq_in_driver);
L
Linus Torvalds 已提交
1898 1899
}

1900
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1901
{
J
Jens Axboe 已提交
1902
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1903

J
Jens Axboe 已提交
1904 1905
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1906

1907
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1908
	cfq_del_rq_rb(rq);
1909

1910
	cfqq->cfqd->rq_queued--;
1911
	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1912 1913 1914
	if (rq->cmd_flags & REQ_PRIO) {
		WARN_ON(!cfqq->prio_pending);
		cfqq->prio_pending--;
1915
	}
L
Linus Torvalds 已提交
1916 1917
}

1918 1919
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1920 1921 1922 1923
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1924
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1925
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1926 1927
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932
	}

	return ELEVATOR_NO_MERGE;
}

1933
static void cfq_merged_request(struct request_queue *q, struct request *req,
1934
			       int type)
L
Linus Torvalds 已提交
1935
{
1936
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1937
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1938

J
Jens Axboe 已提交
1939
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1940 1941 1942
	}
}

D
Divyesh Shah 已提交
1943 1944 1945
static void cfq_bio_merged(struct request_queue *q, struct request *req,
				struct bio *bio)
{
1946
	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
D
Divyesh Shah 已提交
1947 1948
}

L
Linus Torvalds 已提交
1949
static void
1950
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1951 1952
		    struct request *next)
{
1953
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1954 1955
	struct cfq_data *cfqd = q->elevator->elevator_data;

1956 1957 1958 1959
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1960
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1961
		list_move(&rq->queuelist, &next->queuelist);
1962 1963
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1964

1965 1966
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1967
	cfq_remove_request(next);
1968
	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

	cfqq = RQ_CFQQ(next);
	/*
	 * all requests of this queue are merged to other queues, delete it
	 * from the service tree. If it's the active_queue,
	 * cfq_dispatch_requests() will choose to expire it or do idle
	 */
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
	    cfqq != cfqd->active_queue)
		cfq_del_cfqq_rr(cfqd, cfqq);
1979 1980
}

1981
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1982 1983 1984
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1985
	struct cfq_io_cq *cic;
1986 1987 1988
	struct cfq_queue *cfqq;

	/*
1989
	 * Disallow merge of a sync bio into an async request.
1990
	 */
1991
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1992
		return false;
1993 1994

	/*
T
Tejun Heo 已提交
1995
	 * Lookup the cfqq that this bio will be queued with and allow
1996
	 * merge only if rq is queued there.
T
Tejun Heo 已提交
1997
	 */
1998 1999 2000
	cic = cfq_cic_lookup(cfqd, current->io_context);
	if (!cic)
		return false;
2001

2002
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2003
	return cfqq == RQ_CFQQ(rq);
2004 2005
}

2006 2007 2008
static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	del_timer(&cfqd->idle_slice_timer);
2009
	cfqg_stats_update_idle_time(cfqq->cfqg);
2010 2011
}

J
Jens Axboe 已提交
2012 2013
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
2014 2015
{
	if (cfqq) {
2016 2017
		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
				cfqd->serving_prio, cfqd->serving_type);
2018
		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
		cfqq->allocated_slice = 0;
		cfqq->slice_end = 0;
		cfqq->slice_dispatch = 0;
		cfqq->nr_sectors = 0;

		cfq_clear_cfqq_wait_request(cfqq);
		cfq_clear_cfqq_must_dispatch(cfqq);
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
		cfq_mark_cfqq_slice_new(cfqq);

		cfq_del_timer(cfqd, cfqq);
2033 2034 2035 2036 2037
	}

	cfqd->active_queue = cfqq;
}

2038 2039 2040 2041 2042
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2043
		    bool timed_out)
2044
{
2045 2046
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

2047
	if (cfq_cfqq_wait_request(cfqq))
2048
		cfq_del_timer(cfqd, cfqq);
2049 2050

	cfq_clear_cfqq_wait_request(cfqq);
2051
	cfq_clear_cfqq_wait_busy(cfqq);
2052

2053 2054 2055 2056 2057 2058 2059 2060 2061
	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
		cfq_mark_cfqq_split_coop(cfqq);

2062
	/*
2063
	 * store what was left of this slice, if the queue idled/timed out
2064
	 */
2065 2066
	if (timed_out) {
		if (cfq_cfqq_slice_new(cfqq))
2067
			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2068 2069
		else
			cfqq->slice_resid = cfqq->slice_end - jiffies;
2070 2071
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
2072

2073
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2074

2075 2076 2077
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

2078
	cfq_resort_rr_list(cfqd, cfqq);
2079 2080 2081 2082 2083

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
2084
		put_io_context(cfqd->active_cic->icq.ioc);
2085 2086 2087 2088
		cfqd->active_cic = NULL;
	}
}

2089
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2090 2091 2092 2093
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
2094
		__cfq_slice_expired(cfqd, cfqq, timed_out);
2095 2096
}

2097 2098 2099 2100
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
2101
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2102
{
2103
	struct cfq_rb_root *service_tree =
2104
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
2105
					cfqd->serving_type);
2106

2107 2108 2109
	if (!cfqd->rq_queued)
		return NULL;

2110 2111 2112
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
2113 2114 2115
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
2116 2117
}

2118 2119
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
2120
	struct cfq_group *cfqg;
2121 2122 2123 2124 2125 2126 2127
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

2128 2129 2130 2131
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

2132 2133 2134 2135 2136 2137
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

2138 2139 2140
/*
 * Get and set a new active queue for service.
 */
2141 2142
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
2143
{
2144
	if (!cfqq)
2145
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
2146

2147
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
2148
	return cfqq;
2149 2150
}

2151 2152 2153
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
2154 2155
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
2156
	else
2157
		return cfqd->last_position - blk_rq_pos(rq);
2158 2159
}

2160
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2161
			       struct request *rq)
J
Jens Axboe 已提交
2162
{
2163
	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
J
Jens Axboe 已提交
2164 2165
}

2166 2167 2168
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
2169
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
2181
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2182 2183 2184 2185 2186 2187 2188 2189
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2190
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2191 2192
		return __cfqq;

2193
	if (blk_rq_pos(__cfqq->next_rq) < sector)
2194 2195 2196 2197 2198 2199 2200
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2201
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2218
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
2219
{
2220 2221
	struct cfq_queue *cfqq;

