compression.c 45.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

32 33 34 35 36 37 38
int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
		u64 start, struct page **pages, unsigned long *out_pages,
		unsigned long *total_in, unsigned long *total_out);
int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
int zlib_decompress(struct list_head *ws, unsigned char *data_in,
		struct page *dest_page, unsigned long start_byte, size_t srclen,
		size_t destlen);
39 40 41
struct list_head *zlib_alloc_workspace(unsigned int level);
void zlib_free_workspace(struct list_head *ws);
struct list_head *zlib_get_workspace(unsigned int level);
42 43 44 45 46 47 48 49

int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
		u64 start, struct page **pages, unsigned long *out_pages,
		unsigned long *total_in, unsigned long *total_out);
int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
int lzo_decompress(struct list_head *ws, unsigned char *data_in,
		struct page *dest_page, unsigned long start_byte, size_t srclen,
		size_t destlen);
50 51
struct list_head *lzo_alloc_workspace(unsigned int level);
void lzo_free_workspace(struct list_head *ws);
52 53 54 55 56 57 58 59

int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
		u64 start, struct page **pages, unsigned long *out_pages,
		unsigned long *total_in, unsigned long *total_out);
int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
int zstd_decompress(struct list_head *ws, unsigned char *data_in,
		struct page *dest_page, unsigned long start_byte, size_t srclen,
		size_t destlen);
60
void zstd_init_workspace_manager(void);
61
void zstd_cleanup_workspace_manager(void);
62 63 64 65
struct list_head *zstd_alloc_workspace(unsigned int level);
void zstd_free_workspace(struct list_head *ws);
struct list_head *zstd_get_workspace(unsigned int level);
void zstd_put_workspace(struct list_head *ws);
66

67 68 69 70 71 72 73 74 75 76
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
77 78
	default:
		break;
79 80 81 82 83
	}

	return NULL;
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here. As a sane fallback, return what the
		 * callers will understand as 'no compression happened'.
		 */
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

164
static int btrfs_decompress_bio(struct compressed_bio *cb);
165

166
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
167 168
				      unsigned long disk_size)
{
169
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
170

171
	return sizeof(struct compressed_bio) +
172
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
173 174
}

175
static int check_compressed_csum(struct btrfs_inode *inode,
176 177 178
				 struct compressed_bio *cb,
				 u64 disk_start)
{
179
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
180
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
181
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
182 183 184 185
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
186
	u8 csum[BTRFS_CSUM_SIZE];
187
	u8 *cb_sum = cb->sums;
188

189
	if (inode->flags & BTRFS_INODE_NODATASUM)
190 191
		return 0;

192 193
	shash->tfm = fs_info->csum_shash;

194 195 196
	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];

197
		crypto_shash_init(shash);
198
		kaddr = kmap_atomic(page);
199
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
200
		kunmap_atomic(kaddr);
201
		crypto_shash_final(shash, (u8 *)&csum);
202

203
		if (memcmp(&csum, cb_sum, csum_size)) {
204
			btrfs_print_data_csum_error(inode, disk_start,
205
					csum, cb_sum, cb->mirror_num);
206 207 208
			ret = -EIO;
			goto fail;
		}
209
		cb_sum += csum_size;
210 211 212 213 214 215 216

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
217 218 219 220 221 222 223 224 225 226
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
227
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
228 229 230 231 232
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
233
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
234
	int ret = 0;
C
Chris Mason 已提交
235

236
	if (bio->bi_status)
C
Chris Mason 已提交
237 238 239 240 241
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
242
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
243 244
		goto out;

245 246 247 248 249 250 251 252
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

253 254 255 256 257 258 259
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

260
	inode = cb->inode;
261
	ret = check_compressed_csum(BTRFS_I(inode), cb,
262
				    (u64)bio->bi_iter.bi_sector << 9);
263 264 265
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
266 267 268
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
269 270
	ret = btrfs_decompress_bio(cb);

