slub.c 127.3 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
213
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
214
#else
215 216 217
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
218
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
219 220
#endif

221
static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 223
{
#ifdef CONFIG_SLUB_STATS
224 225 226 227 228
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
229 230 231
#endif
}

C
Christoph Lameter 已提交
232 233 234 235 236 237 238 239 240
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
241
/* Verify that a pointer has an address that is valid within a slab page */
242 243 244 245 246
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

247
	if (!object)
248 249
		return 1;

250
	base = page_address(page);
251
	if (object < base || object >= base + page->objects * s->size ||
252 253 254 255 256 257 258
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

259 260 261 262 263
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

264 265 266 267 268
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

269 270 271 272 273 274 275 276 277 278 279 280
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

281 282 283 284 285 286
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
287 288
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 290 291 292 293 294 295 296
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

297 298 299 300 301 302 303 304
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305
		return s->object_size;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

321 322 323 324 325
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

326
static inline struct kmem_cache_order_objects oo_make(int order,
327
		unsigned long size, int reserved)
328 329
{
	struct kmem_cache_order_objects x = {
330
		(order << OO_SHIFT) + order_objects(order, size, reserved)
331 332 333 334 335 336 337
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
338
	return x.x >> OO_SHIFT;
339 340 341 342
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
343
	return x.x & OO_MASK;
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

374 375 376 377 378 379 380
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
381 382
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383
	if (s->flags & __CMPXCHG_DOUBLE) {
384
		if (cmpxchg_double(&page->freelist, &page->counters,
385 386 387 388 389 390 391
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
392 393
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
394
			page->freelist = freelist_new;
395
			set_page_slub_counters(page, counters_new);
396 397 398 399 400 401 402 403 404 405
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
406
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 408 409 410 411
#endif

	return 0;
}

412 413 414 415 416
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
417 418
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419
	if (s->flags & __CMPXCHG_DOUBLE) {
420
		if (cmpxchg_double(&page->freelist, &page->counters,
421 422 423 424 425 426
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
427 428 429
		unsigned long flags;

		local_irq_save(flags);
430
		slab_lock(page);
431 432
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
433
			page->freelist = freelist_new;
434
			set_page_slub_counters(page, counters_new);
435
			slab_unlock(page);
436
			local_irq_restore(flags);
437 438
			return 1;
		}
439
		slab_unlock(page);
440
		local_irq_restore(flags);
441 442 443 444 445 446
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
447
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 449 450 451 452
#endif

	return 0;
}

C
Christoph Lameter 已提交
453
#ifdef CONFIG_SLUB_DEBUG
454 455 456
/*
 * Determine a map of object in use on a page.
 *
457
 * Node listlock must be held to guarantee that the page does
458 459 460 461 462 463 464 465 466 467 468
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
469 470 471
/*
 * Debug settings:
 */
472 473 474
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
475
static int slub_debug;
476
#endif
C
Christoph Lameter 已提交
477 478

static char *slub_debug_slabs;
479
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
480

C
Christoph Lameter 已提交
481 482 483 484 485
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
486 487
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
504
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
505
{
A
Akinobu Mita 已提交
506
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
507 508

	if (addr) {
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
527 528
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
529
		p->pid = current->pid;
C
Christoph Lameter 已提交
530 531 532 533 534 535 536
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
537 538 539
	if (!(s->flags & SLAB_STORE_USER))
		return;

540 541
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
542 543 544 545 546 547 548
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

549 550
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
551 552 553 554 555
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
556
				pr_err("\t%pS\n", (void *)t->addrs[i]);
557 558 559 560
			else
				break;
	}
#endif
561 562 563 564 565 566 567 568 569 570 571 572 573
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
574
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575
	       page, page->objects, page->inuse, page->freelist, page->flags);
576 577 578 579 580

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
581
	struct va_format vaf;
582 583 584
	va_list args;

	va_start(args, fmt);
585 586
	vaf.fmt = fmt;
	vaf.va = &args;
587
	pr_err("=============================================================================\n");
588
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
589
	pr_err("-----------------------------------------------------------------------------\n\n");
590

591
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592
	va_end(args);
C
Christoph Lameter 已提交
593 594
}

595 596
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
597
	struct va_format vaf;
598 599 600
	va_list args;

	va_start(args, fmt);
601 602 603
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
604 605 606 607
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
608 609
{
	unsigned int off;	/* Offset of last byte */
610
	u8 *addr = page_address(page);
611 612 613 614 615

	print_tracking(s, p);

	print_page_info(page);

616 617
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
618 619

	if (p > addr + 16)
620
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
621

622
	print_section("Object ", p, min_t(unsigned long, s->object_size,
623
				PAGE_SIZE));
C
Christoph Lameter 已提交
624
	if (s->flags & SLAB_RED_ZONE)
625 626
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
627 628 629 630 631 632

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

633
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
634 635 636 637
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
638
		print_section("Padding ", p + off, s->size - off);
639 640

	dump_stack();
C
Christoph Lameter 已提交
641 642 643 644 645
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
646
	slab_bug(s, "%s", reason);
647
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
648 649
}

650 651
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
652 653 654 655
{
	va_list args;
	char buf[100];

656 657
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
658
	va_end(args);
659
	slab_bug(s, "%s", buf);
660
	print_page_info(page);
C
Christoph Lameter 已提交
661 662 663
	dump_stack();
}

664
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
665 666 667 668
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
669 670
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
671 672 673
	}

	if (s->flags & SLAB_RED_ZONE)
674
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
675 676
}

677 678 679 680 681 682 683 684 685
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
686
			u8 *start, unsigned int value, unsigned int bytes)
687 688 689 690
{
	u8 *fault;
	u8 *end;

691
	fault = memchr_inv(start, value, bytes);
692 693 694 695 696 697 698 699
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
700
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 702 703 704 705
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
706 707 708 709 710 711 712 713 714
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
715
 *
C
Christoph Lameter 已提交
716 717 718
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
719
 * object + s->object_size
C
Christoph Lameter 已提交
720
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
721
 * 	Padding is extended by another word if Redzoning is enabled and
722
 * 	object_size == inuse.
C
Christoph Lameter 已提交
723
 *
C
Christoph Lameter 已提交
724 725 726 727
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
728 729
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
730 731
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
732
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
733
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
734 735 736
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
737 738
 *
 * object + s->size
C
Christoph Lameter 已提交
739
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
740
 *
741
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
742
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

761 762
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
763 764
}

765
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
766 767
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
768 769 770 771 772
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
773 774 775 776

	if (!(s->flags & SLAB_POISON))
		return 1;

777
	start = page_address(page);
778
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 780
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
781 782 783
	if (!remainder)
		return 1;

784
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 786 787 788 789 790
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791
	print_section("Padding ", end - remainder, remainder);
792

E
Eric Dumazet 已提交
793
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794
	return 0;
C
Christoph Lameter 已提交
795 796 797
}

static int check_object(struct kmem_cache *s, struct page *page,
798
					void *object, u8 val)
C
Christoph Lameter 已提交
799 800
{
	u8 *p = object;
801
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
802 803

	if (s->flags & SLAB_RED_ZONE) {
804
		if (!check_bytes_and_report(s, page, object, "Redzone",
805
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
806 807
			return 0;
	} else {
808
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
809
			check_bytes_and_report(s, page, p, "Alignment padding",
810 811
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
812
		}
C
Christoph Lameter 已提交
813 814 815
	}

	if (s->flags & SLAB_POISON) {
816
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817
			(!check_bytes_and_report(s, page, p, "Poison", p,
818
					POISON_FREE, s->object_size - 1) ||
819
			 !check_bytes_and_report(s, page, p, "Poison",
820
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
821 822 823 824 825 826 827
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

828
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
829 830 831 832 833 834 835 836 837 838
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
839
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
840
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
841
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
842
		 */
843
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
844 845 846 847 848 849 850
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
851 852
	int maxobj;

C
Christoph Lameter 已提交
853 854 855
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
856
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
857 858
		return 0;
	}
859

860
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 862 863 864 865 866
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
867
		slab_err(s, page, "inuse %u > max %u",
868
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
869 870 871 872 873 874 875 876
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
877 878
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
879 880 881 882
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
883
	void *fp;
C
Christoph Lameter 已提交
884
	void *object = NULL;
885
	unsigned long max_objects;
C
Christoph Lameter 已提交
886

