share_pool.c 108.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Huawei Ascend Share Pool Memory
 *
 * Copyright (C) 2020 Huawei Limited
 * Author: Tang Yizhou <tangyizhou@huawei.com>
 *         Zefan Li <lizefan@huawei.com>
 *         Wu Peng <wupeng58@huawei.com>
 *         Ding Tianhong <dingtgianhong@huawei.com>
 *         Zhou Guanghui <zhouguanghui1@huawei.com>
 *         Li Ming <limingming.li@huawei.com>
 *
 * This code is based on the hisilicon ascend platform.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#define pr_fmt(fmt) "share pool: " fmt

#include <linux/share_pool.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/mm.h>
#include <linux/mm_types.h>
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/shmem_fs.h>
#include <linux/file.h>
#include <linux/printk.h>
#include <linux/hugetlb.h>
#include <linux/vmalloc.h>
#include <linux/pid.h>
#include <linux/pid_namespace.h>
#include <linux/atomic.h>
#include <linux/lockdep.h>
#include <linux/kernel.h>
#include <linux/falloc.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/rmap.h>
#include <linux/preempt.h>
#include <linux/swapops.h>
#include <linux/mmzone.h>
#include <linux/timekeeping.h>
#include <linux/time64.h>
52
#include <linux/pagewalk.h>
53

54 55
#define spg_valid(spg)		((spg)->is_alive == true)

56 57 58 59 60
/* Use spa va address as mmap offset. This can work because spa_file
 * is setup with 64-bit address space. So va shall be well covered.
 */
#define addr_offset(spa)	((spa)->va_start)

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#define byte2kb(size)		((size) >> 10)
#define byte2mb(size)		((size) >> 20)
#define page2kb(page_num)	((page_num) << (PAGE_SHIFT - 10))

#define MAX_GROUP_FOR_SYSTEM	50000
#define MAX_GROUP_FOR_TASK	3000
#define MAX_PROC_PER_GROUP	1024

#define GROUP_NONE		0

#define SEC2US(sec)		((sec) * 1000000)
#define NS2US(ns)		((ns) / 1000)

#define PF_DOMAIN_CORE		0x10000000	/* AOS CORE processes in sched.h */

76 77
static int system_group_count;

78 79 80 81 82
/* idr of all sp_groups */
static DEFINE_IDR(sp_group_idr);
/* rw semaphore for sp_group_idr and mm->sp_group_master */
static DECLARE_RWSEM(sp_group_sem);

83 84
static BLOCKING_NOTIFIER_HEAD(sp_notifier_chain);

85 86 87 88
static DEFINE_IDA(sp_group_id_ida);

/*** Statistical and maintenance tools ***/

89 90 91 92
/* list of all sp_group_masters */
static LIST_HEAD(master_list);
/* mutex to protect insert/delete ops from master_list */
static DEFINE_MUTEX(master_list_lock);
93

94 95 96 97 98
/* list of all spm-dvpp */
static LIST_HEAD(spm_dvpp_list);
/* mutex to protect insert/delete ops from master_list */
static DEFINE_MUTEX(spm_list_lock);

99
/* for kthread buff_module_guard_work */
100
static struct sp_meminfo kthread_stat;
101

102 103 104 105 106 107 108 109
#define SEQ_printf(m, x...)			\
do {						\
	if (m)					\
		seq_printf(m, x);		\
	else					\
		pr_info(x);			\
} while (0)

110 111 112 113 114 115 116 117 118 119 120
struct sp_meminfo {
	/* total size from sp_alloc and k2u */
	atomic64_t	size;
	/* not huge page size from sp_alloc */
	atomic64_t	alloc_nsize;
	/* huge page size from sp_alloc */
	atomic64_t	alloc_hsize;
	/* total size from sp_alloc */
	atomic64_t	alloc_size;
	/* total size from sp_k2u */
	atomic64_t	k2u_size;
121 122
};

123
#ifndef __GENKSYMS__
124 125 126 127 128 129 130 131 132 133 134 135
/* per process/sp-group memory usage statistics */
struct spg_proc_stat {
	/*
	 * alloc amount minus free amount, may be negative when freed by
	 * another task in the same sp group.
	 */
	atomic64_t alloc_size;
	atomic64_t alloc_nsize;
	atomic64_t alloc_hsize;
	atomic64_t k2u_size;
};

136 137 138 139
enum sp_mapping_type {
	SP_MAPPING_START,
	SP_MAPPING_DVPP		= SP_MAPPING_START,
	SP_MAPPING_NORMAL,
C
Chen Jun 已提交
140
	SP_MAPPING_RO,
141 142 143
	SP_MAPPING_END,
};

144 145 146 147
/*
 * address space management
 */
struct sp_mapping {
148
	unsigned long type;
149 150 151 152 153 154 155 156 157 158 159
	atomic_t user;
	unsigned long start[MAX_DEVID];
	unsigned long end[MAX_DEVID];
	struct rb_root area_root;

	struct rb_node *free_area_cache;
	unsigned long cached_hole_size;
	unsigned long cached_vstart;

	/* list head for all groups attached to this mapping, dvpp mapping only */
	struct list_head group_head;
160
	struct list_head spm_node;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
};

/* Processes in the same sp_group can share memory.
 * Memory layout for share pool:
 *
 * |-------------------- 8T -------------------|---|------ 8T ------------|
 * |		Device 0	   |  Device 1 |...|                      |
 * |----------------------------------------------------------------------|
 * |------------- 16G -------------|    16G    |   |                      |
 * | DVPP GROUP0   | DVPP GROUP1   | ... | ... |...|  sp normal memory    |
 * |     sp        |    sp         |     |     |   |                      |
 * |----------------------------------------------------------------------|
 *
 * The host SVM feature reserves 8T virtual memory by mmap, and due to the
 * restriction of DVPP, while SVM and share pool will both allocate memory
 * for DVPP, the memory have to be in the same 32G range.
 *
 * Share pool reserves 16T memory, with 8T for normal uses and 8T for DVPP.
 * Within this 8T DVPP memory, SVM will call sp_config_dvpp_range() to
 * tell us which 16G memory range is reserved for share pool .
 *
 * In some scenarios where there is no host SVM feature, share pool uses
 * the default 8G memory setting for DVPP.
 */
struct sp_group {
	int		 id;
	unsigned long	 flag;
	struct file	 *file;
	struct file	 *file_hugetlb;
	/* number of process in this group */
	int		 proc_num;
	/* list head of processes (sp_group_node, each represents a process) */
	struct list_head procs;
	/* list head of sp_area. it is protected by spin_lock sp_area_lock */
	struct list_head spa_list;
	/* group statistics */
197
	struct sp_meminfo meminfo;
198 199 200
	/* is_alive == false means it's being destroyed */
	bool		 is_alive;
	atomic_t	 use_count;
201
	atomic_t	 spa_num;
202 203 204 205
	/* protect the group internal elements, except spa_list */
	struct rw_semaphore	rw_lock;
	/* list node for dvpp mapping */
	struct list_head	mnode;
206
	struct sp_mapping       *mapping[SP_MAPPING_END];
207 208 209 210
};

/* a per-process(per mm) struct which manages a sp_group_node list */
struct sp_group_master {
211
	pid_t tgid;
212 213 214 215 216 217 218 219 220 221 222 223 224
	/*
	 * number of sp groups the process belongs to,
	 * a.k.a the number of sp_node in node_list
	 */
	unsigned int count;
	/* list head of sp_node */
	struct list_head node_list;
	struct mm_struct *mm;
	/*
	 * Used to apply for the shared pool memory of the current process.
	 * For example, sp_alloc non-share memory or k2task.
	 */
	struct sp_group *local;
225
	struct sp_meminfo meminfo;
226
	struct list_head list_node;
227
	char comm[TASK_COMM_LEN];
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
};

/*
 * each instance represents an sp group the process belongs to
 * sp_group_master    : sp_group_node   = 1 : N
 * sp_group_node->spg : sp_group        = 1 : 1
 * sp_group_node      : sp_group->procs = N : 1
 */
struct sp_group_node {
	/* list node in sp_group->procs */
	struct list_head proc_node;
	/* list node in sp_group_maseter->node_list */
	struct list_head group_node;
	struct sp_group_master *master;
	struct sp_group *spg;
	unsigned long prot;
	struct spg_proc_stat instat;
};
#endif

248 249 250 251 252 253 254 255 256 257 258 259 260 261
static inline void sp_add_group_master(struct sp_group_master *master)
{
	mutex_lock(&master_list_lock);
	list_add_tail(&master->list_node, &master_list);
	mutex_unlock(&master_list_lock);
}

static inline void sp_del_group_master(struct sp_group_master *master)
{
	mutex_lock(&master_list_lock);
	list_del(&master->list_node);
	mutex_unlock(&master_list_lock);
}

262 263 264 265 266
static void meminfo_init(struct sp_meminfo *meminfo)
{
	memset(meminfo, 0, sizeof(struct sp_meminfo));
}

267
static void meminfo_inc_usage(unsigned long size, bool huge, struct sp_meminfo *meminfo)
268
{
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	atomic64_add(size, &meminfo->size);
	atomic64_add(size, &meminfo->alloc_size);
	if (huge)
		atomic64_add(size, &meminfo->alloc_hsize);
	else
		atomic64_add(size, &meminfo->alloc_nsize);
}

static void meminfo_dec_usage(unsigned long size, bool huge, struct sp_meminfo *meminfo)
{
	atomic64_sub(size, &meminfo->size);
	atomic64_sub(size, &meminfo->alloc_size);
	if (huge)
		atomic64_sub(size, &meminfo->alloc_hsize);
	else
		atomic64_sub(size, &meminfo->alloc_nsize);
285 286
}

287
static void meminfo_inc_k2u(unsigned long size, struct sp_meminfo *meminfo)
288
{
289 290 291 292 293 294 295 296
	atomic64_add(size, &meminfo->size);
	atomic64_add(size, &meminfo->k2u_size);
}

static void meminfo_dec_k2u(unsigned long size, struct sp_meminfo *meminfo)
{
	atomic64_sub(size, &meminfo->size);
	atomic64_sub(size, &meminfo->k2u_size);
297 298
}

299 300 301 302 303 304 305 306 307 308
static unsigned long sp_mapping_type(struct sp_mapping *spm)
{
	return spm->type;
}

static void sp_mapping_set_type(struct sp_mapping *spm, unsigned long type)
{
	spm->type = type;
}

309
static struct sp_mapping *sp_mapping_normal;
C
Chen Jun 已提交
310
static struct sp_mapping *sp_mapping_ro;
311

312 313 314
static void sp_mapping_add_to_list(struct sp_mapping *spm)
{
	mutex_lock(&spm_list_lock);
315
	if (sp_mapping_type(spm) == SP_MAPPING_DVPP)
316 317 318 319 320 321 322
		list_add_tail(&spm->spm_node, &spm_dvpp_list);
	mutex_unlock(&spm_list_lock);
}

static void sp_mapping_remove_from_list(struct sp_mapping *spm)
{
	mutex_lock(&spm_list_lock);
323
	if (sp_mapping_type(spm) == SP_MAPPING_DVPP)
324 325 326 327
		list_del(&spm->spm_node);
	mutex_unlock(&spm_list_lock);
}

328 329 330 331 332
static void sp_mapping_range_init(struct sp_mapping *spm)
{
	int i;

	for (i = 0; i < MAX_DEVID; i++) {
333
		switch (sp_mapping_type(spm)) {
C
Chen Jun 已提交
334 335 336 337
		case SP_MAPPING_RO:
			spm->start[i] = MMAP_SHARE_POOL_RO_START;
			spm->end[i]   = MMAP_SHARE_POOL_RO_END;
			break;
338
		case SP_MAPPING_NORMAL:
339
			spm->start[i] = MMAP_SHARE_POOL_NORMAL_START;
340 341 342 343 344 345 346 347 348
			spm->end[i]   = MMAP_SHARE_POOL_NORMAL_END;
			break;
		case SP_MAPPING_DVPP:
			spm->start[i] = MMAP_SHARE_POOL_DVPP_START + i * MMAP_SHARE_POOL_16G_SIZE;
			spm->end[i]   = spm->start[i] + MMAP_SHARE_POOL_16G_SIZE;
			break;
		default:
			pr_err("Invalid sp_mapping type [%lu]\n", sp_mapping_type(spm));
			break;
349 350 351 352
		}
	}
}

353
static struct sp_mapping *sp_mapping_create(unsigned long type)
354 355 356 357 358 359 360
{
	struct sp_mapping *spm;

	spm = kzalloc(sizeof(struct sp_mapping), GFP_KERNEL);
	if (!spm)
		return ERR_PTR(-ENOMEM);

361
	sp_mapping_set_type(spm, type);
362 363 364
	sp_mapping_range_init(spm);
	atomic_set(&spm->user, 0);
	spm->area_root = RB_ROOT;
365
	INIT_LIST_HEAD(&spm->group_head);
366
	sp_mapping_add_to_list(spm);
367 368 369 370

	return spm;
}

371 372
static void sp_mapping_destroy(struct sp_mapping *spm)
{
373
	sp_mapping_remove_from_list(spm);
374 375 376 377 378
	kfree(spm);
}

static void sp_mapping_attach(struct sp_group *spg, struct sp_mapping *spm)
{
379
	unsigned long type = sp_mapping_type(spm);
380
	atomic_inc(&spm->user);
381

382 383
	spg->mapping[type] = spm;
	if (type == SP_MAPPING_DVPP)
384
		list_add_tail(&spg->mnode, &spm->group_head);
385 386 387 388
}

static void sp_mapping_detach(struct sp_group *spg, struct sp_mapping *spm)
{
389 390
	unsigned long type;

391 392
	if (!spm)
		return;
393

394 395
	type = sp_mapping_type(spm);
	if (type == SP_MAPPING_DVPP)
396 397
		list_del(&spg->mnode);
	if (atomic_dec_and_test(&spm->user))
398
		sp_mapping_destroy(spm);
399 400

	spg->mapping[type] = NULL;
401 402
}

403 404 405 406 407 408 409 410 411 412
/* merge old mapping to new, and the old mapping would be destroyed */
static void sp_mapping_merge(struct sp_mapping *new, struct sp_mapping *old)
{
	struct sp_group *spg, *tmp;

	if (new == old)
		return;

	list_for_each_entry_safe(spg, tmp, &old->group_head, mnode) {
		list_move_tail(&spg->mnode, &new->group_head);
413
		spg->mapping[SP_MAPPING_DVPP] = new;
414 415 416 417 418 419 420 421 422 423 424
	}

	atomic_add(atomic_read(&old->user), &new->user);
	sp_mapping_destroy(old);
}

static bool is_mapping_empty(struct sp_mapping *spm)
{
	return RB_EMPTY_ROOT(&spm->area_root);
}

425 426 427 428
static bool can_mappings_merge(struct sp_mapping *m1, struct sp_mapping *m2)
{
	int i;

429
	for (i = 0; i < MAX_DEVID; i++)
430 431 432 433 434 435
		if (m1->start[i] != m2->start[i] || m1->end[i] != m2->end[i])
			return false;

	return true;
}

436
/*
437 438 439 440 441
 * 1. The mappings of local group is set on creating.
 * 2. This is used to setup the mapping for groups created during add_task.
 * 3. The normal mapping exists for all groups.
 * 4. The dvpp mappings for the new group and local group can merge _iff_ at
 *    least one of the mapping is empty.
442
 * the caller must hold sp_group_sem
443
 * NOTE: undo the mergeing when the later process failed.
444 445 446
 */
static int sp_mapping_group_setup(struct mm_struct *mm, struct sp_group *spg)
{
447 448 449 450
	struct sp_mapping *local_dvpp_mapping, *spg_dvpp_mapping;

	local_dvpp_mapping = mm->sp_group_master->local->mapping[SP_MAPPING_DVPP];
	spg_dvpp_mapping = spg->mapping[SP_MAPPING_DVPP];
451

452
	if (!list_empty(&spg->procs) && !(spg->flag & SPG_FLAG_NON_DVPP)) {
453 454 455 456 457 458
		/*
		 * Don't return an error when the mappings' address range conflict.
		 * As long as the mapping is unused, we can drop the empty mapping.
		 * This may change the address range for the task or group implicitly,
		 * give a warn for it.
		 */
459
		bool is_conflict = !can_mappings_merge(local_dvpp_mapping, spg_dvpp_mapping);
460

461 462
		if (is_mapping_empty(local_dvpp_mapping)) {
			sp_mapping_merge(spg_dvpp_mapping, local_dvpp_mapping);
463 464
			if (is_conflict)
				pr_warn_ratelimited("task address space conflict, spg_id=%d\n", spg->id);
465 466
		} else if (is_mapping_empty(spg_dvpp_mapping)) {
			sp_mapping_merge(local_dvpp_mapping, spg_dvpp_mapping);
467 468 469
			if (is_conflict)
				pr_warn_ratelimited("group address space conflict, spg_id=%d\n", spg->id);
		} else {
470 471
			pr_info_ratelimited("Duplicate address space, id=%d\n", spg->id);
			return -EINVAL;
472 473
		}
	} else {
474 475
		if (!(spg->flag & SPG_FLAG_NON_DVPP))
			/* the mapping of local group is always set */
476 477
			sp_mapping_attach(spg, local_dvpp_mapping);
		if (!spg->mapping[SP_MAPPING_NORMAL])
478
			sp_mapping_attach(spg, sp_mapping_normal);
C
Chen Jun 已提交
479 480
		if (!spg->mapping[SP_MAPPING_RO])
			sp_mapping_attach(spg, sp_mapping_ro);
481 482 483 484 485
	}

	return 0;
}

486
static struct sp_mapping *sp_mapping_find(struct sp_group *spg,
C
Chen Jun 已提交
487 488 489 490 491
						 unsigned long addr)
{
	if (addr >= MMAP_SHARE_POOL_NORMAL_START && addr < MMAP_SHARE_POOL_NORMAL_END)
		return spg->mapping[SP_MAPPING_NORMAL];

C
Chen Jun 已提交
492 493 494
	if (addr >= MMAP_SHARE_POOL_RO_START && addr < MMAP_SHARE_POOL_RO_END)
		return spg->mapping[SP_MAPPING_RO];

