intel_pstate.c 69.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43 44 45
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
46

47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
49
#include <acpi/cppc_acpi.h>
50 51
#endif

52
#define FRAC_BITS 8
53 54
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
55

56 57
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 59
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60

61 62 63 64 65
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

66
static inline int32_t div_fp(s64 x, s64 y)
67
{
68
	return div64_s64((int64_t)x << FRAC_BITS, y);
69 70
}

71 72 73 74 75 76 77 78 79 80 81
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

230 231 232
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
233
 * @policy:		CPUFreq policy value
234
 * @update_util:	CPUFreq utility callback information
235
 * @update_util_set:	CPUFreq utility callback is set
236 237
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
238 239 240 241 242 243 244 245 246 247
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
248 249 250
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
251 252
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253 254 255
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
256
 * @epp_policy:		Last saved policy used to set EPP/EPB
257 258 259 260
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
261 262 263
 *
 * This structure stores per CPU instance data for all CPUs.
 */
264 265 266
struct cpudata {
	int cpu;

267
	unsigned int policy;
268
	struct update_util_data update_util;
269
	bool   update_util_set;
270 271

	struct pstate_data pstate;
272
	struct vid_data vid;
273 274
	struct _pid pid;

275
	u64	last_update;
276
	u64	last_sample_time;
277 278
	u64	prev_aperf;
	u64	prev_mperf;
279
	u64	prev_tsc;
280
	u64	prev_cummulative_iowait;
281
	struct sample sample;
282
	struct perf_limits *perf_limits;
283 284 285 286
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
287
	unsigned int iowait_boost;
288
	s16 epp_powersave;
289
	s16 epp_policy;
290 291
	s16 epp_default;
	s16 epp_saved;
292 293 294
};

static struct cpudata **all_cpu_data;
295 296

/**
297
 * struct pstate_adjust_policy - Stores static PID configuration data
298 299 300 301 302 303 304 305 306 307
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
308 309
struct pstate_adjust_policy {
	int sample_rate_ms;
310
	s64 sample_rate_ns;
311 312 313 314 315 316 317
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
332 333
struct pstate_funcs {
	int (*get_max)(void);
334
	int (*get_max_physical)(void);
335 336
	int (*get_min)(void);
	int (*get_turbo)(void);
337
	int (*get_scaling)(void);
338
	u64 (*get_val)(struct cpudata*, int pstate);
339
	void (*get_vid)(struct cpudata *);
340
	int32_t (*get_target_pstate)(struct cpudata *);
341 342
};

343 344 345 346 347
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
348 349 350
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
351 352
};

353
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355

356 357 358
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
359
static bool per_cpu_limits __read_mostly;
360

361 362
static bool driver_registered __read_mostly;

363 364 365
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
366

367 368 369
static struct perf_limits performance_limits;
static struct perf_limits powersave_limits;
static struct perf_limits *limits;
370

371 372 373 374 375 376 377 378
static void intel_pstate_init_limits(struct perf_limits *limits)
{
	memset(limits, 0, sizeof(*limits));
	limits->max_perf_pct = 100;
	limits->max_perf = int_ext_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
}
379

380 381 382 383 384
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	intel_pstate_init_limits(limits);
	limits->min_perf_pct = 100;
	limits->min_perf = int_ext_tofp(1);
385
	limits->min_sysfs_pct = 100;
386
}
387

388
static DEFINE_MUTEX(intel_pstate_driver_lock);
389 390
static DEFINE_MUTEX(intel_pstate_limits_lock);

391
#ifdef CONFIG_ACPI
392 393 394 395 396 397 398 399 400 401

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

453 454 455 456 457 458
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

459 460
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
461
		return;
462
	}
463

464
	if (!intel_pstate_get_ppc_enable_status())
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
507
	 * correct max turbo frequency based on the turbo state.
508 509
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
510
	if (!limits->turbo_disabled)
511 512 513
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
514
	pr_debug("_PPC limits will be enforced\n");
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
534
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
535 536 537
{
}

538
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
539 540 541 542
{
}
#endif

543
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
544
			     int deadband, int integral) {
545 546
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
547
	pid->integral  = int_tofp(integral);
548
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
549 550 551 552
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
553
	pid->p_gain = div_fp(percent, 100);
554 555 556 557
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
558
	pid->i_gain = div_fp(percent, 100);
559 560 561 562
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
563
	pid->d_gain = div_fp(percent, 100);
564 565
}