887
	fp = page->freelist;
888
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
889 890 891 892 893 894
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
895
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
896
			} else {
897
				slab_err(s, page, "Freepointer corrupt");
898
				page->freelist = NULL;
899
				page->inuse = page->objects;
900
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
901 902 903 904 905 906 907 908 909
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

910
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 912
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
913 914 915 916 917 918 919

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
920
	if (page->inuse != page->objects - nr) {
921
		slab_err(s, page, "Wrong object count. Counter is %d but "
922 923
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
924
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
925 926 927 928
	}
	return search == NULL;
}

929 930
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
931 932
{
	if (s->flags & SLAB_TRACE) {
933
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
934 935 936 937 938 939
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
940 941
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
942 943 944 945 946

		dump_stack();
	}
}

947 948 949 950
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
951 952 953 954 955 956 957 958 959 960
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

961 962
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
963
	flags &= gfp_allowed_mask;
964 965 966
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

967
	return should_failslab(s->object_size, flags, s->flags);
968 969
}

970 971
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
972
{
973
	flags &= gfp_allowed_mask;
974
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 977 978 979 980 981
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

982
	/*
X
Xie XiuQi 已提交
983
	 * Trouble is that we may no longer disable interrupts in the fast path
984 985 986 987 988 989 990 991
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
992 993
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
994 995 996
		local_irq_restore(flags);
	}
#endif
997
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998
		debug_check_no_obj_freed(x, s->object_size);
999 1000
}

1001
/*
C
Christoph Lameter 已提交
1002
 * Tracking of fully allocated slabs for debugging purposes.
1003
 */
1004 1005
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1006
{
1007 1008 1009
	if (!(s->flags & SLAB_STORE_USER))
		return;

1010
	lockdep_assert_held(&n->list_lock);
1011 1012 1013
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1014
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 1016 1017 1018
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1019
	lockdep_assert_held(&n->list_lock);
1020 1021 1022
	list_del(&page->lru);
}

1023 1024 1025 1026 1027 1028 1029 1030
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1031 1032 1033 1034 1035
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1036
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 1038 1039 1040 1041 1042 1043 1044 1045
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1046
	if (likely(n)) {
1047
		atomic_long_inc(&n->nr_slabs);
1048 1049
		atomic_long_add(objects, &n->total_objects);
	}
1050
}
1051
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 1053 1054 1055
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1056
	atomic_long_sub(objects, &n->total_objects);
1057 1058 1059
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1060 1061 1062 1063 1064 1065
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1066
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1067 1068 1069
	init_tracking(s, object);
}

1070 1071
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1072
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1073 1074 1075 1076 1077 1078
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1079
		goto bad;
C
Christoph Lameter 已提交
1080 1081
	}

1082
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1083 1084
		goto bad;

C
Christoph Lameter 已提交
1085 1086 1087 1088
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1089
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1090
	return 1;
C
Christoph Lameter 已提交
1091

C
Christoph Lameter 已提交
1092 1093 1094 1095 1096
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1097
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1098
		 */
1099
		slab_fix(s, "Marking all objects used");
1100
		page->inuse = page->objects;
1101
		page->freelist = NULL;
C
Christoph Lameter 已提交
1102 1103 1104 1105
	}
	return 0;
}

1106 1107 1108
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1109
{
1110
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111

1112
	spin_lock_irqsave(&n->list_lock, *flags);
1113 1114
	slab_lock(page);

C
Christoph Lameter 已提交
1115 1116 1117 1118
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1119
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1120 1121 1122 1123
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1124
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1125 1126 1127
		goto fail;
	}

1128
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129
		goto out;
C
Christoph Lameter 已提交
1130

1131
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1132
		if (!PageSlab(page)) {
1133 1134
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1135
		} else if (!page->slab_cache) {
1136 1137
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1138
			dump_stack();
P
Pekka Enberg 已提交
1139
		} else
1140 1141
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1142 1143
		goto fail;
	}
C
Christoph Lameter 已提交
1144 1145 1146 1147

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1148
	init_object(s, object, SLUB_RED_INACTIVE);
1149
out:
1150
	slab_unlock(page);
1151 1152 1153 1154 1155
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1156

C
Christoph Lameter 已提交
1157
fail:
1158 1159
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1160
	slab_fix(s, "Object at 0x%p not freed", object);
1161
	return NULL;
C
Christoph Lameter 已提交
1162 1163
}

C
Christoph Lameter 已提交
1164 1165
static int __init setup_slub_debug(char *str)
{
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1199
	for (; *str && *str != ','; str++) {
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1216 1217 1218
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1219
		default:
1220 1221
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1222
		}
C
Christoph Lameter 已提交
1223 1224
	}

1225
check_slabs:
C
Christoph Lameter 已提交
1226 1227
	if (*str == ',')
		slub_debug_slabs = str + 1;
1228
out:
C
Christoph Lameter 已提交
1229 1230 1231 1232 1233
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1234
static unsigned long kmem_cache_flags(unsigned long object_size,
1235
	unsigned long flags, const char *name,
1236
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1237 1238
{
	/*
1239
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1240
	 */
1241 1242
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1243
		flags |= slub_debug;
1244 1245

	return flags;
C
Christoph Lameter 已提交
1246 1247
}
#else
C
Christoph Lameter 已提交
1248 1249
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1250

C
Christoph Lameter 已提交
1251
static inline int alloc_debug_processing(struct kmem_cache *s,
1252
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1253

1254 1255 1256
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1257 1258 1259 1260

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1261
			void *object, u8 val) { return 1; }
1262 1263
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1264 1265
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1266
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1267
	unsigned long flags, const char *name,
1268
	void (*ctor)(void *))
1269 1270 1271
{
	return flags;
}
C
Christoph Lameter 已提交
1272
#define slub_debug 0
1273

1274 1275
#define disable_higher_order_debug 0

1276 1277
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1278 1279
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1280 1281 1282 1283
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1295 1296 1297 1298
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1299 1300 1301 1302 1303
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1304

1305 1306 1307 1308
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1309

1310
#endif /* CONFIG_SLUB_DEBUG */
1311

C
Christoph Lameter 已提交
1312 1313 1314
/*
 * Slab allocation and freeing
 */
1315 1316
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1317
{
1318
	struct page *page;
1319 1320
	int order = oo_order(oo);

1321 1322
	flags |= __GFP_NOTRACK;

1323 1324 1325
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1326
	if (node == NUMA_NO_NODE)
1327
		page = alloc_pages(flags, order);
1328
	else
1329 1330 1331 1332 1333 1334
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1335 1336
}

C
Christoph Lameter 已提交
1337 1338
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1339
	struct page *page;
1340
	struct kmem_cache_order_objects oo = s->oo;
1341
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1342

1343 1344 1345 1346 1347
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1348
	flags |= s->allocflags;
1349

1350 1351 1352 1353 1354 1355
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1356
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1357 1358
	if (unlikely(!page)) {
		oo = s->min;
1359
		alloc_gfp = flags;
1360 1361 1362 1363
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1364
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1365

1366 1367
		if (page)
			stat(s, ORDER_FALLBACK);
1368
	}
V
Vegard Nossum 已提交
1369

1370
	if (kmemcheck_enabled && page
1371
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1372 1373
		int pages = 1 << oo_order(oo);

1374
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1375 1376 1377 1378 1379 1380 1381 1382 1383

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1384 1385
	}

1386 1387 1388 1389 1390
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1391
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1392 1393 1394
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1395
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1396 1397 1398 1399 1400 1401 1402

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1403
	setup_object_debug(s, page, object);
1404
	if (unlikely(s->ctor))
1405
		s->ctor(object);
C
Christoph Lameter 已提交
1406 1407 1408 1409 1410 1411 1412 1413
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1414
	int order;
C
Christoph Lameter 已提交
1415

C
Christoph Lameter 已提交
1416
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1417

C
Christoph Lameter 已提交
1418 1419
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1420 1421 1422
	if (!page)
		goto out;

G
Glauber Costa 已提交
1423
	order = compound_order(page);
1424
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1425
	memcg_bind_pages(s, order);
1426
	page->slab_cache = s;
1427
	__SetPageSlab(page);
1428 1429
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1430 1431 1432 1433

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1434
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1435 1436

	last = start;
1437
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1438 1439 1440 1441 1442
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1443
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1444 1445

	page->freelist = start;
1446
	page->inuse = page->objects;
1447
	page->frozen = 1;
C
Christoph Lameter 已提交
1448 1449 1450 1451 1452 1453
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1454 1455
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1456