2222 2223
	if (cfq_class_idle(cur_cfqq))
		return NULL;
2224 2225 2226 2227 2228
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

2229 2230 2231 2232 2233 2234
	/*
	 * Don't search priority tree if it's the only queue in the group.
	 */
	if (cur_cfqq->cfqg->nr_cfqq == 1)
		return NULL;

J
Jens Axboe 已提交
2235
	/*
2236 2237 2238
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
2239
	 */
2240 2241 2242 2243
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

2244 2245 2246 2247
	/* If new queue belongs to different cfq_group, don't choose it */
	if (cur_cfqq->cfqg != cfqq->cfqg)
		return NULL;

J
Jeff Moyer 已提交
2248 2249 2250 2251 2252
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
2253 2254
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
2255

2256 2257 2258 2259 2260 2261
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

2262
	return cfqq;
J
Jens Axboe 已提交
2263 2264
}

2265 2266 2267 2268 2269 2270 2271
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
2272
	struct cfq_rb_root *service_tree = cfqq->service_tree;
2273

2274 2275 2276
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

2277 2278 2279
	if (!cfqd->cfq_slice_idle)
		return false;

2280 2281 2282 2283 2284
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
2285 2286
	if (cfq_cfqq_idle_window(cfqq) &&
	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2287 2288 2289 2290 2291 2292
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
2293 2294
	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
S
Shaohua Li 已提交
2295
		return true;
2296 2297
	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
			service_tree->count);
S
Shaohua Li 已提交
2298
	return false;
2299 2300
}

J
Jens Axboe 已提交
2301
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2302
{
2303
	struct cfq_queue *cfqq = cfqd->active_queue;
2304
	struct cfq_io_cq *cic;
2305
	unsigned long sl, group_idle = 0;
2306

2307
	/*
J
Jens Axboe 已提交
2308 2309 2310
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
2311
	 */
J
Jens Axboe 已提交
2312
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2313 2314
		return;

2315
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
2316
	WARN_ON(cfq_cfqq_slice_new(cfqq));
2317 2318 2319 2320

	/*
	 * idle is disabled, either manually or by past process history
	 */
2321 2322 2323 2324 2325 2326 2327
	if (!cfq_should_idle(cfqd, cfqq)) {
		/* no queue idling. Check for group idling */
		if (cfqd->cfq_group_idle)
			group_idle = cfqd->cfq_group_idle;
		else
			return;
	}
J
Jens Axboe 已提交
2328

2329
	/*
2330
	 * still active requests from this queue, don't idle
2331
	 */
2332
	if (cfqq->dispatched)
2333 2334
		return;

2335 2336 2337
	/*
	 * task has exited, don't wait
	 */
2338
	cic = cfqd->active_cic;
T
Tejun Heo 已提交
2339
	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
J
Jens Axboe 已提交
2340 2341
		return;

2342 2343 2344 2345 2346
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
2347 2348
	if (sample_valid(cic->ttime.ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2349
		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2350
			     cic->ttime.ttime_mean);
2351
		return;
2352
	}
2353

2354 2355 2356 2357
	/* There are other queues in the group, don't do group idle */
	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
		return;

J
Jens Axboe 已提交
2358
	cfq_mark_cfqq_wait_request(cfqq);
2359

2360 2361 2362 2363
	if (group_idle)
		sl = cfqd->cfq_group_idle;
	else
		sl = cfqd->cfq_slice_idle;
2364

2365
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2366
	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2367 2368
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
			group_idle ? 1 : 0);
L
Linus Torvalds 已提交
2369 2370
}

2371 2372 2373
/*
 * Move request from internal lists to the request queue dispatch list.
 */
2374
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2375
{
2376
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2377
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2378

2379 2380
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

2381
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2382
	cfq_remove_request(rq);
J
Jens Axboe 已提交
2383
	cfqq->dispatched++;
2384
	(RQ_CFQG(rq))->dispatched++;
2385
	elv_dispatch_sort(q, rq);
2386

2387
	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2388
	cfqq->nr_sectors += blk_rq_sectors(rq);
2389
	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
2395
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2396
{
2397
	struct request *rq = NULL;
L
Linus Torvalds 已提交
2398

J
Jens Axboe 已提交
2399
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
2400
		return NULL;
2401 2402 2403

	cfq_mark_cfqq_fifo_expire(cfqq);

2404 2405
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
2406

2407
	rq = rq_entry_fifo(cfqq->fifo.next);
2408
	if (time_before(jiffies, rq_fifo_time(rq)))
2409
		rq = NULL;
L
Linus Torvalds 已提交
2410

2411
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
2412
	return rq;
L
Linus Torvalds 已提交
2413 2414
}

2415 2416 2417 2418
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
2419

2420
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
2421

2422
	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
L
Linus Torvalds 已提交
2423 2424
}

J
Jeff Moyer 已提交
2425 2426 2427 2428 2429 2430 2431 2432
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2433
	process_refs = cfqq->ref - io_refs;
J
Jeff Moyer 已提交
2434 2435 2436 2437 2438 2439
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
2440
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
2441 2442
	struct cfq_queue *__cfqq;

2443 2444 2445 2446 2447 2448 2449 2450 2451
	/*
	 * If there are no process references on the new_cfqq, then it is
	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
	 * chain may have dropped their last reference (not just their
	 * last process reference).
	 */
	if (!cfqq_process_refs(new_cfqq))
		return;

J
Jeff Moyer 已提交
2452 2453 2454 2455 2456 2457 2458 2459
	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
2460
	new_process_refs = cfqq_process_refs(new_cfqq);
J
Jeff Moyer 已提交
2461 2462 2463 2464
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
2465
	if (process_refs == 0 || new_process_refs == 0)
J
Jeff Moyer 已提交
2466 2467
		return;

2468 2469 2470 2471 2472
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
2473
		new_cfqq->ref += process_refs;
2474 2475
	} else {
		new_cfqq->new_cfqq = cfqq;
2476
		cfqq->ref += new_process_refs;
2477
	}
J
Jeff Moyer 已提交
2478 2479
}

2480
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2481
				struct cfq_group *cfqg, enum wl_prio_t prio)
2482 2483 2484 2485 2486 2487 2488
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

2489 2490 2491
	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
		/* select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

2503
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2504 2505 2506
{
	unsigned slice;
	unsigned count;
2507
	struct cfq_rb_root *st;
2508
	unsigned group_slice;
2509
	enum wl_prio_t original_prio = cfqd->serving_prio;
2510