566
static signed int pid_calc(struct _pid *pid, int32_t busy)
567
{
568
	signed int result;
569 570 571
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

572
	fp_error = pid->setpoint - busy;
573

574
	if (abs(fp_error) <= pid->deadband)
575 576 577 578 579 580
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

581 582 583 584 585 586 587 588
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
589 590 591 592 593 594
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

595 596
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
597 598

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
599
	result = result + (1 << (FRAC_BITS-1));
600 601 602 603 604
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
605 606 607
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
608

609
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
610 611 612 613 614
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
615

616 617 618 619 620 621
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

622 623 624 625 626 627 628
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
629
	limits->turbo_disabled =
630 631 632 633
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

653 654 655 656 657 658 659 660 661 662 663
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
664
		epp = (hwp_req_data >> 24) & 0xff;
665
	} else {
666 667
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
668
	}
669 670 671 672

	return epp;
}

673
static int intel_pstate_set_epb(int cpu, s16 pref)
674 675
{
	u64 epb;
676
	int ret;
677 678

	if (!static_cpu_has(X86_FEATURE_EPB))
679
		return -ENXIO;
680

681 682 683
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
684 685 686

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
687 688

	return 0;
689 690
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

851
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
852
{
853
	int min, hw_min, max, hw_max, cpu, range, adj_range;
854
	struct perf_limits *perf_limits = limits;
855 856
	u64 value, cap;

857
	for_each_cpu(cpu, policy->cpus) {
858
		int max_perf_pct, min_perf_pct;
859 860
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
861 862 863 864

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

865 866
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
867 868 869 870
		if (limits->no_turbo)
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
871 872
		range = hw_max - hw_min;

873 874 875
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
876
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
877
		adj_range = min_perf_pct * range / 100;
878
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
879 880 881
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

882
		adj_range = max_perf_pct * range / 100;
883
		max = hw_min + adj_range;
D
Dirk Brandewie 已提交
884 885 886

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
887 888 889 890 891 892

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

893 894 895 896 897 898
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

899 900
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
901
			cpu_data->epp_powersave = epp;
902
			/* If EPP read was failed, then don't try to write */
903
			if (epp < 0)
904 905 906 907 908 909
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
910
			if (cpu_data->epp_powersave < 0)
911 912 913 914 915 916 917 918 919 920 921 922 923
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

924
			epp = cpu_data->epp_powersave;
925
		}
926
update_epp:
927 928 929 930 931 932 933
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
934 935
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
936
}
D
Dirk Brandewie 已提交
937

938 939 940
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
941
		intel_pstate_hwp_set(policy);
942 943 944 945

	return 0;
}

946 947 948 949 950 951 952 953 954 955 956 957
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

958 959
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
960 961
	int ret;

962 963 964
	if (!hwp_active)
		return 0;

965 966
	mutex_lock(&intel_pstate_limits_lock);

967 968
	all_cpu_data[policy->cpu]->epp_policy = 0;

969 970 971 972 973
	ret = intel_pstate_hwp_set_policy(policy);

	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
974 975
}

976
static void intel_pstate_update_policies(void)
977 978
	__releases(&intel_pstate_limits_lock)
	__acquires(&intel_pstate_limits_lock)
979
{
980
	struct perf_limits *saved_limits = limits;
981 982
	int cpu;

983 984
	mutex_unlock(&intel_pstate_limits_lock);

985 986
	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
987 988 989 990

	mutex_lock(&intel_pstate_limits_lock);

	limits = saved_limits;
D
Dirk Brandewie 已提交
991 992
}

993 994 995 996 997 998 999
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
1000

1001 1002 1003 1004 1005
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
1006
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1007

1008 1009
static struct dentry *debugfs_parent;

1010 1011 1012
struct pid_param {
	char *name;
	void *value;
1013
	struct dentry *dentry;
1014 1015 1016
};

static struct pid_param pid_files[] = {
1017 1018 1019 1020 1021 1022 1023
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
1024 1025
};

1026
static void intel_pstate_debug_expose_params(void)
1027
{
1028
	int i;
1029 1030 1031 1032

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
1033 1034 1035 1036 1037 1038 1039 1040 1041

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
1042 1043 1044
	}
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
1055
	}
1056 1057 1058

