ste_dma40.c 96.3 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17
#include <linux/log2.h>
18 19
#include <linux/pm.h>
#include <linux/pm_runtime.h>
20
#include <linux/err.h>
21
#include <linux/of.h>
22
#include <linux/of_dma.h>
23
#include <linux/amba/bus.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/platform_data/dma-ste-dma40.h>
26

27
#include "dmaengine.h"
28 29 30 31 32 33 34 35 36 37 38 39 40
#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

41 42 43
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

44 45
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
46 47 48 49 50

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

51 52 53
/* Max number of logical channels per physical channel */
#define D40_MAX_LOG_CHAN_PER_PHY 32

54 55 56 57
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
58 59
#define D40_ALLOC_FREE		BIT(31)
#define D40_ALLOC_PHY		BIT(30)
60 61
#define D40_ALLOC_LOG_FREE	0

62 63
#define D40_MEMCPY_MAX_CHANS	8

64
/* Reserved event lines for memcpy only. */
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define DB8500_DMA_MEMCPY_EV_0	51
#define DB8500_DMA_MEMCPY_EV_1	56
#define DB8500_DMA_MEMCPY_EV_2	57
#define DB8500_DMA_MEMCPY_EV_3	58
#define DB8500_DMA_MEMCPY_EV_4	59
#define DB8500_DMA_MEMCPY_EV_5	60

static int dma40_memcpy_channels[] = {
	DB8500_DMA_MEMCPY_EV_0,
	DB8500_DMA_MEMCPY_EV_1,
	DB8500_DMA_MEMCPY_EV_2,
	DB8500_DMA_MEMCPY_EV_3,
	DB8500_DMA_MEMCPY_EV_4,
	DB8500_DMA_MEMCPY_EV_5,
};
80

81
/* Default configuration for physcial memcpy */
82
static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83
	.mode = STEDMA40_MODE_PHYSICAL,
84
	.dir = DMA_MEM_TO_MEM,
85

86
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 88 89
	.src_info.psize = STEDMA40_PSIZE_PHY_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

90
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 92 93 94 95
	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

/* Default configuration for logical memcpy */
96
static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97
	.mode = STEDMA40_MODE_LOGICAL,
98
	.dir = DMA_MEM_TO_MEM,
99

100
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 102 103
	.src_info.psize = STEDMA40_PSIZE_LOG_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

104
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 106 107 108
	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * enum d40_events - The different Event Enables for the event lines.
 *
 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 * @D40_ROUND_EVENTLINE: Status check for event line.
 */

enum d40_events {
	D40_DEACTIVATE_EVENTLINE	= 0,
	D40_ACTIVATE_EVENTLINE		= 1,
	D40_SUSPEND_REQ_EVENTLINE	= 2,
	D40_ROUND_EVENTLINE		= 3
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * since 9540 and 8540 has the same HW revision
 * use v4a for 9540 or ealier
 * use v4b for 8540 or later
 * HW revision:
 * DB8500ed has revision 0
 * DB8500v1 has revision 2
 * DB8500v2 has revision 3
 * AP9540v1 has revision 4
 * DB8540v1 has revision 4
 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 */
static u32 d40_backup_regs_v4a[] = {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)

static u32 d40_backup_regs_v4b[] = {
	D40_DREG_CPSEG1,
	D40_DREG_CPSEG2,
	D40_DREG_CPSEG3,
	D40_DREG_CPSEG4,
	D40_DREG_CPSEG5,
	D40_DREG_CPCEG1,
	D40_DREG_CPCEG2,
	D40_DREG_CPCEG3,
	D40_DREG_CPCEG4,
	D40_DREG_CPCEG5,
	D40_DREG_CRSEG1,
	D40_DREG_CRSEG2,
	D40_DREG_CRSEG3,
	D40_DREG_CRSEG4,
	D40_DREG_CRSEG5,
	D40_DREG_CRCEG1,
	D40_DREG_CRCEG2,
	D40_DREG_CRCEG3,
	D40_DREG_CRCEG4,
	D40_DREG_CRCEG5,
};

#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 214 215 216 217 218 219 220 221 222 223 224

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

225 226 227
#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};


static struct d40_interrupt_lookup il_v4a[] = {
	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
};

static struct d40_interrupt_lookup il_v4b[] = {
	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
};

324 325 326 327 328 329
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
330
 * @dma_addr: DMA address, if mapped
331 332 333 334 335 336
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
337
	int	 size;
338
	dma_addr_t	dma_addr;
339
	/* Space for dst and src, plus an extra for padding */
340
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 342 343 344 345 346 347 348 349 350
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
351
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
352
 * @lli_current: Number of transferred llis.
353
 * @lcla_alloc: Number of LCLA entries allocated.
354 355 356 357
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
358
 * @cyclic: true if this is a cyclic job
359 360 361 362 363 364 365 366 367 368
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
369
	int				 lli_len;
370 371
	int				 lli_current;
	int				 lcla_alloc;
372 373 374 375 376