271
csum_failed:
C
Chris Mason 已提交
272 273 274 275 276 277 278 279
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
280
		put_page(page);
C
Chris Mason 已提交
281 282 283
	}

	/* do io completion on the original bio */
284
	if (cb->errors) {
C
Chris Mason 已提交
285
		bio_io_error(cb->orig_bio);
286
	} else {
287
		struct bio_vec *bvec;
288
		struct bvec_iter_all iter_all;
289 290 291 292 293

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
294
		ASSERT(!bio_flagged(bio, BIO_CLONED));
295
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
296
			SetPageChecked(bvec->bv_page);
297

298
		bio_endio(cb->orig_bio);
299
	}
C
Chris Mason 已提交
300 301 302 303 304 305 306 307 308 309 310 311

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
312 313
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
314
{
315 316
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
317 318 319 320 321
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

322 323 324
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
325
	while (nr_pages > 0) {
C
Chris Mason 已提交
326
		ret = find_get_pages_contig(inode->i_mapping, index,
327 328
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
329 330 331 332 333 334
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
335 336
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
337
			end_page_writeback(pages[i]);
338
			put_page(pages[i]);
C
Chris Mason 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
354
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
355 356 357 358 359 360
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

361
	if (bio->bi_status)
C
Chris Mason 已提交
362 363 364 365 366
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
367
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
368 369 370 371 372 373
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
374
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
375
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
376
			cb->start, cb->start + cb->len - 1,
377
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
378
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
379

380
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
381 382 383 384 385 386 387 388 389 390
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
391
		put_page(page);
C
Chris Mason 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
410
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
411 412 413
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
414
				 unsigned long nr_pages,
415 416
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
417
{
418
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
419 420 421
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
422
	int pg_index = 0;
C
Chris Mason 已提交
423 424
	struct page *page;
	u64 first_byte = disk_start;
425
	blk_status_t ret;
426
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
427

428
	WARN_ON(!PAGE_ALIGNED(start));
429
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
430
	if (!cb)
431
		return BLK_STS_RESOURCE;
432
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
433 434 435 436
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
437
	cb->mirror_num = 0;
C
Chris Mason 已提交
438 439 440 441 442
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

443
	bio = btrfs_bio_alloc(first_byte);
444
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
445 446
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
447 448 449

	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
450
		kthread_associate_blkcg(blkcg_css);
451
	}
452
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
453 454 455

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
456
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
457 458
		int submit = 0;

459
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
460
		page->mapping = inode->i_mapping;
461
		if (bio->bi_iter.bi_size)
462 463
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
464

C
Chris Mason 已提交
465
		page->mapping = NULL;
466
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
467
		    PAGE_SIZE) {
468 469 470 471 472 473
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
474
			refcount_inc(&cb->pending_bios);
475 476
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
477
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
478

479
			if (!skip_sum) {
480
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
481
				BUG_ON(ret); /* -ENOMEM */
482
			}
483

484
			ret = btrfs_map_bio(fs_info, bio, 0);
485
			if (ret) {
486
				bio->bi_status = ret;
487 488
				bio_endio(bio);
			}
C
Chris Mason 已提交
489

490
			bio = btrfs_bio_alloc(first_byte);
491
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
492 493
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
494
			if (blkcg_css)
495
				bio->bi_opf |= REQ_CGROUP_PUNT;
496
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
497
		}
498
		if (bytes_left < PAGE_SIZE) {
499
			btrfs_info(fs_info,
500
					"bytes left %lu compress len %lu nr %lu",
501 502
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
503 504
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
505
		cond_resched();
C
Chris Mason 已提交
506 507
	}

508
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
509
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
510

511
	if (!skip_sum) {
512
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
513
		BUG_ON(ret); /* -ENOMEM */
514
	}
515

516
	ret = btrfs_map_bio(fs_info, bio, 0);
517
	if (ret) {
518
		bio->bi_status = ret;
519 520
		bio_endio(bio);
	}
C
Chris Mason 已提交
521