C
Chen Jun 已提交
495 496 497
	return spg->mapping[SP_MAPPING_DVPP];
}

498
static struct sp_group *create_spg(int spg_id, unsigned long flag);
499
static void free_new_spg_id(bool new, int spg_id);
500 501 502
static void free_sp_group_locked(struct sp_group *spg);
static int local_group_add_task(struct mm_struct *mm, struct sp_group *spg);
static int init_local_group(struct mm_struct *mm)
503
{
504
	int spg_id, ret;
505
	struct sp_group *spg;
506
	struct sp_mapping *spm;
507 508
	struct sp_group_master *master = mm->sp_group_master;

509 510 511 512
	spg_id = ida_alloc_range(&sp_group_id_ida, SPG_ID_LOCAL_MIN,
				 SPG_ID_LOCAL_MAX, GFP_ATOMIC);
	if (spg_id < 0) {
		pr_err_ratelimited("generate local group id failed %d\n", spg_id);
513
		return spg_id;
514 515
	}

516
	spg = create_spg(spg_id, 0);
517
	if (IS_ERR(spg)) {
518 519
		free_new_spg_id(true, spg_id);
		return PTR_ERR(spg);
520 521 522
	}

	master->local = spg;
523 524 525 526 527 528 529
	spm = sp_mapping_create(SP_MAPPING_DVPP);
	if (IS_ERR(spm)) {
		ret = PTR_ERR(spm);
		goto free_spg;
	}
	sp_mapping_attach(master->local, spm);
	sp_mapping_attach(master->local, sp_mapping_normal);
C
Chen Jun 已提交
530
	sp_mapping_attach(master->local, sp_mapping_ro);
531

532 533
	ret = local_group_add_task(mm, spg);
	if (ret < 0)
534
		/* The spm would be released while destroying the spg */
535 536
		goto free_spg;

537
	return 0;
538 539

free_spg:
540
	/* spg_id is freed in free_sp_group_locked */
541
	free_sp_group_locked(spg);
542 543
	master->local = NULL;
	return ret;
544 545
}

546 547
/* The caller must hold sp_group_sem */
static int sp_init_group_master_locked(struct task_struct *tsk, struct mm_struct *mm)
548
{
549
	int ret;
550 551
	struct sp_group_master *master;

552
	if (mm->sp_group_master)
553 554
		return 0;

555 556 557 558 559 560 561
	master = kmalloc(sizeof(struct sp_group_master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

	INIT_LIST_HEAD(&master->node_list);
	master->count = 0;
	master->mm = mm;
562
	master->tgid = tsk->tgid;
563
	get_task_comm(master->comm, current);
564
	meminfo_init(&master->meminfo);
565
	mm->sp_group_master = master;
566
	sp_add_group_master(master);
567 568 569

	ret = init_local_group(mm);
	if (ret)
570
		goto free_master;
571 572

	return 0;
573 574

free_master:
575
	sp_del_group_master(master);
576 577 578 579 580 581 582 583 584
	mm->sp_group_master = NULL;
	kfree(master);

	return ret;
}

static inline bool is_local_group(int spg_id)
{
	return spg_id >= SPG_ID_LOCAL_MIN && spg_id <= SPG_ID_LOCAL_MAX;
585 586
}

587
static struct sp_group *sp_get_local_group(struct task_struct *tsk, struct mm_struct *mm)
588 589 590 591 592 593 594 595 596 597 598 599 600 601
{
	int ret;
	struct sp_group_master *master;

	down_read(&sp_group_sem);
	master = mm->sp_group_master;
	if (master && master->local) {
		atomic_inc(&master->local->use_count);
		up_read(&sp_group_sem);
		return master->local;
	}
	up_read(&sp_group_sem);

	down_write(&sp_group_sem);
602
	ret = sp_init_group_master_locked(tsk, mm);
603 604 605 606 607 608 609 610 611 612 613
	if (ret) {
		up_write(&sp_group_sem);
		return ERR_PTR(ret);
	}
	master = mm->sp_group_master;
	atomic_inc(&master->local->use_count);
	up_write(&sp_group_sem);

	return master->local;
}

614 615
static void update_mem_usage_alloc(unsigned long size, bool inc,
		bool is_hugepage, struct sp_group_node *spg_node)
616 617
{
	if (inc) {
618
		if (is_hugepage)
619
			atomic64_add(size, &spg_node->instat.alloc_hsize);
620 621 622 623 624 625 626 627 628
		else
			atomic64_add(size, &spg_node->instat.alloc_nsize);
		meminfo_inc_usage(size, is_hugepage, &spg_node->master->meminfo);
	} else {
		if (is_hugepage)
			atomic64_sub(size, &spg_node->instat.alloc_hsize);
		else
			atomic64_sub(size, &spg_node->instat.alloc_nsize);
		meminfo_dec_usage(size, is_hugepage, &spg_node->master->meminfo);
629
	}
630 631
}

632 633
static void update_mem_usage_k2u(unsigned long size, bool inc,
		struct sp_group_node *spg_node)
634 635
{
	if (inc) {
636
		atomic64_add(size, &spg_node->instat.k2u_size);
637
		meminfo_inc_k2u(size, &spg_node->master->meminfo);
638
	} else {
639
		atomic64_sub(size, &spg_node->instat.k2u_size);
640
		meminfo_dec_k2u(size, &spg_node->master->meminfo);
641 642 643
	}
}

644
static void sp_init_spg_proc_stat(struct spg_proc_stat *stat)
645
{
646 647
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	atomic64_set(&stat->k2u_size, 0);
}

/* statistics of all sp area, protected by sp_area_lock */
struct sp_spa_stat {
	unsigned int total_num;
	unsigned int alloc_num;
	unsigned int k2u_task_num;
	unsigned int k2u_spg_num;
	unsigned long total_size;
	unsigned long alloc_size;
	unsigned long k2u_task_size;
	unsigned long k2u_spg_size;
	unsigned long dvpp_size;
	unsigned long dvpp_va_size;
};

static struct sp_spa_stat spa_stat;

/* statistics of all sp group born from sp_alloc and k2u(spg) */
struct sp_overall_stat {
	atomic_t spa_total_num;
	atomic64_t spa_total_size;
};

static struct sp_overall_stat sp_overall_stat;

/*** Global share pool VA allocator ***/

enum spa_type {
	SPA_TYPE_ALLOC = 1,
679 680
	/* NOTE: reorganize after the statisical structure is reconstructed. */
	SPA_TYPE_ALLOC_PRIVATE = SPA_TYPE_ALLOC,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	SPA_TYPE_K2TASK,
	SPA_TYPE_K2SPG,
};

/*
 * We bump the reference when each mmap succeeds, and it will be dropped
 * when vma is about to release, so sp_area object will be automatically
 * freed when all tasks in the sp group has exited.
 */
struct sp_area {
	unsigned long va_start;
	unsigned long va_end;		/* va_end always align to hugepage */
	unsigned long real_size;	/* real size with alignment */
	unsigned long region_vstart;	/* belong to normal region or DVPP region */
	unsigned long flags;
	bool is_hugepage;
	bool is_dead;
	atomic_t use_count;		/* How many vmas use this VA region */
	struct rb_node rb_node;		/* address sorted rbtree */
	struct list_head link;		/* link to the spg->head */
	struct sp_group *spg;
	enum spa_type type;		/* where spa born from */
	struct mm_struct *mm;		/* owner of k2u(task) */
	unsigned long kva;		/* shared kva */
	pid_t applier;			/* the original applier process */
	int node_id;			/* memory node */
	int device_id;
};
static DEFINE_SPINLOCK(sp_area_lock);

static unsigned long spa_size(struct sp_area *spa)
{
	return spa->real_size;
}

static struct file *spa_file(struct sp_area *spa)
{
	if (spa->is_hugepage)
		return spa->spg->file_hugetlb;
	else
		return spa->spg->file;
}

724 725
/* the caller should hold sp_area_lock */
static void spa_inc_usage(struct sp_area *spa)
726
{
727 728 729 730 731 732 733 734 735
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num += 1;
		spa_stat.alloc_size += size;
736
		meminfo_inc_usage(size, is_huge, &spa->spg->meminfo);
737 738 739 740
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num += 1;
		spa_stat.k2u_task_size += size;
741
		meminfo_inc_k2u(size, &spa->spg->meminfo);
742 743 744 745
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num += 1;
		spa_stat.k2u_spg_size += size;
746
		meminfo_inc_k2u(size, &spa->spg->meminfo);
747 748 749 750 751 752 753 754 755 756
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size += size;
		spa_stat.dvpp_va_size += ALIGN(size, PMD_SIZE);
	}

757
	atomic_inc(&spa->spg->spa_num);
758 759 760 761 762 763 764
	/*
	 * all the calculations won't overflow due to system limitation and
	 * parameter checking in sp_alloc_area()
	 */
	spa_stat.total_num += 1;
	spa_stat.total_size += size;

765
	if (!is_local_group(spa->spg->id)) {
766 767 768
		atomic_inc(&sp_overall_stat.spa_total_num);
		atomic64_add(size, &sp_overall_stat.spa_total_size);
	}
769 770
}

771 772
/* the caller should hold sp_area_lock */
static void spa_dec_usage(struct sp_area *spa)
773
{
774 775 776 777 778 779 780 781 782
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num -= 1;
		spa_stat.alloc_size -= size;
783
		meminfo_dec_usage(size, is_huge, &spa->spg->meminfo);
784 785 786 787
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num -= 1;
		spa_stat.k2u_task_size -= size;
788
		meminfo_dec_k2u(size, &spa->spg->meminfo);
789 790 791 792
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num -= 1;
		spa_stat.k2u_spg_size -= size;
793
		meminfo_dec_k2u(size, &spa->spg->meminfo);
794 795 796 797 798 799 800 801 802 803
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size -= size;
		spa_stat.dvpp_va_size -= ALIGN(size, PMD_SIZE);
	}

804
	atomic_dec(&spa->spg->spa_num);
805 806 807
	spa_stat.total_num -= 1;
	spa_stat.total_size -= size;

808
	if (!is_local_group(spa->spg->id)) {
809 810 811
		atomic_dec(&sp_overall_stat.spa_total_num);
		atomic64_sub(spa->real_size, &sp_overall_stat.spa_total_size);
	}
812 813
}

814 815
static void update_mem_usage(unsigned long size, bool inc, bool is_hugepage,
	struct sp_group_node *spg_node, enum spa_type type)
816
{
817 818
	switch (type) {
	case SPA_TYPE_ALLOC:
819
		update_mem_usage_alloc(size, inc, is_hugepage, spg_node);
820 821 822
		break;
	case SPA_TYPE_K2TASK:
	case SPA_TYPE_K2SPG:
823
		update_mem_usage_k2u(size, inc, spg_node);
824 825 826 827
		break;
	default:
		WARN(1, "invalid stat type\n");
	}
828 829
}

830 831 832 833 834 835 836 837 838 839 840 841
struct sp_group_node *find_spg_node_by_spg(struct mm_struct *mm,
		struct sp_group *spg)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &mm->sp_group_master->node_list, group_node) {
		if (spg_node->spg == spg)
			return spg_node;
	}
	return NULL;
}

842 843
static void sp_update_process_stat(struct task_struct *tsk, bool inc,
	struct sp_area *spa)
844
{
845
	struct sp_group_node *spg_node;
846 847
	unsigned long size = spa->real_size;
	enum spa_type type = spa->type;
848

849
	spg_node = find_spg_node_by_spg(tsk->mm, spa->spg);
G
Guo Mengqi 已提交
850
	update_mem_usage(size, inc, spa->is_hugepage, spg_node, type);
851 852 853 854 855 856
}

static inline void check_interrupt_context(void)
{
	if (unlikely(in_interrupt()))
		panic("function can't be used in interrupt context\n");
857 858
}

859 860 861 862 863 864 865 866
static inline bool check_aoscore_process(struct task_struct *tsk)
{
	if (tsk->flags & PF_DOMAIN_CORE)
		return true;
	else
		return false;
}

867 868
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
869
			     unsigned long prot, struct vm_area_struct **pvma);
870
static void sp_munmap(struct mm_struct *mm, unsigned long addr, unsigned long size);
871 872 873 874 875 876 877 878 879 880 881

#define K2U_NORMAL	0
#define K2U_COREDUMP	1

struct sp_k2u_context {
	unsigned long kva;
	unsigned long kva_aligned;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	int state;
882
	enum spa_type type;
883 884
};

885 886
static unsigned long sp_remap_kva_to_vma(struct sp_area *spa, struct mm_struct *mm,
					unsigned long prot, struct sp_k2u_context *kc);
887

888 889 890
static void free_sp_group_id(int spg_id)
{
	/* ida operation is protected by an internal spin_lock */
891 892
	if ((spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX) ||
	    (spg_id >= SPG_ID_LOCAL_MIN && spg_id <= SPG_ID_LOCAL_MAX))
893 894 895
		ida_free(&sp_group_id_ida, spg_id);
}

896 897 898 899 900 901
static void free_new_spg_id(bool new, int spg_id)
{
	if (new)
		free_sp_group_id(spg_id);
}

902
static void free_sp_group_locked(struct sp_group *spg)
903
{
904 905
	int type;

906 907 908 909
	fput(spg->file);
	fput(spg->file_hugetlb);
	idr_remove(&sp_group_idr, spg->id);
	free_sp_group_id((unsigned int)spg->id);
910 911 912 913

	for (type = SP_MAPPING_START; type < SP_MAPPING_END; type++)
		sp_mapping_detach(spg, spg->mapping[type]);

914 915
	if (!is_local_group(spg->id))
		system_group_count--;
916

917 918 919 920
	kfree(spg);
	WARN(system_group_count < 0, "unexpected group count\n");
}

921 922 923 924 925 926 927
static void free_sp_group(struct sp_group *spg)
{
	down_write(&sp_group_sem);
	free_sp_group_locked(spg);
	up_write(&sp_group_sem);
}

928
static void sp_group_put_locked(struct sp_group *spg)
929 930 931 932 933 934 935
{
	lockdep_assert_held_write(&sp_group_sem);

	if (atomic_dec_and_test(&spg->use_count))
		free_sp_group_locked(spg);
}

936
static void sp_group_put(struct sp_group *spg)
937 938 939 940 941 942
{
	if (atomic_dec_and_test(&spg->use_count))
		free_sp_group(spg);
}

/* use with put_task_struct(task) */
943
static int get_task(int tgid, struct task_struct **task)
944 945
{
	struct task_struct *tsk;
946
	struct pid *p;
947 948

	rcu_read_lock();
949 950
	p = find_pid_ns(tgid, &init_pid_ns);
	tsk = pid_task(p, PIDTYPE_TGID);
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	if (!tsk || (tsk->flags & PF_EXITING)) {
		rcu_read_unlock();
		return -ESRCH;
	}
	get_task_struct(tsk);
	rcu_read_unlock();

	*task = tsk;
	return 0;
}

/*
 * the caller must:
 * 1. hold spg->rw_lock
 * 2. ensure no concurrency problem for mm_struct
 */
967
static bool is_process_in_group(struct sp_group *spg,
968 969 970 971 972 973
						 struct mm_struct *mm)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &spg->procs, proc_node)
		if (spg_node->master->mm == mm)
974
			return true;
975

976
	return false;
977 978
}

979 980
/* user must call sp_group_put() after use */
static struct sp_group *sp_group_get_locked(int tgid, int spg_id)
981 982 983 984 985 986
{
	struct sp_group *spg = NULL;
	struct task_struct *tsk = NULL;
	int ret = 0;

	if (spg_id == SPG_ID_DEFAULT) {
987
		ret = get_task(tgid, &tsk);
988 989 990
		if (ret)
			return NULL;

991 992 993
		task_lock(tsk);
		if (tsk->mm == NULL)
			spg = NULL;
994 995
		else if (tsk->mm->sp_group_master)
			spg = tsk->mm->sp_group_master->local;
996
		task_unlock(tsk);
997 998

		put_task_struct(tsk);
999 1000 1001 1002
	} else {
		spg = idr_find(&sp_group_idr, spg_id);
	}

1003 1004
	if (!spg || !atomic_inc_not_zero(&spg->use_count))
		return NULL;
1005

1006
	return spg;
1007 1008
}

1009
static struct sp_group *sp_group_get(int tgid, int spg_id)
1010 1011 1012 1013
{
	struct sp_group *spg;

	down_read(&sp_group_sem);
1014
	spg = sp_group_get_locked(tgid, spg_id);
1015 1016 1017 1018
	up_read(&sp_group_sem);
	return spg;
}

1019 1020
/**
 * mp_sp_group_id_by_pid() - Get the sp_group ID array of a process.
1021
 * @tgid: tgid of target process.
1022 1023 1024 1025 1026 1027 1028 1029 1030
 * @spg_ids: point to an array to save the group ids the process belongs to
 * @num: input the spg_ids array size; output the spg number of the process
 *
 * Return:
 * >0		- the sp_group ID.
 * -ENODEV	- target process doesn't belong to any sp_group.
 * -EINVAL	- spg_ids or num is NULL.
 * -E2BIG	- the num of groups process belongs to is larger than *num
 */
1031
int mg_sp_group_id_by_pid(int tgid, int *spg_ids, int *num)
1032
{
1033
	int ret = 0, real_count;
1034 1035 1036 1037
	struct sp_group_node *node;
	struct sp_group_master *master = NULL;
	struct task_struct *tsk;

1038 1039 1040
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1041 1042
	check_interrupt_context();

1043
	if (!spg_ids || !num || *num <= 0)
1044 1045
		return -EINVAL;

1046
	ret = get_task(tgid, &tsk);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (ret)
		return ret;

	down_read(&sp_group_sem);
	task_lock(tsk);
	if (tsk->mm)
		master = tsk->mm->sp_group_master;
	task_unlock(tsk);

	if (!master) {
		ret = -ENODEV;
		goto out_up_read;
	}

1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * There is a local group for each process which is used for
	 * passthrough allocation. The local group is a internal
	 * implementation for convenience and is not attempt to bother
	 * the user.
	 */
	real_count = master->count - 1;
	if (real_count <= 0) {
1069 1070 1071
		ret = -ENODEV;
		goto out_up_read;
	}
1072
	if ((unsigned int)*num < real_count) {
1073 1074 1075
		ret = -E2BIG;
		goto out_up_read;
	}
1076
	*num = real_count;
1077