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
377
	bool				 cyclic;
378 379 380 381 382
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
383 384 385 386 387
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
388
 * @lock: Lock to protect the content in this struct.
389
 * @alloc_map: big map over which LCLA entry is own by which job.
390 391 392
 */
struct d40_lcla_pool {
	void		*base;
393
	dma_addr_t	dma_addr;
394 395
	void		*base_unaligned;
	int		 pages;
396
	spinlock_t	 lock;
397
	struct d40_desc	**alloc_map;
398 399 400 401 402 403 404
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
405
 * @reserved: True if used by secure world or otherwise.
406 407 408 409 410
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411
 * event line number.
412
 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 414 415
 */
struct d40_phy_res {
	spinlock_t lock;
416
	bool	   reserved;
417 418 419
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
420
	bool	   use_soft_lli;
421 422 423 424 425 426 427 428 429 430 431 432
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
433 434
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
435 436 437 438
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
439
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440
 * @active: Active descriptor.
441
 * @done: Completed jobs
442
 * @queue: Queued jobs.
443
 * @prepare_queue: Prepared jobs.
444
 * @dma_cfg: The client configuration of this dma channel.
445
 * @configured: whether the dma_cfg configuration is valid
446 447 448 449 450
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
451 452
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
453 454 455 456 457 458 459 460 461 462 463 464
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
465
	struct list_head		 pending_queue;
466
	struct list_head		 active;
467
	struct list_head		 done;
468
	struct list_head		 queue;
469
	struct list_head		 prepare_queue;
470
	struct stedma40_chan_cfg	 dma_cfg;
471
	bool				 configured;
472 473 474 475 476 477
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
478 479
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
480
	enum dma_transfer_direction	runtime_direction;
481 482
};

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 * controller
 *
 * @backup: the pointer to the registers address array for backup
 * @backup_size: the size of the registers address array for backup
 * @realtime_en: the realtime enable register
 * @realtime_clear: the realtime clear register
 * @high_prio_en: the high priority enable register
 * @high_prio_clear: the high priority clear register
 * @interrupt_en: the interrupt enable register
 * @interrupt_clear: the interrupt clear register
 * @il: the pointer to struct d40_interrupt_lookup
 * @il_size: the size of d40_interrupt_lookup array
 * @init_reg: the pointer to the struct d40_reg_val
 * @init_reg_size: the size of d40_reg_val array
 */
struct d40_gen_dmac {
	u32				*backup;
	u32				 backup_size;
	u32				 realtime_en;
	u32				 realtime_clear;
	u32				 high_prio_en;
	u32				 high_prio_clear;
	u32				 interrupt_en;
	u32				 interrupt_clear;
	struct d40_interrupt_lookup	*il;
	u32				 il_size;
	struct d40_reg_val		*init_reg;
	u32				 init_reg_size;
};

515 516 517 518 519 520 521 522
/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
523
 * @rev: silicon revision detected.
524 525 526 527
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
528 529
 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 * transfers).
530 531 532 533 534 535 536 537
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538
 * @phy_chans: Room for all possible physical channels in system.
539 540 541 542 543 544 545
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
546
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 548 549 550 551
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
552
 * @desc_slab: cache for descriptors.
553 554
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
555 556
 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 * later
557 558
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 560
 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 * DMA controller
561 562 563 564 565 566
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
567
	u8				  rev:4;
568 569 570 571
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
572
	int				  num_memcpy_chans;
573 574
	int				  num_phy_chans;
	int				  num_log_chans;
575
	struct device_dma_parameters	  dma_parms;
576 577 578 579 580 581 582 583
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
584
	struct regulator		 *lcpa_regulator;
585 586 587 588 589 590
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
591
	struct kmem_cache		 *desc_slab;
592
	u32				  reg_val_backup[BACKUP_REGS_SZ];
593
	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594 595
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
596
	struct d40_gen_dmac		  gen_dmac;
597 598
};

599 600 601 602 603
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

604 605 606 607 608 609 610 611 612 613
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

614 615 616 617 618 619
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

620 621 622 623 624 625
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

626
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627
			      int lli_len)
628
{
629
	bool is_log = chan_is_logical(d40c);
630 631 632 633 634 635 636 637 638 639 640 641 642
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
643
		d40d->lli_pool.size = lli_len * 2 * align;
644 645 646 647 648 649 650 651 652

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
653
		d40d->lli_log.src = PTR_ALIGN(base, align);
654
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655 656

		d40d->lli_pool.dma_addr = 0;
657
	} else {
R
Rabin Vincent 已提交
658
		d40d->lli_phy.src = PTR_ALIGN(base, align);
659
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660 661 662 663 664 665 666 667 668 669 670 671 672

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
673 674 675 676 677
	}

	return 0;
}

678
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679
{
680 681 682 683
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

684 685 686 687 688 689 690 691 692
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707 708 709 710
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (!d40c->base->lcla_pool.alloc_map[idx]) {
			d40c->base->lcla_pool.alloc_map[idx] = d40d;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