522 523 524
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
525 526 527
	return 0;
}

528 529
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
530
	struct bio_vec *last = bio_last_bvec_all(bio);
531 532 533 534

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

535 536 537 538 539
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
540
	unsigned long pg_index;
541 542 543 544 545 546 547 548 549 550 551 552
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

553
	last_offset = bio_end_offset(cb->orig_bio);
554 555 556 557 558 559
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

560
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
561

C
Chris Mason 已提交
562
	while (last_offset < compressed_end) {
563
		pg_index = last_offset >> PAGE_SHIFT;
564

565
		if (pg_index > end_index)
566 567
			break;

568
		page = xa_load(&mapping->i_pages, pg_index);
569
		if (page && !xa_is_value(page)) {
570 571 572 573 574 575
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

576 577
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
578 579 580
		if (!page)
			break;

581
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
582
			put_page(page);
583 584 585
			goto next;
		}

586
		end = last_offset + PAGE_SIZE - 1;
587 588 589 590 591 592
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
593
		lock_extent(tree, last_offset, end);
594
		read_lock(&em_tree->lock);
595
		em = lookup_extent_mapping(em_tree, last_offset,
596
					   PAGE_SIZE);
597
		read_unlock(&em_tree->lock);
598 599

		if (!em || last_offset < em->start ||
600
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
601
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
602
			free_extent_map(em);
603
			unlock_extent(tree, last_offset, end);
604
			unlock_page(page);
605
			put_page(page);
606 607 608 609 610 611
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
612
			size_t zero_offset = offset_in_page(isize);
613 614 615

			if (zero_offset) {
				int zeros;
616
				zeros = PAGE_SIZE - zero_offset;
617
				userpage = kmap_atomic(page);
618 619
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
620
				kunmap_atomic(userpage);
621 622 623 624
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
625
				   PAGE_SIZE, 0);
626

627
		if (ret == PAGE_SIZE) {
628
			nr_pages++;
629
			put_page(page);
630
		} else {
631
			unlock_extent(tree, last_offset, end);
632
			unlock_page(page);
633
			put_page(page);
634 635 636
			break;
		}
next:
637
		last_offset += PAGE_SIZE;
638 639 640 641
	}
	return 0;
}

C
Chris Mason 已提交
642 643 644 645 646
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
647
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
648 649 650 651 652
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
653
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
654 655
				 int mirror_num, unsigned long bio_flags)
{
656
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
657 658 659 660
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
661
	unsigned long pg_index;
C
Chris Mason 已提交
662 663
	struct page *page;
	struct bio *comp_bio;
664
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
665 666
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
667
	struct extent_map *em;
668
	blk_status_t ret = BLK_STS_RESOURCE;
669
	int faili = 0;
670 671
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
	u8 *sums;
C
Chris Mason 已提交
672 673 674 675

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
676
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
677
	em = lookup_extent_mapping(em_tree,
678
				   page_offset(bio_first_page_all(bio)),
679
				   PAGE_SIZE);
680
	read_unlock(&em_tree->lock);
681
	if (!em)
682
		return BLK_STS_IOERR;
C
Chris Mason 已提交
683

684
	compressed_len = em->block_len;
685
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
686 687 688
	if (!cb)
		goto out;

689
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
690 691
	cb->errors = 0;
	cb->inode = inode;
692
	cb->mirror_num = mirror_num;
693
	sums = cb->sums;
C
Chris Mason 已提交
694

695
	cb->start = em->orig_start;
696 697
	em_len = em->len;
	em_start = em->start;
698

C
Chris Mason 已提交
699
	free_extent_map(em);
700
	em = NULL;
C
Chris Mason 已提交
701

C
Christoph Hellwig 已提交
702
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
703
	cb->compressed_len = compressed_len;
704
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
705 706
	cb->orig_bio = bio;

