arm_pmu.c 21.5 KB
Newer Older
1 2 3 4 5 6
#undef DEBUG

/*
 * ARM performance counter support.
 *
 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7
 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8
 *
9
 * This code is based on the sparc64 perf event code, which is in turn based
10
 * on the x86 code.
11 12 13
 */
#define pr_fmt(fmt) "hw perfevents: " fmt

14
#include <linux/bitmap.h>
15
#include <linux/cpumask.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/export.h>
18
#include <linux/kernel.h>
19
#include <linux/perf/arm_pmu.h>
20
#include <linux/platform_device.h>
21
#include <linux/slab.h>
22
#include <linux/sched/clock.h>
23
#include <linux/spinlock.h>
24 25
#include <linux/irq.h>
#include <linux/irqdesc.h>
26 27 28 29

#include <asm/irq_regs.h>

static int
M
Mark Rutland 已提交
30 31 32 33 34
armpmu_map_cache_event(const unsigned (*cache_map)
				      [PERF_COUNT_HW_CACHE_MAX]
				      [PERF_COUNT_HW_CACHE_OP_MAX]
				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
		       u64 config)
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
{
	unsigned int cache_type, cache_op, cache_result, ret;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

50 51 52
	if (!cache_map)
		return -ENOENT;

M
Mark Rutland 已提交
53
	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
54 55 56 57 58 59 60

	if (ret == CACHE_OP_UNSUPPORTED)
		return -ENOENT;

	return ret;
}

61
static int
62
armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
63
{
64 65 66 67 68
	int mapping;

	if (config >= PERF_COUNT_HW_MAX)
		return -EINVAL;

69 70 71
	if (!event_map)
		return -ENOENT;

72
	mapping = (*event_map)[config];
M
Mark Rutland 已提交
73
	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
74 75 76
}

static int
M
Mark Rutland 已提交
77
armpmu_map_raw_event(u32 raw_event_mask, u64 config)
78
{
M
Mark Rutland 已提交
79 80 81
	return (int)(config & raw_event_mask);
}

82 83 84 85 86 87 88 89
int
armpmu_map_event(struct perf_event *event,
		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
		 const unsigned (*cache_map)
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX],
		 u32 raw_event_mask)
M
Mark Rutland 已提交
90 91
{
	u64 config = event->attr.config;
92
	int type = event->attr.type;
M
Mark Rutland 已提交
93

94 95 96 97
	if (type == event->pmu->type)
		return armpmu_map_raw_event(raw_event_mask, config);

	switch (type) {
M
Mark Rutland 已提交
98
	case PERF_TYPE_HARDWARE:
99
		return armpmu_map_hw_event(event_map, config);
M
Mark Rutland 已提交
100 101 102 103 104 105 106
	case PERF_TYPE_HW_CACHE:
		return armpmu_map_cache_event(cache_map, config);
	case PERF_TYPE_RAW:
		return armpmu_map_raw_event(raw_event_mask, config);
	}

	return -ENOENT;
107 108
}

109
int armpmu_event_set_period(struct perf_event *event)
110
{
111
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
112
	struct hw_perf_event *hwc = &event->hw;
113
	s64 left = local64_read(&hwc->period_left);
114 115 116 117 118
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
119
		local64_set(&hwc->period_left, left);
120 121 122 123 124 125
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
126
		local64_set(&hwc->period_left, left);
127 128 129 130
		hwc->last_period = period;
		ret = 1;
	}

131 132 133 134 135 136 137 138
	/*
	 * Limit the maximum period to prevent the counter value
	 * from overtaking the one we are about to program. In
	 * effect we are reducing max_period to account for
	 * interrupt latency (and we are being very conservative).
	 */
	if (left > (armpmu->max_period >> 1))
		left = armpmu->max_period >> 1;
139