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1059 1060 1061 1062 1063 1064 1065 1066 1067
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1068
		return sprintf(buf, "%u\n", limits->object);		\
1069 1070
	}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1099 1100 1101 1102 1103 1104 1105
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1106 1107 1108 1109 1110 1111 1112
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1113 1114 1115 1116
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1117
	turbo_fp = div_fp(no_turbo, total);
1118
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1119 1120 1121

	mutex_unlock(&intel_pstate_driver_lock);

1122 1123 1124
	return sprintf(buf, "%u\n", turbo_pct);
}

1125 1126 1127 1128 1129 1130
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1131 1132 1133 1134 1135 1136 1137
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1138 1139
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1140 1141 1142

	mutex_unlock(&intel_pstate_driver_lock);

1143 1144 1145
	return sprintf(buf, "%u\n", total);
}

1146 1147 1148 1149 1150
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1151 1152 1153 1154 1155 1156 1157
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1158
	update_turbo_state();
1159 1160
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1161
	else
1162
		ret = sprintf(buf, "%u\n", limits->no_turbo);
1163

1164 1165
	mutex_unlock(&intel_pstate_driver_lock);

1166 1167 1168
	return ret;
}

1169
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1170
			      const char *buf, size_t count)
1171 1172 1173
{
	unsigned int input;
	int ret;
1174

1175 1176 1177
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1178

1179 1180 1181 1182 1183 1184 1185
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1186 1187
	mutex_lock(&intel_pstate_limits_lock);

1188
	update_turbo_state();
1189
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
1190
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1191
		mutex_unlock(&intel_pstate_limits_lock);
1192
		mutex_unlock(&intel_pstate_driver_lock);
1193
		return -EPERM;
1194
	}
D
Dirk Brandewie 已提交
1195

1196
	limits->no_turbo = clamp_t(int, input, 0, 1);
1197

1198 1199
	intel_pstate_update_policies();

1200 1201
	mutex_unlock(&intel_pstate_limits_lock);

1202 1203
	mutex_unlock(&intel_pstate_driver_lock);

1204 1205 1206 1207
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1208
				  const char *buf, size_t count)
1209 1210 1211
{
	unsigned int input;
	int ret;
1212

1213 1214 1215 1216
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1217 1218 1219 1220 1221 1222 1223
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1224 1225
	mutex_lock(&intel_pstate_limits_lock);

1226 1227 1228 1229 1230 1231 1232
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
1233
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1234

1235 1236
	intel_pstate_update_policies();

1237 1238
	mutex_unlock(&intel_pstate_limits_lock);

1239 1240
	mutex_unlock(&intel_pstate_driver_lock);

1241 1242 1243 1244
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1245
				  const char *buf, size_t count)
1246 1247 1248
{
	unsigned int input;
	int ret;
1249

1250 1251 1252
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1253

1254 1255 1256 1257 1258 1259 1260
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1261 1262
	mutex_lock(&intel_pstate_limits_lock);

1263 1264 1265 1266 1267 1268 1269
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
1270
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1271

1272 1273
	intel_pstate_update_policies();

1274 1275
	mutex_unlock(&intel_pstate_limits_lock);

1276 1277
	mutex_unlock(&intel_pstate_driver_lock);

1278 1279 1280 1281 1282 1283
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1284
define_one_global_rw(status);
1285 1286 1287
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1288
define_one_global_ro(turbo_pct);
1289
define_one_global_ro(num_pstates);
1290 1291

static struct attribute *intel_pstate_attributes[] = {
1292
	&status.attr,
1293
	&no_turbo.attr,
1294
	&turbo_pct.attr,
1295
	&num_pstates.attr,
1296 1297 1298 1299 1300 1301 1302
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1303
static void __init intel_pstate_sysfs_expose_params(void)
1304
{
1305
	struct kobject *intel_pstate_kobject;
1306 1307 1308 1309
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1310 1311 1312
	if (WARN_ON(!intel_pstate_kobject))
		return;

1313
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1330 1331
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1332

1333
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1334
{
1335
	/* First disable HWP notification interrupt as we don't process them */
1336 1337
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1338

1339
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1340
	cpudata->epp_policy = 0;
1341 1342
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1343 1344
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1364
static int atom_get_min_pstate(void)
1365 1366
{
	u64 value;
1367

1368
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1369
	return (value >> 8) & 0x7F;
1370 1371
}

1372
static int atom_get_max_pstate(void)
1373 1374
{
	u64 value;
1375

1376
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1377
	return (value >> 16) & 0x7F;
1378
}
1379