707
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
708
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
709
				       GFP_NOFS);
710 711 712
	if (!cb->compressed_pages)
		goto fail1;

713 714
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
715
							      __GFP_HIGHMEM);
716 717
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
718
			ret = BLK_STS_RESOURCE;
719
			goto fail2;
720
		}
C
Chris Mason 已提交
721
	}
722
	faili = nr_pages - 1;
C
Chris Mason 已提交
723 724
	cb->nr_pages = nr_pages;

725
	add_ra_bio_pages(inode, em_start + em_len, cb);
726 727

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
728
	cb->len = bio->bi_iter.bi_size;
729

730
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
731
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
732 733
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
734
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
735

736
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
737 738
		int submit = 0;

739
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
740
		page->mapping = inode->i_mapping;
741
		page->index = em_start >> PAGE_SHIFT;
742

743
		if (comp_bio->bi_iter.bi_size)
744 745
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
							  comp_bio, 0);
C
Chris Mason 已提交
746

C
Chris Mason 已提交
747
		page->mapping = NULL;
748
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
749
		    PAGE_SIZE) {
750 751
			unsigned int nr_sectors;

752 753
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
754
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
755

756 757 758 759 760 761
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
762
			refcount_inc(&cb->pending_bios);
763

764
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
765
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
766
							    sums);
767
				BUG_ON(ret); /* -ENOMEM */
768
			}
769 770 771 772

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
			sums += csum_size * nr_sectors;
773

774
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
775
			if (ret) {
776
				comp_bio->bi_status = ret;
777 778
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
779

780
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
781
			comp_bio->bi_opf = REQ_OP_READ;
782 783 784
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

785
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
786
		}
787
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
788 789
	}

790
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
791
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
792

793
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
794
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
795
		BUG_ON(ret); /* -ENOMEM */
796
	}
797

798
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
799
	if (ret) {
800
		comp_bio->bi_status = ret;
801 802
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
803 804

	return 0;
805 806

fail2:
807 808 809 810
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
811 812 813 814 815 816 817

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
818
}
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
855 856

struct heuristic_ws {
857 858
	/* Partial copy of input data */
	u8 *sample;
859
	u32 sample_size;
860 861
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
862 863
	/* Sorting buffer */
	struct bucket_item *bucket_b;
864 865 866
	struct list_head list;
};

867 868
static struct workspace_manager heuristic_wsm;

869 870 871 872 873 874
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

875 876
	kvfree(workspace->sample);
	kfree(workspace->bucket);
877
	kfree(workspace->bucket_b);
878 879 880
	kfree(workspace);
}

881
static struct list_head *alloc_heuristic_ws(unsigned int level)
882 883 884 885 886 887 888
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

889 890 891 892 893 894 895
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
896

897 898 899 900
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

901
	INIT_LIST_HEAD(&ws->list);
902
	return &ws->list;
903 904 905
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
906 907
}

908
const struct btrfs_compress_op btrfs_heuristic_compress = {
909
	.workspace_manager = &heuristic_wsm,
910 911
};

912
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
913 914
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
915
	&btrfs_zlib_compress,
L
Li Zefan 已提交
916
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
917
	&btrfs_zstd_compress,
918 919
};

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

952
static void btrfs_init_workspace_manager(int type)
953
{
954
	struct workspace_manager *wsm;
955
	struct list_head *workspace;
956

957
	wsm = btrfs_compress_op[type]->workspace_manager;
958 959 960 961
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
962

963 964 965 966
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
967
	workspace = alloc_workspace(type, 0);
968 969 970 971
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
972 973 974
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
975 976 977
	}
}

978
static void btrfs_cleanup_workspace_manager(int type)
979
{
980
	struct workspace_manager *wsman;
981 982
	struct list_head *ws;

983
	wsman = btrfs_compress_op[type]->workspace_manager;
984 985 986
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
987
		free_workspace(type, ws);
988
		atomic_dec(&wsman->total_ws);
989 990 991 992
	}
}