1078 1079 1080
	list_for_each_entry(node, &master->node_list, group_node) {
		if (is_local_group(node->spg->id))
			continue;
1081
		*(spg_ids++) = node->spg->id;
1082
	}
1083 1084 1085 1086 1087

out_up_read:
	up_read(&sp_group_sem);
	put_task_struct(tsk);
	return ret;
1088 1089 1090
}
EXPORT_SYMBOL_GPL(mg_sp_group_id_by_pid);

1091 1092 1093 1094 1095
static bool is_online_node_id(int node_id)
{
	return node_id >= 0 && node_id < MAX_NUMNODES && node_online(node_id);
}

1096 1097 1098 1099 1100 1101 1102
static void sp_group_init(struct sp_group *spg, int spg_id, unsigned long flag)
{
	spg->id = spg_id;
	spg->flag = flag;
	spg->is_alive = true;
	spg->proc_num = 0;
	atomic_set(&spg->use_count, 1);
1103
	atomic_set(&spg->spa_num, 0);
1104 1105 1106 1107
	INIT_LIST_HEAD(&spg->procs);
	INIT_LIST_HEAD(&spg->spa_list);
	INIT_LIST_HEAD(&spg->mnode);
	init_rwsem(&spg->rw_lock);
1108
	meminfo_init(&spg->meminfo);
1109 1110
}

1111
static struct sp_group *create_spg(int spg_id, unsigned long flag)
1112
{
1113 1114
	int ret;
	struct sp_group *spg;
1115
	char name[DNAME_INLINE_LEN];
1116 1117 1118
	struct user_struct *user = NULL;
	int hsize_log = MAP_HUGE_2MB >> MAP_HUGE_SHIFT;

1119 1120
	if (unlikely(system_group_count + 1 == MAX_GROUP_FOR_SYSTEM &&
		     !is_local_group(spg_id))) {
1121
		pr_err("reach system max group num\n");
1122 1123 1124 1125 1126 1127 1128 1129
		return ERR_PTR(-ENOSPC);
	}

	spg = kzalloc(sizeof(*spg), GFP_KERNEL);
	if (spg == NULL)
		return ERR_PTR(-ENOMEM);

	sprintf(name, "sp_group_%d", spg_id);
1130
	spg->file = shmem_kernel_file_setup(name, MAX_LFS_FILESIZE, VM_NORESERVE);
1131 1132 1133
	if (IS_ERR(spg->file)) {
		pr_err("spg file setup failed %ld\n", PTR_ERR(spg->file));
		ret = PTR_ERR(spg->file);
1134
		goto out_kfree;
1135 1136
	}

1137
	sprintf(name, "sp_group_%d_huge", spg_id);
1138
	spg->file_hugetlb = hugetlb_file_setup(name, MAX_LFS_FILESIZE,
1139
				VM_NORESERVE, &user, HUGETLB_ANONHUGE_INODE, hsize_log);
1140
	if (IS_ERR(spg->file_hugetlb)) {
1141
		pr_err("spg file_hugetlb setup failed %ld\n", PTR_ERR(spg->file_hugetlb));
1142 1143 1144 1145
		ret = PTR_ERR(spg->file_hugetlb);
		goto out_fput;
	}

1146 1147 1148 1149 1150 1151 1152 1153
	sp_group_init(spg, spg_id, flag);

	ret = idr_alloc(&sp_group_idr, spg, spg_id, spg_id + 1, GFP_KERNEL);
	if (ret < 0) {
		pr_err("group %d idr alloc failed %d\n", spg_id, ret);
		goto out_fput_huge;
	}

1154 1155
	if (!is_local_group(spg_id))
		system_group_count++;
1156

1157 1158
	return spg;

1159 1160
out_fput_huge:
	fput(spg->file_hugetlb);
1161 1162 1163 1164 1165
out_fput:
	fput(spg->file);
out_kfree:
	kfree(spg);
	return ERR_PTR(ret);
1166 1167
}

1168
/* the caller must hold sp_group_sem */
1169
static struct sp_group *find_or_alloc_sp_group(int spg_id, unsigned long flag)
1170 1171 1172
{
	struct sp_group *spg;

1173
	spg = sp_group_get_locked(current->tgid, spg_id);
1174 1175

	if (!spg) {
1176
		spg = create_spg(spg_id, flag);
1177 1178 1179 1180
	} else {
		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
1181
			sp_group_put_locked(spg);
1182 1183 1184
			return ERR_PTR(-ENODEV);
		}
		up_read(&spg->rw_lock);
1185
		/* spg->use_count has increased due to sp_group_get() */
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	}

	return spg;
}

static void __sp_area_drop_locked(struct sp_area *spa);

/* The caller must down_write(&mm->mmap_lock) */
static void sp_munmap_task_areas(struct mm_struct *mm, struct sp_group *spg, struct list_head *stop)
{
	struct sp_area *spa, *prev = NULL;
	int err;


	spin_lock(&sp_area_lock);
	list_for_each_entry(spa, &spg->spa_list, link) {
		if (&spa->link == stop)
			break;

		__sp_area_drop_locked(prev);
		prev = spa;

		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

		err = do_munmap(mm, spa->va_start, spa_size(spa), NULL);
		if (err) {
			/* we are not supposed to fail */
			pr_err("failed to unmap VA %pK when munmap task areas\n",
			       (void *)spa->va_start);
		}

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);

	spin_unlock(&sp_area_lock);
}

/* the caller must hold sp_group_sem */
1226 1227
static int mm_add_group_init(struct task_struct *tsk, struct mm_struct *mm,
			     struct sp_group *spg)
1228
{
1229 1230
	int ret;
	struct sp_group_master *master;
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240
	if (!mm->sp_group_master) {
		ret = sp_init_group_master_locked(tsk, mm);
		if (ret)
			return ret;
	} else {
		if (is_process_in_group(spg, mm)) {
			pr_err_ratelimited("task already in target group, id=%d\n", spg->id);
			return -EEXIST;
		}
1241

1242 1243 1244 1245 1246
		master = mm->sp_group_master;
		if (master->count == MAX_GROUP_FOR_TASK) {
			pr_err("task reaches max group num\n");
			return -ENOSPC;
		}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	}

	return 0;
}

/* the caller must hold sp_group_sem */
static struct sp_group_node *create_spg_node(struct mm_struct *mm,
	unsigned long prot, struct sp_group *spg)
{
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group_node *spg_node;

	spg_node = kzalloc(sizeof(struct sp_group_node), GFP_KERNEL);
	if (spg_node == NULL)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&spg_node->group_node);
	INIT_LIST_HEAD(&spg_node->proc_node);
	spg_node->spg = spg;
	spg_node->master = master;
	spg_node->prot = prot;
1268
	sp_init_spg_proc_stat(&spg_node->instat);
1269 1270 1271 1272 1273 1274 1275 1276 1277

	list_add_tail(&spg_node->group_node, &master->node_list);
	master->count++;

	return spg_node;
}

/* the caller must down_write(&spg->rw_lock) */
static int insert_spg_node(struct sp_group *spg, struct sp_group_node *node)
1278
{
1279 1280 1281 1282 1283 1284 1285
	if (spg->proc_num + 1 == MAX_PROC_PER_GROUP) {
		pr_err_ratelimited("add group: group reaches max process num\n");
		return -ENOSPC;
	}

	spg->proc_num++;
	list_add_tail(&node->proc_node, &spg->procs);
1286 1287 1288 1289

	return 0;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/* the caller must down_write(&spg->rw_lock) */
static void delete_spg_node(struct sp_group *spg, struct sp_group_node *node)
{
	list_del(&node->proc_node);
	spg->proc_num--;
}

/* the caller must hold sp_group_sem */
static void free_spg_node(struct mm_struct *mm, struct sp_group *spg,
	struct sp_group_node *spg_node)
{
	struct sp_group_master *master = mm->sp_group_master;

	list_del(&spg_node->group_node);
	master->count--;

	kfree(spg_node);
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static int local_group_add_task(struct mm_struct *mm, struct sp_group *spg)
{
	struct sp_group_node *node;

	node = create_spg_node(mm, PROT_READ | PROT_WRITE, spg);
	if (IS_ERR(node))
		return PTR_ERR(node);

	insert_spg_node(spg, node);
	mmget(mm);

	return 0;
}

1323
/**
1324
 * mg_sp_group_add_task() - Add a process to an share group (sp_group).
1325
 * @tgid: the tgid of the task to be added.
1326 1327
 * @prot: the prot of task for this spg.
 * @spg_id: the ID of the sp_group.
1328
 * @flag: to give some special message.
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
 *
 * A process can't be added to more than one sp_group in single group mode
 * and can in multiple group mode.
 *
 * Return: A postive group number for success, -errno on failure.
 *
 * The manually specified ID is between [SPG_ID_MIN, SPG_ID_MAX].
 * The automatically allocated ID is between [SPG_ID_AUTO_MIN, SPG_ID_AUTO_MAX].
 * When negative, the return value is -errno.
 */
1339
int mg_sp_group_add_task(int tgid, unsigned long prot, int spg_id)
1340
{
1341
	unsigned long flag = 0;
1342 1343 1344 1345 1346 1347 1348 1349
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct sp_group *spg;
	struct sp_group_node *node = NULL;
	int ret = 0;
	bool id_newly_generated = false;
	struct sp_area *spa, *prev = NULL;

1350 1351 1352
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	check_interrupt_context();

	/* only allow READ, READ | WRITE */
	if (!((prot == PROT_READ)
	      || (prot == (PROT_READ | PROT_WRITE)))) {
		pr_err_ratelimited("prot is invalid 0x%lx\n", prot);
		return -EINVAL;
	}

	if (spg_id < SPG_ID_MIN || spg_id > SPG_ID_AUTO) {
		pr_err_ratelimited("add group failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX) {
1368
		spg = sp_group_get(tgid, spg_id);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

		if (!spg) {
			pr_err_ratelimited("spg %d hasn't been created\n", spg_id);
			return -EINVAL;
		}

		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			pr_err_ratelimited("add group failed, group id %d is dead\n", spg_id);
1379
			sp_group_put(spg);
1380 1381 1382 1383
			return -EINVAL;
		}
		up_read(&spg->rw_lock);

1384
		sp_group_put(spg);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	}

	if (spg_id == SPG_ID_AUTO) {
		spg_id = ida_alloc_range(&sp_group_id_ida, SPG_ID_AUTO_MIN,
					 SPG_ID_AUTO_MAX, GFP_ATOMIC);
		if (spg_id < 0) {
			pr_err_ratelimited("add group failed, auto generate group id failed\n");
			return spg_id;
		}
		id_newly_generated = true;
	}

	down_write(&sp_group_sem);

1399
	ret = get_task(tgid, &tsk);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (ret) {
		up_write(&sp_group_sem);
		free_new_spg_id(id_newly_generated, spg_id);
		goto out;
	}

	if (check_aoscore_process(tsk)) {
		up_write(&sp_group_sem);
		ret = -EACCES;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_task;
	}

	/*
	 * group_leader: current thread may be exiting in a multithread process
	 *
	 * DESIGN IDEA
	 * We increase mm->mm_users deliberately to ensure it's decreased in
	 * share pool under only 2 circumstances, which will simply the overall
	 * design as mm won't be freed unexpectedly.
	 *
	 * The corresponding refcount decrements are as follows:
	 * 1. the error handling branch of THIS function.
	 * 2. In sp_group_exit(). It's called only when process is exiting.
	 */
	mm = get_task_mm(tsk->group_leader);
	if (!mm) {
		up_write(&sp_group_sem);
		ret = -ESRCH;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_task;
	}

1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (mm->sp_group_master && mm->sp_group_master->tgid != tgid) {
		up_write(&sp_group_sem);
		pr_err("add: task(%d) is a vfork child of the original task(%d)\n",
			tgid, mm->sp_group_master->tgid);
		ret = -EINVAL;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_mm;
	}

1442
	spg = find_or_alloc_sp_group(spg_id, flag);
1443 1444 1445 1446 1447 1448 1449
	if (IS_ERR(spg)) {
		up_write(&sp_group_sem);
		ret = PTR_ERR(spg);
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_mm;
	}

1450 1451 1452 1453
	down_write(&spg->rw_lock);
	ret = mm_add_group_init(tsk, mm, spg);
	if (ret) {
		up_write(&spg->rw_lock);
1454
		goto out_drop_group;
1455
	}
1456

1457
	ret = sp_mapping_group_setup(mm, spg);
1458 1459
	if (ret) {
		up_write(&spg->rw_lock);
1460
		goto out_drop_group;
1461
	}
1462

1463 1464
	node = create_spg_node(mm, prot, spg);
	if (unlikely(IS_ERR(node))) {
1465
		up_write(&spg->rw_lock);
1466
		ret = PTR_ERR(node);
1467
		goto out_drop_group;
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	}

	ret = insert_spg_node(spg, node);
	if (unlikely(ret)) {
		up_write(&spg->rw_lock);
		goto out_drop_spg_node;
	}

	/*
	 * create mappings of existing shared memory segments into this
	 * new process' page table.
	 */
	spin_lock(&sp_area_lock);

	list_for_each_entry(spa, &spg->spa_list, link) {
		unsigned long populate = 0;
		struct file *file = spa_file(spa);
		unsigned long addr;
1486
		unsigned long prot_spa = prot;
C
Chen Jun 已提交
1487 1488

		if ((spa->flags & (SP_PROT_RO | SP_PROT_FOCUS)) == (SP_PROT_RO | SP_PROT_FOCUS))
1489
			prot_spa &= ~PROT_WRITE;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

		__sp_area_drop_locked(prev);
		prev = spa;

		atomic_inc(&spa->use_count);

		if (spa->is_dead == true)
			continue;

		spin_unlock(&sp_area_lock);

		if (spa->type == SPA_TYPE_K2SPG && spa->kva) {
1502
			addr = sp_remap_kva_to_vma(spa, mm, prot_spa, NULL);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			if (IS_ERR_VALUE(addr))
				pr_warn("add group remap k2u failed %ld\n", addr);

			spin_lock(&sp_area_lock);
			continue;
		}

		down_write(&mm->mmap_lock);
		if (unlikely(mm->core_state)) {
			sp_munmap_task_areas(mm, spg, &spa->link);
			up_write(&mm->mmap_lock);
			ret = -EBUSY;
			pr_err("add group: encountered coredump, abort\n");
			spin_lock(&sp_area_lock);
			break;
		}

1520
		addr = sp_mmap(mm, file, spa, &populate, prot_spa, NULL);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		if (IS_ERR_VALUE(addr)) {
			sp_munmap_task_areas(mm, spg, &spa->link);
			up_write(&mm->mmap_lock);
			ret = addr;
			pr_err("add group: sp mmap failed %d\n", ret);
			spin_lock(&sp_area_lock);
			break;
		}
		up_write(&mm->mmap_lock);

		if (populate) {
			ret = do_mm_populate(mm, spa->va_start, populate, 0);
			if (ret) {
				if (unlikely(fatal_signal_pending(current)))
					pr_warn_ratelimited("add group failed, current thread is killed\n");
				else
					pr_warn_ratelimited("add group failed, mm populate failed (potential no enough memory when -12): %d, spa type is %d\n",
					ret, spa->type);
				down_write(&mm->mmap_lock);
				sp_munmap_task_areas(mm, spg, spa->link.next);
				up_write(&mm->mmap_lock);
				spin_lock(&sp_area_lock);
				break;
			}
		}

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);

	if (unlikely(ret))
		delete_spg_node(spg, node);
	up_write(&spg->rw_lock);

out_drop_spg_node:
	if (unlikely(ret))
		free_spg_node(mm, spg, node);
	/*
	 * to simplify design, we don't release the resource of
	 * group_master and proc_stat, they will be freed when
	 * process is exiting.
	 */
out_drop_group:
	if (unlikely(ret)) {
		up_write(&sp_group_sem);
1567
		sp_group_put(spg);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	} else
		up_write(&sp_group_sem);
out_put_mm:
	/* No need to put the mm if the sp group adds this mm successfully */
	if (unlikely(ret))
		mmput(mm);
out_put_task:
	put_task_struct(tsk);
out:
	return ret == 0 ? spg_id : ret;
}
1579 1580
EXPORT_SYMBOL_GPL(mg_sp_group_add_task);

1581 1582
/**
 * mg_sp_group_del_task() - delete a process from a sp group.
1583
 * @tgid: the tgid of the task to be deleted
1584 1585 1586 1587 1588 1589 1590
 * @spg_id: sharepool group id
 *
 * the group's spa list must be empty, or deletion will fail.
 *
 * Return:
 * * if success, return 0.
 * * -EINVAL, spg_id invalid or spa_lsit not emtpy or spg dead
1591
 * * -ESRCH, the task group of tgid is not in group / process dead
1592
 */
1593
int mg_sp_group_del_task(int tgid, int spg_id)
1594
{
1595 1596 1597 1598 1599 1600 1601
	int ret = 0;
	struct sp_group *spg;
	struct sp_group_node *spg_node;
	struct task_struct *tsk = NULL;
	struct mm_struct *mm = NULL;
	bool is_alive = true;

1602 1603 1604
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1605
	if (spg_id < SPG_ID_MIN || spg_id > SPG_ID_AUTO) {
1606
		pr_err("del from group failed, invalid group id %d\n", spg_id);
1607 1608 1609
		return -EINVAL;
	}

1610
	spg = sp_group_get(tgid, spg_id);
1611
	if (!spg) {
1612 1613
		pr_err("spg not found or get task failed, tgid:%d, spg_id:%d\n",
			tgid, spg_id);
1614 1615 1616 1617 1618 1619
		return -EINVAL;
	}
	down_write(&sp_group_sem);

	if (!spg_valid(spg)) {
		up_write(&sp_group_sem);
1620
		pr_err("spg dead, spg_id:%d\n", spg_id);
1621 1622 1623 1624
		ret = -EINVAL;
		goto out;
	}

1625
	ret = get_task(tgid, &tsk);
1626 1627
	if (ret) {
		up_write(&sp_group_sem);
1628
		pr_err("task is not found, tgid:%d\n", tgid);
1629 1630 1631 1632 1633
		goto out;
	}
	mm = get_task_mm(tsk->group_leader);
	if (!mm) {
		up_write(&sp_group_sem);
1634
		pr_err("mm is not found, tgid:%d\n", tgid);
1635 1636 1637 1638
		ret = -ESRCH;
		goto out_put_task;
	}

1639 1640 1641 1642 1643 1644 1645
	if (!mm->sp_group_master) {
		up_write(&sp_group_sem);
		pr_err("task(%d) is not in any group(%d)\n", tgid, spg_id);
		ret = -EINVAL;
		goto out_put_mm;
	}