1380
static int atom_get_turbo_pstate(void)
1381 1382
{
	u64 value;
1383

1384
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1385
	return value & 0x7F;
1386 1387
}

1388
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1389 1390 1391 1392 1393
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1394
	val = (u64)pstate << 8;
1395
	if (limits->no_turbo && !limits->turbo_disabled)
1396 1397 1398 1399 1400 1401 1402
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1403
	vid = ceiling_fp(vid_fp);
1404

1405 1406 1407
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1408
	return val | vid;
1409 1410
}

1411
static int silvermont_get_scaling(void)
1412 1413 1414
{
	u64 value;
	int i;
1415 1416 1417
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1418 1419

	rdmsrl(MSR_FSB_FREQ, value);
1420 1421
	i = value & 0x7;
	WARN_ON(i > 4);
1422

1423 1424
	return silvermont_freq_table[i];
}
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1440 1441
}

1442
static void atom_get_vid(struct cpudata *cpudata)
1443 1444 1445
{
	u64 value;

1446
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
1447 1448
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1449 1450 1451 1452
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1453

1454
	rdmsrl(ATOM_TURBO_VIDS, value);
1455
	cpudata->vid.turbo = value & 0x7f;
1456 1457
}

1458
static int core_get_min_pstate(void)
1459 1460
{
	u64 value;
1461

1462
	rdmsrl(MSR_PLATFORM_INFO, value);
1463 1464 1465
	return (value >> 40) & 0xFF;
}

1466
static int core_get_max_pstate_physical(void)
1467 1468
{
	u64 value;
1469

1470
	rdmsrl(MSR_PLATFORM_INFO, value);
1471 1472 1473
	return (value >> 8) & 0xFF;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1507
static int core_get_max_pstate(void)
1508
{
1509 1510 1511
	u64 tar;
	u64 plat_info;
	int max_pstate;
1512
	int tdp_ratio;
1513 1514 1515 1516 1517
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1518 1519 1520 1521 1522 1523 1524 1525 1526
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1527 1528
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1529 1530
		int tar_levels;

1531
		/* Do some sanity checking for safety */
1532 1533 1534 1535
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1536 1537
		}
	}
1538

1539
	return max_pstate;
1540 1541
}

1542
static int core_get_turbo_pstate(void)
1543 1544 1545
{
	u64 value;
	int nont, ret;
1546

1547
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1548
	nont = core_get_max_pstate();
1549
	ret = (value) & 255;
1550 1551 1552 1553 1554
	if (ret <= nont)
		ret = nont;
	return ret;
}

1555 1556 1557 1558 1559
static inline int core_get_scaling(void)
{
	return 100000;
}

1560
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1561 1562 1563
{
	u64 val;

1564
	val = (u64)pstate << 8;
1565
	if (limits->no_turbo && !limits->turbo_disabled)
1566 1567
		val |= (u64)1 << 32;

1568
	return val;
1569 1570
}

1571 1572 1573 1574 1575
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1576
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1577 1578 1579 1580 1581 1582 1583
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1595
		.get_max_physical = core_get_max_pstate_physical,
1596 1597
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1598
		.get_scaling = core_get_scaling,
1599
		.get_val = core_get_val,
1600
		.get_target_pstate = get_target_pstate_use_performance,
1601 1602 1603
	},
};

1604
static const struct cpu_defaults silvermont_params = {
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1618
		.get_val = atom_get_val,
1619 1620
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1621
		.get_target_pstate = get_target_pstate_use_cpu_load,
1622 1623 1624
	},
};

1625
static const struct cpu_defaults airmont_params = {
1626 1627 1628
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1629
		.setpoint = 60,
1630 1631 1632 1633 1634
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1635 1636 1637 1638
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1639
		.get_val = atom_get_val,
1640
		.get_scaling = airmont_get_scaling,
1641
		.get_vid = atom_get_vid,
1642
		.get_target_pstate = get_target_pstate_use_cpu_load,
1643 1644 1645
	},
};

1646
static const struct cpu_defaults knl_params = {
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1657
		.get_max_physical = core_get_max_pstate_physical,
1658 1659
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1660
		.get_scaling = core_get_scaling,
1661
		.get_val = core_get_val,
1662
		.get_target_pstate = get_target_pstate_use_performance,
1663 1664 1665
	},
};