/*
993 994 995 996
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
997
 */
998
struct list_head *btrfs_get_workspace(int type, unsigned int level)
999
{
1000
	struct workspace_manager *wsm;
1001 1002
	struct list_head *workspace;
	int cpus = num_online_cpus();
1003
	unsigned nofs_flag;
1004 1005 1006 1007 1008 1009
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1010
	wsm = btrfs_compress_op[type]->workspace_manager;
1011 1012 1013 1014 1015
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1016 1017

again:
1018 1019 1020
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1021
		list_del(workspace);
1022
		(*free_ws)--;
1023
		spin_unlock(ws_lock);
1024 1025 1026
		return workspace;

	}
1027
	if (atomic_read(total_ws) > cpus) {
1028 1029
		DEFINE_WAIT(wait);

1030 1031
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1032
		if (atomic_read(total_ws) > cpus && !*free_ws)
1033
			schedule();
1034
		finish_wait(ws_wait, &wait);
1035 1036
		goto again;
	}
1037
	atomic_inc(total_ws);
1038
	spin_unlock(ws_lock);
1039

1040 1041 1042 1043 1044 1045
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1046
	workspace = alloc_workspace(type, level);
1047 1048
	memalloc_nofs_restore(nofs_flag);

1049
	if (IS_ERR(workspace)) {
1050
		atomic_dec(total_ws);
1051
		wake_up(ws_wait);
1052 1053 1054 1055 1056 1057

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1058 1059 1060 1061
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1062
		 */
1063 1064 1065 1066 1067 1068
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1069
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1070 1071
			}
		}
1072
		goto again;
1073 1074 1075 1076
	}
	return workspace;
}

1077
static struct list_head *get_workspace(int type, int level)
1078
{
1079
	switch (type) {
1080
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1081
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1082
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1083 1084 1085 1086 1087 1088 1089 1090
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1091 1092
}

1093 1094 1095 1096
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1097
void btrfs_put_workspace(int type, struct list_head *ws)
1098
{
1099
	struct workspace_manager *wsm;
1100 1101 1102 1103 1104 1105
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1106
	wsm = btrfs_compress_op[type]->workspace_manager;
1107 1108 1109 1110 1111
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1112 1113

	spin_lock(ws_lock);
1114
	if (*free_ws <= num_online_cpus()) {
1115
		list_add(ws, idle_ws);
1116
		(*free_ws)++;
1117
		spin_unlock(ws_lock);
1118 1119
		goto wake;
	}
1120
	spin_unlock(ws_lock);
1121

1122
	free_workspace(type, ws);
1123
	atomic_dec(total_ws);
1124
wake:
1125
	cond_wake_up(ws_wait);
1126 1127
}

1128 1129
static void put_workspace(int type, struct list_head *ws)
{
1130
	switch (type) {
1131 1132 1133
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1134 1135 1136 1137 1138 1139 1140 1141
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1142 1143
}

1144
/*
1145 1146
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1147
 *
1148 1149 1150 1151 1152
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1153 1154
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1155
 *
1156 1157
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1158 1159 1160
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1161 1162
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1163
 *
1164
 * @max_out tells us the max number of bytes that we're allowed to
1165 1166
 * stuff into pages
 */
1167
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1168
			 u64 start, struct page **pages,
1169 1170
			 unsigned long *out_pages,
			 unsigned long *total_in,
1171
			 unsigned long *total_out)
1172
{
1173
	int type = btrfs_compress_type(type_level);
1174
	int level = btrfs_compress_level(type_level);
1175 1176 1177
	struct list_head *workspace;
	int ret;

1178
	level = btrfs_compress_set_level(type, level);
1179
	workspace = get_workspace(type, level);
1180 1181
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1182
	put_workspace(type, workspace);
1183 1184 1185 1186 1187 1188 1189 1190
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1191
 * orig_bio contains the pages from the file that we want to decompress into
1192 1193 1194 1195 1196 1197 1198 1199
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1200
static int btrfs_decompress_bio(struct compressed_bio *cb)
1201 1202 1203
{
	struct list_head *workspace;
	int ret;
1204
	int type = cb->compress_type;
1205