140
	local64_set(&hwc->prev_count, (u64)-left);
141

142
	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
143 144 145 146 147 148

	perf_event_update_userpage(event);

	return ret;
}

149
u64 armpmu_event_update(struct perf_event *event)
150
{
151
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
152
	struct hw_perf_event *hwc = &event->hw;
153
	u64 delta, prev_raw_count, new_raw_count;
154 155

again:
156
	prev_raw_count = local64_read(&hwc->prev_count);
157
	new_raw_count = armpmu->read_counter(event);
158

159
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
160 161 162
			     new_raw_count) != prev_raw_count)
		goto again;

163
	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
164

165 166
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
167 168 169 170 171

	return new_raw_count;
}

static void
P
Peter Zijlstra 已提交
172
armpmu_read(struct perf_event *event)
173
{
174
	armpmu_event_update(event);
175 176 177
}

static void
P
Peter Zijlstra 已提交
178
armpmu_stop(struct perf_event *event, int flags)
179
{
180
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
181 182
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
183 184 185 186 187
	/*
	 * ARM pmu always has to update the counter, so ignore
	 * PERF_EF_UPDATE, see comments in armpmu_start().
	 */
	if (!(hwc->state & PERF_HES_STOPPED)) {
188 189
		armpmu->disable(event);
		armpmu_event_update(event);
P
Peter Zijlstra 已提交
190 191
		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	}
192 193
}

194
static void armpmu_start(struct perf_event *event, int flags)
195
{
196
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
197 198
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
199 200 201 202 203 204 205 206
	/*
	 * ARM pmu always has to reprogram the period, so ignore
	 * PERF_EF_RELOAD, see the comment below.
	 */
	if (flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

	hwc->state = 0;
207 208
	/*
	 * Set the period again. Some counters can't be stopped, so when we
P
Peter Zijlstra 已提交
209
	 * were stopped we simply disabled the IRQ source and the counter
210 211 212 213
	 * may have been left counting. If we don't do this step then we may
	 * get an interrupt too soon or *way* too late if the overflow has
	 * happened since disabling.
	 */
214 215
	armpmu_event_set_period(event);
	armpmu->enable(event);
216 217
}

P
Peter Zijlstra 已提交
218 219 220
static void
armpmu_del(struct perf_event *event, int flags)
{
221
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
M
Mark Rutland 已提交
222
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
P
Peter Zijlstra 已提交
223 224 225 226
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	armpmu_stop(event, PERF_EF_UPDATE);
227 228
	hw_events->events[idx] = NULL;
	clear_bit(idx, hw_events->used_mask);
229 230
	if (armpmu->clear_event_idx)
		armpmu->clear_event_idx(hw_events, event);
P
Peter Zijlstra 已提交
231 232 233 234

	perf_event_update_userpage(event);
}

235
static int
P
Peter Zijlstra 已提交
236
armpmu_add(struct perf_event *event, int flags)
237
{
238
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
M
Mark Rutland 已提交
239
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
240 241 242
	struct hw_perf_event *hwc = &event->hw;
	int idx;

243 244 245 246
	/* An event following a process won't be stopped earlier */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return -ENOENT;

247
	/* If we don't have a space for the counter then finish early. */
248
	idx = armpmu->get_event_idx(hw_events, event);
249 250
	if (idx < 0)
		return idx;
251 252 253 254 255 256

	/*
	 * If there is an event in the counter we are going to use then make
	 * sure it is disabled.
	 */
	event->hw.idx = idx;
257
	armpmu->disable(event);
258
	hw_events->events[idx] = event;
259

P
Peter Zijlstra 已提交
260 261 262
	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	if (flags & PERF_EF_START)
		armpmu_start(event, PERF_EF_RELOAD);
263 264 265 266

	/* Propagate our changes to the userspace mapping. */
	perf_event_update_userpage(event);

267
	return 0;
268 269 270
}

static int
271 272
validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
			       struct perf_event *event)
273
{
274
	struct arm_pmu *armpmu;
275

276 277 278
	if (is_software_event(event))
		return 1;

279 280 281 282 283 284 285 286
	/*
	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
	 * core perf code won't check that the pmu->ctx == leader->ctx
	 * until after pmu->event_init(event).
	 */
	if (event->pmu != pmu)
		return 0;