1646 1647 1648 1649 1650 1651 1652 1653
	if (mm->sp_group_master->tgid != tgid) {
		up_write(&sp_group_sem);
		pr_err("del: task(%d) is a vfork child of the original task(%d)\n",
			tgid, mm->sp_group_master->tgid);
		ret = -EINVAL;
		goto out_put_mm;
	}

1654
	spg_node = find_spg_node_by_spg(mm, spg);
1655 1656
	if (!spg_node) {
		up_write(&sp_group_sem);
1657
		pr_err("task(%d) not in group(%d)\n", tgid, spg_id);
1658 1659 1660 1661 1662
		ret = -ESRCH;
		goto out_put_mm;
	}

	down_write(&spg->rw_lock);
1663 1664 1665 1666

	if (!list_empty(&spg->spa_list)) {
		up_write(&spg->rw_lock);
		up_write(&sp_group_sem);
1667
		pr_err("spa is not empty, task:%d, spg_id:%d\n", tgid, spg_id);
1668 1669 1670 1671
		ret = -EINVAL;
		goto out_put_mm;
	}

1672 1673 1674 1675
	if (list_is_singular(&spg->procs))
		is_alive = spg->is_alive = false;
	spg->proc_num--;
	list_del(&spg_node->proc_node);
1676
	sp_group_put(spg);
1677 1678 1679 1680 1681 1682 1683
	up_write(&spg->rw_lock);
	if (!is_alive)
		blocking_notifier_call_chain(&sp_notifier_chain, 0, spg);

	list_del(&spg_node->group_node);
	mm->sp_group_master->count--;
	kfree(spg_node);
1684
	atomic_dec(&mm->mm_users);
1685 1686 1687 1688 1689 1690 1691 1692

	up_write(&sp_group_sem);

out_put_mm:
	mmput(mm);
out_put_task:
	put_task_struct(tsk);
out:
1693
	sp_group_put(spg); /* if spg dead, freed here */
1694
	return ret;
1695 1696 1697
}
EXPORT_SYMBOL_GPL(mg_sp_group_del_task);

1698
int mg_sp_id_of_current(void)
1699 1700 1701 1702
{
	int ret, spg_id;
	struct sp_group_master *master;

1703 1704 1705
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1706
	if ((current->flags & PF_KTHREAD) || !current->mm)
1707 1708 1709 1710
		return -EINVAL;

	down_read(&sp_group_sem);
	master = current->mm->sp_group_master;
1711
	if (master) {
1712 1713 1714 1715 1716 1717 1718
		spg_id = master->local->id;
		up_read(&sp_group_sem);
		return spg_id;
	}
	up_read(&sp_group_sem);

	down_write(&sp_group_sem);
1719
	ret = sp_init_group_master_locked(current, current->mm);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	if (ret) {
		up_write(&sp_group_sem);
		return ret;
	}
	master = current->mm->sp_group_master;
	spg_id = master->local->id;
	up_write(&sp_group_sem);

	return spg_id;
}
EXPORT_SYMBOL_GPL(mg_sp_id_of_current);

1732
/* the caller must hold sp_area_lock */
1733
static void insert_sp_area(struct sp_mapping *spm, struct sp_area *spa)
1734
{
1735
	struct rb_node **p = &spm->area_root.rb_node;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	struct rb_node *parent = NULL;

	while (*p) {
		struct sp_area *tmp;

		parent = *p;
		tmp = rb_entry(parent, struct sp_area, rb_node);
		if (spa->va_start < tmp->va_end)
			p = &(*p)->rb_left;
		else if (spa->va_end > tmp->va_start)
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&spa->rb_node, parent, p);
1752
	rb_insert_color(&spa->rb_node, &spm->area_root);
1753 1754 1755 1756 1757 1758 1759 1760
}

/**
 * sp_alloc_area() - Allocate a region of VA from the share pool.
 * @size: the size of VA to allocate.
 * @flags: how to allocate the memory.
 * @spg: the share group that the memory is allocated to.
 * @type: the type of the region.
1761
 * @applier: the tgid of the task which allocates the region.
1762 1763 1764 1765 1766 1767 1768 1769 1770
 *
 * Return: a valid pointer for success, NULL on failure.
 */
static struct sp_area *sp_alloc_area(unsigned long size, unsigned long flags,
				     struct sp_group *spg, enum spa_type type,
				     pid_t applier)
{
	struct sp_area *spa, *first, *err;
	struct rb_node *n;
1771 1772
	unsigned long vstart;
	unsigned long vend;
1773 1774 1775
	unsigned long addr;
	unsigned long size_align = ALIGN(size, PMD_SIZE); /* va aligned to 2M */
	int device_id, node_id;
1776
	struct sp_mapping *mapping;
1777 1778 1779 1780 1781 1782 1783 1784 1785

	device_id = sp_flags_device_id(flags);
	node_id = flags & SP_SPEC_NODE_ID ? sp_flags_node_id(flags) : device_id;

	if (!is_online_node_id(node_id)) {
		pr_err_ratelimited("invalid numa node id %d\n", node_id);
		return ERR_PTR(-EINVAL);
	}

C
Chen Jun 已提交
1786 1787 1788 1789 1790 1791
	if (flags & SP_PROT_FOCUS) {
		if ((flags & (SP_DVPP | SP_PROT_RO)) != SP_PROT_RO) {
			pr_err("invalid sp_flags [%lx]\n", flags);
			return ERR_PTR(-EINVAL);
		}
		mapping = spg->mapping[SP_MAPPING_RO];
1792
	} else if (flags & SP_DVPP) {
1793
		mapping = spg->mapping[SP_MAPPING_DVPP];
1794
	} else {
1795
		mapping = spg->mapping[SP_MAPPING_NORMAL];
1796
	}
1797

1798 1799 1800 1801 1802
	if (!mapping) {
		pr_err_ratelimited("non DVPP spg, id %d\n", spg->id);
		return ERR_PTR(-EINVAL);
	}

1803 1804
	vstart = mapping->start[device_id];
	vend = mapping->end[device_id];
1805 1806 1807 1808 1809 1810 1811 1812 1813
	spa = __kmalloc_node(sizeof(struct sp_area), GFP_KERNEL, node_id);
	if (unlikely(!spa))
		return ERR_PTR(-ENOMEM);

	spin_lock(&sp_area_lock);

	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
1814
	 * the sp_area cached in free_area_cache: if size fits
1815
	 * into that hole, we want to scan from vstart to reuse
1816 1817
	 * the hole instead of allocating above free_area_cache.
	 * Note that sp_free_area may update free_area_cache
1818 1819
	 * without updating cached_hole_size.
	 */
1820 1821 1822 1823
	if (!mapping->free_area_cache || size_align < mapping->cached_hole_size ||
	    vstart != mapping->cached_vstart) {
		mapping->cached_hole_size = 0;
		mapping->free_area_cache = NULL;
1824 1825 1826
	}

	/* record if we encounter less permissive parameters */
1827
	mapping->cached_vstart = vstart;
1828 1829

	/* find starting point for our search */
1830 1831
	if (mapping->free_area_cache) {
		first = rb_entry(mapping->free_area_cache, struct sp_area, rb_node);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}
	} else {
		addr = vstart;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

1844
		n = mapping->area_root.rb_node;
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
		first = NULL;

		while (n) {
			struct sp_area *tmp;

			tmp = rb_entry(n, struct sp_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
				n = n->rb_right;
		}

		if (!first)
			goto found;
	}

	/* from the starting point, traverse areas until a suitable hole is found */
	while (addr + size_align > first->va_start && addr + size_align <= vend) {
1866 1867
		if (addr + mapping->cached_hole_size < first->va_start)
			mapping->cached_hole_size = first->va_start - addr;
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

		n = rb_next(&first->rb_node);
		if (n)
			first = rb_entry(n, struct sp_area, rb_node);
		else
			goto found;
	}

found:
	if (addr + size_align > vend) {
		err = ERR_PTR(-EOVERFLOW);
		goto error;
	}

	spa->va_start = addr;
	spa->va_end = addr + size_align;
	spa->real_size = size;
	spa->region_vstart = vstart;
	spa->flags = flags;
	spa->is_hugepage = (flags & SP_HUGEPAGE);
	spa->is_dead = false;
	spa->spg = spg;
	atomic_set(&spa->use_count, 1);
	spa->type = type;
	spa->mm = NULL;
	spa->kva = 0;   /* NULL pointer */
	spa->applier = applier;
	spa->node_id = node_id;
	spa->device_id = device_id;

	spa_inc_usage(spa);
1904
	insert_sp_area(mapping, spa);
1905 1906
	mapping->free_area_cache = &spa->rb_node;
	list_add_tail(&spa->link, &spg->spa_list);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

	spin_unlock(&sp_area_lock);

	return spa;

error:
	spin_unlock(&sp_area_lock);
	kfree(spa);
	return err;
}

/* the caller should hold sp_area_lock */
1919
static struct sp_area *find_sp_area_locked(struct sp_group *spg,
1920
		unsigned long addr)
1921
{
C
Chen Jun 已提交
1922 1923
	struct sp_mapping *spm = sp_mapping_find(spg, addr);
	struct rb_node *n = spm->area_root.rb_node;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	while (n) {
		struct sp_area *spa;

		spa = rb_entry(n, struct sp_area, rb_node);
		if (addr < spa->va_start) {
			n = n->rb_left;
		} else if (addr > spa->va_start) {
			n = n->rb_right;
		} else {
			return spa;
		}
	}

	return NULL;
}

1940
static struct sp_area *get_sp_area(struct sp_group *spg, unsigned long addr)
1941 1942 1943 1944
{
	struct sp_area *n;

	spin_lock(&sp_area_lock);
1945
	n = find_sp_area_locked(spg, addr);
1946 1947 1948 1949 1950 1951
	if (n)
		atomic_inc(&n->use_count);
	spin_unlock(&sp_area_lock);
	return n;
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static bool vmalloc_area_clr_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags &= ~flags;
		return true;
	}

	return false;
}

1965 1966 1967 1968 1969
/*
 * Free the VA region starting from addr to the share pool
 */
static void sp_free_area(struct sp_area *spa)
{
1970 1971 1972
	unsigned long addr = spa->va_start;
	struct sp_mapping *spm;

1973 1974
	lockdep_assert_held(&sp_area_lock);

C
Chen Jun 已提交
1975
	spm = sp_mapping_find(spa->spg, addr);
1976
	if (spm->free_area_cache) {
1977 1978
		struct sp_area *cache;

1979
		cache = rb_entry(spm->free_area_cache, struct sp_area, rb_node);
1980
		if (spa->va_start <= cache->va_start) {
1981
			spm->free_area_cache = rb_prev(&spa->rb_node);
1982 1983 1984 1985
			/*
			 * the new cache node may be changed to another region,
			 * i.e. from DVPP region to normal region
			 */
1986 1987
			if (spm->free_area_cache) {
				cache = rb_entry(spm->free_area_cache,
1988
						 struct sp_area, rb_node);
1989
				spm->cached_vstart = cache->region_vstart;
1990 1991 1992 1993 1994 1995 1996 1997
			}
			/*
			 * We don't try to update cached_hole_size,
			 * but it won't go very wrong.
			 */
		}
	}

1998 1999 2000
	if (spa->kva && !vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);

2001
	spa_dec_usage(spa);
2002
	list_del(&spa->link);
2003

2004
	rb_erase(&spa->rb_node, &spm->area_root);
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	RB_CLEAR_NODE(&spa->rb_node);
	kfree(spa);
}

static void __sp_area_drop_locked(struct sp_area *spa)
{
	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma(). Before A calls this func,
	 * B calls sp_free() to free the same spa. So spa maybe NULL when A
	 * calls this func later.
	 */
	if (!spa)
		return;

	if (atomic_dec_and_test(&spa->use_count))
		sp_free_area(spa);
}

static void __sp_area_drop(struct sp_area *spa)
{
	spin_lock(&sp_area_lock);
	__sp_area_drop_locked(spa);
	spin_unlock(&sp_area_lock);
}

void sp_area_drop(struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARE_POOL))
		return;

	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma() -> ... -> sp_area_drop().
	 * Concurrently, B is calling sp_free() to free the same spa.
2040
	 * find_sp_area_locked() and __sp_area_drop_locked() should be
2041 2042 2043
	 * an atomic operation.
	 */
	spin_lock(&sp_area_lock);
2044
	__sp_area_drop_locked(vma->vm_private_data);
2045 2046 2047
	spin_unlock(&sp_area_lock);
}

W
Wang Wensheng 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/*
 * The function calls of do_munmap() won't change any non-atomic member
 * of struct sp_group. Please review the following chain:
 * do_munmap -> remove_vma_list -> remove_vma -> sp_area_drop ->
 * __sp_area_drop_locked -> sp_free_area
 */
static void sp_munmap(struct mm_struct *mm, unsigned long addr,
			   unsigned long size)
{
	int err;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_info("munmap: encoutered coredump\n");
		return;
	}

	err = do_munmap(mm, addr, size, NULL);
	/* we are not supposed to fail */
	if (err)
		pr_err("failed to unmap VA %pK when sp munmap\n", (void *)addr);

	up_write(&mm->mmap_lock);
}

static void __sp_free(struct sp_group *spg, unsigned long addr,
		      unsigned long size, struct mm_struct *stop)
{
	struct mm_struct *mm;
	struct sp_group_node *spg_node = NULL;

	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
		if (mm == stop)
			break;
		sp_munmap(mm, addr, size);
	}
}

/* Free the memory of the backing shmem or hugetlbfs */
static void sp_fallocate(struct sp_area *spa)
{
	int ret;
	unsigned long mode = FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE;
	unsigned long offset = addr_offset(spa);

	ret = vfs_fallocate(spa_file(spa), mode, offset, spa_size(spa));
	if (ret)
		WARN(1, "sp fallocate failed %d\n", ret);
}

static void sp_free_unmap_fallocate(struct sp_area *spa)
{
2102 2103 2104 2105
	down_read(&spa->spg->rw_lock);
	__sp_free(spa->spg, spa->va_start, spa_size(spa), NULL);
	sp_fallocate(spa);
	up_read(&spa->spg->rw_lock);
W
Wang Wensheng 已提交
2106 2107 2108 2109 2110 2111 2112
}

static int sp_check_caller_permission(struct sp_group *spg, struct mm_struct *mm)
{
	int ret = 0;

	down_read(&spg->rw_lock);
2113
	if (!is_process_in_group(spg, mm))
W
Wang Wensheng 已提交
2114 2115
		ret = -EPERM;
	up_read(&spg->rw_lock);
2116

W
Wang Wensheng 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	return ret;
}

#define FREE_CONT	1
#define FREE_END	2

struct sp_free_context {
	unsigned long addr;
	struct sp_area *spa;
	int state;
2127
	int spg_id;
W
Wang Wensheng 已提交
2128 2129 2130 2131 2132 2133 2134 2135
};

/* when success, __sp_area_drop(spa) should be used */
static int sp_free_get_spa(struct sp_free_context *fc)
{
	int ret = 0;
	unsigned long addr = fc->addr;
	struct sp_area *spa;
2136 2137
	struct sp_group *spg;

2138
	spg = sp_group_get(current->tgid, fc->spg_id);
2139 2140 2141 2142
	if (!spg) {
		pr_debug("sp free get group failed %d\n", fc->spg_id);
		return -EINVAL;
	}
W
Wang Wensheng 已提交
2143 2144 2145

	fc->state = FREE_CONT;

2146
	spa = get_sp_area(spg, addr);
2147
	sp_group_put(spg);
W
Wang Wensheng 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	if (!spa) {
		pr_debug("sp free invalid input addr %lx\n", addr);
		return -EINVAL;
	}

	if (spa->type != SPA_TYPE_ALLOC) {
		ret = -EINVAL;
		pr_debug("sp free failed, %lx is not sp alloc addr\n", addr);
		goto drop_spa;
	}
	fc->spa = spa;

2160 2161
	if (!current->mm)
		goto check_spa;
W
Wang Wensheng 已提交
2162

2163 2164 2165
	ret = sp_check_caller_permission(spa->spg, current->mm);
	if (ret < 0)
		goto drop_spa;
W
Wang Wensheng 已提交
2166 2167

check_spa:
2168 2169 2170 2171
	if (is_local_group(spa->spg->id) && (current->tgid != spa->applier)) {
		ret = -EPERM;
		goto drop_spa;
	}
W
Wang Wensheng 已提交
2172

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	down_write(&spa->spg->rw_lock);
	if (!spg_valid(spa->spg)) {
		fc->state = FREE_END;
		up_write(&spa->spg->rw_lock);
		goto drop_spa;
		/* we must return success(0) in this situation */
	}
	/* the life cycle of spa has a direct relation with sp group */
	if (unlikely(spa->is_dead)) {
		up_write(&spa->spg->rw_lock);
		pr_err_ratelimited("unexpected double sp free\n");
		dump_stack();
		ret = -EINVAL;
		goto drop_spa;
W
Wang Wensheng 已提交
2187
	}
2188 2189 2190
	spa->is_dead = true;
	up_write(&spa->spg->rw_lock);

W
Wang Wensheng 已提交
2191 2192 2193 2194 2195 2196 2197
	return 0;

drop_spa:
	__sp_area_drop(spa);
	return ret;
}

2198
/**
2199
 * mg_sp_free() - Free the memory allocated by mg_sp_alloc().
2200
 * @addr: the starting VA of the memory.
2201
 * @id: Address space identifier, which is used to distinguish the addr.
2202 2203 2204 2205 2206 2207
 *
 * Return:
 * * 0		- success.
 * * -EINVAL	- the memory can't be found or was not allocted by share pool.
 * * -EPERM	- the caller has no permision to free the memory.
 */
2208
int mg_sp_free(unsigned long addr, int id)
2209
{
W
Wang Wensheng 已提交
2210 2211 2212
	int ret = 0;
	struct sp_free_context fc = {
		.addr = addr,
2213
		.spg_id = id,
W
Wang Wensheng 已提交
2214 2215
	};

2216 2217 2218
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

W
Wang Wensheng 已提交
2219 2220
	check_interrupt_context();

2221 2222 2223
	if (current->flags & PF_KTHREAD)
		return -EINVAL;