1206
	workspace = get_workspace(type, 0);
1207
	ret = compression_decompress_bio(type, workspace, cb);
1208
	put_workspace(type, workspace);
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1224
	workspace = get_workspace(type, 0);
1225 1226
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1227
	put_workspace(type, workspace);
1228

1229 1230 1231
	return ret;
}

1232 1233
void __init btrfs_init_compress(void)
{
1234 1235 1236 1237
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1238 1239
}

1240
void __cold btrfs_exit_compress(void)
1241
{
1242 1243 1244 1245
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1246
}
1247 1248 1249 1250 1251 1252 1253 1254

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1255
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1256
			      unsigned long total_out, u64 disk_start,
1257
			      struct bio *bio)
1258 1259 1260 1261
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1262
	unsigned long prev_start_byte;
1263 1264 1265
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1266
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1267 1268 1269 1270 1271

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1272
	start_byte = page_offset(bvec.bv_page) - disk_start;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1292 1293
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1294
		bytes = min(bytes, working_bytes);
1295 1296 1297

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1298
		kunmap_atomic(kaddr);
1299
		flush_dcache_page(bvec.bv_page);
1300 1301 1302 1303 1304 1305

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1306 1307 1308 1309
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1310
		prev_start_byte = start_byte;
1311
		start_byte = page_offset(bvec.bv_page) - disk_start;
1312

1313
		/*
1314 1315 1316 1317
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1318
		 */
1319 1320 1321 1322 1323 1324 1325
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1338 1339 1340 1341 1342
		}
	}

	return 1;
}
1343

1344 1345 1346
/*
 * Shannon Entropy calculation
 *
1347
 * Pure byte distribution analysis fails to determine compressibility of data.
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1411
 * Use 16 u32 counters for calculating new position in buf array
1412 1413 1414 1415 1416 1417
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1418
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1419
		       int num)
1420
{
1421 1422 1423 1424 1425 1426 1427 1428
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1429

1430 1431 1432 1433
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1434
	max_num = array[0].count;
1435
	for (i = 1; i < num; i++) {
1436
		buf_num = array[i].count;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1449
			buf_num = array[i].count;
1450 1451 1452 1453 1454 1455 1456 1457
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1458
			buf_num = array[i].count;
1459 1460 1461
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1462
			array_buf[new_addr] = array[i];
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1476
			buf_num = array_buf[i].count;
1477 1478 1479 1480 1481 1482 1483 1484
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1485
			buf_num = array_buf[i].count;
1486 1487 1488
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1489
			array[new_addr] = array_buf[i];
1490 1491 1492 1493
		}

		shift += RADIX_BASE;
	}
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1523
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1579 1580 1581 1582 1583 1584 1585 1586
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1656
	struct list_head *ws_list = get_workspace(0, 0);
1657
	struct heuristic_ws *ws;
1658 1659
	u32 i;
	u8 byte;
1660
	int ret = 0;
1661

1662 1663
	ws = list_entry(ws_list, struct heuristic_ws, list);

1664 1665
	heuristic_collect_sample(inode, start, end, ws);

1666 1667 1668 1669 1670
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1671 1672 1673 1674 1675
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1676 1677
	}

1678 1679 1680 1681 1682 1683
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1724
out:
1725
	put_workspace(0, ws_list);
1726 1727
	return ret;
}
1728

1729 1730 1731 1732 1733
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1734
{
1735 1736 1737 1738
	unsigned int level = 0;
	int ret;

	if (!type)
1739 1740
		return 0;

1741 1742 1743 1744 1745 1746
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	level = btrfs_compress_set_level(type, level);

	return level;
}

/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);
1764

1765
	return level;
1766
}