287
	if (event->state < PERF_EVENT_STATE_OFF)
288 289 290
		return 1;

	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
291
		return 1;
292

293
	armpmu = to_arm_pmu(event->pmu);
294
	return armpmu->get_event_idx(hw_events, event) >= 0;
295 296 297 298 299 300
}

static int
validate_group(struct perf_event *event)
{
	struct perf_event *sibling, *leader = event->group_leader;
301
	struct pmu_hw_events fake_pmu;
302

303 304 305 306
	/*
	 * Initialise the fake PMU. We only need to populate the
	 * used_mask for the purposes of validation.
	 */
307
	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
308

309
	if (!validate_event(event->pmu, &fake_pmu, leader))
310
		return -EINVAL;
311 312

	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
313
		if (!validate_event(event->pmu, &fake_pmu, sibling))
314
			return -EINVAL;
315 316
	}

317
	if (!validate_event(event->pmu, &fake_pmu, event))
318
		return -EINVAL;
319 320 321 322

	return 0;
}

323 324 325 326 327 328 329
static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
{
	struct platform_device *pdev = armpmu->plat_device;

	return pdev ? dev_get_platdata(&pdev->dev) : NULL;
}

330
static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
331
{
332 333
	struct arm_pmu *armpmu;
	struct arm_pmu_platdata *plat;
334 335
	int ret;
	u64 start_clock, finish_clock;
336

337 338 339 340 341 342 343
	/*
	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
	 * do any necessary shifting, we just need to perform the first
	 * dereference.
	 */
	armpmu = *(void **)dev;
344 345

	plat = armpmu_get_platdata(armpmu);
346

347
	start_clock = sched_clock();
348
	if (plat && plat->handle_irq)
349
		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
350
	else
351
		ret = armpmu->handle_irq(irq, armpmu);
352 353 354 355
	finish_clock = sched_clock();

	perf_sample_event_took(finish_clock - start_clock);
	return ret;
356 357
}

358 359 360 361 362 363 364
static int
event_requires_mode_exclusion(struct perf_event_attr *attr)
{
	return attr->exclude_idle || attr->exclude_user ||
	       attr->exclude_kernel || attr->exclude_hv;
}

365 366 367
static int
__hw_perf_event_init(struct perf_event *event)
{
368
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
369
	struct hw_perf_event *hwc = &event->hw;
370
	int mapping;
371

M
Mark Rutland 已提交
372
	mapping = armpmu->map_event(event);
373 374 375 376 377 378 379

	if (mapping < 0) {
		pr_debug("event %x:%llx not supported\n", event->attr.type,
			 event->attr.config);
		return mapping;
	}

380 381 382 383 384 385 386 387 388 389 390
	/*
	 * We don't assign an index until we actually place the event onto
	 * hardware. Use -1 to signify that we haven't decided where to put it
	 * yet. For SMP systems, each core has it's own PMU so we can't do any
	 * clever allocation or constraints checking at this point.
	 */
	hwc->idx		= -1;
	hwc->config_base	= 0;
	hwc->config		= 0;
	hwc->event_base		= 0;

391 392 393
	/*
	 * Check whether we need to exclude the counter from certain modes.
	 */
394 395 396
	if ((!armpmu->set_event_filter ||
	     armpmu->set_event_filter(hwc, &event->attr)) &&
	     event_requires_mode_exclusion(&event->attr)) {
397 398
		pr_debug("ARM performance counters do not support "
			 "mode exclusion\n");
399
		return -EOPNOTSUPP;
400 401 402
	}

	/*
403
	 * Store the event encoding into the config_base field.
404
	 */
405
	hwc->config_base	    |= (unsigned long)mapping;
406

407
	if (!is_sampling_event(event)) {
408 409 410 411 412 413 414
		/*
		 * For non-sampling runs, limit the sample_period to half
		 * of the counter width. That way, the new counter value
		 * is far less likely to overtake the previous one unless
		 * you have some serious IRQ latency issues.
		 */
		hwc->sample_period  = armpmu->max_period >> 1;
415
		hwc->last_period    = hwc->sample_period;
416
		local64_set(&hwc->period_left, hwc->sample_period);
417 418 419
	}

	if (event->group_leader != event) {
420
		if (validate_group(event) != 0)
421 422 423
			return -EINVAL;
	}