1457
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1458 1459 1460
		void *p;

		slab_pad_check(s, page);
1461 1462
		for_each_object(p, s, page_address(page),
						page->objects)
1463
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1464 1465
	}

1466
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1467

C
Christoph Lameter 已提交
1468 1469 1470
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1471
		-pages);
C
Christoph Lameter 已提交
1472

1473
	__ClearPageSlabPfmemalloc(page);
1474
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1475 1476

	memcg_release_pages(s, order);
1477
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1478 1479
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1480 1481
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1482 1483
}

1484 1485 1486
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1487 1488 1489 1490
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1491 1492 1493 1494 1495
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1496
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1497 1498 1499 1500 1501
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1516 1517 1518 1519 1520 1521 1522 1523

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1524
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1525 1526 1527 1528
	free_slab(s, page);
}

/*
1529
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1530
 */
1531 1532
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1533
{
C
Christoph Lameter 已提交
1534
	n->nr_partial++;
1535
	if (tail == DEACTIVATE_TO_TAIL)
1536 1537 1538
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1539 1540
}

1541 1542
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1543
{
P
Peter Zijlstra 已提交
1544
	lockdep_assert_held(&n->list_lock);
1545 1546
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1547

1548 1549 1550
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1551 1552 1553 1554
	list_del(&page->lru);
	n->nr_partial--;
}

1555 1556 1557 1558 1559 1560 1561
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1562
/*
1563 1564
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1565
 *
1566
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1567
 */
1568
static inline void *acquire_slab(struct kmem_cache *s,
1569
		struct kmem_cache_node *n, struct page *page,
1570
		int mode, int *objects)
C
Christoph Lameter 已提交
1571
{
1572 1573 1574 1575
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1576 1577
	lockdep_assert_held(&n->list_lock);

1578 1579 1580 1581 1582
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1583 1584 1585
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1586
	*objects = new.objects - new.inuse;
1587
	if (mode) {
1588
		new.inuse = page->objects;
1589 1590 1591 1592
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1593

1594
	VM_BUG_ON(new.frozen);
1595
	new.frozen = 1;
1596

1597
	if (!__cmpxchg_double_slab(s, page,
1598
			freelist, counters,
1599
			new.freelist, new.counters,
1600 1601
			"acquire_slab"))
		return NULL;
1602 1603

	remove_partial(n, page);
1604
	WARN_ON(!freelist);
1605
	return freelist;
C
Christoph Lameter 已提交
1606 1607
}

1608
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1609
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1610

C
Christoph Lameter 已提交
1611
/*
C
Christoph Lameter 已提交
1612
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1613
 */
1614 1615
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1616
{
1617 1618
	struct page *page, *page2;
	void *object = NULL;
1619 1620
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1621 1622 1623 1624

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1625 1626
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1627 1628 1629 1630 1631
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1632
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1633
		void *t;
1634

1635 1636 1637
		if (!pfmemalloc_match(page, flags))
			continue;

1638
		t = acquire_slab(s, n, page, object == NULL, &objects);
1639 1640 1641
		if (!t)
			break;

1642
		available += objects;
1643
		if (!object) {
1644 1645 1646 1647
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1648
			put_cpu_partial(s, page, 0);
1649
			stat(s, CPU_PARTIAL_NODE);
1650
		}
1651 1652
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1653 1654
			break;

1655
	}
C
Christoph Lameter 已提交
1656
	spin_unlock(&n->list_lock);
1657
	return object;
C
Christoph Lameter 已提交
1658 1659 1660
}

/*
C
Christoph Lameter 已提交
1661
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1662
 */
1663
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1664
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1665 1666 1667
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1668
	struct zoneref *z;
1669 1670
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1671
	void *object;
1672
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1673 1674

	/*
C
Christoph Lameter 已提交
1675 1676 1677 1678
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1679
	 *
C
Christoph Lameter 已提交
1680 1681 1682 1683
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1684
	 *
C
Christoph Lameter 已提交
1685
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1686 1687 1688 1689 1690
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1691
	 */
1692 1693
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1694 1695
		return NULL;

1696
	do {
1697
		cpuset_mems_cookie = read_mems_allowed_begin();
1698
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1699 1700 1701 1702 1703 1704 1705
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1706
				object = get_partial_node(s, n, c, flags);
1707 1708
				if (object) {
					/*
1709 1710 1711 1712 1713
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1714 1715 1716
					 */
					return object;
				}
1717
			}
C
Christoph Lameter 已提交
1718
		}
1719
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1720 1721 1722 1723 1724 1725 1726
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1727
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1728
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1729
{
1730
	void *object;
1731
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1732

1733
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1734 1735
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1736

1737
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1738 1739
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1781
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1782 1783 1784

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1785
		pr_warn("due to cpu change %d -> %d\n",
1786 1787 1788 1789
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1790
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1791 1792
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1793
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1794 1795
			actual_tid, tid, next_tid(tid));
#endif
1796
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1797 1798
}

1799
static void init_kmem_cache_cpus(struct kmem_cache *s)
1800 1801 1802 1803 1804 1805
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1806

C
Christoph Lameter 已提交
1807 1808 1809
/*
 * Remove the cpu slab
 */
1810 1811
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1812
{
1813 1814 1815 1816 1817
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1818
	int tail = DEACTIVATE_TO_HEAD;
1819 1820 1821 1822
	struct page new;
	struct page old;

	if (page->freelist) {
1823
		stat(s, DEACTIVATE_REMOTE_FREES);
1824
		tail = DEACTIVATE_TO_TAIL;
1825 1826
	}

1827
	/*
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1845
			VM_BUG_ON(!new.frozen);
1846

1847
		} while (!__cmpxchg_double_slab(s, page,
1848 1849 1850 1851 1852 1853 1854
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1855
	/*
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1868
	 */
1869
redo:
1870

1871 1872
	old.freelist = page->freelist;
	old.counters = page->counters;
1873
	VM_BUG_ON(!old.frozen);
1874

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1886
	if (!new.inuse && n->nr_partial > s->min_partial)
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1919

P
Peter Zijlstra 已提交
1920
			remove_full(s, n, page);
1921 1922 1923 1924

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1925
			stat(s, tail);
1926 1927

		} else if (m == M_FULL) {
1928

1929 1930 1931 1932 1933 1934 1935
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1936
	if (!__cmpxchg_double_slab(s, page,
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1949
	}
C
Christoph Lameter 已提交
1950 1951
}

1952 1953 1954
/*
 * Unfreeze all the cpu partial slabs.
 *
1955 1956 1957
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1958
 */
1959 1960
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1961
{
1962
#ifdef CONFIG_SLUB_CPU_PARTIAL
1963
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1964
	struct page *page, *discard_page = NULL;
1965 1966 1967 1968 1969 1970

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1971 1972 1973 1974 1975 1976 1977 1978 1979

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1980 1981 1982 1983 1984

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1985
			VM_BUG_ON(!old.frozen);
1986 1987 1988 1989 1990 1991

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1992
		} while (!__cmpxchg_double_slab(s, page,
1993 1994 1995 1996
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1997
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1998 1999
			page->next = discard_page;
			discard_page = page;
2000 2001 2002
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2003 2004 2005 2006 2007
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2008 2009 2010 2011 2012 2013 2014 2015 2016

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2017
#endif
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2029
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2030
{
2031
#ifdef CONFIG_SLUB_CPU_PARTIAL
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2051
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2052
				local_irq_restore(flags);
2053
				oldpage = NULL;
2054 2055
				pobjects = 0;
				pages = 0;
2056
				stat(s, CPU_PARTIAL_DRAIN);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2067 2068
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2069
#endif
2070 2071
}

2072
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2073
{
2074
	stat(s, CPUSLAB_FLUSH);
2075 2076 2077 2078 2079
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2080 2081 2082 2083
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2084
 *
C
Christoph Lameter 已提交
2085 2086
 * Called from IPI handler with interrupts disabled.
 */
2087
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2088
{
2089
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2090

2091 2092 2093 2094
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2095
		unfreeze_partials(s, c);
2096
	}
C
Christoph Lameter 已提交
2097 2098 2099 2100 2101 2102
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2103
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2104 2105
}

2106 2107 2108 2109 2110
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2111
	return c->page || c->partial;
2112 2113
}

C
Christoph Lameter 已提交
2114 2115
static void flush_all(struct kmem_cache *s)
{
2116
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2117 2118
}

2119 2120 2121 2122
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2123
static inline int node_match(struct page *page, int node)
2124 2125
{
#ifdef CONFIG_NUMA
2126
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2127 2128 2129 2130 2131
		return 0;
#endif
	return 1;
}