W
Wang Wensheng 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	ret = sp_free_get_spa(&fc);
	if (ret || fc.state == FREE_END)
		goto out;

	sp_free_unmap_fallocate(fc.spa);

	if (current->mm == NULL)
		atomic64_sub(fc.spa->real_size, &kthread_stat.alloc_size);
	else
		sp_update_process_stat(current, false, fc.spa);

2235
	__sp_area_drop(fc.spa);  /* match get_sp_area in sp_free_get_spa */
W
Wang Wensheng 已提交
2236 2237
out:
	return ret;
2238 2239 2240
}
EXPORT_SYMBOL_GPL(mg_sp_free);

2241 2242 2243
/* wrapper of __do_mmap() and the caller must hold down_write(&mm->mmap_lock). */
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
2244
			     unsigned long prot, struct vm_area_struct **pvma)
2245 2246 2247 2248 2249 2250 2251
{
	unsigned long addr = spa->va_start;
	unsigned long size = spa_size(spa);
	unsigned long flags = MAP_FIXED | MAP_SHARED | MAP_POPULATE |
			      MAP_SHARE_POOL;
	unsigned long vm_flags = VM_NORESERVE | VM_SHARE_POOL | VM_DONTCOPY;
	unsigned long pgoff = addr_offset(spa) >> PAGE_SHIFT;
2252
	struct vm_area_struct *vma;
2253 2254 2255 2256 2257 2258 2259 2260 2261

	atomic_inc(&spa->use_count);
	addr = __do_mmap_mm(mm, file, addr, size, prot, flags, vm_flags, pgoff,
			 populate, NULL);
	if (IS_ERR_VALUE(addr)) {
		atomic_dec(&spa->use_count);
		pr_err("do_mmap fails %ld\n", addr);
	} else {
		BUG_ON(addr != spa->va_start);
2262 2263 2264 2265
		vma = find_vma(mm, addr);
		vma->vm_private_data = spa;
		if (pvma)
			*pvma = vma;
2266 2267 2268 2269 2270
	}

	return addr;
}

W
Wang Wensheng 已提交
2271 2272 2273
#define ALLOC_NORMAL	1
#define ALLOC_RETRY	2
#define ALLOC_NOMEM	3
2274
#define ALLOC_COREDUMP	4
W
Wang Wensheng 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283

struct sp_alloc_context {
	struct sp_group *spg;
	struct file *file;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	unsigned long populate;
	int state;
2284
	bool have_mbind;
2285
	enum spa_type type;
W
Wang Wensheng 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294
};

static int sp_alloc_prepare(unsigned long size, unsigned long sp_flags,
	int spg_id, struct sp_alloc_context *ac)
{
	struct sp_group *spg;

	check_interrupt_context();

2295 2296 2297 2298 2299
	if (current->flags & PF_KTHREAD) {
		pr_err_ratelimited("allocation failed, task is kthread\n");
		return -EINVAL;
	}

W
Wang Wensheng 已提交
2300 2301 2302 2303 2304
	if (unlikely(!size || (size >> PAGE_SHIFT) > totalram_pages())) {
		pr_err_ratelimited("allocation failed, invalid size %lu\n", size);
		return -EINVAL;
	}

2305
	if (spg_id != SPG_ID_DEFAULT && (spg_id < SPG_ID_MIN || spg_id >= SPG_ID_AUTO)) {
W
Wang Wensheng 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		pr_err_ratelimited("allocation failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (sp_flags & (~SP_FLAG_MASK)) {
		pr_err_ratelimited("allocation failed, invalid flag %lx\n", sp_flags);
		return -EINVAL;
	}

	if (sp_flags & SP_HUGEPAGE_ONLY)
		sp_flags |= SP_HUGEPAGE;

2318
	if (spg_id != SPG_ID_DEFAULT) {
2319
		spg = sp_group_get(current->tgid, spg_id);
2320 2321 2322
		if (!spg) {
			pr_err_ratelimited("allocation failed, can't find group\n");
			return -ENODEV;
W
Wang Wensheng 已提交
2323 2324
		}

2325 2326 2327 2328
		/* up_read will be at the end of sp_alloc */
		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
2329
			sp_group_put(spg);
2330 2331 2332
			pr_err_ratelimited("allocation failed, spg is dead\n");
			return -ENODEV;
		}
W
Wang Wensheng 已提交
2333

2334 2335
		if (!is_process_in_group(spg, current->mm)) {
			up_read(&spg->rw_lock);
2336
			sp_group_put(spg);
2337 2338
			pr_err_ratelimited("allocation failed, task not in group\n");
			return -ENODEV;
W
Wang Wensheng 已提交
2339
		}
2340
		ac->type = SPA_TYPE_ALLOC;
2341
	} else {  /* allocation pass through scene */
2342
		spg = sp_get_local_group(current, current->mm);
2343 2344
		if (IS_ERR(spg))
			return PTR_ERR(spg);
2345 2346
		down_read(&spg->rw_lock);
		ac->type = SPA_TYPE_ALLOC_PRIVATE;
W
Wang Wensheng 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	}

	if (sp_flags & SP_HUGEPAGE) {
		ac->file = spg->file_hugetlb;
		ac->size_aligned = ALIGN(size, PMD_SIZE);
	} else {
		ac->file = spg->file;
		ac->size_aligned = ALIGN(size, PAGE_SIZE);
	}

	ac->spg = spg;
	ac->size = size;
	ac->sp_flags = sp_flags;
	ac->state = ALLOC_NORMAL;
2361
	ac->have_mbind = false;
W
Wang Wensheng 已提交
2362 2363 2364 2365 2366 2367
	return 0;
}

static void sp_alloc_unmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node)
{
2368
	__sp_free(spa->spg, spa->va_start, spa->real_size, mm);
W
Wang Wensheng 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
}

static int sp_alloc_mmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret = 0;
	unsigned long mmap_addr;
	/* pass through default permission */
	unsigned long prot = PROT_READ | PROT_WRITE;
	unsigned long populate = 0;
	struct vm_area_struct *vma;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
2384
		ac->state = ALLOC_COREDUMP;
W
Wang Wensheng 已提交
2385 2386 2387 2388 2389 2390 2391
		pr_info("allocation encountered coredump\n");
		return -EFAULT;
	}

	if (spg_node)
		prot = spg_node->prot;

2392 2393 2394
	if (ac->sp_flags & SP_PROT_RO)
		prot = PROT_READ;

W
Wang Wensheng 已提交
2395
	/* when success, mmap_addr == spa->va_start */
2396
	mmap_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot, &vma);
W
Wang Wensheng 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	if (IS_ERR_VALUE(mmap_addr)) {
		up_write(&mm->mmap_lock);
		sp_alloc_unmap(mm, spa, spg_node);
		pr_err("sp mmap in allocation failed %ld\n", mmap_addr);
		return PTR_ERR((void *)mmap_addr);
	}

	if (unlikely(populate == 0)) {
		up_write(&mm->mmap_lock);
		pr_err("allocation sp mmap populate failed\n");
		ret = -EFAULT;
		goto unmap;
	}
	ac->populate = populate;

2412 2413 2414
	if (ac->sp_flags & SP_PROT_RO)
		vma->vm_flags &= ~VM_MAYWRITE;

W
Wang Wensheng 已提交
2415 2416 2417 2418 2419 2420 2421 2422
	/* clean PTE_RDONLY flags or trigger SMMU event */
	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);
	up_write(&mm->mmap_lock);

	return ret;

unmap:
2423
	sp_alloc_unmap(list_next_entry(spg_node, proc_node)->master->mm, spa, spg_node);
W
Wang Wensheng 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	return ret;
}

static void sp_alloc_fallback(struct sp_area *spa, struct sp_alloc_context *ac)
{
	if (ac->file == ac->spg->file) {
		ac->state = ALLOC_NOMEM;
		return;
	}

	if (!(ac->sp_flags & SP_HUGEPAGE_ONLY)) {
		ac->file = ac->spg->file;
		ac->size_aligned = ALIGN(ac->size, PAGE_SIZE);
		ac->sp_flags &= ~SP_HUGEPAGE;
		ac->state = ALLOC_RETRY;
		__sp_area_drop(spa);
		return;
	}
	ac->state = ALLOC_NOMEM;
}

static int sp_alloc_populate(struct mm_struct *mm, struct sp_area *spa,
2446
			     struct sp_alloc_context *ac)
W
Wang Wensheng 已提交
2447 2448 2449 2450 2451 2452 2453
{
	/*
	 * We are not ignoring errors, so if we fail to allocate
	 * physical memory we just return failure, so we won't encounter
	 * page fault later on, and more importantly sp_make_share_u2k()
	 * depends on this feature (and MAP_LOCKED) to work correctly.
	 */
2454

2455
	return do_mm_populate(mm, spa->va_start, ac->populate, 0);
W
Wang Wensheng 已提交
2456 2457
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
static long sp_mbind(struct mm_struct *mm, unsigned long start, unsigned long len,
		unsigned long node)
{
	nodemask_t nmask;

	nodes_clear(nmask);
	node_set(node, nmask);
	return __do_mbind(start, len, MPOL_BIND, MPOL_F_STATIC_NODES,
			&nmask, MPOL_MF_STRICT, mm);
}

W
Wang Wensheng 已提交
2469 2470 2471 2472 2473 2474
static int __sp_alloc_mmap_populate(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret;

	ret = sp_alloc_mmap(mm, spa, spg_node, ac);
2475

2476
	if (ret < 0)
W
Wang Wensheng 已提交
2477 2478
		return ret;

2479 2480 2481 2482 2483
	if (!ac->have_mbind) {
		ret = sp_mbind(mm, spa->va_start, spa->real_size, spa->node_id);
		if (ret < 0) {
			pr_err("cannot bind the memory range to specified node:%d, err:%d\n",
				spa->node_id, ret);
2484
			return ret;
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		}
		ac->have_mbind = true;
	}

	ret = sp_alloc_populate(mm, spa, ac);
	if (ret) {
		if (unlikely(fatal_signal_pending(current)))
			pr_warn_ratelimited("allocation failed, current thread is killed\n");
		else
			pr_warn_ratelimited("allocation failed due to mm populate failed(potential no enough memory when -12): %d\n",
2495
					ret);
2496
	}
W
Wang Wensheng 已提交
2497 2498 2499 2500 2501 2502
	return ret;
}

static int sp_alloc_mmap_populate(struct sp_area *spa,
				  struct sp_alloc_context *ac)
{
2503 2504
	int ret = -EINVAL;
	int mmap_ret = 0;
2505
	struct mm_struct *mm, *end_mm = NULL;
W
Wang Wensheng 已提交
2506 2507
	struct sp_group_node *spg_node;

2508 2509 2510 2511 2512
	/* create mapping for each process in the group */
	list_for_each_entry(spg_node, &spa->spg->procs, proc_node) {
		mm = spg_node->master->mm;
		mmap_ret = __sp_alloc_mmap_populate(mm, spa, spg_node, ac);
		if (mmap_ret) {
2513 2514 2515 2516 2517 2518

			/*
			 * Goto fallback procedure upon ERR_VALUE,
			 * but skip the coredump situation,
			 * because we don't want one misbehaving process to affect others.
			 */
2519
			if (ac->state != ALLOC_COREDUMP)
2520
				goto unmap;
2521 2522

			/* Reset state and discard the coredump error. */
2523 2524
			ac->state = ALLOC_NORMAL;
			continue;
W
Wang Wensheng 已提交
2525
		}
2526
		ret = mmap_ret;
W
Wang Wensheng 已提交
2527
	}
2528

W
Wang Wensheng 已提交
2529
	return ret;
2530 2531 2532 2533 2534 2535 2536

unmap:
	/* use the next mm in proc list as end mark */
	if (!list_is_last(&spg_node->proc_node, &spa->spg->procs))
		end_mm = list_next_entry(spg_node, proc_node)->master->mm;
	sp_alloc_unmap(end_mm, spa, spg_node);

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/*
	 * Sometimes do_mm_populate() allocates some memory and then failed to
	 * allocate more. (e.g. memory use reaches cgroup limit.)
	 * In this case, it will return enomem, but will not free the
	 * memory which has already been allocated.
	 *
	 * So if __sp_alloc_mmap_populate fails, always call sp_fallocate()
	 * to make sure backup physical memory of the shared file is freed.
	 */
	sp_fallocate(spa);
2547 2548 2549 2550 2551 2552 2553

	/* if hugepage allocation fails, this will transfer to normal page
	 * and try again. (only if SP_HUGEPAGE_ONLY is not flagged
	 */
	sp_alloc_fallback(spa, ac);

	return mmap_ret;
W
Wang Wensheng 已提交
2554 2555 2556 2557
}

/* spa maybe an error pointer, so introduce variable spg */
static void sp_alloc_finish(int result, struct sp_area *spa,
2558
		struct sp_alloc_context *ac)
W
Wang Wensheng 已提交
2559 2560 2561
{
	struct sp_group *spg = ac->spg;

2562
	/* match sp_alloc_prepare */
2563
	up_read(&spg->rw_lock);
W
Wang Wensheng 已提交
2564 2565 2566 2567 2568

	if (!result)
		sp_update_process_stat(current, true, spa);

	/* this will free spa if mmap failed */
2569
	if (spa && !IS_ERR(spa))
W
Wang Wensheng 已提交
2570 2571
		__sp_area_drop(spa);

2572
	sp_group_put(spg);
W
Wang Wensheng 已提交
2573 2574
}

2575
/**
2576
 * mg_sp_alloc() - Allocate shared memory for all the processes in a sp_group.
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
 * @size: the size of memory to allocate.
 * @sp_flags: how to allocate the memory.
 * @spg_id: the share group that the memory is allocated to.
 *
 * Use pass through allocation if spg_id == SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the starting address of the shared memory.
 * * if fail, return the pointer of -errno.
 */
2587
void *mg_sp_alloc(unsigned long size, unsigned long sp_flags, int spg_id)
2588
{
W
Wang Wensheng 已提交
2589 2590 2591 2592
	struct sp_area *spa = NULL;
	int ret = 0;
	struct sp_alloc_context ac;

2593 2594 2595
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

W
Wang Wensheng 已提交
2596 2597 2598 2599 2600 2601
	ret = sp_alloc_prepare(size, sp_flags, spg_id, &ac);
	if (ret)
		return ERR_PTR(ret);

try_again:
	spa = sp_alloc_area(ac.size_aligned, ac.sp_flags, ac.spg,
2602
			    ac.type, current->tgid);
W
Wang Wensheng 已提交
2603 2604 2605 2606 2607 2608 2609 2610
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in allocation(potential no enough virtual memory when -75): %ld\n",
			PTR_ERR(spa));
		ret = PTR_ERR(spa);
		goto out;
	}

	ret = sp_alloc_mmap_populate(spa, &ac);
2611 2612 2613 2614 2615 2616 2617
	if (ret && ac.state == ALLOC_RETRY) {
		/*
		 * The mempolicy for shared memory is located at backend file, which varies
		 * between normal pages and huge pages. So we should set the mbind policy again
		 * when we retry using normal pages.
		 */
		ac.have_mbind = false;
W
Wang Wensheng 已提交
2618
		goto try_again;
2619
	}
W
Wang Wensheng 已提交
2620 2621 2622 2623 2624 2625 2626

out:
	sp_alloc_finish(ret, spa, &ac);
	if (ret)
		return ERR_PTR(ret);
	else
		return (void *)(spa->va_start);
2627 2628 2629
}
EXPORT_SYMBOL_GPL(mg_sp_alloc);

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
/**
 * is_vmap_hugepage() - Check if a kernel address belongs to vmalloc family.
 * @addr: the kernel space address to be checked.
 *
 * Return:
 * * >0		- a vmalloc hugepage addr.
 * * =0		- a normal vmalloc addr.
 * * -errno	- failure.
 */
static int is_vmap_hugepage(unsigned long addr)
{
	struct vm_struct *area;

	if (unlikely(!addr)) {
		pr_err_ratelimited("null vmap addr pointer\n");
		return -EINVAL;
	}

	area = find_vm_area((void *)addr);
	if (unlikely(!area)) {
		pr_debug("can't find vm area(%lx)\n", addr);
		return -EINVAL;
	}

	if (area->flags & VM_HUGE_PAGES)
		return 1;
	else
		return 0;
}

2660 2661
static unsigned long __sp_remap_get_pfn(unsigned long kva)
{
G
Guo Mengqi 已提交
2662
	unsigned long pfn = -EINVAL;
2663

G
Guo Mengqi 已提交
2664
	/* sp_make_share_k2u only support vmalloc address */
2665 2666 2667 2668 2669 2670 2671
	if (is_vmalloc_addr((void *)kva))
		pfn = vmalloc_to_pfn((void *)kva);

	return pfn;
}

/* when called by k2u to group, always make sure rw_lock of spg is down */
2672 2673
static unsigned long sp_remap_kva_to_vma(struct sp_area *spa, struct mm_struct *mm,
					unsigned long prot, struct sp_k2u_context *kc)
2674 2675 2676 2677 2678 2679
{
	struct vm_area_struct *vma;
	unsigned long ret_addr;
	unsigned long populate = 0;
	int ret = 0;
	unsigned long addr, buf, offset;
2680
	unsigned long kva = spa->kva;
2681 2682 2683 2684 2685

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		pr_err("k2u mmap: encountered coredump, abort\n");
		ret_addr = -EBUSY;
2686 2687
		if (kc)
			kc->state = K2U_COREDUMP;
2688 2689 2690
		goto put_mm;
	}

2691
	if (kc && (kc->sp_flags & SP_PROT_RO))
2692 2693
		prot = PROT_READ;

2694
	ret_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot, &vma);
2695 2696 2697 2698 2699 2700 2701 2702
	if (IS_ERR_VALUE(ret_addr)) {
		pr_debug("k2u mmap failed %lx\n", ret_addr);
		goto put_mm;
	}

	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);

2703
	if (kc && (kc->sp_flags & SP_PROT_RO))
2704 2705
		vma->vm_flags &= ~VM_MAYWRITE;