2511
	/* Choose next priority. RT > BE > IDLE */
2512
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2513
		cfqd->serving_prio = RT_WORKLOAD;
2514
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2515 2516 2517 2518 2519 2520 2521
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

2522 2523 2524
	if (original_prio != cfqd->serving_prio)
		goto new_workload;

2525 2526 2527 2528 2529
	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
2530
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2531
	count = st->count;
2532 2533

	/*
2534
	 * check workload expiration, and that we still have other queues ready
2535
	 */
2536
	if (count && !time_after(jiffies, cfqd->workload_expires))
2537 2538
		return;

2539
new_workload:
2540 2541
	/* otherwise select new workload type */
	cfqd->serving_type =
2542 2543
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2544
	count = st->count;
2545 2546 2547 2548 2549 2550

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
2551 2552 2553 2554 2555
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2556

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	if (cfqd->serving_type == ASYNC_WORKLOAD) {
		unsigned int tmp;

		/*
		 * Async queues are currently system wide. Just taking
		 * proportion of queues with-in same group will lead to higher
		 * async ratio system wide as generally root group is going
		 * to have higher weight. A more accurate thing would be to
		 * calculate system wide asnc/sync ratio.
		 */
		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
		tmp = tmp/cfqd->busy_queues;
		slice = min_t(unsigned, slice, tmp);

2571 2572 2573
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2574
	} else
2575 2576 2577 2578
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2579
	cfq_log(cfqd, "workload slice:%d", slice);
2580 2581 2582
	cfqd->workload_expires = jiffies + slice;
}

2583 2584 2585
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2586
	struct cfq_group *cfqg;
2587 2588 2589

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
2590 2591 2592
	cfqg = cfq_rb_first_group(st);
	update_min_vdisktime(st);
	return cfqg;
2593 2594
}

2595 2596
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
2597 2598 2599
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2600 2601 2602 2603 2604 2605

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
2606 2607 2608
	} else
		cfqd->workload_expires = jiffies - 1;

2609
	choose_service_tree(cfqd, cfqg);
2610 2611
}

2612
/*
2613 2614
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2615
 */
2616
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2617
{
2618
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2619

2620 2621 2622
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2623

2624 2625
	if (!cfqd->rq_queued)
		return NULL;
2626 2627 2628 2629 2630 2631 2632

	/*
	 * We were waiting for group to get backlogged. Expire the queue
	 */
	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
		goto expire;

2633
	/*
J
Jens Axboe 已提交
2634
	 * The active queue has run out of time, expire it and select new.
2635
	 */
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
		/*
		 * If slice had not expired at the completion of last request
		 * we might not have turned on wait_busy flag. Don't expire
		 * the queue yet. Allow the group to get backlogged.
		 *
		 * The very fact that we have used the slice, that means we
		 * have been idling all along on this queue and it should be
		 * ok to wait for this request to complete.
		 */
2646 2647 2648
		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
			cfqq = NULL;
2649
			goto keep_queue;
2650
		} else
2651
			goto check_group_idle;
2652
	}
L
Linus Torvalds 已提交
2653

2654
	/*
J
Jens Axboe 已提交
2655 2656
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2657
	 */
2658
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2659
		goto keep_queue;
J
Jens Axboe 已提交
2660

2661 2662 2663 2664
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2665
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2666
	 */
2667
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2668 2669 2670
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2671
		goto expire;
J
Jeff Moyer 已提交
2672
	}
2673

J
Jens Axboe 已提交
2674 2675 2676 2677 2678
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2679 2680 2681 2682 2683
	if (timer_pending(&cfqd->idle_slice_timer)) {
		cfqq = NULL;
		goto keep_queue;
	}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
	/*
	 * This is a deep seek queue, but the device is much faster than
	 * the queue can deliver, don't idle
	 **/
	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
	    (cfq_cfqq_slice_new(cfqq) ||
	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
		cfq_clear_cfqq_deep(cfqq);
		cfq_clear_cfqq_idle_window(cfqq);
	}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
		cfqq = NULL;
		goto keep_queue;
	}

	/*
	 * If group idle is enabled and there are requests dispatched from
	 * this group, wait for requests to complete.
	 */
check_group_idle:
S
Shaohua Li 已提交
2705 2706 2707
	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
	    cfqq->cfqg->dispatched &&
	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2708 2709
		cfqq = NULL;
		goto keep_queue;
2710 2711
	}

J
Jens Axboe 已提交
2712
expire:
2713
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2714
new_queue:
2715 2716 2717 2718 2719
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2720
		cfq_choose_cfqg(cfqd);
2721

2722
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2723
keep_queue:
J
Jens Axboe 已提交
2724
	return cfqq;
2725 2726
}

J
Jens Axboe 已提交
2727
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2728 2729 2730 2731 2732 2733 2734 2735 2736
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2737 2738

	/* By default cfqq is not expired if it is empty. Do it explicitly */
2739
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2740 2741 2742
	return dispatched;
}

2743 2744 2745 2746
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2747
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2748
{
2749
	struct cfq_queue *cfqq;
2750
	int dispatched = 0;
2751

2752
	/* Expire the timeslice of the current active queue first */
2753
	cfq_slice_expired(cfqd, 0);
2754 2755
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
		__cfq_set_active_queue(cfqd, cfqq);
2756
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2757
	}
2758 2759 2760

	BUG_ON(cfqd->busy_queues);

2761
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2762 2763 2764
	return dispatched;
}

S
Shaohua Li 已提交
2765 2766 2767 2768 2769
static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
	struct cfq_queue *cfqq)
{
	/* the queue hasn't finished any request, can't estimate */
	if (cfq_cfqq_slice_new(cfqq))
S
Shaohua Li 已提交
2770
		return true;
S
Shaohua Li 已提交
2771 2772
	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
		cfqq->slice_end))
S
Shaohua Li 已提交
2773
		return true;
S
Shaohua Li 已提交
2774

S
Shaohua Li 已提交
2775
	return false;
S
Shaohua Li 已提交
2776 2777
}

2778
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2779 2780
{
	unsigned int max_dispatch;
2781

2782 2783 2784
	/*
	 * Drain async requests before we start sync IO
	 */
2785
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2786
		return false;
2787

2788 2789 2790
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
2791
	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2792
		return false;
2793

S
Shaohua Li 已提交
2794
	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2795 2796
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2797