2132
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2133 2134 2135 2136 2137
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2138 2139 2140 2141 2142 2143 2144
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2158
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2159

P
Pekka Enberg 已提交
2160 2161 2162
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2163 2164 2165
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2166 2167
	int node;

2168 2169 2170
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2171
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2172
		nid, gfpflags);
2173 2174 2175
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2176

2177
	if (oo_order(s->min) > get_order(s->object_size))
2178 2179
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2180

P
Pekka Enberg 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2190 2191 2192
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2193

2194
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2195 2196
			node, nr_slabs, nr_objs, nr_free);
	}
2197
#endif
P
Pekka Enberg 已提交
2198 2199
}

2200 2201 2202
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2203
	void *freelist;
2204 2205
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2206

2207
	freelist = get_partial(s, flags, node, c);
2208

2209 2210 2211 2212
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2222
		freelist = page->freelist;
2223 2224 2225 2226 2227 2228
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2229
		freelist = NULL;
2230

2231
	return freelist;
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2242
/*
2243 2244
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2245 2246 2247 2248
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2249 2250
 *
 * This function must be called with interrupt disabled.
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2261

2262
		new.counters = counters;
2263
		VM_BUG_ON(!new.frozen);
2264 2265 2266 2267

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2268
	} while (!__cmpxchg_double_slab(s, page,
2269 2270 2271 2272 2273 2274 2275
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2276
/*
2277 2278 2279 2280 2281 2282
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2283
 *
2284 2285 2286
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2287
 *
2288
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2289 2290
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2291
 */
2292 2293
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2294
{
2295
	void *freelist;
2296
	struct page *page;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2308

2309 2310
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2311
		goto new_slab;
2312
redo:
2313

2314
	if (unlikely(!node_match(page, node))) {
2315
		stat(s, ALLOC_NODE_MISMATCH);
2316
		deactivate_slab(s, page, c->freelist);
2317 2318
		c->page = NULL;
		c->freelist = NULL;
2319 2320
		goto new_slab;
	}
C
Christoph Lameter 已提交
2321

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2334
	/* must check again c->freelist in case of cpu migration or IRQ */
2335 2336
	freelist = c->freelist;
	if (freelist)
2337
		goto load_freelist;
2338

2339
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2340

2341
	if (!freelist) {
2342 2343
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2344
		goto new_slab;
2345
	}
C
Christoph Lameter 已提交
2346

2347
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2348

2349
load_freelist:
2350 2351 2352 2353 2354
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2355
	VM_BUG_ON(!c->page->frozen);
2356
	c->freelist = get_freepointer(s, freelist);
2357 2358
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2359
	return freelist;
C
Christoph Lameter 已提交
2360 2361

new_slab:
2362

2363
	if (c->partial) {
2364 2365
		page = c->page = c->partial;
		c->partial = page->next;
2366 2367 2368
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2369 2370
	}

2371
	freelist = new_slab_objects(s, gfpflags, node, &c);
2372

2373
	if (unlikely(!freelist)) {
2374
		slab_out_of_memory(s, gfpflags, node);
2375 2376
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2377
	}
2378

2379
	page = c->page;
2380
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2381
		goto load_freelist;
2382

2383
	/* Only entered in the debug case */
2384 2385
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2386
		goto new_slab;	/* Slab failed checks. Next slab needed */
2387

2388
	deactivate_slab(s, page, get_freepointer(s, freelist));
2389 2390
	c->page = NULL;
	c->freelist = NULL;
2391
	local_irq_restore(flags);
2392
	return freelist;
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2405
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2406
		gfp_t gfpflags, int node, unsigned long addr)
2407 2408
{
	void **object;
2409
	struct kmem_cache_cpu *c;
2410
	struct page *page;
2411
	unsigned long tid;
2412

2413
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2414
		return NULL;
2415

2416
	s = memcg_kmem_get_cache(s, gfpflags);
2417 2418 2419 2420 2421 2422
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2423 2424 2425 2426 2427
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2428
	 */
2429
	preempt_disable();
2430
	c = __this_cpu_ptr(s->cpu_slab);
2431 2432 2433 2434 2435 2436 2437 2438

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2439
	preempt_enable();
2440

2441
	object = c->freelist;
2442
	page = c->page;
D
Dave Hansen 已提交
2443
	if (unlikely(!object || !node_match(page, node))) {
2444
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2445 2446
		stat(s, ALLOC_SLOWPATH);
	} else {
2447 2448
		void *next_object = get_freepointer_safe(s, object);

2449
		/*
L
Lucas De Marchi 已提交
2450
		 * The cmpxchg will only match if there was no additional
2451 2452
		 * operation and if we are on the right processor.
		 *
2453 2454
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2455 2456 2457 2458
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2459 2460 2461
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2462
		 */
2463
		if (unlikely(!this_cpu_cmpxchg_double(
2464 2465
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2466
				next_object, next_tid(tid)))) {
2467 2468 2469 2470

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2471
		prefetch_freepointer(s, next_object);
2472
		stat(s, ALLOC_FASTPATH);
2473
	}
2474

2475
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2476
		memset(object, 0, s->object_size);
2477

2478
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2479

2480
	return object;
C
Christoph Lameter 已提交
2481 2482
}

2483 2484 2485 2486 2487 2488
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2489 2490
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2491
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2492

2493 2494
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2495 2496

	return ret;
C
Christoph Lameter 已提交
2497 2498 2499
}
EXPORT_SYMBOL(kmem_cache_alloc);

2500
#ifdef CONFIG_TRACING
2501 2502
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2503
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2504 2505 2506 2507
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2508 2509
#endif

C
Christoph Lameter 已提交
2510 2511 2512
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2513
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2514

2515
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2516
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2517 2518

	return ret;
C
Christoph Lameter 已提交
2519 2520 2521
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2522
#ifdef CONFIG_TRACING
2523
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2524
				    gfp_t gfpflags,
2525
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2526
{
2527
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2528 2529 2530 2531

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2532
}
2533
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2534
#endif
2535
#endif
E
Eduard - Gabriel Munteanu 已提交
2536

C
Christoph Lameter 已提交
2537
/*
2538 2539
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2540
 *
2541 2542 2543
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2544
 */
2545
static void __slab_free(struct kmem_cache *s, struct page *page,
2546
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2547 2548 2549
{
	void *prior;
	void **object = (void *)x;
2550 2551 2552 2553
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2554
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2555

2556
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2557

2558 2559
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2560
		return;
C
Christoph Lameter 已提交
2561

2562
	do {
2563 2564 2565 2566
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2567 2568 2569 2570 2571 2572
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2573
		if ((!new.inuse || !prior) && !was_frozen) {
2574

P
Peter Zijlstra 已提交
2575
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2576 2577

				/*
2578 2579 2580 2581
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2582 2583 2584
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2585
			} else { /* Needs to be taken off a list */
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2599
		}
C
Christoph Lameter 已提交
2600

2601 2602 2603 2604
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2605

2606
	if (likely(!n)) {
2607 2608 2609 2610 2611

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2612
		if (new.frozen && !was_frozen) {
2613
			put_cpu_partial(s, page, 1);
2614 2615
			stat(s, CPU_PARTIAL_FREE);
		}
2616
		/*
2617 2618 2619 2620 2621
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2622
                return;
2623
        }
C
Christoph Lameter 已提交
2624

2625 2626 2627
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2628
	/*
2629 2630
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2631
	 */
2632 2633
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2634
			remove_full(s, n, page);
2635 2636
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2637
	}
2638
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2639 2640 2641
	return;

slab_empty:
2642
	if (prior) {
C
Christoph Lameter 已提交
2643
		/*
2644
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2645
		 */
2646
		remove_partial(n, page);
2647
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2648
	} else {
2649
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2650 2651
		remove_full(s, n, page);
	}
2652

2653
	spin_unlock_irqrestore(&n->list_lock, flags);
2654
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2655 2656 2657
	discard_slab(s, page);
}

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2669
static __always_inline void slab_free(struct kmem_cache *s,
2670
			struct page *page, void *x, unsigned long addr)
2671 2672
{
	void **object = (void *)x;
2673
	struct kmem_cache_cpu *c;
2674
	unsigned long tid;
2675

2676 2677
	slab_free_hook(s, x);

2678 2679 2680 2681 2682 2683 2684
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2685
	preempt_disable();
2686
	c = __this_cpu_ptr(s->cpu_slab);
2687