424
	return 0;
425 426
}

427
static int armpmu_event_init(struct perf_event *event)
428
{
429
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
430

431 432 433 434 435 436 437 438 439 440 441
	/*
	 * Reject CPU-affine events for CPUs that are of a different class to
	 * that which this PMU handles. Process-following events (where
	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
	 * reject them later (in armpmu_add) if they're scheduled on a
	 * different class of CPU.
	 */
	if (event->cpu != -1 &&
		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
		return -ENOENT;

442 443 444 445
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

M
Mark Rutland 已提交
446
	if (armpmu->map_event(event) == -ENOENT)
447 448
		return -ENOENT;

449
	return __hw_perf_event_init(event);
450 451
}

P
Peter Zijlstra 已提交
452
static void armpmu_enable(struct pmu *pmu)
453
{
454
	struct arm_pmu *armpmu = to_arm_pmu(pmu);
M
Mark Rutland 已提交
455
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
456
	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
457

458 459 460 461
	/* For task-bound events we may be called on other CPUs */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return;

462
	if (enabled)
463
		armpmu->start(armpmu);
464 465
}

P
Peter Zijlstra 已提交
466
static void armpmu_disable(struct pmu *pmu)
467
{
468
	struct arm_pmu *armpmu = to_arm_pmu(pmu);
469 470 471 472 473

	/* For task-bound events we may be called on other CPUs */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return;

474
	armpmu->stop(armpmu);
475 476
}

477 478 479 480 481 482 483 484 485 486 487 488
/*
 * In heterogeneous systems, events are specific to a particular
 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 * the same microarchitecture.
 */
static int armpmu_filter_match(struct perf_event *event)
{
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
	unsigned int cpu = smp_processor_id();
	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
static ssize_t armpmu_cpumask_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
}

static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);

static struct attribute *armpmu_common_attrs[] = {
	&dev_attr_cpus.attr,
	NULL,
};

static struct attribute_group armpmu_common_attr_group = {
	.attrs = armpmu_common_attrs,
};

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/* Set at runtime when we know what CPU type we are. */
static struct arm_pmu *__oprofile_cpu_pmu;

/*
 * Despite the names, these two functions are CPU-specific and are used
 * by the OProfile/perf code.
 */
const char *perf_pmu_name(void)
{
	if (!__oprofile_cpu_pmu)
		return NULL;

	return __oprofile_cpu_pmu->name;
}
EXPORT_SYMBOL_GPL(perf_pmu_name);

int perf_num_counters(void)
{
	int max_events = 0;

	if (__oprofile_cpu_pmu != NULL)
		max_events = __oprofile_cpu_pmu->num_events;

	return max_events;
}
EXPORT_SYMBOL_GPL(perf_num_counters);

534
void armpmu_free_irq(struct arm_pmu *armpmu, int cpu)
535
{
536
	struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
537
	int irq = per_cpu(hw_events->irq, cpu);
538

539 540
	if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
		return;
541

542
	if (irq_is_percpu_devid(irq)) {
543 544 545 546
		free_percpu_irq(irq, &hw_events->percpu_pmu);
		cpumask_clear(&armpmu->active_irqs);
		return;
	}
547

548 549
	free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
}
550

551
void armpmu_free_irqs(struct arm_pmu *armpmu)
552 553 554 555 556
{
	int cpu;

	for_each_cpu(cpu, &armpmu->supported_cpus)
		armpmu_free_irq(armpmu, cpu);
557 558
}

559
int armpmu_request_irq(struct arm_pmu *armpmu, int cpu)
560
{
561
	int err = 0;
562
	struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
563
	const irq_handler_t handler = armpmu_dispatch_irq;
564 565 566
	int irq = per_cpu(hw_events->irq, cpu);
	if (!irq)
		return 0;
567