2798 2799 2800 2801
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
2802
		bool promote_sync = false;
2803 2804 2805
		/*
		 * idle queue must always only have a single IO in flight
		 */
2806
		if (cfq_class_idle(cfqq))
2807
			return false;
2808

2809
		/*
2810 2811
		 * If there is only one sync queue
		 * we can ignore async queue here and give the sync
2812 2813 2814 2815
		 * queue no dispatch limit. The reason is a sync queue can
		 * preempt async queue, limiting the sync queue doesn't make
		 * sense. This is useful for aiostress test.
		 */
2816 2817
		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
			promote_sync = true;
2818

2819 2820 2821
		/*
		 * We have other queues, don't allow more IO from this one
		 */
2822 2823
		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
				!promote_sync)
2824
			return false;
2825

2826
		/*
2827
		 * Sole queue user, no limit
2828
		 */
2829
		if (cfqd->busy_queues == 1 || promote_sync)
S
Shaohua Li 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838
			max_dispatch = -1;
		else
			/*
			 * Normally we start throttling cfqq when cfq_quantum/2
			 * requests have been dispatched. But we can drive
			 * deeper queue depths at the beginning of slice
			 * subjected to upper limit of cfq_quantum.
			 * */
			max_dispatch = cfqd->cfq_quantum;
2839 2840 2841 2842 2843 2844 2845
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2846
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2847
		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2848
		unsigned int depth;
2849

2850
		depth = last_sync / cfqd->cfq_slice[1];
2851 2852
		if (!depth && !cfqq->dispatched)
			depth = 1;
2853 2854
		if (depth < max_dispatch)
			max_dispatch = depth;
2855
	}
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
2889
		struct cfq_io_cq *cic = RQ_CIC(rq);
2890

2891
		atomic_long_inc(&cic->icq.ioc->refcount);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2915 2916
		return 0;

2917
	/*
2918
	 * Dispatch a request from this cfqq, if it is allowed
2919
	 */
2920 2921 2922
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2923
	cfqq->slice_dispatch++;
2924
	cfq_clear_cfqq_must_dispatch(cfqq);
2925

2926 2927 2928 2929 2930 2931 2932 2933
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
2934
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2935 2936
	}

2937
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2938
	return 1;
L
Linus Torvalds 已提交
2939 2940 2941
}

/*
J
Jens Axboe 已提交
2942 2943
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2944
 *
2945
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2946 2947 2948 2949
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2950
	struct cfq_data *cfqd = cfqq->cfqd;
2951
	struct cfq_group *cfqg;
2952

2953
	BUG_ON(cfqq->ref <= 0);
L
Linus Torvalds 已提交
2954

2955 2956
	cfqq->ref--;
	if (cfqq->ref)
L
Linus Torvalds 已提交
2957 2958
		return;

2959
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2960
	BUG_ON(rb_first(&cfqq->sort_list));
2961
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2962
	cfqg = cfqq->cfqg;
L
Linus Torvalds 已提交
2963

2964
	if (unlikely(cfqd->active_queue == cfqq)) {
2965
		__cfq_slice_expired(cfqd, cfqq, 0);
2966
		cfq_schedule_dispatch(cfqd);
2967
	}
2968

2969
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2970
	kmem_cache_free(cfq_pool, cfqq);
2971
	cfqg_put(cfqg);
L
Linus Torvalds 已提交
2972 2973
}

2974
static void cfq_put_cooperator(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2975
{
J
Jeff Moyer 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
	struct cfq_queue *__cfqq, *next;

	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
}

static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	if (unlikely(cfqq == cfqd->active_queue)) {
		__cfq_slice_expired(cfqd, cfqq, 0);
		cfq_schedule_dispatch(cfqd);
	}

	cfq_put_cooperator(cfqq);
J
Jeff Moyer 已提交
3003

3004 3005
	cfq_put_queue(cfqq);
}
3006

3007 3008 3009 3010 3011 3012 3013
static void cfq_init_icq(struct io_cq *icq)
{
	struct cfq_io_cq *cic = icq_to_cic(icq);

	cic->ttime.last_end_request = jiffies;
}

3014
static void cfq_exit_icq(struct io_cq *icq)
3015
{
3016
	struct cfq_io_cq *cic = icq_to_cic(icq);
3017
	struct cfq_data *cfqd = cic_to_cfqd(cic);
3018

3019 3020 3021
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
3022 3023
	}

3024 3025 3026
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
3027
	}
3028 3029
}

3030
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3031 3032 3033 3034
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
3035
	if (!cfq_cfqq_prio_changed(cfqq))
3036 3037
		return;

T
Tejun Heo 已提交
3038
	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3039
	switch (ioprio_class) {
3040 3041 3042 3043
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
3044
		 * no prio set, inherit CPU scheduling settings
3045 3046
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
3047
		cfqq->ioprio_class = task_nice_ioclass(tsk);
3048 3049
		break;
	case IOPRIO_CLASS_RT:
T
Tejun Heo 已提交
3050
		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3051 3052 3053
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
T
Tejun Heo 已提交
3054
		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3055 3056 3057 3058 3059 3060 3061
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
3062 3063 3064 3065 3066 3067 3068
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
J
Jens Axboe 已提交
3069
	cfq_clear_cfqq_prio_changed(cfqq);
3070 3071
}

T
Tejun Heo 已提交
3072
static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3073
{
T
Tejun Heo 已提交
3074
	int ioprio = cic->icq.ioc->ioprio;
3075
	struct cfq_data *cfqd = cic_to_cfqd(cic);
3076
	struct cfq_queue *cfqq;
3077

T
Tejun Heo 已提交
3078 3079 3080 3081 3082
	/*
	 * Check whether ioprio has changed.  The condition may trigger
	 * spuriously on a newly created cic but there's no harm.
	 */
	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3083 3084
		return;

3085
	cfqq = cic->cfqq[BLK_RW_ASYNC];
3086 3087
	if (cfqq) {
		struct cfq_queue *new_cfqq;
3088 3089
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
					 GFP_ATOMIC);
3090
		if (new_cfqq) {
3091
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3092 3093
			cfq_put_queue(cfqq);
		}
3094
	}
3095

3096
	cfqq = cic->cfqq[BLK_RW_SYNC];
3097 3098
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);
T
Tejun Heo 已提交
3099 3100

	cic->ioprio = ioprio;
3101 3102
}

3103
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3104
			  pid_t pid, bool is_sync)
3105 3106 3107 3108 3109
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