2688
	tid = c->tid;
2689
	preempt_enable();
2690

2691
	if (likely(page == c->page)) {
2692
		set_freepointer(s, object, c->freelist);
2693

2694
		if (unlikely(!this_cpu_cmpxchg_double(
2695 2696 2697 2698 2699 2700 2701
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2702
		stat(s, FREE_FASTPATH);
2703
	} else
2704
		__slab_free(s, page, x, addr);
2705 2706 2707

}

C
Christoph Lameter 已提交
2708 2709
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2710 2711
	s = cache_from_obj(s, x);
	if (!s)
2712
		return;
2713
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2714
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2715 2716 2717 2718
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2719 2720 2721 2722
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2723 2724 2725 2726
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2727
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2738
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2739
static int slub_min_objects;
C
Christoph Lameter 已提交
2740 2741 2742

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2743
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2744 2745 2746 2747 2748 2749
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2750 2751 2752 2753
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2754
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2755 2756 2757 2758 2759 2760
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2761
 *
C
Christoph Lameter 已提交
2762 2763 2764 2765
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2766
 *
C
Christoph Lameter 已提交
2767 2768 2769 2770
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2771
 */
2772
static inline int slab_order(int size, int min_objects,
2773
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2774 2775 2776
{
	int order;
	int rem;
2777
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2778

2779
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2780
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2781

2782
	for (order = max(min_order,
2783 2784
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2785

2786
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2787

2788
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2789 2790
			continue;

2791
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2792

2793
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2794 2795 2796
			break;

	}
C
Christoph Lameter 已提交
2797

C
Christoph Lameter 已提交
2798 2799 2800
	return order;
}

2801
static inline int calculate_order(int size, int reserved)
2802 2803 2804 2805
{
	int order;
	int min_objects;
	int fraction;
2806
	int max_objects;
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2817 2818
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2819
	max_objects = order_objects(slub_max_order, size, reserved);
2820 2821
	min_objects = min(min_objects, max_objects);

2822
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2823
		fraction = 16;
2824 2825
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2826
					slub_max_order, fraction, reserved);
2827 2828 2829 2830
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2831
		min_objects--;
2832 2833 2834 2835 2836 2837
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2838
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2839 2840 2841 2842 2843 2844
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2845
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2846
	if (order < MAX_ORDER)
2847 2848 2849 2850
		return order;
	return -ENOSYS;
}

2851
static void
2852
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2853 2854 2855 2856
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2857
#ifdef CONFIG_SLUB_DEBUG
2858
	atomic_long_set(&n->nr_slabs, 0);
2859
	atomic_long_set(&n->total_objects, 0);
2860
	INIT_LIST_HEAD(&n->full);
2861
#endif
C
Christoph Lameter 已提交
2862 2863
}

2864
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2865
{
2866
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2867
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2868

2869
	/*
2870 2871
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2872
	 */
2873 2874
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2875 2876 2877 2878 2879

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2880

2881
	return 1;
2882 2883
}

2884 2885
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2886 2887 2888 2889 2890
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2891 2892
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2893
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2894
 */
2895
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2896 2897 2898 2899
{
	struct page *page;
	struct kmem_cache_node *n;

2900
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2901

2902
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2903 2904

	BUG_ON(!page);
2905
	if (page_to_nid(page) != node) {
2906 2907
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2908 2909
	}

C
Christoph Lameter 已提交
2910 2911
	n = page->freelist;
	BUG_ON(!n);
2912
	page->freelist = get_freepointer(kmem_cache_node, n);
2913
	page->inuse = 1;
2914
	page->frozen = 0;
2915
	kmem_cache_node->node[node] = n;
2916
#ifdef CONFIG_SLUB_DEBUG
2917
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2918
	init_tracking(kmem_cache_node, n);
2919
#endif
2920
	init_kmem_cache_node(n);
2921
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2922

2923
	/*
2924 2925
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2926
	 */
2927
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2928 2929 2930 2931 2932 2933
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2934
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2935
		struct kmem_cache_node *n = s->node[node];
2936

2937
		if (n)
2938 2939
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2940 2941 2942 2943
		s->node[node] = NULL;
	}
}

2944
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2945 2946 2947
{
	int node;

C
Christoph Lameter 已提交
2948
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2949 2950
		struct kmem_cache_node *n;

2951
		if (slab_state == DOWN) {
2952
			early_kmem_cache_node_alloc(node);
2953 2954
			continue;
		}
2955
		n = kmem_cache_alloc_node(kmem_cache_node,
2956
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2957

2958 2959 2960
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2961
		}
2962

C
Christoph Lameter 已提交
2963
		s->node[node] = n;
2964
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2965 2966 2967 2968
	}
	return 1;
}

2969
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2970 2971 2972 2973 2974 2975 2976 2977
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2978 2979 2980 2981
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2982
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2983 2984
{
	unsigned long flags = s->flags;
2985
	unsigned long size = s->object_size;
2986
	int order;
C
Christoph Lameter 已提交
2987

2988 2989 2990 2991 2992 2993 2994 2995
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2996 2997 2998 2999 3000 3001
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3002
			!s->ctor)
C
Christoph Lameter 已提交
3003 3004 3005 3006 3007 3008
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3009
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3010
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3011
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3012
	 */
3013
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3014
		size += sizeof(void *);
C
Christoph Lameter 已提交
3015
#endif
C
Christoph Lameter 已提交
3016 3017

	/*
C
Christoph Lameter 已提交
3018 3019
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3020 3021 3022 3023
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3024
		s->ctor)) {
C
Christoph Lameter 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3037
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3038 3039 3040 3041 3042 3043 3044
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3045
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3046 3047 3048 3049
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3050
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3051 3052 3053
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3054
#endif
C
Christoph Lameter 已提交
3055

C
Christoph Lameter 已提交
3056 3057 3058 3059 3060
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3061
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3062
	s->size = size;
3063 3064 3065
	if (forced_order >= 0)
		order = forced_order;
	else
3066
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3067

3068
	if (order < 0)
C
Christoph Lameter 已提交
3069 3070
		return 0;

3071
	s->allocflags = 0;
3072
	if (order)
3073 3074 3075
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3076
		s->allocflags |= GFP_DMA;
3077 3078 3079 3080

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3081 3082 3083
	/*
	 * Determine the number of objects per slab
	 */
3084 3085
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3086 3087
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3088

3089
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3090 3091
}

3092
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3093
{
3094
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3095
	s->reserved = 0;
C
Christoph Lameter 已提交
3096

3097 3098
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3099

3100
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3101
		goto error;
3102 3103 3104 3105 3106
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3107
		if (get_order(s->size) > get_order(s->object_size)) {
3108 3109 3110 3111 3112 3113
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3114

3115 3116
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3117 3118 3119 3120 3121
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3122 3123 3124 3125
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3141
	 * B) The number of objects in cpu partial slabs to extract from the
3142 3143
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3144
	 */
3145
	if (!kmem_cache_has_cpu_partial(s))
3146 3147
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3148 3149 3150 3151 3152 3153 3154 3155
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3156
#ifdef CONFIG_NUMA
3157
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3158
#endif
3159
	if (!init_kmem_cache_nodes(s))
3160
		goto error;
C
Christoph Lameter 已提交
3161

3162
	if (alloc_kmem_cache_cpus(s))
3163
		return 0;
3164

3165
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3166 3167 3168 3169
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3170 3171
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3172
	return -EINVAL;
C
Christoph Lameter 已提交
3173 3174
}

3175 3176 3177 3178 3179 3180
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3181 3182
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3183 3184
	if (!map)
		return;
3185
	slab_err(s, page, text, s->name);
3186 3187
	slab_lock(page);

3188
	get_map(s, page, map);
3189 3190 3191
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3192
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3193 3194 3195 3196
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3197
	kfree(map);
3198 3199 3200
#endif
}

C
Christoph Lameter 已提交
3201
/*
C
Christoph Lameter 已提交
3202
 * Attempt to free all partial slabs on a node.
3203 3204
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3205
 */
C
Christoph Lameter 已提交
3206
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3207 3208 3209
{
	struct page *page, *h;

3210
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3211
		if (!page->inuse) {
3212
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3213
			discard_slab(s, page);
3214 3215
		} else {
			list_slab_objects(s, page,
3216
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3217
		}
3218
	}
C
Christoph Lameter 已提交
3219 3220 3221
}