568
	if (irq_is_percpu_devid(irq) && cpumask_empty(&armpmu->active_irqs)) {
569 570
		err = request_percpu_irq(irq, handler, "arm-pmu",
					 &hw_events->percpu_pmu);
571
	} else if (irq_is_percpu_devid(irq)) {
572 573
		int other_cpu = cpumask_first(&armpmu->active_irqs);
		int other_irq = per_cpu(hw_events->irq, other_cpu);
574

575 576 577
		if (irq != other_irq) {
			pr_warn("mismatched PPIs detected.\n");
			err = -EINVAL;
578
			goto err_out;
579
		}
580
	} else {
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
		struct arm_pmu_platdata *platdata = armpmu_get_platdata(armpmu);
		unsigned long irq_flags;

		err = irq_force_affinity(irq, cpumask_of(cpu));

		if (err && num_possible_cpus() > 1) {
			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
				irq, cpu);
			goto err_out;
		}

		if (platdata && platdata->irq_flags) {
			irq_flags = platdata->irq_flags;
		} else {
			irq_flags = IRQF_PERCPU |
				    IRQF_NOBALANCING |
				    IRQF_NO_THREAD;
		}

		err = request_irq(irq, handler, irq_flags, "arm-pmu",
601
				  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
602
	}
603

604 605
	if (err)
		goto err_out;
606

607
	cpumask_set_cpu(cpu, &armpmu->active_irqs);
608
	return 0;
609 610 611 612

err_out:
	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
	return err;
613 614
}

615
int armpmu_request_irqs(struct arm_pmu *armpmu)
616 617 618 619 620 621 622 623 624 625 626 627
{
	int cpu, err;

	for_each_cpu(cpu, &armpmu->supported_cpus) {
		err = armpmu_request_irq(armpmu, cpu);
		if (err)
			break;
	}

	return err;
}

628 629 630 631 632 633
static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
{
	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
	return per_cpu(hw_events->irq, cpu);
}

634 635 636 637 638 639
/*
 * PMU hardware loses all context when a CPU goes offline.
 * When a CPU is hotplugged back in, since some hardware registers are
 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 * junk values out of them.
 */
640
static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
641
{
642
	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
643
	int irq;
644

645 646 647 648
	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
		return 0;
	if (pmu->reset)
		pmu->reset(pmu);
649 650 651

	irq = armpmu_get_cpu_irq(pmu, cpu);
	if (irq) {
652
		if (irq_is_percpu_devid(irq)) {
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
			enable_percpu_irq(irq, IRQ_TYPE_NONE);
			return 0;
		}
	}

	return 0;
}

static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
{
	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
	int irq;

	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
		return 0;

	irq = armpmu_get_cpu_irq(pmu, cpu);
670
	if (irq && irq_is_percpu_devid(irq))
671 672
		disable_percpu_irq(irq);

673
	return 0;
674 675
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
#ifdef CONFIG_CPU_PM
static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
{
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
	struct perf_event *event;
	int idx;

	for (idx = 0; idx < armpmu->num_events; idx++) {
		/*
		 * If the counter is not used skip it, there is no
		 * need of stopping/restarting it.
		 */
		if (!test_bit(idx, hw_events->used_mask))
			continue;

		event = hw_events->events[idx];

		switch (cmd) {
		case CPU_PM_ENTER:
			/*
			 * Stop and update the counter
			 */
			armpmu_stop(event, PERF_EF_UPDATE);
			break;
		case CPU_PM_EXIT:
		case CPU_PM_ENTER_FAILED:
702 703 704 705 706 707 708 709 710 711 712 713 714
			 /*
			  * Restore and enable the counter.
			  * armpmu_start() indirectly calls
			  *
			  * perf_event_update_userpage()
			  *
			  * that requires RCU read locking to be functional,
			  * wrap the call within RCU_NONIDLE to make the
			  * RCU subsystem aware this cpu is not idle from
			  * an RCU perspective for the armpmu_start() call
			  * duration.
			  */
			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
			break;
		default:
			break;
		}
	}
}

static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
			     void *v)
{
	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);