1666
static const struct cpu_defaults bxt_params = {
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1686 1687 1688
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1689
	int max_perf_adj;
1690
	int min_perf;
1691
	struct perf_limits *perf_limits = limits;
1692

1693
	if (limits->no_turbo || limits->turbo_disabled)
1694 1695
		max_perf = cpu->pstate.max_pstate;

1696 1697 1698
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1699 1700 1701 1702 1703
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1704
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1705 1706
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1707

1708
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1709
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1710 1711
}

1712
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1713
{
1714 1715
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1716 1717 1718 1719 1720 1721 1722
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1723 1724
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1739 1740
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1741 1742
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1743
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1744
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1745
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1746 1747
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1748

1749 1750
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1751 1752

	intel_pstate_set_min_pstate(cpu);
1753 1754
}

1755
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1756
{
1757
	struct sample *sample = &cpu->sample;
1758

1759
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1760 1761
}

1762
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1763 1764
{
	u64 aperf, mperf;
1765
	unsigned long flags;
1766
	u64 tsc;
1767

1768
	local_irq_save(flags);
1769 1770
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1771
	tsc = rdtsc();
1772
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1773
		local_irq_restore(flags);
1774
		return false;
1775
	}
1776
	local_irq_restore(flags);
1777

1778
	cpu->last_sample_time = cpu->sample.time;
1779
	cpu->sample.time = time;
1780 1781
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1782
	cpu->sample.tsc =  tsc;
1783 1784
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1785
	cpu->sample.tsc -= cpu->prev_tsc;
1786

1787 1788
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1789
	cpu->prev_tsc = tsc;
1790 1791 1792 1793 1794 1795 1796 1797
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1798 1799
}

1800 1801
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1802 1803
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1804 1805
}

1806 1807
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1808 1809
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1810 1811
}

1812 1813 1814
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1815
	int32_t busy_frac, boost;
1816
	int target, avg_pstate;
1817

1818
	busy_frac = div_fp(sample->mperf, sample->tsc);
1819

1820 1821
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1822

1823 1824
	if (busy_frac < boost)
		busy_frac = boost;
1825

1826
	sample->busy_scaled = busy_frac * 100;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1847 1848
}

1849
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1850
{
1851
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1852
	u64 duration_ns;
1853

1854
	/*
1855 1856 1857 1858 1859
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1860
	 */
1861 1862
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1863
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1864
			       div_fp(100 * max_pstate, current_pstate));
1865

1866
	/*
1867 1868 1869
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1870
	 * enough period of time to adjust our performance metric.
1871
	 */
1872
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1873
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1874
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1875
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1876 1877 1878
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1879
			perf_scaled = 0;
1880 1881
	}

1882 1883
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1884 1885
}

1886
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1887 1888 1889 1890 1891
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1892 1893 1894 1895 1896
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1897 1898 1899
	if (pstate == cpu->pstate.current_pstate)
		return;

1900
	cpu->pstate.current_pstate = pstate;
1901 1902 1903
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1904 1905
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1906
	int from, target_pstate;
1907 1908 1909
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1910

1911 1912
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1913

1914 1915
	update_turbo_state();

1916 1917
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1918
	intel_pstate_update_pstate(cpu, target_pstate);
1919 1920

	sample = &cpu->sample;
1921
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1922
		fp_toint(sample->busy_scaled),
1923 1924 1925 1926 1927
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1928 1929
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1930 1931
}

1932
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1933
				     unsigned int flags)
1934
{
1935
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1936 1937
	u64 delta_ns;

1938
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1949

1950
	delta_ns = time - cpu->sample.time;
1951
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1952 1953
		bool sample_taken = intel_pstate_sample(cpu, time);

1954
		if (sample_taken) {
1955
			intel_pstate_calc_avg_perf(cpu);
1956 1957 1958
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1959
	}
1960 1961 1962
}

#define ICPU(model, policy) \
1963 1964
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1965 1966

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1984
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1985
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1986 1987 1988 1989
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1990
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1991
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1992 1993
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1994 1995 1996
	{}
};

1997 1998 1999 2000 2001
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

2002 2003 2004 2005
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

2022 2023 2024
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2025
	}
2026 2027 2028 2029

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2030

2031
	if (hwp_active) {
2032 2033 2034 2035 2036 2037
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

2038
		intel_pstate_hwp_enable(cpu);
2039 2040 2041
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
2042