3110
	cfqq->ref = 0;
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

3123
#ifdef CONFIG_CFQ_GROUP_IOSCHED
T
Tejun Heo 已提交
3124
static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3125
{
3126
	struct cfq_data *cfqd = cic_to_cfqd(cic);
T
Tejun Heo 已提交
3127 3128
	struct cfq_queue *sync_cfqq;
	uint64_t id;
3129

T
Tejun Heo 已提交
3130 3131 3132
	rcu_read_lock();
	id = bio_blkio_cgroup(bio)->id;
	rcu_read_unlock();
3133

T
Tejun Heo 已提交
3134 3135 3136 3137 3138 3139
	/*
	 * Check whether blkcg has changed.  The condition may trigger
	 * spuriously on a newly created cic but there's no harm.
	 */
	if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
		return;
3140

T
Tejun Heo 已提交
3141
	sync_cfqq = cic_to_cfqq(cic, 1);
3142 3143 3144 3145 3146 3147 3148 3149 3150
	if (sync_cfqq) {
		/*
		 * Drop reference to sync queue. A new sync queue will be
		 * assigned in new group upon arrival of a fresh request.
		 */
		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
		cic_set_cfqq(cic, NULL, 1);
		cfq_put_queue(sync_cfqq);
	}
T
Tejun Heo 已提交
3151 3152

	cic->blkcg_id = id;
3153
}
T
Tejun Heo 已提交
3154 3155
#else
static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3156 3157
#endif  /* CONFIG_CFQ_GROUP_IOSCHED */

3158
static struct cfq_queue *
3159 3160
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
		     struct bio *bio, gfp_t gfp_mask)
3161
{
3162
	struct blkio_cgroup *blkcg;
3163
	struct cfq_queue *cfqq, *new_cfqq = NULL;
3164
	struct cfq_group *cfqg;
3165 3166

retry:
3167 3168
	rcu_read_lock();

3169
	blkcg = bio_blkio_cgroup(bio);
3170
	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3171
	cfqq = cic_to_cfqq(cic, is_sync);
3172

3173 3174 3175 3176 3177 3178
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
3179 3180 3181 3182
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
3183
			rcu_read_unlock();
3184
			spin_unlock_irq(cfqd->queue->queue_lock);
3185
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3186
					gfp_mask | __GFP_ZERO,
3187
					cfqd->queue->node);
3188
			spin_lock_irq(cfqd->queue->queue_lock);
3189 3190
			if (new_cfqq)
				goto retry;
3191
		} else {
3192 3193 3194
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
3195 3196
		}

3197 3198
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3199
			cfq_init_prio_data(cfqq, cic);
3200
			cfq_link_cfqq_cfqg(cfqq, cfqg);
3201 3202 3203
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
3204 3205 3206 3207 3208
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

3209
	rcu_read_unlock();
3210 3211 3212
	return cfqq;
}

3213 3214 3215
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
3216
	switch (ioprio_class) {
3217 3218
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
T
Tejun Heo 已提交
3219 3220 3221
	case IOPRIO_CLASS_NONE:
		ioprio = IOPRIO_NORM;
		/* fall through */
3222 3223 3224 3225 3226 3227 3228 3229 3230
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

3231
static struct cfq_queue *
3232
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3233
	      struct bio *bio, gfp_t gfp_mask)
3234
{
T
Tejun Heo 已提交
3235 3236
	const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
	const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3237
	struct cfq_queue **async_cfqq = NULL;
3238 3239
	struct cfq_queue *cfqq = NULL;

3240 3241 3242 3243 3244
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

3245
	if (!cfqq)
3246
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3247 3248 3249 3250

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
3251
	if (!is_sync && !(*async_cfqq)) {
3252
		cfqq->ref++;
3253
		*async_cfqq = cfqq;
3254 3255
	}

3256
	cfqq->ref++;
3257 3258 3259
	return cfqq;
}

3260
static void
3261
__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
L
Linus Torvalds 已提交
3262
{
3263 3264
	unsigned long elapsed = jiffies - ttime->last_end_request;
	elapsed = min(elapsed, 2UL * slice_idle);
3265

3266 3267 3268 3269 3270 3271 3272
	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
}

static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3273
			struct cfq_io_cq *cic)
3274
{
3275
	if (cfq_cfqq_sync(cfqq)) {
3276
		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3277 3278 3279
		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
			cfqd->cfq_slice_idle);
	}
S
Shaohua Li 已提交
3280 3281 3282
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
#endif
3283
}
L
Linus Torvalds 已提交
3284

3285
static void
3286
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
3287
		       struct request *rq)
3288
{
3289
	sector_t sdist = 0;
3290
	sector_t n_sec = blk_rq_sectors(rq);
3291 3292 3293 3294 3295 3296
	if (cfqq->last_request_pos) {
		if (cfqq->last_request_pos < blk_rq_pos(rq))
			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
		else
			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
	}
3297

3298
	cfqq->seek_history <<= 1;
3299 3300 3301 3302
	if (blk_queue_nonrot(cfqd->queue))
		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
	else
		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3303
}
L
Linus Torvalds 已提交
3304

3305 3306 3307 3308 3309 3310
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3311
		       struct cfq_io_cq *cic)
3312
{
3313
	int old_idle, enable_idle;
3314

3315 3316 3317 3318
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3319 3320
		return;

3321
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
3322

3323 3324 3325
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

3326 3327
	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
		enable_idle = 0;
T
Tejun Heo 已提交
3328
	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3329 3330
		 !cfqd->cfq_slice_idle ||
		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3331
		enable_idle = 0;
3332 3333
	else if (sample_valid(cic->ttime.ttime_samples)) {
		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3334 3335 3336
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
3337 3338
	}

3339 3340 3341 3342 3343 3344 3345
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
3346
}
L
Linus Torvalds 已提交
3347

3348 3349 3350 3351
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
3352
static bool
3353
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
3354
		   struct request *rq)
3355
{
J
Jens Axboe 已提交
3356
	struct cfq_queue *cfqq;
3357

J
Jens Axboe 已提交
3358 3359
	cfqq = cfqd->active_queue;
	if (!cfqq)
3360
		return false;
3361