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	if (is_vm_hugetlb_page(vma)) {
		ret = remap_vmalloc_hugepage_range(vma, (void *)kva, 0);
		if (ret) {
			do_munmap(mm, ret_addr, spa_size(spa), NULL);
			pr_debug("remap vmalloc hugepage failed, ret %d, kva is %lx\n",
				 ret, (unsigned long)kva);
			ret_addr = ret;
			goto put_mm;
		}
		vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
	} else {
		buf = ret_addr;
		addr = kva;
		offset = 0;
		do {
			ret = remap_pfn_range(vma, buf, __sp_remap_get_pfn(addr), PAGE_SIZE,
					__pgprot(vma->vm_page_prot.pgprot));
			if (ret) {
				do_munmap(mm, ret_addr, spa_size(spa), NULL);
				pr_err("remap_pfn_range failed %d\n", ret);
				ret_addr = ret;
				goto put_mm;
			}
			offset += PAGE_SIZE;
			buf += PAGE_SIZE;
			addr += PAGE_SIZE;
		} while (offset < spa_size(spa));
	}

put_mm:
	up_write(&mm->mmap_lock);

	return ret_addr;
}

/**
 * Share kernel memory to a spg, the current process must be in that group
2743
 * @kc: the context for k2u, including kva, size, flags...
2744 2745 2746 2747
 * @spg: the sp group to be shared with
 *
 * Return: the shared user address to start at
 */
2748
static void *sp_make_share_kva_to_spg(struct sp_k2u_context *kc, struct sp_group *spg)
2749 2750 2751 2752
{
	struct sp_area *spa;
	struct mm_struct *mm;
	struct sp_group_node *spg_node;
2753
	unsigned long ret_addr = -ENODEV;
2754 2755

	down_read(&spg->rw_lock);
2756
	spa = sp_alloc_area(kc->size_aligned, kc->sp_flags, spg, kc->type, current->tgid);
2757 2758
	if (IS_ERR(spa)) {
		up_read(&spg->rw_lock);
2759
		pr_err("alloc spa failed in k2u_spg (potential no enough virtual memory when -75): %ld\n",
2760 2761 2762 2763
				PTR_ERR(spa));
		return spa;
	}

2764
	spa->kva = kc->kva_aligned;
2765 2766
	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
2767 2768
		kc->state = K2U_NORMAL;
		ret_addr = sp_remap_kva_to_vma(spa, mm, spg_node->prot, kc);
2769
		if (IS_ERR_VALUE(ret_addr)) {
2770
			if (kc->state == K2U_COREDUMP)
2771
				continue;
2772
			pr_err("remap k2u to spg failed %ld\n", ret_addr);
2773 2774 2775 2776 2777 2778 2779
			__sp_free(spg, spa->va_start, spa_size(spa), mm);
			goto out;
		}
	}

out:
	up_read(&spg->rw_lock);
2780
	if (!IS_ERR_VALUE(ret_addr))
2781
		sp_update_process_stat(current, true, spa);
Z
Zhou Guanghui 已提交
2782
	__sp_area_drop(spa);
2783

2784
	return (void *)ret_addr;
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
}

static bool vmalloc_area_set_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags |= flags;
		return true;
	}

	return false;
}

static int sp_k2u_prepare(unsigned long kva, unsigned long size,
	unsigned long sp_flags, int spg_id, struct sp_k2u_context *kc)
{
	int is_hugepage;
	unsigned int page_size = PAGE_SIZE;
	unsigned long kva_aligned, size_aligned;

2807 2808 2809 2810 2811
	if (!size) {
		pr_err_ratelimited("k2u input size is 0.\n");
		return -EINVAL;
	}

2812
	if (sp_flags & ~SP_FLAG_MASK) {
2813 2814 2815
		pr_err_ratelimited("k2u sp_flags %lx error\n", sp_flags);
		return -EINVAL;
	}
2816
	sp_flags &= ~SP_HUGEPAGE;
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	if (!current->mm) {
		pr_err_ratelimited("k2u: kthread is not allowed\n");
		return -EPERM;
	}

	is_hugepage = is_vmap_hugepage(kva);
	if (is_hugepage > 0) {
		sp_flags |= SP_HUGEPAGE;
		page_size = PMD_SIZE;
	} else if (is_hugepage == 0) {
		/* do nothing */
	} else {
		pr_err_ratelimited("k2u kva is not vmalloc address\n");
		return is_hugepage;
	}

	/* aligned down kva is convenient for caller to start with any valid kva */
	kva_aligned = ALIGN_DOWN(kva, page_size);
	size_aligned = ALIGN(kva + size, page_size) - kva_aligned;

	if (!vmalloc_area_set_flag(kva_aligned, VM_SHAREPOOL)) {
		pr_debug("k2u_task kva %lx is not valid\n", kva_aligned);
		return -EINVAL;
	}

2843 2844 2845
	kc->kva          = kva;
	kc->kva_aligned  = kva_aligned;
	kc->size         = size;
2846
	kc->size_aligned = size_aligned;
2847 2848 2849
	kc->sp_flags     = sp_flags;
	kc->type         = (spg_id == SPG_ID_DEFAULT || spg_id == SPG_ID_NONE)
				? SPA_TYPE_K2TASK : SPA_TYPE_K2SPG;
2850

2851
	return 0;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
}

static void *sp_k2u_finish(void *uva, struct sp_k2u_context *kc)
{
	if (IS_ERR(uva))
		vmalloc_area_clr_flag(kc->kva_aligned, VM_SHAREPOOL);
	else
		uva = uva + (kc->kva - kc->kva_aligned);

	return uva;
}

2864
/**
2865
 * mg_sp_make_share_k2u() - Share kernel memory to current process or an sp_group.
2866 2867 2868
 * @kva: the VA of shared kernel memory.
 * @size: the size of shared kernel memory.
 * @sp_flags: how to allocate the memory. We only support SP_DVPP.
2869
 * @tgid:  the tgid of the specified process (Not currently in use).
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
 * @spg_id: the share group that the memory is shared to.
 *
 * Return: the shared target user address to start at
 *
 * Share kernel memory to current task if spg_id == SPG_ID_NONE
 * or SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
2881
void *mg_sp_make_share_k2u(unsigned long kva, unsigned long size,
2882
			unsigned long sp_flags, int tgid, int spg_id)
2883
{
2884 2885 2886
	void *uva;
	int ret;
	struct sp_k2u_context kc;
2887
	struct sp_group *spg;
2888

2889 2890 2891
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

2892 2893 2894 2895 2896 2897
	check_interrupt_context();

	ret = sp_k2u_prepare(kva, size, sp_flags, spg_id, &kc);
	if (ret)
		return ERR_PTR(ret);

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	if (kc.type == SPA_TYPE_K2TASK) {
		down_write(&sp_group_sem);
		ret = sp_init_group_master_locked(current, current->mm);
		up_write(&sp_group_sem);
		if (ret) {
			pr_err("k2u_task init local mapping failed %d\n", ret);
			uva = ERR_PTR(ret);
			goto out;
		}
		/* the caller could use SPG_ID_NONE */
		spg_id = SPG_ID_DEFAULT;
	}

2911
	spg = sp_group_get(current->tgid, spg_id);
2912 2913 2914
	if (spg) {
		ret = sp_check_caller_permission(spg, current->mm);
		if (ret < 0) {
2915
			sp_group_put(spg);
2916 2917
			uva = ERR_PTR(ret);
			goto out;
2918
		}
2919
		uva = sp_make_share_kva_to_spg(&kc, spg);
2920
		sp_group_put(spg);
2921 2922
	} else {
		uva = ERR_PTR(-ENODEV);
2923 2924 2925 2926
	}

out:
	return sp_k2u_finish(uva, &kc);
2927 2928 2929
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_k2u);

2930 2931 2932
static int sp_pmd_entry(pmd_t *pmd, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
2933
	struct page *page;
2934 2935
	struct sp_walk_data *sp_walk_data = walk->private;

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	/*
	 * There exist a scene in DVPP where the pagetable is huge page but its
	 * vma doesn't record it, something like THP.
	 * So we cannot make out whether it is a hugepage map until we access the
	 * pmd here. If mixed size of pages appear, just return an error.
	 */
	if (pmd_huge(*pmd)) {
		if (!sp_walk_data->is_page_type_set) {
			sp_walk_data->is_page_type_set = true;
			sp_walk_data->is_hugepage = true;
2946
		} else if (!sp_walk_data->is_hugepage) {
2947
			return -EFAULT;
2948
		}
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

		/* To skip pte level walk */
		walk->action = ACTION_CONTINUE;

		page = pmd_page(*pmd);
		get_page(page);
		sp_walk_data->pages[sp_walk_data->page_count++] = page;

		return 0;
	}

	if (!sp_walk_data->is_page_type_set) {
		sp_walk_data->is_page_type_set = true;
		sp_walk_data->is_hugepage = false;
	} else if (sp_walk_data->is_hugepage)
		return -EFAULT;

2966
	sp_walk_data->pmd = pmd;
2967

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	return 0;
}

static int sp_pte_entry(pte_t *pte, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
	struct page *page;
	struct sp_walk_data *sp_walk_data = walk->private;
	pmd_t *pmd = sp_walk_data->pmd;

retry:
	if (unlikely(!pte_present(*pte))) {
		swp_entry_t entry;

		if (pte_none(*pte))
			goto no_page;
		entry = pte_to_swp_entry(*pte);
		if (!is_migration_entry(entry))
			goto no_page;
		migration_entry_wait(walk->mm, pmd, addr);
		goto retry;
	}

	page = pte_page(*pte);
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;

no_page:
	pr_debug("the page of addr %lx unexpectedly not in RAM\n",
		 (unsigned long)addr);
	return -EFAULT;
}

static int sp_test_walk(unsigned long addr, unsigned long next,
			struct mm_walk *walk)
{
	/*
	 * FIXME: The devmm driver uses remap_pfn_range() but actually there
	 * are associated struct pages, so they should use vm_map_pages() or
	 * similar APIs. Before the driver has been converted to correct APIs
	 * we use this test_walk() callback so we can treat VM_PFNMAP VMAs as
	 * normal VMAs.
	 */
	return 0;
}

static int sp_pte_hole(unsigned long start, unsigned long end,
		       int depth, struct mm_walk *walk)
{
	pr_debug("hole [%lx, %lx) appeared unexpectedly\n", (unsigned long)start, (unsigned long)end);
	return -EFAULT;
}

static int sp_hugetlb_entry(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long next,
			    struct mm_walk *walk)
{
	pte_t pte = huge_ptep_get(ptep);
	struct page *page = pte_page(pte);
	struct sp_walk_data *sp_walk_data;

	if (unlikely(!pte_present(pte))) {
		pr_debug("the page of addr %lx unexpectedly not in RAM\n", (unsigned long)addr);
		return -EFAULT;
	}

	sp_walk_data = walk->private;
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;
}

/*
 * __sp_walk_page_range() - Walk page table with caller specific callbacks.
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @mm: mm struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * the caller must hold mm->mmap_lock
 *
 * Notes for parameter alignment:
 * When size == 0, let it be page_size, so that at least one page is walked.
 *
 * When size > 0, for convenience, usually the parameters of uva and
 * size are not page aligned. There are four different alignment scenarios and
 * we must handler all of them correctly.
 *
 * The basic idea is to align down uva and align up size so all the pages
 * in range [uva, uva + size) are walked. However, there are special cases.
 *
 * Considering a 2M-hugepage addr scenario. Assuming the caller wants to
 * traverse range [1001M, 1004.5M), so uva and size is 1001M and 3.5M
 * accordingly. The aligned-down uva is 1000M and the aligned-up size is 4M.
 * The traverse range will be [1000M, 1004M). Obviously, the final page for
 * [1004M, 1004.5M) is not covered.
 *
 * To fix this problem, we need to walk an additional page, size should be
 * ALIGN(uva+size) - uva_aligned
 */
static int __sp_walk_page_range(unsigned long uva, unsigned long size,
	struct mm_struct *mm, struct sp_walk_data *sp_walk_data)
{
	int ret = 0;
	struct vm_area_struct *vma;
	unsigned long page_nr;
	struct page **pages = NULL;
	bool is_hugepage = false;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size = PAGE_SIZE;
	struct mm_walk_ops sp_walk = {};

	/*
	 * Here we also support non share pool memory in this interface
	 * because the caller can't distinguish whether a uva is from the
	 * share pool or not. It is not the best idea to do so, but currently
	 * it simplifies overall design.
	 *
	 * In this situation, the correctness of the parameters is mainly
	 * guaranteed by the caller.
	 */
	vma = find_vma(mm, uva);
	if (!vma) {
		pr_debug("u2k input uva %lx is invalid\n", (unsigned long)uva);
		return -EINVAL;
	}
	if (is_vm_hugetlb_page(vma))
		is_hugepage = true;

	sp_walk.pte_hole = sp_pte_hole;
	sp_walk.test_walk = sp_test_walk;
	if (is_hugepage) {
		sp_walk_data->is_hugepage = true;
		sp_walk.hugetlb_entry = sp_hugetlb_entry;
		page_size = PMD_SIZE;
	} else {
		sp_walk_data->is_hugepage = false;
		sp_walk.pte_entry = sp_pte_entry;
		sp_walk.pmd_entry = sp_pmd_entry;
	}

3111 3112
	sp_walk_data->is_page_type_set = false;
	sp_walk_data->page_count = 0;
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	sp_walk_data->page_size = page_size;
	uva_aligned = ALIGN_DOWN(uva, page_size);
	sp_walk_data->uva_aligned = uva_aligned;
	if (size == 0)
		size_aligned = page_size;
	else
		/* special alignment handling */
		size_aligned = ALIGN(uva + size, page_size) - uva_aligned;

	if (uva_aligned + size_aligned < uva_aligned) {
		pr_err_ratelimited("overflow happened in walk page range\n");
		return -EINVAL;
	}

	page_nr = size_aligned / page_size;
	pages = kvmalloc(page_nr * sizeof(struct page *), GFP_KERNEL);
	if (!pages) {
		pr_err_ratelimited("alloc page array failed in walk page range\n");
		return -ENOMEM;
	}
	sp_walk_data->pages = pages;

	ret = walk_page_range(mm, uva_aligned, uva_aligned + size_aligned,
			      &sp_walk, sp_walk_data);
3137 3138 3139
	if (ret) {
		while (sp_walk_data->page_count--)
			put_page(pages[sp_walk_data->page_count]);
3140
		kvfree(pages);
3141 3142
		sp_walk_data->pages = NULL;
	}
3143

Z
Zhou Guanghui 已提交
3144 3145 3146
	if (sp_walk_data->is_hugepage)
		sp_walk_data->uva_aligned = ALIGN_DOWN(uva, PMD_SIZE);

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	return ret;
}

static void __sp_walk_page_free(struct sp_walk_data *data)
{
	int i = 0;
	struct page *page;

	while (i < data->page_count) {
		page = data->pages[i++];
		put_page(page);
	}

	kvfree(data->pages);
	/* prevent repeated release */
	data->page_count = 0;
	data->pages = NULL;
}

3166
/**
3167
 * mg_sp_make_share_u2k() - Share user memory of a specified process to kernel.
3168 3169
 * @uva: the VA of shared user memory
 * @size: the size of shared user memory
3170
 * @tgid: the tgid of the specified process(Not currently in use)
3171 3172 3173 3174 3175
 *
 * Return:
 * * if success, return the starting kernel address of the shared memory.
 * * if failed, return the pointer of -errno.
 */
3176
void *mg_sp_make_share_u2k(unsigned long uva, unsigned long size, int tgid)
3177
{
3178 3179 3180
	int ret = 0;
	struct mm_struct *mm = current->mm;
	void *p = ERR_PTR(-ESRCH);
3181
	struct sp_walk_data sp_walk_data;
3182 3183
	struct vm_struct *area;

3184 3185 3186
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	check_interrupt_context();

	if (mm == NULL) {
		pr_err("u2k: kthread is not allowed\n");
		return ERR_PTR(-EPERM);
	}

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_err("u2k: encountered coredump, abort\n");
		return p;
	}

	ret = __sp_walk_page_range(uva, size, mm, &sp_walk_data);
	if (ret) {
		pr_err_ratelimited("walk page range failed %d\n", ret);
		up_write(&mm->mmap_lock);
		return ERR_PTR(ret);
	}

	if (sp_walk_data.is_hugepage)
		p = vmap_hugepage(sp_walk_data.pages, sp_walk_data.page_count,
				  VM_MAP, PAGE_KERNEL);
	else
		p = vmap(sp_walk_data.pages, sp_walk_data.page_count, VM_MAP,
			 PAGE_KERNEL);
	up_write(&mm->mmap_lock);

	if (!p) {
		pr_err("vmap(huge) in u2k failed\n");
		__sp_walk_page_free(&sp_walk_data);
		return ERR_PTR(-ENOMEM);
	}

	p = p + (uva - sp_walk_data.uva_aligned);

	/*
	 * kva p may be used later in k2u. Since p comes from uva originally,
	 * it's reasonable to add flag VM_USERMAP so that p can be remapped
	 * into userspace again.
	 */
	area = find_vm_area(p);
	area->flags |= VM_USERMAP;

	kvfree(sp_walk_data.pages);
	return p;
3234 3235 3236
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_u2k);

3237
/*
3238 3239 3240 3241 3242
 * sp_unshare_uva - unshare a uva from sp_make_share_k2u
 * @uva: the uva to be unshared
 * @size: not used actually and we just check it
 * @group_id: specify the spg of the uva; for local group, it can be SPG_ID_DEFAULT
 *            unless current process is exiting.
3243 3244 3245 3246 3247 3248
 *
 * Procedure of unshare uva must be compatible with:
 *
 * 1. DVPP channel destroy procedure:
 * do_exit() -> exit_mm() (mm no longer in spg and current->mm == NULL) ->
 * exit_task_work() -> task_work_run() -> __fput() -> ... -> vdec_close() ->
3249
 * sp_unshare(uva, local_spg_id)
3250
 */
3251
static int sp_unshare_uva(unsigned long uva, unsigned long size, int group_id)
3252
{
3253 3254 3255
	int ret = 0;
	struct sp_area *spa;
	unsigned int page_size;
3256 3257
	struct sp_group *spg;

3258
	spg = sp_group_get(current->tgid, group_id);
3259
	if (!spg) {
3260
		pr_err("sp unshare find group failed %d\n", group_id);
3261 3262
		return -EINVAL;
	}
3263