2043
	intel_pstate_get_cpu_pstates(cpu);
2044

2045 2046
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
2047
	pr_debug("controlling: cpu %d\n", cpunum);
2048 2049 2050 2051 2052 2053

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
2054
	struct cpudata *cpu = all_cpu_data[cpu_num];
2055

2056
	return cpu ? get_avg_frequency(cpu) : 0;
2057 2058
}

2059
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2060
{
2061 2062
	struct cpudata *cpu = all_cpu_data[cpu_num];

2063 2064 2065
	if (cpu->update_util_set)
		return;

2066 2067
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2068 2069
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
2070
	cpu->update_util_set = true;
2071 2072 2073 2074
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2075 2076 2077 2078 2079
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2080
	cpufreq_remove_update_util_hook(cpu);
2081
	cpu_data->update_util_set = false;
2082 2083 2084
	synchronize_sched();
}

2085 2086 2087
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
2088

2089 2090 2091
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2092 2093 2094
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
2095 2096
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
2097 2098 2099
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

2114 2115 2116 2117
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2118 2119 2120 2121 2122

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

2123 2124
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2125
	struct cpudata *cpu;
2126
	struct perf_limits *perf_limits = NULL;
2127

2128 2129 2130
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2131 2132 2133
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2134
	cpu = all_cpu_data[policy->cpu];
2135 2136
	cpu->policy = policy->policy;

2137 2138 2139 2140 2141
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
2142 2143
	}

2144 2145 2146
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2147 2148
	mutex_lock(&intel_pstate_limits_lock);

2149
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2150
		pr_debug("set performance\n");
2151 2152 2153 2154
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
2155
	} else {
J
Joe Perches 已提交
2156
		pr_debug("set powersave\n");
2157 2158 2159 2160
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
2161

2162
	}
2163

2164
	intel_pstate_update_perf_limits(policy, perf_limits);
2165

2166
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2167 2168 2169 2170 2171 2172 2173 2174
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2175 2176
	intel_pstate_set_update_util_hook(policy->cpu);

2177
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
2178

2179 2180
	mutex_unlock(&intel_pstate_limits_lock);

2181 2182 2183 2184 2185
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits;

	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
		perf_limits = &performance_limits;
	else
		perf_limits = &powersave_limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
					perf_limits->no_turbo ?
					cpu->pstate.max_freq :
					cpu->pstate.turbo_freq;

2200
	cpufreq_verify_within_cpu_limits(policy);
2201

2202
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2203
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2204 2205
		return -EINVAL;

2206 2207 2208 2209 2210
	/* When per-CPU limits are used, sysfs limits are not used */
	if (!per_cpu_limits) {
		unsigned int max_freq, min_freq;

		max_freq = policy->cpuinfo.max_freq *
2211
					perf_limits->max_sysfs_pct / 100;
2212
		min_freq = policy->cpuinfo.max_freq *
2213
					perf_limits->min_sysfs_pct / 100;
2214 2215 2216
		cpufreq_verify_within_limits(policy, min_freq, max_freq);
	}

2217 2218 2219
	return 0;
}

2220 2221 2222 2223 2224
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2225
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2226
{
2227
	pr_debug("CPU %d exiting\n", policy->cpu);
2228

2229
	intel_pstate_clear_update_util_hook(policy->cpu);
2230 2231 2232
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2233 2234
		intel_cpufreq_stop_cpu(policy);
}
2235

2236 2237 2238
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2239

2240
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2241

2242
	return 0;
2243 2244
}

2245
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2246 2247
{
	struct cpudata *cpu;
2248
	int rc;
2249 2250 2251 2252 2253 2254 2255

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2256
	if (per_cpu_limits)
2257
		intel_pstate_init_limits(cpu->perf_limits);
2258

2259 2260
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2261 2262

	/* cpuinfo and default policy values */
2263
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2264 2265 2266 2267 2268
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2269
	intel_pstate_init_acpi_perf_limits(policy);
2270 2271
	cpumask_set_cpu(policy->cpu, policy->cpus);

2272 2273
	policy->fast_switch_possible = true;

2274 2275 2276
	return 0;
}

2277
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2278
{
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2289 2290 2291 2292

	return 0;
}

2293
static struct cpufreq_driver intel_pstate = {
2294 2295 2296
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2297
	.suspend	= intel_pstate_hwp_save_state,
2298
	.resume		= intel_pstate_resume,
2299 2300
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2301
	.exit		= intel_pstate_cpu_exit,
2302
	.stop_cpu	= intel_pstate_stop_cpu,
2303 2304 2305
	.name		= "intel_pstate",
};