J
Jens Axboe 已提交
3362
	if (cfq_class_idle(new_cfqq))
3363
		return false;
3364 3365

	if (cfq_class_idle(cfqq))
3366
		return true;
3367

3368 3369 3370 3371 3372 3373
	/*
	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
	 */
	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
		return false;

3374 3375 3376 3377
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
3378
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3379
		return true;
3380

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	if (new_cfqq->cfqg != cfqq->cfqg)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* Allow preemption only if we are idling on sync-noidle tree */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
		return true;

3394 3395 3396 3397
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
3398
	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3399 3400
		return true;

3401 3402 3403 3404
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3405
		return true;
3406

3407 3408 3409 3410
	/* An idle queue should not be idle now for some reason */
	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
		return true;

3411
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3412
		return false;
3413 3414 3415 3416 3417

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
3418
	if (cfq_rq_close(cfqd, cfqq, rq))
3419
		return true;
3420

3421
	return false;
3422 3423 3424 3425 3426 3427 3428 3429
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
S
Shaohua Li 已提交
3430 3431
	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);

3432
	cfq_log_cfqq(cfqd, cfqq, "preempt");
S
Shaohua Li 已提交
3433
	cfq_slice_expired(cfqd, 1);
3434

3435 3436 3437 3438
	/*
	 * workload type is changed, don't save slice, otherwise preempt
	 * doesn't happen
	 */
S
Shaohua Li 已提交
3439
	if (old_type != cfqq_type(cfqq))
3440 3441
		cfqq->cfqg->saved_workload_slice = 0;

3442 3443 3444 3445 3446
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3447 3448

	cfq_service_tree_add(cfqd, cfqq, 1);
3449

3450 3451
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
3452 3453 3454
}

/*
J
Jens Axboe 已提交
3455
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3456 3457 3458
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
3459 3460
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3461
{
3462
	struct cfq_io_cq *cic = RQ_CIC(rq);
3463

3464
	cfqd->rq_queued++;
3465 3466
	if (rq->cmd_flags & REQ_PRIO)
		cfqq->prio_pending++;
3467

3468
	cfq_update_io_thinktime(cfqd, cfqq, cic);
3469
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3470 3471
	cfq_update_idle_window(cfqd, cfqq, cic);

3472
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3473 3474 3475

	if (cfqq == cfqd->active_queue) {
		/*
3476 3477 3478
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3479 3480
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3481 3482 3483
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3484
		 */
3485
		if (cfq_cfqq_wait_request(cfqq)) {
3486 3487
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3488
				cfq_del_timer(cfqd, cfqq);
3489
				cfq_clear_cfqq_wait_request(cfqq);
3490
				__blk_run_queue(cfqd->queue);
3491
			} else {
3492
				cfqg_stats_update_idle_time(cfqq->cfqg);
3493
				cfq_mark_cfqq_must_dispatch(cfqq);
3494
			}
3495
		}
J
Jens Axboe 已提交
3496
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3497 3498 3499
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3500 3501
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3502 3503
		 */
		cfq_preempt_queue(cfqd, cfqq);
3504
		__blk_run_queue(cfqd->queue);
3505
	}
L
Linus Torvalds 已提交
3506 3507
}

3508
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3509
{
3510
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3511
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3512

3513
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3514
	cfq_init_prio_data(cfqq, RQ_CIC(rq));
L
Linus Torvalds 已提交
3515

3516
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3517
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3518
	cfq_add_rq_rb(rq);
3519 3520
	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
				 rq->cmd_flags);
J
Jens Axboe 已提交
3521
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3522 3523
}

3524 3525 3526 3527 3528 3529
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3530 3531
	struct cfq_queue *cfqq = cfqd->active_queue;

3532 3533
	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3534 3535 3536

	if (cfqd->hw_tag == 1)
		return;
3537 3538

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3539
	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3540 3541
		return;

S
Shaohua Li 已提交
3542 3543 3544 3545 3546 3547 3548
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3549
	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
S
Shaohua Li 已提交
3550 3551
		return;

3552 3553 3554
	if (cfqd->hw_tag_samples++ < 50)
		return;

3555
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3556 3557 3558 3559 3560
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3561 3562
static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
3563
	struct cfq_io_cq *cic = cfqd->active_cic;
3564

3565 3566 3567 3568
	/* If the queue already has requests, don't wait */
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
		return false;

3569 3570 3571 3572
	/* If there are other queues in the group, don't wait */
	if (cfqq->cfqg->nr_cfqq > 1)
		return false;

S
Shaohua Li 已提交
3573 3574 3575 3576
	/* the only queue in the group, but think time is big */
	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
		return false;

3577 3578 3579 3580
	if (cfq_slice_used(cfqq))
		return true;

	/* if slice left is less than think time, wait busy */
3581 3582
	if (cic && sample_valid(cic->ttime.ttime_samples)
	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
		return true;

	/*
	 * If think times is less than a jiffy than ttime_mean=0 and above
	 * will not be true. It might happen that slice has not expired yet
	 * but will expire soon (4-5 ns) during select_queue(). To cover the
	 * case where think time is less than a jiffy, mark the queue wait
	 * busy if only 1 jiffy is left in the slice.
	 */
	if (cfqq->slice_end - jiffies == 1)
		return true;

	return false;
}

3598
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3599
{
J
Jens Axboe 已提交
3600
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3601
	struct cfq_data *cfqd = cfqq->cfqd;
3602
	const int sync = rq_is_sync(rq);
3603
	unsigned long now;
L
Linus Torvalds 已提交
3604

3605
	now = jiffies;
3606 3607
	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
		     !!(rq->cmd_flags & REQ_NOIDLE));
L
Linus Torvalds 已提交
3608

3609 3610
	cfq_update_hw_tag(cfqd);

3611
	WARN_ON(!cfqd->rq_in_driver);
J
Jens Axboe 已提交
3612
	WARN_ON(!cfqq->dispatched);
3613
	cfqd->rq_in_driver--;
J
Jens Axboe 已提交
3614
	cfqq->dispatched--;
3615
	(RQ_CFQG(rq))->dispatched--;
3616 3617
	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
				     rq_io_start_time_ns(rq), rq->cmd_flags);
L
Linus Torvalds 已提交
3618

3619
	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3620

3621
	if (sync) {
3622 3623
		struct cfq_rb_root *service_tree;