	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return NOTIFY_DONE;

	/*
	 * Always reset the PMU registers on power-up even if
	 * there are no events running.
	 */
	if (cmd == CPU_PM_EXIT && armpmu->reset)
		armpmu->reset(armpmu);

	if (!enabled)
		return NOTIFY_OK;

	switch (cmd) {
	case CPU_PM_ENTER:
		armpmu->stop(armpmu);
		cpu_pm_pmu_setup(armpmu, cmd);
		break;
	case CPU_PM_EXIT:
		cpu_pm_pmu_setup(armpmu, cmd);
	case CPU_PM_ENTER_FAILED:
		armpmu->start(armpmu);
		break;
	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
}

static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
{
	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
}

static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
{
	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
}
#else
static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
#endif

774 775 776 777
static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
{
	int err;

778 779
	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
				       &cpu_pmu->node);
780
	if (err)
781
		goto out;
782

783 784 785 786
	err = cpu_pm_pmu_register(cpu_pmu);
	if (err)
		goto out_unregister;

787 788
	return 0;

789
out_unregister:
790 791
	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
					    &cpu_pmu->node);
792
out:
793 794 795 796 797
	return err;
}

static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
{
798
	cpu_pm_pmu_unregister(cpu_pmu);
799 800
	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
					    &cpu_pmu->node);
801 802
}

803
struct arm_pmu *armpmu_alloc(void)
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
{
	struct arm_pmu *pmu;
	int cpu;

	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
	if (!pmu) {
		pr_info("failed to allocate PMU device!\n");
		goto out;
	}

	pmu->hw_events = alloc_percpu(struct pmu_hw_events);
	if (!pmu->hw_events) {
		pr_info("failed to allocate per-cpu PMU data.\n");
		goto out_free_pmu;
	}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	pmu->pmu = (struct pmu) {
		.pmu_enable	= armpmu_enable,
		.pmu_disable	= armpmu_disable,
		.event_init	= armpmu_event_init,
		.add		= armpmu_add,
		.del		= armpmu_del,
		.start		= armpmu_start,
		.stop		= armpmu_stop,
		.read		= armpmu_read,
		.filter_match	= armpmu_filter_match,
		.attr_groups	= pmu->attr_groups,
		/*
		 * This is a CPU PMU potentially in a heterogeneous
		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
		 * and we have taken ctx sharing into account (e.g. with our
		 * pmu::filter_match callback and pmu::event_init group
		 * validation).
		 */
		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
	};

	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
		&armpmu_common_attr_group;

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	for_each_possible_cpu(cpu) {
		struct pmu_hw_events *events;

		events = per_cpu_ptr(pmu->hw_events, cpu);
		raw_spin_lock_init(&events->pmu_lock);
		events->percpu_pmu = pmu;
	}

	return pmu;

out_free_pmu:
	kfree(pmu);
out:
	return NULL;
}

860
void armpmu_free(struct arm_pmu *pmu)
861 862 863 864 865
{
	free_percpu(pmu->hw_events);
	kfree(pmu);
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
int armpmu_register(struct arm_pmu *pmu)
{
	int ret;

	ret = cpu_pmu_init(pmu);
	if (ret)
		return ret;

	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
	if (ret)
		goto out_destroy;

	if (!__oprofile_cpu_pmu)
		__oprofile_cpu_pmu = pmu;

	pr_info("enabled with %s PMU driver, %d counters available\n",
		pmu->name, pmu->num_events);

	return 0;

out_destroy:
	cpu_pmu_destroy(pmu);
	return ret;
}

891 892 893 894
static int arm_pmu_hp_init(void)
{
	int ret;

895
	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
T
Thomas Gleixner 已提交
896
				      "perf/arm/pmu:starting",
897 898
				      arm_perf_starting_cpu,
				      arm_perf_teardown_cpu);
899 900 901 902 903 904
	if (ret)
		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
		       ret);
	return ret;
}
subsys_initcall(arm_pmu_hp_init);