/*
C
Christoph Lameter 已提交
3222
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3223
 */
3224
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3225 3226 3227 3228 3229
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3230
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3231 3232
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3233 3234
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3235 3236
			return 1;
	}
3237
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3238 3239 3240 3241
	free_kmem_cache_nodes(s);
	return 0;
}

3242
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3243
{
3244
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3245 3246 3247 3248 3249 3250 3251 3252
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3253
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3254 3255 3256 3257 3258 3259 3260 3261

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3262
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3263
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3264 3265 3266 3267 3268 3269 3270 3271

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3272
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3289
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3290
	void *ret;
C
Christoph Lameter 已提交
3291

3292
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3293
		return kmalloc_large(size, flags);
3294

3295
	s = kmalloc_slab(size, flags);
3296 3297

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3298 3299
		return s;

3300
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3301

3302
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3303 3304

	return ret;
C
Christoph Lameter 已提交
3305 3306 3307
}
EXPORT_SYMBOL(__kmalloc);

3308
#ifdef CONFIG_NUMA
3309 3310
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3311
	struct page *page;
3312
	void *ptr = NULL;
3313

V
Vladimir Davydov 已提交
3314 3315
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3316
	if (page)
3317 3318
		ptr = page_address(page);

3319
	kmalloc_large_node_hook(ptr, size, flags);
3320
	return ptr;
3321 3322
}

C
Christoph Lameter 已提交
3323 3324
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3325
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3326
	void *ret;
C
Christoph Lameter 已提交
3327

3328
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3329 3330
		ret = kmalloc_large_node(size, flags, node);

3331 3332 3333
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3334 3335 3336

		return ret;
	}
3337

3338
	s = kmalloc_slab(size, flags);
3339 3340

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3341 3342
		return s;

3343
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3344

3345
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3346 3347

	return ret;
C
Christoph Lameter 已提交
3348 3349 3350 3351 3352 3353
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3354
	struct page *page;
C
Christoph Lameter 已提交
3355

3356
	if (unlikely(object == ZERO_SIZE_PTR))
3357 3358
		return 0;

3359 3360
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3361 3362
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3363
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3364
	}
C
Christoph Lameter 已提交
3365

3366
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3367
}
K
Kirill A. Shutemov 已提交
3368
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3369 3370 3371 3372

void kfree(const void *x)
{
	struct page *page;
3373
	void *object = (void *)x;
C
Christoph Lameter 已提交
3374

3375 3376
	trace_kfree(_RET_IP_, x);

3377
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3378 3379
		return;

3380
	page = virt_to_head_page(x);
3381
	if (unlikely(!PageSlab(page))) {
3382
		BUG_ON(!PageCompound(page));
3383
		kfree_hook(x);
V
Vladimir Davydov 已提交
3384
		__free_kmem_pages(page, compound_order(page));
3385 3386
		return;
	}
3387
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3388 3389 3390
}
EXPORT_SYMBOL(kfree);

3391
/*
C
Christoph Lameter 已提交
3392 3393 3394 3395 3396 3397 3398 3399
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3400 3401 3402 3403 3404 3405 3406 3407
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3408
	int objects = oo_objects(s->max);
3409
	struct list_head *slabs_by_inuse =
3410
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3411 3412 3413 3414 3415 3416
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3417
	for_each_node_state(node, N_NORMAL_MEMORY) {
3418 3419 3420 3421 3422
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3423
		for (i = 0; i < objects; i++)
3424 3425 3426 3427 3428
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3429
		 * Build lists indexed by the items in use in each slab.
3430
		 *
C
Christoph Lameter 已提交
3431 3432
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3433 3434
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3435 3436 3437
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3438 3439 3440
		}

		/*
C
Christoph Lameter 已提交
3441 3442
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3443
		 */
3444
		for (i = objects - 1; i > 0; i--)
3445 3446 3447
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3448 3449 3450 3451

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3452 3453 3454 3455 3456 3457 3458
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3459 3460 3461 3462
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3463
	mutex_lock(&slab_mutex);
3464 3465
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3466
	mutex_unlock(&slab_mutex);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3478
	offline_node = marg->status_change_nid_normal;
3479 3480 3481 3482 3483 3484 3485 3486

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3487
	mutex_lock(&slab_mutex);
3488 3489 3490 3491 3492 3493
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3494
			 * and offline_pages() function shouldn't call this
3495 3496
			 * callback. So, we must fail.
			 */
3497
			BUG_ON(slabs_node(s, offline_node));
3498 3499

			s->node[offline_node] = NULL;
3500
			kmem_cache_free(kmem_cache_node, n);
3501 3502
		}
	}
3503
	mutex_unlock(&slab_mutex);
3504 3505 3506 3507 3508 3509 3510
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3511
	int nid = marg->status_change_nid_normal;
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3522
	 * We are bringing a node online. No memory is available yet. We must
3523 3524 3525
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3526
	mutex_lock(&slab_mutex);
3527 3528 3529 3530 3531 3532
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3533
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3534 3535 3536 3537
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3538
		init_kmem_cache_node(n);
3539 3540 3541
		s->node[nid] = n;
	}
out:
3542
	mutex_unlock(&slab_mutex);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3566 3567 3568 3569
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3570 3571 3572
	return ret;
}

3573 3574 3575 3576
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3577

C
Christoph Lameter 已提交
3578 3579 3580 3581
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3582 3583
/*
 * Used for early kmem_cache structures that were allocated using
3584 3585
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3586 3587
 */

3588
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3589 3590
{
	int node;
3591
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3592

3593
	memcpy(s, static_cache, kmem_cache->object_size);
3594

3595 3596 3597 3598 3599 3600
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3601 3602 3603 3604 3605 3606
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3607
				p->slab_cache = s;
3608

L
Li Zefan 已提交
3609
#ifdef CONFIG_SLUB_DEBUG
3610
			list_for_each_entry(p, &n->full, lru)
3611
				p->slab_cache = s;
3612 3613 3614
#endif
		}
	}
3615 3616
	list_add(&s->list, &slab_caches);
	return s;
3617 3618
}

C
Christoph Lameter 已提交
3619 3620
void __init kmem_cache_init(void)
{
3621 3622
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3623

3624 3625 3626
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3627 3628
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3629

3630 3631
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3632

3633
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3634 3635 3636 3637

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3638 3639 3640 3641
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3642

3643
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3644

3645 3646 3647 3648 3649
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3650
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3651 3652

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3653
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3654 3655 3656

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3657
#endif
C
Christoph Lameter 已提交
3658

3659
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3660
		cache_line_size(),
C
Christoph Lameter 已提交
3661 3662 3663 3664
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3665 3666 3667 3668
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3669 3670 3671 3672 3673 3674 3675 3676
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3677 3678 3679
	if (!is_root_cache(s))
		return 1;

3680
	if (s->ctor)
C
Christoph Lameter 已提交
3681 3682
		return 1;

3683 3684 3685 3686 3687 3688
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3689 3690 3691
	return 0;
}

3692 3693
static struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
C
Christoph Lameter 已提交
3694
{
3695
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3696 3697 3698 3699

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3700
	if (ctor)
C
Christoph Lameter 已提交
3701 3702 3703 3704 3705
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3706
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3707

3708
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3709 3710 3711 3712 3713 3714
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3715
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3716
			continue;
C
Christoph Lameter 已提交
3717 3718 3719 3720
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3721
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

3732
struct kmem_cache *
3733 3734
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3735 3736 3737
{
	struct kmem_cache *s;

3738
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3739
	if (s) {
3740 3741 3742
		int i;
		struct kmem_cache *c;

C
Christoph Lameter 已提交
3743
		s->refcount++;
3744

C
Christoph Lameter 已提交
3745 3746 3747 3748
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3749
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3750
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3751

3752 3753 3754 3755 3756 3757 3758 3759 3760
		for_each_memcg_cache_index(i) {
			c = cache_from_memcg_idx(s, i);
			if (!c)
				continue;
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3761 3762
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3763
			s = NULL;
3764
		}
3765
	}
C
Christoph Lameter 已提交
3766

3767 3768
	return s;
}
P
Pekka Enberg 已提交
3769

3770
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3771
{
3772 3773 3774 3775 3776
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3777

3778 3779 3780 3781
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3782
	memcg_propagate_slab_attrs(s);
3783 3784 3785
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3786