3624
		RQ_CIC(rq)->ttime.last_end_request = now;
3625 3626 3627 3628 3629 3630 3631

		if (cfq_cfqq_on_rr(cfqq))
			service_tree = cfqq->service_tree;
		else
			service_tree = service_tree_for(cfqq->cfqg,
				cfqq_prio(cfqq), cfqq_type(cfqq));
		service_tree->ttime.last_end_request = now;
3632 3633
		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
			cfqd->last_delayed_sync = now;
3634
	}
3635

S
Shaohua Li 已提交
3636 3637 3638 3639
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	cfqq->cfqg->ttime.last_end_request = now;
#endif

3640 3641 3642 3643 3644
	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3645 3646
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3647 3648 3649 3650
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3651 3652

		/*
3653 3654
		 * Should we wait for next request to come in before we expire
		 * the queue.
3655
		 */
3656
		if (cfq_should_wait_busy(cfqd, cfqq)) {
3657 3658 3659 3660
			unsigned long extend_sl = cfqd->cfq_slice_idle;
			if (!cfqd->cfq_slice_idle)
				extend_sl = cfqd->cfq_group_idle;
			cfqq->slice_end = jiffies + extend_sl;
3661
			cfq_mark_cfqq_wait_busy(cfqq);
3662
			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3663 3664
		}

3665
		/*
3666 3667 3668 3669 3670 3671
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3672
		 */
3673
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3674
			cfq_slice_expired(cfqd, 1);
3675 3676
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
3677
			cfq_arm_slice_timer(cfqd);
3678
		}
3679
	}
J
Jens Axboe 已提交
3680

3681
	if (!cfqd->rq_in_driver)
3682
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3683 3684
}

3685
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3686
{
3687
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3688
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3689
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3690
	}
L
Linus Torvalds 已提交
3691

3692 3693 3694
	return ELV_MQUEUE_MAY;
}

3695
static int cfq_may_queue(struct request_queue *q, int rw)
3696 3697 3698
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3699
	struct cfq_io_cq *cic;
3700 3701 3702 3703 3704 3705 3706 3707
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3708
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3709 3710 3711
	if (!cic)
		return ELV_MQUEUE_MAY;

3712
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3713
	if (cfqq) {
3714
		cfq_init_prio_data(cfqq, cic);
3715

3716
		return __cfq_may_queue(cfqq);
3717 3718 3719
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3720 3721 3722 3723 3724
}

/*
 * queue lock held here
 */
3725
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3726
{
J
Jens Axboe 已提交
3727
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3728

J
Jens Axboe 已提交
3729
	if (cfqq) {
3730
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3731

3732 3733
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3734

3735
		/* Put down rq reference on cfqg */
3736
		cfqg_put(RQ_CFQG(rq));
3737 3738
		rq->elv.priv[0] = NULL;
		rq->elv.priv[1] = NULL;
3739

L
Linus Torvalds 已提交
3740 3741 3742 3743
		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3744
static struct cfq_queue *
3745
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
J
Jeff Moyer 已提交
3746 3747 3748 3749
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3750
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3751 3752 3753 3754
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3755 3756 3757 3758 3759
/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
3760
split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3761 3762 3763 3764
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
3765
		cfq_clear_cfqq_split_coop(cfqq);
3766 3767 3768 3769
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
3770 3771 3772

	cfq_put_cooperator(cfqq);

3773 3774 3775
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3776
/*
3777
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3778
 */
3779
static int
3780 3781
cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
		gfp_t gfp_mask)
L
Linus Torvalds 已提交
3782 3783
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
3784
	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
L
Linus Torvalds 已提交
3785
	const int rw = rq_data_dir(rq);
3786
	const bool is_sync = rq_is_sync(rq);
3787
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3788 3789 3790

	might_sleep_if(gfp_mask & __GFP_WAIT);

3791
	spin_lock_irq(q->queue_lock);
3792

T
Tejun Heo 已提交
3793 3794
	check_ioprio_changed(cic, bio);
	check_blkcg_changed(cic, bio);
3795
new_queue:
3796
	cfqq = cic_to_cfqq(cic, is_sync);
3797
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3798
		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3799
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3800
	} else {
3801 3802 3803
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
3804
		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3805 3806 3807 3808 3809 3810
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3811 3812 3813 3814 3815 3816 3817 3818
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3819
	}
L
Linus Torvalds 已提交
3820 3821 3822

	cfqq->allocated[rw]++;

3823
	cfqq->ref++;
3824
	cfqg_get(cfqq->cfqg);
3825
	rq->elv.priv[0] = cfqq;
T
Tejun Heo 已提交
3826
	rq->elv.priv[1] = cfqq->cfqg;
3827
	spin_unlock_irq(q->queue_lock);
J
Jens Axboe 已提交
3828
	return 0;
L
Linus Torvalds 已提交
3829 3830
}

3831
static void cfq_kick_queue(struct work_struct *work)
3832
{
3833
	struct cfq_data *cfqd =
3834
		container_of(work, struct cfq_data, unplug_work);
3835
	struct request_queue *q = cfqd->queue;
3836

3837
	spin_lock_irq(q->queue_lock);
3838
	__blk_run_queue(cfqd->queue);
3839
	spin_unlock_irq(q->queue_lock);
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3850
	int timed_out = 1;
3851

3852 3853
	cfq_log(cfqd, "idle timer fired");

3854 3855
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3856 3857
	cfqq = cfqd->active_queue;
	if (cfqq) {
3858 3859
		timed_out = 0;

3860 3861 3862 3863 3864 3865
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3866 3867 3868
		/*
		 * expired
		 */
3869
		if (cfq_slice_used(cfqq))
3870 3871 3872 3873 3874 3875
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3876
		if (!cfqd->busy_queues)
3877 3878 3879 3880 3881
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3882
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3883
			goto out_kick;
3884 3885 3886 3887 3888

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3889 3890
	}
expire:
3891
	cfq_slice_expired(cfqd, timed_out);
3892
out_kick:
3893
	cfq_schedule_dispatch(cfqd);
3894 3895 3896 3897
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3898 3899 3900
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3901
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3902
}
3903

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3914 3915 3916

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3917 3918
}

J
Jens Axboe 已提交
3919
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3920
{
3921
	struct cfq_data *cfqd = e->elevator_data;
3922
	struct request_queue *q = cfqd->queue;
3923

J
Jens Axboe 已提交
3924
	cfq_shutdown_timer_wq(cfqd);
3925

3926
	spin_lock_irq(q->queue_lock);
3927

3928
	if (cfqd->active_queue)
3929
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3930