3264
	/* All the spa are aligned to 2M. */
3265
	spa = get_sp_area(spg, ALIGN_DOWN(uva, PMD_SIZE));
3266
	if (!spa) {
3267 3268 3269
		ret = -EINVAL;
		pr_err("invalid input uva %lx in unshare uva\n", (unsigned long)uva);
		goto out;
3270 3271 3272
	}

	if (spa->type != SPA_TYPE_K2TASK && spa->type != SPA_TYPE_K2SPG) {
3273
		pr_err("unshare wrong type spa\n");
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
		ret = -EINVAL;
		goto out_drop_area;
	}
	/*
	 * 1. overflow actually won't happen due to an spa must be valid.
	 * 2. we must unshare [spa->va_start, spa->va_start + spa->real_size) completely
	 *    because an spa is one-to-one correspondence with an vma.
	 *    Thus input parameter size is not necessarily needed.
	 */
	page_size = (spa->is_hugepage ? PMD_SIZE : PAGE_SIZE);

3285
	if (spa->real_size < ALIGN(size, page_size)) {
3286
		ret = -EINVAL;
3287
		pr_err("unshare uva failed, invalid parameter size %lu\n", size);
3288 3289 3290
		goto out_drop_area;
	}

3291 3292 3293
	down_read(&spa->spg->rw_lock);
	/* always allow dvpp channel destroy procedure */
	if (current->mm && !is_process_in_group(spa->spg, current->mm)) {
3294
		up_read(&spa->spg->rw_lock);
3295 3296 3297 3298 3299
		pr_err("unshare uva failed, caller process doesn't belong to target group\n");
		ret = -EPERM;
		goto out_drop_area;
	}
	up_read(&spa->spg->rw_lock);
3300

3301 3302
	down_write(&spa->spg->rw_lock);
	if (!spg_valid(spa->spg)) {
3303
		up_write(&spa->spg->rw_lock);
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
		pr_info("no need to unshare uva, sp group of spa is dead\n");
		goto out_clr_flag;
	}
	/* the life cycle of spa has a direct relation with sp group */
	if (unlikely(spa->is_dead)) {
		up_write(&spa->spg->rw_lock);
		pr_err("unexpected double sp unshare\n");
		dump_stack();
		ret = -EINVAL;
		goto out_drop_area;
	}
	spa->is_dead = true;
	up_write(&spa->spg->rw_lock);
3317

3318 3319 3320
	down_read(&spa->spg->rw_lock);
	__sp_free(spa->spg, spa->va_start, spa->real_size, NULL);
	up_read(&spa->spg->rw_lock);
3321

3322 3323 3324 3325
	if (current->mm == NULL)
		atomic64_sub(spa->real_size, &kthread_stat.k2u_size);
	else
		sp_update_process_stat(current, false, spa);
3326 3327 3328

out_clr_flag:
	if (!vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
3329
		pr_info("clear spa->kva %ld is not valid\n", spa->kva);
3330 3331 3332 3333 3334
	spa->kva = 0;

out_drop_area:
	__sp_area_drop(spa);
out:
3335
	sp_group_put(spg);
3336
	return ret;
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
}

/* No possible concurrent protection, take care when use */
static int sp_unshare_kva(unsigned long kva, unsigned long size)
{
	unsigned long addr, kva_aligned;
	struct page *page;
	unsigned long size_aligned;
	unsigned long step;
	bool is_hugepage = true;
	int ret;

	ret = is_vmap_hugepage(kva);
	if (ret > 0) {
		kva_aligned = ALIGN_DOWN(kva, PMD_SIZE);
		size_aligned = ALIGN(kva + size, PMD_SIZE) - kva_aligned;
		step = PMD_SIZE;
	} else if (ret == 0) {
		kva_aligned = ALIGN_DOWN(kva, PAGE_SIZE);
		size_aligned = ALIGN(kva + size, PAGE_SIZE) - kva_aligned;
		step = PAGE_SIZE;
		is_hugepage = false;
	} else {
		pr_err_ratelimited("check vmap hugepage failed %d\n", ret);
		return -EINVAL;
	}

	if (kva_aligned + size_aligned < kva_aligned) {
		pr_err_ratelimited("overflow happened in unshare kva\n");
		return -EINVAL;
	}

	for (addr = kva_aligned; addr < (kva_aligned + size_aligned); addr += step) {
		page = vmalloc_to_page((void *)addr);
		if (page)
			put_page(page);
		else
			WARN(1, "vmalloc %pK to page/hugepage failed\n",
			       (void *)addr);
	}

	vunmap((void *)kva_aligned);

	return 0;
}

3383
/**
3384
 * mg_sp_unshare() - Unshare the kernel or user memory which shared by calling
3385 3386 3387 3388 3389 3390 3391 3392
 *                sp_make_share_{k2u,u2k}().
 * @va: the specified virtual address of memory
 * @size: the size of unshared memory
 *
 * Use spg_id of current thread if spg_id == SPG_ID_DEFAULT.
 *
 * Return: 0 for success, -errno on failure.
 */
3393
int mg_sp_unshare(unsigned long va, unsigned long size, int spg_id)
3394
{
3395 3396
	int ret = 0;

3397 3398 3399
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

3400 3401
	check_interrupt_context();

3402 3403 3404
	if (current->flags & PF_KTHREAD)
		return -EINVAL;

3405 3406
	if (va < TASK_SIZE) {
		/* user address */
3407
		ret = sp_unshare_uva(va, size, spg_id);
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	} else if (va >= PAGE_OFFSET) {
		/* kernel address */
		ret = sp_unshare_kva(va, size);
	} else {
		/* regard user and kernel address ranges as bad address */
		pr_debug("unshare addr %lx is not a user or kernel addr\n", (unsigned long)va);
		ret = -EFAULT;
	}

	return ret;
3418 3419 3420 3421
}
EXPORT_SYMBOL_GPL(mg_sp_unshare);

/**
3422
 * mg_sp_walk_page_range() - Walk page table with caller specific callbacks.
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @tsk: task struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * Return: 0 for success, -errno on failure.
 *
 * When return 0, sp_walk_data describing [uva, uva+size) can be used.
 * When return -errno, information in sp_walk_data is useless.
 */
3433
int mg_sp_walk_page_range(unsigned long uva, unsigned long size,
3434 3435
	struct task_struct *tsk, struct sp_walk_data *sp_walk_data)
{
3436 3437 3438
	struct mm_struct *mm;
	int ret = 0;

3439 3440 3441
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	check_interrupt_context();

	if (unlikely(!sp_walk_data)) {
		pr_err_ratelimited("null pointer when walk page range\n");
		return -EINVAL;
	}
	if (!tsk || (tsk->flags & PF_EXITING))
		return -ESRCH;

	get_task_struct(tsk);
	mm = get_task_mm(tsk);
	if (!mm) {
		put_task_struct(tsk);
		return -ESRCH;
	}

	down_write(&mm->mmap_lock);
3459
	if (likely(!mm->core_state)) {
3460
		ret = __sp_walk_page_range(uva, size, mm, sp_walk_data);
3461
	} else {
3462 3463 3464 3465 3466 3467 3468 3469 3470
		pr_err("walk page range: encoutered coredump\n");
		ret = -ESRCH;
	}
	up_write(&mm->mmap_lock);

	mmput(mm);
	put_task_struct(tsk);

	return ret;
3471 3472 3473 3474
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_range);

/**
3475
 * mg_sp_walk_page_free() - Free the sp_walk_data structure.
3476 3477
 * @sp_walk_data: a structure of a page pointer array to be freed.
 */
3478
void mg_sp_walk_page_free(struct sp_walk_data *sp_walk_data)
3479
{
3480 3481 3482
	if (!sp_is_enabled())
		return;

3483 3484 3485 3486 3487 3488
	check_interrupt_context();

	if (!sp_walk_data)
		return;

	__sp_walk_page_free(sp_walk_data);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_free);

int sp_register_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_register_notifier);

int sp_unregister_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_unregister_notifier);

3504
static bool is_sp_dynamic_dvpp_addr(unsigned long addr);
3505
/**
3506
 * mg_sp_config_dvpp_range() - User can config the share pool start address
3507 3508 3509 3510
 *                          of each Da-vinci device.
 * @start: the value of share pool start
 * @size: the value of share pool
 * @device_id: the num of Da-vinci device
3511
 * @tgid: the tgid of device process
3512 3513 3514 3515 3516
 *
 * Return true for success.
 * Return false if parameter invalid or has been set up.
 * This functuon has no concurrent problem.
 */
3517
bool mg_sp_config_dvpp_range(size_t start, size_t size, int device_id, int tgid)
3518
{
3519 3520 3521 3522 3523 3524 3525 3526
	int ret;
	bool err = false;
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct sp_group *spg;
	struct sp_mapping *spm;
	unsigned long default_start;

3527 3528 3529
	if (!sp_is_enabled())
		return false;

3530
	/* NOTE: check the start address */
3531
	if (tgid < 0 || size <= 0 || size > MMAP_SHARE_POOL_16G_SIZE ||
3532
	    device_id < 0 || device_id >= MAX_DEVID || !is_online_node_id(device_id)
3533
		|| !is_sp_dynamic_dvpp_addr(start) || !is_sp_dynamic_dvpp_addr(start + size - 1))
3534 3535
		return false;

3536
	ret = get_task(tgid, &tsk);
3537 3538 3539 3540 3541 3542 3543
	if (ret)
		return false;

	mm = get_task_mm(tsk->group_leader);
	if (!mm)
		goto put_task;

3544
	spg = sp_get_local_group(tsk, mm);
3545 3546 3547
	if (IS_ERR(spg))
		goto put_mm;

3548
	spm = spg->mapping[SP_MAPPING_DVPP];
3549
	default_start = MMAP_SHARE_POOL_DVPP_START + device_id * MMAP_SHARE_POOL_16G_SIZE;
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	/* The dvpp range of each group can be configured only once */
	if (spm->start[device_id] != default_start)
		goto put_spg;

	spm->start[device_id] = start;
	spm->end[device_id] = start + size;

	err = true;

put_spg:
3560
	sp_group_put(spg);
3561 3562 3563 3564 3565 3566
put_mm:
	mmput(mm);
put_task:
	put_task_struct(tsk);

	return err;
3567 3568 3569
}
EXPORT_SYMBOL_GPL(mg_sp_config_dvpp_range);

3570
static bool is_sp_reserve_addr(unsigned long addr)
3571
{
3572
	return addr >= MMAP_SHARE_POOL_START && addr < MMAP_SHARE_POOL_END;
3573 3574
}

3575 3576 3577 3578 3579 3580 3581
/*
 *	| 16G host | 16G device | ... |     |
 *	^
 *	|
 *	MMAP_SHARE_POOL_DVPP_BASE + 16G * 64
 *	We only check the device regions.
 */
3582
static bool is_sp_dynamic_dvpp_addr(unsigned long addr)
3583
{
3584
	if (addr < MMAP_SHARE_POOL_DYNAMIC_DVPP_BASE || addr >= MMAP_SHARE_POOL_DYNAMIC_DVPP_END)
3585 3586
		return false;

3587
	return (addr - MMAP_SHARE_POOL_DYNAMIC_DVPP_BASE) & MMAP_SHARE_POOL_16G_SIZE;
3588 3589
}

3590
/**
3591
 * mg_is_sharepool_addr() - Check if a user memory address belongs to share pool.
3592 3593 3594 3595
 * @addr: the userspace address to be checked.
 *
 * Return true if addr belongs to share pool, or false vice versa.
 */
3596
bool mg_is_sharepool_addr(unsigned long addr)
3597
{
3598
	return sp_is_enabled() &&
3599
		((is_sp_reserve_addr(addr) || is_sp_dynamic_dvpp_addr(addr)));
3600 3601 3602
}
EXPORT_SYMBOL_GPL(mg_is_sharepool_addr);

3603 3604 3605 3606 3607 3608 3609 3610
int sp_node_id(struct vm_area_struct *vma)
{
	struct sp_area *spa;
	int node_id = numa_node_id();

	if (!sp_is_enabled())
		return node_id;

3611
	if (vma && (vma->vm_flags & VM_SHARE_POOL) && vma->vm_private_data) {
3612 3613
		spa = vma->vm_private_data;
		node_id = spa->node_id;
3614 3615 3616 3617 3618
	}

	return node_id;
}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
/*** Statistical and maintenance functions ***/

static void get_mm_rss_info(struct mm_struct *mm, unsigned long *anon,
	unsigned long *file, unsigned long *shmem, unsigned long *total_rss)
{
	*anon = get_mm_counter(mm, MM_ANONPAGES);
	*file = get_mm_counter(mm, MM_FILEPAGES);
	*shmem = get_mm_counter(mm, MM_SHMEMPAGES);
	*total_rss = *anon + *file + *shmem;
}

3630
static long get_proc_k2u(struct sp_meminfo *meminfo)
3631
{
3632
	return byte2kb(atomic64_read(&meminfo->k2u_size));
3633 3634
}

3635
static long get_proc_alloc(struct sp_meminfo *meminfo)
3636
{
3637 3638
	return byte2kb(atomic64_read(&meminfo->alloc_nsize) +
			atomic64_read(&meminfo->alloc_hsize));
3639 3640
}

G
Guo Mengqi 已提交
3641
static void get_process_sp_res(struct sp_group_master *master,
3642
		long *sp_res_out, long *sp_res_nsize_out)
3643
{
G
Guo Mengqi 已提交
3644 3645 3646 3647 3648 3649 3650 3651
	struct sp_group *spg;
	struct sp_group_node *spg_node;

	*sp_res_out = 0;
	*sp_res_nsize_out = 0;

	list_for_each_entry(spg_node, &master->node_list, group_node) {
		spg = spg_node->spg;
3652 3653 3654
		*sp_res_out += byte2kb(atomic64_read(&spg->meminfo.alloc_nsize));
		*sp_res_out += byte2kb(atomic64_read(&spg->meminfo.alloc_hsize));
		*sp_res_nsize_out += byte2kb(atomic64_read(&spg->meminfo.alloc_nsize));
G
Guo Mengqi 已提交
3655
	}
3656 3657
}

3658
static long get_sp_res_by_spg_proc(struct sp_group_node *spg_node)
3659
{
3660 3661
	return byte2kb(atomic64_read(&spg_node->spg->meminfo.alloc_nsize) +
			atomic64_read(&spg_node->spg->meminfo.alloc_hsize));
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
}

/*
 *  Statistics of RSS has a maximum 64 pages deviation (256KB).
 *  Please check_sync_rss_stat().
 */
static void get_process_non_sp_res(unsigned long total_rss, unsigned long shmem,
	long sp_res_nsize, long *non_sp_res_out, long *non_sp_shm_out)
{
	long non_sp_res, non_sp_shm;

	non_sp_res = page2kb(total_rss) - sp_res_nsize;
	non_sp_res = non_sp_res < 0 ? 0 : non_sp_res;
	non_sp_shm = page2kb(shmem) - sp_res_nsize;
	non_sp_shm = non_sp_shm < 0 ? 0 : non_sp_shm;

	*non_sp_res_out = non_sp_res;
	*non_sp_shm_out = non_sp_shm;
}

3682
static long get_spg_proc_alloc(struct sp_group_node *spg_node)
3683
{
3684 3685
	return byte2kb(atomic64_read(&spg_node->instat.alloc_nsize) +
				atomic64_read(&spg_node->instat.alloc_hsize));
3686 3687
}

3688
static long get_spg_proc_k2u(struct sp_group_node *spg_node)
3689
{
3690
	return byte2kb(atomic64_read(&spg_node->instat.k2u_size));
3691 3692 3693 3694 3695 3696 3697 3698
}

static void print_process_prot(struct seq_file *seq, unsigned long prot)
{
	if (prot == PROT_READ)
		seq_puts(seq, "R");
	else if (prot == (PROT_READ | PROT_WRITE))
		seq_puts(seq, "RW");
3699
	else
3700 3701 3702 3703 3704 3705
		seq_puts(seq, "-");
}

int proc_sp_group_state(struct seq_file *m, struct pid_namespace *ns,
			struct pid *pid, struct task_struct *task)
{
Z
Zhou Guanghui 已提交
3706
	struct mm_struct *mm;
3707
	struct sp_group_master *master;
3708
	struct sp_meminfo *meminfo;
3709 3710
	struct sp_group_node *spg_node;
	unsigned long anon, file, shmem, total_rss;
3711 3712
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;

3713 3714 3715
	if (!sp_is_enabled())
		return 0;

Z
Zhou Guanghui 已提交
3716
	mm = get_task_mm(task);
3717 3718 3719
	if (!mm)
		return 0;

3720
	down_read(&sp_group_sem);
3721
	down_read(&mm->mmap_lock);
3722
	master = mm->sp_group_master;
Z
Zhou Guanghui 已提交
3723 3724
	if (!master)
		goto out;
3725 3726

	get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);
3727
	meminfo = &master->meminfo;
G
Guo Mengqi 已提交
3728
	get_process_sp_res(master, &sp_res, &sp_res_nsize);
3729 3730 3731 3732 3733 3734 3735 3736
	get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
			       &non_sp_res, &non_sp_shm);

	seq_puts(m, "Share Pool Aggregate Data of This Process\n\n");
	seq_printf(m, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
		   "PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
		   "Non-SP_Shm", "VIRT");
	seq_printf(m, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
3737
		   master->tgid, master->comm,
3738 3739
		   get_proc_alloc(meminfo),
		   get_proc_k2u(meminfo),
3740 3741 3742 3743 3744
		   sp_res, non_sp_res, non_sp_shm,
		   page2kb(mm->total_vm));

	seq_puts(m, "\n\nProcess in Each SP Group\n\n");
	seq_printf(m, "%-8s %-9s %-9s %-9s %-4s\n",
3745
			"Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES", "PROT");
3746

3747
	list_for_each_entry(spg_node, &master->node_list, group_node) {
3748
		seq_printf(m, "%-8d %-9ld %-9ld %-9ld ",
3749 3750 3751 3752 3753
				spg_node->spg->id,
				get_spg_proc_alloc(spg_node),
				get_spg_proc_k2u(spg_node),
				get_sp_res_by_spg_proc(spg_node));
		print_process_prot(m, spg_node->prot);
3754 3755
		seq_putc(m, '\n');
	}
Z
Zhou Guanghui 已提交
3756 3757

out:
3758
	up_read(&mm->mmap_lock);
3759
	up_read(&sp_group_sem);
Z
Zhou Guanghui 已提交
3760
	mmput(mm);
3761 3762 3763
	return 0;
}