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2368
	freqs.new = target_pstate * cpu->pstate.scaling;
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2382
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2383
	intel_pstate_update_pstate(cpu, target_pstate);
2384
	return target_pstate * cpu->pstate.scaling;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

2435 2436
	intel_pstate_init_limits(&powersave_limits);
	intel_pstate_set_performance_limits(&performance_limits);
2437 2438 2439 2440 2441
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) &&
	    intel_pstate_driver == &intel_pstate)
		limits = &performance_limits;
	else
		limits = &powersave_limits;
2442

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2527 2528 2529
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2530
static unsigned int force_load __initdata;
2531

2532
static int __init intel_pstate_msrs_not_valid(void)
2533
{
2534
	if (!pstate_funcs.get_max() ||
2535 2536
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2537 2538 2539 2540
		return -ENODEV;

	return 0;
}
2541

2542
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2543 2544
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2545
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2546 2547 2548 2549 2550 2551 2552
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2566
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2567 2568
{
	pstate_funcs.get_max   = funcs->get_max;
2569
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2570 2571
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2572
	pstate_funcs.get_scaling = funcs->get_scaling;
2573
	pstate_funcs.get_val   = funcs->get_val;
2574
	pstate_funcs.get_vid   = funcs->get_vid;
2575 2576
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2577
	intel_pstate_use_acpi_profile();
2578 2579
}

2580
#ifdef CONFIG_ACPI
2581

2582
static bool __init intel_pstate_no_acpi_pss(void)
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2611
static bool __init intel_pstate_has_acpi_ppc(void)
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2631 2632 2633 2634
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2635
	int  oem_pwr_table;
2636 2637 2638
};

/* Hardware vendor-specific info that has its own power management modes */
2639
static struct hw_vendor_info vendor_info[] __initdata = {
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2651 2652 2653 2654
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2655 2656 2657
	{0, "", ""},
};

2658
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2659 2660 2661
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2671

2672 2673
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2674 2675 2676
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2677
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2678 2679 2680 2681 2682 2683
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2684 2685
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2686
			}
2687 2688 2689 2690
	}

	return false;
}
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2701 2702
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2703
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2704
static inline void intel_pstate_request_control_from_smm(void) {}
2705 2706
#endif /* CONFIG_ACPI */

2707 2708 2709 2710 2711
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2712 2713 2714
static int __init intel_pstate_init(void)
{
	const struct x86_cpu_id *id;
2715
	struct cpu_defaults *cpu_def;
2716
	int rc = 0;
2717

2718 2719 2720
	if (no_load)
		return -ENODEV;

2721 2722 2723
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
2724
		intel_pstate.attr = hwp_cpufreq_attrs;
2725 2726 2727
		goto hwp_cpu_matched;
	}

2728 2729 2730 2731
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2732
	cpu_def = (struct cpu_defaults *)id->driver_data;
2733

2734 2735
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2736

2737 2738 2739
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2740 2741 2742 2743 2744 2745 2746 2747
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2748 2749 2750
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2751
	pr_info("Intel P-state driver initializing\n");
2752

2753
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2754 2755 2756
	if (!all_cpu_data)
		return -ENOMEM;

2757 2758
	intel_pstate_request_control_from_smm();

2759
	intel_pstate_sysfs_expose_params();
2760

2761
	mutex_lock(&intel_pstate_driver_lock);
2762
	rc = intel_pstate_register_driver();
2763
	mutex_unlock(&intel_pstate_driver_lock);
2764 2765
	if (rc)
		return rc;
2766

2767
	if (hwp_active)
J
Joe Perches 已提交
2768
		pr_info("HWP enabled\n");
2769

2770
	return 0;
2771 2772 2773
}
device_initcall(intel_pstate_init);

2774 2775 2776 2777 2778
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2779
	if (!strcmp(str, "disable")) {
2780
		no_load = 1;
2781 2782 2783 2784 2785
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2786
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2787
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2788
		no_hwp = 1;
2789
	}
2790 2791
	if (!strcmp(str, "force"))
		force_load = 1;
2792 2793
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2794 2795
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2796 2797 2798 2799 2800 2801

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2802 2803 2804 2805
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2806 2807 2808
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");