3931
	cfq_put_async_queues(cfqd);
3932 3933 3934

	spin_unlock_irq(q->queue_lock);

3935 3936
	cfq_shutdown_timer_wq(cfqd);

3937 3938
#ifndef CONFIG_CFQ_GROUP_IOSCHED
	kfree(cfqd->root_group);
3939
#endif
3940
	blkcg_deactivate_policy(q, &blkio_policy_cfq);
3941
	kfree(cfqd);
L
Linus Torvalds 已提交
3942 3943
}

3944
static int cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3945 3946
{
	struct cfq_data *cfqd;
3947
	struct blkio_group *blkg __maybe_unused;
3948
	int i, ret;
L
Linus Torvalds 已提交
3949

3950
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3951
	if (!cfqd)
3952
		return -ENOMEM;
3953

3954 3955 3956
	cfqd->queue = q;
	q->elevator->elevator_data = cfqd;

3957 3958 3959
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3960
	/* Init root group and prefer root group over other groups by default */
3961
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3962 3963 3964
	ret = blkcg_activate_policy(q, &blkio_policy_cfq);
	if (ret)
		goto out_free;
3965

3966
	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
3967
#else
3968
	ret = -ENOMEM;
3969 3970
	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
					GFP_KERNEL, cfqd->queue->node);
3971 3972
	if (!cfqd->root_group)
		goto out_free;
3973

3974 3975
	cfq_init_cfqg_base(cfqd->root_group);
#endif
3976
	cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
3977

3978 3979 3980 3981 3982 3983 3984 3985
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3986 3987 3988
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
3989 3990 3991
	 * will not attempt to free it.  oom_cfqq is linked to root_group
	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
	 * the reference from linking right away.
3992 3993
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3994
	cfqd->oom_cfqq.ref++;
T
Tejun Heo 已提交
3995 3996

	spin_lock_irq(q->queue_lock);
3997
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
3998
	cfqg_put(cfqd->root_group);
T
Tejun Heo 已提交
3999
	spin_unlock_irq(q->queue_lock);
L
Linus Torvalds 已提交
4000

4001 4002 4003 4004
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

4005
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4006

L
Linus Torvalds 已提交
4007
	cfqd->cfq_quantum = cfq_quantum;
4008 4009
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
4010 4011
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
4012 4013 4014 4015
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
4016
	cfqd->cfq_group_idle = cfq_group_idle;
4017
	cfqd->cfq_latency = 1;
4018
	cfqd->hw_tag = -1;
4019 4020 4021 4022
	/*
	 * we optimistically start assuming sync ops weren't delayed in last
	 * second, in order to have larger depth for async operations.
	 */
4023
	cfqd->last_delayed_sync = jiffies - HZ;
4024
	return 0;
4025 4026 4027 4028

out_free:
	kfree(cfqd);
	return ret;
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
4050
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
4051
{									\
4052
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4059 4060
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4061 4062
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4063
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4064
SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4065 4066 4067
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4068
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
4069 4070 4071
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
4072
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
4073
{									\
4074
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4088 4089 4090 4091
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
4092
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4093 4094
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
4095
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4096
STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4097 4098
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4099 4100
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
4101
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
4102 4103
#undef STORE_FUNCTION

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
4117
	CFQ_ATTR(group_idle),
4118
	CFQ_ATTR(low_latency),
4119
	__ATTR_NULL
L
Linus Torvalds 已提交
4120 4121 4122 4123 4124 4125 4126
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
4127
		.elevator_allow_merge_fn =	cfq_allow_merge,
D
Divyesh Shah 已提交
4128
		.elevator_bio_merged_fn =	cfq_bio_merged,
4129
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
4130
		.elevator_add_req_fn =		cfq_insert_request,
4131
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
4132 4133
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_completed_req_fn =	cfq_completed_request,
4134 4135
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
4136
		.elevator_init_icq_fn =		cfq_init_icq,
4137
		.elevator_exit_icq_fn =		cfq_exit_icq,
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
	},
4144 4145
	.icq_size	=	sizeof(struct cfq_io_cq),
	.icq_align	=	__alignof__(struct cfq_io_cq),
4146
	.elevator_attrs =	cfq_attrs,
4147
	.elevator_name	=	"cfq",
L
Linus Torvalds 已提交
4148 4149 4150
	.elevator_owner =	THIS_MODULE,
};

4151 4152 4153
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static struct blkio_policy_type blkio_policy_cfq = {
	.ops = {
4154
		.blkio_init_group_fn =		cfq_init_blkio_group,
4155
		.blkio_reset_group_stats_fn =	cfqg_stats_reset,
4156
	},
4157
	.pdata_size = sizeof(struct cfq_group),
4158
	.cftypes = cfq_blkcg_files,
4159 4160 4161
};
#endif

L
Linus Torvalds 已提交
4162 4163
static int __init cfq_init(void)
{
4164 4165
	int ret;

4166 4167 4168 4169 4170 4171 4172 4173
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

4174 4175 4176 4177 4178 4179
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (!cfq_group_idle)
		cfq_group_idle = 1;
#else
		cfq_group_idle = 0;
#endif
T
Tejun Heo 已提交
4180 4181 4182 4183 4184

	ret = blkio_policy_register(&blkio_policy_cfq);
	if (ret)
		return ret;

4185 4186
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
	if (!cfq_pool)
T
Tejun Heo 已提交
4187
		goto err_pol_unreg;
L
Linus Torvalds 已提交
4188

4189
	ret = elv_register(&iosched_cfq);
T
Tejun Heo 已提交
4190 4191
	if (ret)
		goto err_free_pool;
4192

4193
	return 0;
T
Tejun Heo 已提交
4194 4195 4196 4197 4198 4199

err_free_pool:
	kmem_cache_destroy(cfq_pool);
err_pol_unreg:
	blkio_policy_unregister(&blkio_policy_cfq);
	return ret;
L
Linus Torvalds 已提交
4200 4201 4202 4203
}

static void __exit cfq_exit(void)
{
4204
	blkio_policy_unregister(&blkio_policy_cfq);
L
Linus Torvalds 已提交
4205
	elv_unregister(&iosched_cfq);
4206
	kmem_cache_destroy(cfq_pool);
L
Linus Torvalds 已提交
4207 4208 4209 4210 4211 4212 4213 4214
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");