3764
static void spa_stat_of_mapping_show(struct seq_file *seq, struct sp_mapping *spm)
3765 3766 3767 3768 3769
{
	struct rb_node *node;
	struct sp_area *spa, *prev = NULL;

	spin_lock(&sp_area_lock);
3770
	for (node = rb_first(&spm->area_root); node; node = rb_next(node)) {
3771 3772 3773 3774 3775 3776 3777
		__sp_area_drop_locked(prev);

		spa = rb_entry(node, struct sp_area, rb_node);
		prev = spa;
		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

3778 3779 3780 3781
		if (spg_valid(spa->spg))  /* k2u to group */
			seq_printf(seq, "%-10d ", spa->spg->id);
		else  /* spg is dead */
			seq_printf(seq, "%-10s ", "Dead");
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816

		seq_printf(seq, "%2s%-14lx %2s%-14lx %-10ld ",
			   "0x", spa->va_start,
			   "0x", spa->va_end,
			   byte2kb(spa->real_size));

		switch (spa->type) {
		case SPA_TYPE_ALLOC:
			seq_printf(seq, "%-7s ", "ALLOC");
			break;
		case SPA_TYPE_K2TASK:
			seq_printf(seq, "%-7s ", "TASK");
			break;
		case SPA_TYPE_K2SPG:
			seq_printf(seq, "%-7s ", "SPG");
			break;
		default:
			/* usually impossible, perhaps a developer's mistake */
			break;
		}

		if (spa->is_hugepage)
			seq_printf(seq, "%-5s ", "Y");
		else
			seq_printf(seq, "%-5s ", "N");

		seq_printf(seq, "%-8d ",  spa->applier);
		seq_printf(seq, "%-8d\n", atomic_read(&spa->use_count));

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);
}

C
Chen Jun 已提交
3817 3818 3819 3820 3821
static void spa_ro_stat_show(struct seq_file *seq)
{
	spa_stat_of_mapping_show(seq, sp_mapping_ro);
}

3822 3823 3824 3825 3826 3827 3828
static void spa_normal_stat_show(struct seq_file *seq)
{
	spa_stat_of_mapping_show(seq, sp_mapping_normal);
}

static void spa_dvpp_stat_show(struct seq_file *seq)
{
3829 3830 3831 3832 3833 3834
	struct sp_mapping *spm;

	mutex_lock(&spm_list_lock);
	list_for_each_entry(spm, &spm_dvpp_list, spm_node)
		spa_stat_of_mapping_show(seq, spm);
	mutex_unlock(&spm_list_lock);
3835 3836 3837
}


3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
void spa_overview_show(struct seq_file *seq)
{
	unsigned int total_num, alloc_num, k2u_task_num, k2u_spg_num;
	unsigned long total_size, alloc_size, k2u_task_size, k2u_spg_size;
	unsigned long dvpp_size, dvpp_va_size;

	if (!sp_is_enabled())
		return;

	spin_lock(&sp_area_lock);
	total_num     = spa_stat.total_num;
	alloc_num     = spa_stat.alloc_num;
	k2u_task_num  = spa_stat.k2u_task_num;
	k2u_spg_num   = spa_stat.k2u_spg_num;
	total_size    = spa_stat.total_size;
	alloc_size    = spa_stat.alloc_size;
	k2u_task_size = spa_stat.k2u_task_size;
	k2u_spg_size  = spa_stat.k2u_spg_size;
	dvpp_size     = spa_stat.dvpp_size;
	dvpp_va_size  = spa_stat.dvpp_va_size;
	spin_unlock(&sp_area_lock);

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	SEQ_printf(seq, "Spa total num %u.\n", total_num);
	SEQ_printf(seq, "Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
		   alloc_num, k2u_task_num, k2u_spg_num);
	SEQ_printf(seq, "Spa total size:     %13lu KB\n", byte2kb(total_size));
	SEQ_printf(seq, "Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
	SEQ_printf(seq, "Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
	SEQ_printf(seq, "Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
	SEQ_printf(seq, "Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
	SEQ_printf(seq, "Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
	SEQ_printf(seq, "\n");
3870 3871
}

3872
static int spg_info_show(int id, void *p, void *data)
3873
{
3874
	struct sp_group *spg = p;
3875 3876
	struct seq_file *seq = data;

3877
	if (id >= SPG_ID_LOCAL_MIN && id <= SPG_ID_LOCAL_MAX)
3878
		return 0;
3879

3880
	SEQ_printf(seq, "Group %6d ", id);
3881

3882 3883
	down_read(&spg->rw_lock);
	SEQ_printf(seq, "size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
3884
			byte2kb(atomic64_read(&spg->meminfo.size)),
3885
			atomic_read(&spg->spa_num),
3886 3887 3888
			byte2kb(atomic64_read(&spg->meminfo.alloc_size)),
			byte2kb(atomic64_read(&spg->meminfo.alloc_nsize)),
			byte2kb(atomic64_read(&spg->meminfo.alloc_hsize)));
3889
	up_read(&spg->rw_lock);
3890 3891 3892 3893 3894 3895 3896 3897 3898

	return 0;
}

void spg_overview_show(struct seq_file *seq)
{
	if (!sp_is_enabled())
		return;

3899 3900 3901
	SEQ_printf(seq, "Share pool total size: %lld KB, spa total num: %d.\n",
			byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
			atomic_read(&sp_overall_stat.spa_total_num));
3902

3903 3904 3905
	down_read(&sp_group_sem);
	idr_for_each(&sp_group_idr, spg_info_show, seq);
	up_read(&sp_group_sem);
3906

3907
	SEQ_printf(seq, "\n");
3908 3909
}

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
static bool should_show_statistics(void)
{
	if (!capable(CAP_SYS_ADMIN))
		return false;

	if (task_active_pid_ns(current) != &init_pid_ns)
		return false;

	return true;
}

3921 3922
static int spa_stat_show(struct seq_file *seq, void *offset)
{
3923 3924 3925
	if (!should_show_statistics())
		return -EPERM;

3926 3927 3928 3929
	spg_overview_show(seq);
	spa_overview_show(seq);
	/* print the file header */
	seq_printf(seq, "%-10s %-16s %-16s %-10s %-7s %-5s %-8s %-8s\n",
3930
			"Group ID", "va_start", "va_end", "Size(KB)", "Type", "Huge", "PID", "Ref");
C
Chen Jun 已提交
3931
	spa_ro_stat_show(seq);
3932 3933
	spa_normal_stat_show(seq);
	spa_dvpp_stat_show(seq);
3934 3935 3936
	return 0;
}

3937
static int proc_usage_by_group(int id, void *p, void *data)
3938
{
3939
	struct sp_group *spg = p;
3940
	struct seq_file *seq = data;
3941
	struct sp_group_node *spg_node;
3942
	struct mm_struct *mm;
3943 3944 3945
	struct sp_group_master *master;
	int tgid;
	unsigned long anon, file, shmem, total_rss;
3946

3947 3948 3949 3950
	down_read(&spg->rw_lock);
	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		master = spg_node->master;
		mm = master->mm;
3951
		tgid = master->tgid;
3952 3953 3954 3955

		get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);

		seq_printf(seq, "%-8d ", tgid);
3956 3957
		seq_printf(seq, "%-8d ", id);
		seq_printf(seq, "%-9ld %-9ld %-9ld %-8ld %-7ld %-7ld ",
3958 3959 3960 3961
				get_spg_proc_alloc(spg_node),
				get_spg_proc_k2u(spg_node),
				get_sp_res_by_spg_proc(spg_node),
				page2kb(mm->total_vm), page2kb(total_rss),
3962
				page2kb(shmem));
3963
		print_process_prot(seq, spg_node->prot);
3964 3965
		seq_putc(seq, '\n');
	}
3966
	up_read(&spg->rw_lock);
3967
	cond_resched();
3968

3969 3970 3971
	return 0;
}

3972
static int proc_group_usage_show(struct seq_file *seq, void *offset)
3973
{
3974 3975 3976
	if (!should_show_statistics())
		return -EPERM;

3977 3978
	spg_overview_show(seq);
	spa_overview_show(seq);
3979

3980
	/* print the file header */
3981 3982 3983
	seq_printf(seq, "%-8s %-8s %-9s %-9s %-9s %-8s %-7s %-7s %-4s\n",
			"PID", "Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES",
			"VIRT", "RES", "Shm", "PROT");
3984 3985
	/* print kthread buff_module_guard_work */
	seq_printf(seq, "%-8s %-8s %-9lld %-9lld\n",
3986 3987 3988
			"guard", "-",
			byte2kb(atomic64_read(&kthread_stat.alloc_size)),
			byte2kb(atomic64_read(&kthread_stat.k2u_size)));
3989

W
Wang Wensheng 已提交
3990
	down_read(&sp_group_sem);
3991
	idr_for_each(&sp_group_idr, proc_usage_by_group, seq);
W
Wang Wensheng 已提交
3992 3993
	up_read(&sp_group_sem);

3994 3995 3996
	return 0;
}

3997
static int proc_usage_show(struct seq_file *seq, void *offset)
3998
{
3999
	struct sp_group_master *master = NULL;
4000 4001
	unsigned long anon, file, shmem, total_rss;
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;
4002
	struct sp_meminfo *meminfo;
4003

4004 4005 4006
	if (!should_show_statistics())
		return -EPERM;

4007
	seq_printf(seq, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
4008 4009 4010
			"PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
			"Non-SP_Shm", "VIRT");

4011
	down_read(&sp_group_sem);
4012 4013
	mutex_lock(&master_list_lock);
	list_for_each_entry(master, &master_list, list_node) {
4014
		meminfo = &master->meminfo;
4015
		get_mm_rss_info(master->mm, &anon, &file, &shmem, &total_rss);
G
Guo Mengqi 已提交
4016
		get_process_sp_res(master, &sp_res, &sp_res_nsize);
4017 4018 4019
		get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
				&non_sp_res, &non_sp_shm);
		seq_printf(seq, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
4020
				master->tgid, master->comm,
4021 4022
				get_proc_alloc(meminfo),
				get_proc_k2u(meminfo),
4023 4024 4025 4026
				sp_res, non_sp_res, non_sp_shm,
				page2kb(master->mm->total_vm));
	}
	mutex_unlock(&master_list_lock);
4027
	up_read(&sp_group_sem);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037

	return 0;
}

static void __init proc_sharepool_init(void)
{
	if (!proc_mkdir("sharepool", NULL))
		return;

	proc_create_single_data("sharepool/spa_stat", 0400, NULL, spa_stat_show, NULL);
4038 4039
	proc_create_single_data("sharepool/proc_stat", 0400, NULL, proc_group_usage_show, NULL);
	proc_create_single_data("sharepool/proc_overview", 0400, NULL, proc_usage_show, NULL);
4040 4041 4042 4043
}

/*** End of tatistical and maintenance functions ***/

4044 4045
bool sp_check_addr(unsigned long addr)
{
4046
	if (sp_is_enabled() && mg_is_sharepool_addr(addr) &&
4047
	    !check_aoscore_process(current))
4048
		return true;
4049
	else
4050 4051 4052 4053 4054
		return false;
}

bool sp_check_mmap_addr(unsigned long addr, unsigned long flags)
{
4055
	if (sp_is_enabled() && mg_is_sharepool_addr(addr) &&
4056
	    !check_aoscore_process(current) && !(flags & MAP_SHARE_POOL))
4057
		return true;
4058
	else
4059 4060 4061
		return false;
}

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
vm_fault_t sharepool_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
{
	struct hstate *h = hstate_vma(vma);
	vm_fault_t ret = VM_FAULT_SIGBUS;
	unsigned long size;
	struct page *page;
	pte_t new_pte;
	spinlock_t *ptl;
	unsigned long haddr = address & huge_page_mask(h);
	bool new_page = false;
	int err;
	int node_id;
	struct sp_area *spa;

4079
	spa = vma->vm_private_data;
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	if (!spa) {
		pr_err("share pool: vma is invalid, not from sp mmap\n");
		return ret;
	}
	node_id = spa->node_id;

retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		if (idx >= size)
			goto out;

		page = alloc_huge_page(vma, haddr, 0);
		if (IS_ERR(page)) {
4095 4096
			page = hugetlb_alloc_hugepage(node_id,
					HUGETLB_ALLOC_BUDDY | HUGETLB_ALLOC_NORECLAIM);
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
			if (!page)
				page = ERR_PTR(-ENOMEM);
		}
		if (IS_ERR(page)) {
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
			ret = vmf_error(PTR_ERR(page));
			goto out;
		}
		__SetPageUptodate(page);
		new_page = true;

		/* sharepool pages are all shared */
		err = huge_add_to_page_cache(page, mapping, idx);
		if (err) {
			put_page(page);
			if (err == -EEXIST)
				goto retry;
			goto out;
		}
	}


	ptl = huge_pte_lock(h, mm, ptep);
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto backout;

	ret = 0;
	if (!huge_pte_none(huge_ptep_get(ptep)))
		goto backout;

	page_dup_rmap(page, true);
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, haddr, ptep, new_pte);

	hugetlb_count_add(pages_per_huge_page(h), mm);

	spin_unlock(ptl);

	if (new_page) {
		SetPagePrivate(&page[1]);
	}

	unlock_page(page);
out:
	return ret;

backout:
	spin_unlock(ptl);
	unlock_page(page);
	put_page(page);
	goto out;
}

4158
/*
4159 4160
 * The caller must ensure that this function is called
 * when the last thread in the thread group exits.
4161
 */
4162
int sp_group_exit(void)
4163
{
4164
	struct mm_struct *mm;
4165 4166 4167 4168 4169 4170 4171 4172
	struct sp_group *spg;
	struct sp_group_master *master;
	struct sp_group_node *spg_node, *tmp;
	bool is_alive = true;

	if (!sp_is_enabled())
		return 0;

4173 4174 4175 4176
	if (current->flags & PF_KTHREAD)
		return 0;

	mm = current->mm;
4177 4178 4179 4180 4181 4182 4183 4184
	down_write(&sp_group_sem);

	master = mm->sp_group_master;
	if (!master) {
		up_write(&sp_group_sem);
		return 0;
	}

4185 4186 4187 4188 4189
	if (master->tgid != current->tgid) {
		up_write(&sp_group_sem);
		return 0;
	}

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
	list_for_each_entry_safe(spg_node, tmp, &master->node_list, group_node) {
		spg = spg_node->spg;

		down_write(&spg->rw_lock);
		/* a dead group should NOT be reactive again */
		if (spg_valid(spg) && list_is_singular(&spg->procs))
			is_alive = spg->is_alive = false;
		spg->proc_num--;
		list_del(&spg_node->proc_node);
		up_write(&spg->rw_lock);

		if (!is_alive)
			blocking_notifier_call_chain(&sp_notifier_chain, 0,
						     spg);
	}

	/* match with get_task_mm() in sp_group_add_task() */
	if (atomic_sub_and_test(master->count, &mm->mm_users)) {
		up_write(&sp_group_sem);
		WARN(1, "Invalid user counting\n");
		return 1;
	}

	up_write(&sp_group_sem);
	return 0;
}

void sp_group_post_exit(struct mm_struct *mm)
{
4219
	struct sp_meminfo *meminfo;
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	long alloc_size, k2u_size;
	/* lockless visit */
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group_node *spg_node, *tmp;
	struct sp_group *spg;

	if (!sp_is_enabled() || !master)
		return;

	/*
	 * There are two basic scenarios when a process in the share pool is
	 * exiting but its share pool memory usage is not 0.
	 * 1. Process A called sp_alloc(), but it terminates without calling
	 *    sp_free(). Then its share pool memory usage is a positive number.
	 * 2. Process A never called sp_alloc(), and process B in the same spg
	 *    called sp_alloc() to get an addr u. Then A gets u somehow and
	 *    called sp_free(u). Now A's share pool memory usage is a negative
	 *    number. Notice B's memory usage will be a positive number.
	 *
	 * We decide to print an info when seeing both of the scenarios.
	 *
	 * A process not in an sp group doesn't need to print because there
	 * wont't be any memory which is not freed.
	 */
4244 4245 4246 4247 4248 4249 4250
	meminfo = &master->meminfo;
	alloc_size = atomic64_read(&meminfo->alloc_nsize) + atomic64_read(&meminfo->alloc_hsize);
	k2u_size = atomic64_read(&meminfo->k2u_size);
	if (alloc_size != 0 || k2u_size != 0)
		pr_info("process %s(%d) exits. It applied %ld aligned KB, k2u shared %ld aligned KB\n",
			master->comm, master->tgid,
			byte2kb(alloc_size), byte2kb(k2u_size));
4251

4252
	down_write(&sp_group_sem);
4253 4254 4255
	list_for_each_entry_safe(spg_node, tmp, &master->node_list, group_node) {
		spg = spg_node->spg;
		/* match with refcount inc in sp_group_add_task */
4256 4257
		if (atomic_dec_and_test(&spg->use_count))
			free_sp_group_locked(spg);
4258
		list_del(&spg_node->group_node);
4259 4260
		kfree(spg_node);
	}
4261
	up_write(&sp_group_sem);
4262

4263
	sp_del_group_master(master);
4264

4265 4266 4267
	kfree(master);
}

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
DEFINE_STATIC_KEY_FALSE(share_pool_enabled_key);

static int __init enable_share_pool(char *s)
{
	static_branch_enable(&share_pool_enabled_key);
	pr_info("Ascend enable share pool features via bootargs\n");

	return 1;
}
__setup("enable_ascend_share_pool", enable_share_pool);
4278 4279 4280

static int __init share_pool_init(void)
{
4281 4282 4283 4284
	if (!sp_is_enabled())
		return 0;

	sp_mapping_normal = sp_mapping_create(SP_MAPPING_NORMAL);
4285
	if (IS_ERR(sp_mapping_normal))
4286 4287 4288
		goto fail;
	atomic_inc(&sp_mapping_normal->user);

C
Chen Jun 已提交
4289 4290 4291 4292 4293
	sp_mapping_ro = sp_mapping_create(SP_MAPPING_RO);
	if (IS_ERR(sp_mapping_ro))
		goto free_normal;
	atomic_inc(&sp_mapping_ro->user);

4294
	proc_sharepool_init();
4295 4296

	return 0;
C
Chen Jun 已提交
4297 4298 4299

free_normal:
	kfree(sp_mapping_normal);
4300 4301 4302 4303 4304 4305
fail:
	pr_err("Ascend share pool initialization failed\n");
	static_branch_disable(&share_pool_enabled_key);
	return 1;
}
late_initcall(share_pool_init);