3787
	return err;
C
Christoph Lameter 已提交
3788 3789 3790 3791
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3792 3793
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3794
 */
3795
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3796 3797 3798
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3799 3800
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3801 3802 3803

	switch (action) {
	case CPU_UP_CANCELED:
3804
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3805
	case CPU_DEAD:
3806
	case CPU_DEAD_FROZEN:
3807
		mutex_lock(&slab_mutex);
3808 3809 3810 3811 3812
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3813
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3814 3815 3816 3817 3818 3819 3820
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3821
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3822
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3823
};
C
Christoph Lameter 已提交
3824 3825 3826

#endif

3827
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3828
{
3829
	struct kmem_cache *s;
3830
	void *ret;
3831

3832
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3833 3834
		return kmalloc_large(size, gfpflags);

3835
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3836

3837
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3838
		return s;
C
Christoph Lameter 已提交
3839

3840
	ret = slab_alloc(s, gfpflags, caller);
3841

L
Lucas De Marchi 已提交
3842
	/* Honor the call site pointer we received. */
3843
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3844 3845

	return ret;
C
Christoph Lameter 已提交
3846 3847
}

3848
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3849
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3850
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3851
{
3852
	struct kmem_cache *s;
3853
	void *ret;
3854

3855
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3856 3857 3858 3859 3860 3861 3862 3863
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3864

3865
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3866

3867
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3868
		return s;
C
Christoph Lameter 已提交
3869

3870
	ret = slab_alloc_node(s, gfpflags, node, caller);
3871

L
Lucas De Marchi 已提交
3872
	/* Honor the call site pointer we received. */
3873
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3874 3875

	return ret;
C
Christoph Lameter 已提交
3876
}
3877
#endif
C
Christoph Lameter 已提交
3878

3879
#ifdef CONFIG_SYSFS
3880 3881 3882 3883 3884 3885 3886 3887 3888
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3889
#endif
3890

3891
#ifdef CONFIG_SLUB_DEBUG
3892 3893
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3894 3895
{
	void *p;
3896
	void *addr = page_address(page);
3897 3898 3899 3900 3901 3902

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3903
	bitmap_zero(map, page->objects);
3904

3905 3906 3907 3908 3909
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3910 3911
	}

3912
	for_each_object(p, s, addr, page->objects)
3913
		if (!test_bit(slab_index(p, s, addr), map))
3914
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3915 3916 3917 3918
				return 0;
	return 1;
}

3919 3920
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3921
{
3922 3923 3924
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3925 3926
}

3927 3928
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3929 3930 3931 3932 3933 3934 3935 3936
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3937
		validate_slab_slab(s, page, map);
3938 3939 3940
		count++;
	}
	if (count != n->nr_partial)
3941 3942
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3943 3944 3945 3946 3947

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3948
		validate_slab_slab(s, page, map);
3949 3950 3951
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3952 3953
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3954 3955 3956 3957 3958 3959

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3960
static long validate_slab_cache(struct kmem_cache *s)
3961 3962 3963
{
	int node;
	unsigned long count = 0;
3964
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3965 3966 3967 3968
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3969 3970

	flush_all(s);
C
Christoph Lameter 已提交
3971
	for_each_node_state(node, N_NORMAL_MEMORY) {
3972 3973
		struct kmem_cache_node *n = get_node(s, node);

3974
		count += validate_slab_node(s, n, map);
3975
	}
3976
	kfree(map);
3977 3978
	return count;
}
3979
/*
C
Christoph Lameter 已提交
3980
 * Generate lists of code addresses where slabcache objects are allocated
3981 3982 3983 3984 3985
 * and freed.
 */

struct location {
	unsigned long count;
3986
	unsigned long addr;
3987 3988 3989 3990 3991
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3992
	DECLARE_BITMAP(cpus, NR_CPUS);
3993
	nodemask_t nodes;
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4009
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4010 4011 4012 4013 4014 4015
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4016
	l = (void *)__get_free_pages(flags, order);
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4030
				const struct track *track)
4031 4032 4033
{
	long start, end, pos;
	struct location *l;
4034
	unsigned long caddr;
4035
	unsigned long age = jiffies - track->when;
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4067 4068
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4069 4070
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4071 4072 4073
			return 1;
		}

4074
		if (track->addr < caddr)
4075 4076 4077 4078 4079 4080
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4081
	 * Not found. Insert new tracking element.
4082
	 */
4083
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4084 4085 4086 4087 4088 4089 4090 4091
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4092 4093 4094 4095 4096 4097
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4098 4099
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4100 4101
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4102 4103 4104 4105
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4106
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4107
		unsigned long *map)
4108
{
4109
	void *addr = page_address(page);
4110 4111
	void *p;

4112
	bitmap_zero(map, page->objects);
4113
	get_map(s, page, map);
4114

4115
	for_each_object(p, s, addr, page->objects)
4116 4117
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4118 4119 4120 4121 4122
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4123
	int len = 0;
4124
	unsigned long i;
4125
	struct loc_track t = { 0, 0, NULL };
4126
	int node;
E
Eric Dumazet 已提交
4127 4128
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4129

E
Eric Dumazet 已提交
4130 4131 4132
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4133
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4134
	}
4135 4136 4137
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4138
	for_each_node_state(node, N_NORMAL_MEMORY) {
4139 4140 4141 4142
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4143
		if (!atomic_long_read(&n->nr_slabs))
4144 4145 4146 4147
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4148
			process_slab(&t, s, page, alloc, map);
4149
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4150
			process_slab(&t, s, page, alloc, map);
4151 4152 4153 4154
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4155
		struct location *l = &t.loc[i];
4156

H
Hugh Dickins 已提交
4157
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4158
			break;
4159
		len += sprintf(buf + len, "%7ld ", l->count);
4160 4161

		if (l->addr)
J
Joe Perches 已提交
4162
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4163
		else
4164
			len += sprintf(buf + len, "<not-available>");
4165 4166

		if (l->sum_time != l->min_time) {
4167
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4168 4169 4170
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4171
		} else
4172
			len += sprintf(buf + len, " age=%ld",
4173 4174 4175
				l->min_time);

		if (l->min_pid != l->max_pid)
4176
			len += sprintf(buf + len, " pid=%ld-%ld",
4177 4178
				l->min_pid, l->max_pid);
		else
4179
			len += sprintf(buf + len, " pid=%ld",
4180 4181
				l->min_pid);

R
Rusty Russell 已提交
4182 4183
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4184 4185
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4186 4187
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4188
						 to_cpumask(l->cpus));
4189 4190
		}

4191
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4192 4193
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4194 4195 4196
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4197 4198
		}

4199
		len += sprintf(buf + len, "\n");
4200 4201 4202
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4203
	kfree(map);
4204
	if (!t.count)
4205 4206
		len += sprintf(buf, "No data\n");
	return len;
4207
}
4208
#endif
4209

4210 4211 4212 4213 4214
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4215
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4216

4217 4218 4219
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4220 4221 4222

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4223 4224
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4225 4226 4227 4228 4229 4230

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4231 4232 4233
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4234 4235 4236 4237 4238

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4239 4240 4241
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4242 4243
	validate_slab_cache(kmalloc_caches[6]);

4244
	pr_err("\nB. Corruption after free\n");
4245 4246 4247
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4248
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4249 4250 4251 4252 4253
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4254
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4255 4256 4257 4258 4259
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4260
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4261 4262 4263 4264 4265 4266 4267 4268
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4269
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4270
enum slab_stat_type {
4271 4272 4273 4274 4275
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4276 4277
};

4278
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4279 4280 4281
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4282
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4283

4284 4285
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4286 4287 4288 4289 4290 4291
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4292
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4293 4294
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4295

4296 4297
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4298

4299
		for_each_possible_cpu(cpu) {
4300 4301
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4302
			int node;
4303
			struct page *page;
4304

4305
			page = ACCESS_ONCE(c->page);
4306 4307
			if (!page)
				continue;
4308

4309 4310 4311 4312 4313 4314 4315
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4316

4317 4318 4319 4320
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4321
			if (page) {
L
Li Zefan 已提交
4322 4323 4324 4325 4326 4327 4328
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4329 4330
				total += x;
				nodes[node] += x;
4331
			}
C
Christoph Lameter 已提交
4332 4333 4334
		}
	}

4335
	lock_memory_hotplug();
4336
#ifdef CONFIG_SLUB_DEBUG
4337 4338 4339 4340
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4341 4342 4343 4344 4345
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4346
			else
4347
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4348 4349 4350 4351
			total += x;
			nodes[node] += x;
		}

4352 4353 4354
	} else
#endif
	if (flags & SO_PARTIAL) {
4355 4356
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4357

4358 4359 4360 4361
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4362
			else
4363
				x = n->nr_partial;
C
Christoph Lameter 已提交
4364 4365 4366 4367 4368 4369
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4370
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4371 4372 4373 4374
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4375
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4376 4377 4378 4379
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4380
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4381 4382 4383 4384
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4385
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4386 4387
		struct kmem_cache_node *n = get_node(s, node);

4388 4389 4390
		if (!n)
			continue;

4391
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4392 4393 4394 4395
			return 1;
	}
	return 0;
}
4396
#endif
C
Christoph Lameter 已提交
4397 4398

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4399
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4400 4401 4402 4403 4404 4405 4406 4407

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4408 4409
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4410 4411 4412

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4413
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4429
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4430 4431 4432 4433 4434
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4435
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4436 4437 4438
}
SLAB_ATTR_RO(objs_per_slab);

4439 4440 4441
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4442 4443 4444
	unsigned long order;
	int err;

4445
	err = kstrtoul(buf, 10, &order);
4446 4447
	if (err)
		return err;
4448 4449 4450 4451 4452 4453 4454 4455

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4456 4457
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4458
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4459
}
4460
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4461

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4473
	err = kstrtoul(buf, 10, &min);
4474 4475 4476
	if (err)
		return err;

4477
	set_min_partial(s, min);
4478 4479 4480 4481
	return length;
}
SLAB_ATTR(min_partial);

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4493
	err = kstrtoul(buf, 10, &objects);
4494 4495
	if (err)
		return err;
4496
	if (objects && !kmem_cache_has_cpu_partial(s))
4497
		return -EINVAL;
4498 4499 4500 4501 4502 4503 4504

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4505 4506
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4507 4508 4509
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4521
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4522 4523 4524 4525 4526
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4527
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4528 4529 4530 4531 4532
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4533
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4534 4535 4536
}
SLAB_ATTR_RO(objects);

4537 4538 4539 4540 4541 4542
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4609 4610 4611 4612 4613 4614
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4615
#ifdef CONFIG_SLUB_DEBUG
4616 4617 4618 4619 4620 4621
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4622 4623 4624 4625 4626 4627
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4637 4638
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4639
		s->flags |= SLAB_DEBUG_FREE;
4640
	}
C
Christoph Lameter 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4654 4655
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4656
		s->flags |= SLAB_TRACE;
4657
	}
C
Christoph Lameter 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4674 4675
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4676
		s->flags |= SLAB_RED_ZONE;
4677
	}
4678
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4695 4696
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4697
		s->flags |= SLAB_POISON;
4698
	}
4699
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4716 4717
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4718
		s->flags |= SLAB_STORE_USER;
4719
	}
4720
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4721 4722 4723 4724
	return length;
}
SLAB_ATTR(store_user);

4725 4726 4727 4728 4729 4730 4731 4732
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4733 4734 4735 4736 4737 4738 4739 4740
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4741 4742
}
SLAB_ATTR(validate);
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4776
#endif
4777

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4797
#ifdef CONFIG_NUMA
4798
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4799
{
4800
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4801 4802
}

4803
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4804 4805
				const char *buf, size_t length)
{
4806 4807 4808
	unsigned long ratio;
	int err;

4809
	err = kstrtoul(buf, 10, &ratio);
4810 4811 4812
	if (err)
		return err;

4813
	if (ratio <= 100)
4814
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4815 4816 4817

	return length;
}
4818
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4819 4820
#endif

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4833
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4834 4835 4836 4837 4838 4839 4840

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4841
#ifdef CONFIG_SMP
4842 4843
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4844
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4845
	}
4846
#endif
4847 4848 4849 4850
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4851 4852 4853 4854 4855
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4856
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4857 4858
}

4859 4860 4861 4862 4863
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4884
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4885 4886 4887 4888 4889 4890 4891
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4892
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4893
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4894 4895
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4896 4897
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4898 4899
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4900 4901
#endif

P
Pekka Enberg 已提交
4902
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4903 4904 4905 4906
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4907
	&min_partial_attr.attr,
4908
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4909
	&objects_attr.attr,
4910
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4911 4912 4913 4914 4915 4916 4917 4918
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4919
	&shrink_attr.attr,
4920
	&reserved_attr.attr,
4921
	&slabs_cpu_partial_attr.attr,
4922
#ifdef CONFIG_SLUB_DEBUG
4923 4924 4925 4926
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4927 4928 4929
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4930
	&validate_attr.attr,
4931 4932
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4933
#endif
C
Christoph Lameter 已提交
4934 4935 4936 4937
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4938
	&remote_node_defrag_ratio_attr.attr,
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4951
	&alloc_node_mismatch_attr.attr,
4952 4953 4954 4955 4956 4957 4958
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4959
	&deactivate_bypass_attr.attr,
4960
	&order_fallback_attr.attr,
4961 4962
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4963 4964
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4965 4966
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4967
#endif
4968 4969 4970 4971
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5013 5014 5015
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5016

5017 5018 5019 5020
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5038
		for_each_memcg_cache_index(i) {
5039
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5040 5041 5042 5043 5044 5045
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5046 5047 5048
	return err;
}

5049 5050 5051 5052 5053
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5054
	struct kmem_cache *root_cache;
5055

5056
	if (is_root_cache(s))
5057 5058
		return;

5059 5060
	root_cache = s->memcg_params->root_cache;

5061 5062 5063 5064
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5065
	if (!root_cache->max_attr_size)
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5087
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5088 5089 5090 5091 5092 5093 5094 5095
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5096
		attr->show(root_cache, buf);
5097 5098 5099 5100 5101 5102 5103 5104
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5105 5106 5107 5108 5109
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5110
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5111 5112 5113 5114 5115 5116
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5117
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5129
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5130 5131 5132
	.filter = uevent_filter,
};

5133
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5134

5135 5136 5137 5138 5139 5140 5141 5142 5143
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->memcg_kset;
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5144 5145 5146
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5147 5148
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5171 5172
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5173 5174 5175
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5176 5177 5178

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5179 5180
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5181 5182
#endif

C
Christoph Lameter 已提交
5183 5184 5185 5186 5187 5188 5189 5190
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5191
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5192 5193 5194 5195 5196 5197 5198

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5199
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5200 5201 5202 5203 5204 5205 5206 5207 5208
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5209
	s->kobj.kset = cache_kset(s);
5210
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5211 5212
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5213 5214

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5215 5216
	if (err)
		goto out_del_kobj;
5217 5218 5219 5220 5221

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5222 5223
			err = -ENOMEM;
			goto out_del_kobj;
5224 5225 5226 5227
		}
	}
#endif

C
Christoph Lameter 已提交
5228 5229 5230 5231 5232
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5233 5234 5235 5236 5237 5238 5239 5240 5241
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5242 5243
}

5244
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5245
{
5246
	if (slab_state < FULL)
5247 5248 5249 5250 5251 5252
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5253 5254 5255
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5256 5257
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5258
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5259 5260 5261 5262
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5263
 * available lest we lose that information.
C
Christoph Lameter 已提交
5264 5265 5266 5267 5268 5269 5270
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5271
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5272 5273 5274 5275 5276

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5277
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5278 5279 5280
		/*
		 * If we have a leftover link then remove it.
		 */
5281 5282
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5298
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5299 5300
	int err;

5301
	mutex_lock(&slab_mutex);
5302

5303
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5304
	if (!slab_kset) {
5305
		mutex_unlock(&slab_mutex);
5306
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5307 5308 5309
		return -ENOSYS;
	}

5310
	slab_state = FULL;
5311

5312
	list_for_each_entry(s, &slab_caches, list) {
5313
		err = sysfs_slab_add(s);
5314
		if (err)
5315 5316
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5317
	}
C
Christoph Lameter 已提交
5318 5319 5320 5321 5322 5323

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5324
		if (err)
5325 5326
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5327 5328 5329
		kfree(al);
	}

5330
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5331 5332 5333 5334 5335
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5336
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5337 5338 5339 5340

/*
 * The /proc/slabinfo ABI
 */
5341
#ifdef CONFIG_SLABINFO
5342
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5343 5344
{
	unsigned long nr_slabs = 0;
5345 5346
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5347 5348 5349 5350 5351 5352 5353 5354
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5355 5356
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5357
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5358 5359
	}

5360 5361 5362 5363 5364 5365
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5366 5367
}

5368
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5369 5370 5371
{
}

5372 5373
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5374
{
5375
	return -EIO;
5376
}
5377
#endif /* CONFIG_SLABINFO */