729
	if (chan_is_physical(d40c))
730 731 732 733 734
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735 736 737 738
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
			d40c->base->lcla_pool.alloc_map[idx] = NULL;
739 740 741 742 743 744 745 746 747 748 749 750 751 752
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

753 754 755 756 757 758 759
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
760
	struct d40_desc *desc = NULL;
761 762

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
763 764 765
		struct d40_desc *d;
		struct d40_desc *_d;

766
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
767 768
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
769 770
				desc = d;
				memset(desc, 0, sizeof(*desc));
771
				break;
772
			}
773
		}
774
	}
R
Rabin Vincent 已提交
775 776 777 778 779 780 781 782

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
783 784 785 786
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
787

788
	d40_pool_lli_free(d40c, d40d);
789
	d40_lcla_free_all(d40c, d40d);
790
	kmem_cache_free(d40c->base->desc_slab, d40d);
791 792 793 794 795 796 797
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

815 816 817 818 819
static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->done);
}

820
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821
{
822 823 824 825
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
826
	bool cyclic = desc->cyclic;
827
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
828
	int first_lcla = 0;
829
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
830
	bool linkback;
831

R
Rabin Vincent 已提交
832 833 834 835 836 837 838 839 840 841 842
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
843 844 845 846 847 848 849
		/*
		 * If the channel is expected to use only soft_lli don't
		 * allocate a lcla. This is to avoid a HW issue that exists
		 * in some controller during a peripheral to memory transfer
		 * that uses linked lists.
		 */
		if (!(chan->phy_chan->use_soft_lli &&
850
			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851 852
			curr_lcla = d40_lcla_alloc_one(chan, desc);

R
Rabin Vincent 已提交
853 854 855 856 857 858 859 860 861 862 863
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
864

R
Rabin Vincent 已提交
865 866
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
867

R
Rabin Vincent 已提交
868 869 870 871 872 873 874
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
875 876

	if (curr_lcla < 0)
877
		goto set_current;
878

879 880 881 882
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
883
		unsigned int flags = 0;
884 885 886 887 888
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
889 890 891 892
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
893

R
Rabin Vincent 已提交
894 895 896 897 898 899 900 901 902 903 904 905
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
906 907 908
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
909
				       next_lcla, flags);
910

911 912 913 914 915 916 917 918 919 920
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
921 922
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
923
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924 925 926 927
			lli_current++;
			break;
		}
	}
928
 set_current:
929 930
	desc->lli_current = lli_current;
}
931

932 933
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
934
	if (chan_is_physical(d40c)) {
935
		d40_phy_lli_load(d40c, d40d);
936
		d40d->lli_current = d40d->lli_len;
937 938
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
939 940
}

941 942
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
943
	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
944 945
}

946
/* remove desc from current queue and add it to the pending_queue */
947 948
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
949 950
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
951 952 953 954 955
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
956 957
	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
					node);
958 959 960 961
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
962
	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
963 964
}

965 966
static struct d40_desc *d40_first_done(struct d40_chan *d40c)
{
967
	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
968 969
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
985 986 987
 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 *
 * Calculate the total number of dma elements required to send the entire sg list.
988 989 990 991 992 993
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
994
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
995 996

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
997
		seg_max -= max_w;
998

999
	if (!IS_ALIGNED(size, max_w))
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
1029

1030 1031
static int __d40_execute_command_phy(struct d40_chan *d40c,
				     enum d40_command command)
1032
{
1033 1034
	u32 status;
	int i;
1035 1036 1037
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
1038
	u32 wmask;
1039

1040 1041 1042 1043 1044 1045
	if (command == D40_DMA_STOP) {
		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
		if (ret)
			return ret;
	}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1059
			goto unlock;
1060 1061
	}

1062 1063 1064
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
1086 1087 1088
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
1089 1090 1091 1092 1093 1094
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
1095
 unlock:
1096 1097 1098 1099 1100 1101 1102
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
1103
	struct d40_desc *_d;
1104

1105 1106 1107 1108 1109 1110
	/* Release completed descriptors */
	while ((d40d = d40_first_done(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1123 1124 1125 1126 1127
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
1128

1129 1130 1131 1132 1133 1134 1135
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

1136 1137 1138 1139 1140 1141 1142
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
1143

1144 1145 1146
	d40c->pending_tx = 0;
}

1147 1148 1149
static void __d40_config_set_event(struct d40_chan *d40c,
				   enum d40_events event_type, u32 event,
				   int reg)
1150
{
1151
	void __iomem *addr = chan_base(d40c) + reg;
1152
	int tries;
1153 1154 1155 1156 1157
	u32 status;

	switch (event_type) {

	case D40_DEACTIVATE_EVENTLINE:
1158 1159 1160

		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
1161 1162 1163 1164 1165 1166 1167 1168 1169
		break;

	case D40_SUSPEND_REQ_EVENTLINE:
		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
			  D40_EVENTLINE_POS(event);

		if (status == D40_DEACTIVATE_EVENTLINE ||
		    status == D40_SUSPEND_REQ_EVENTLINE)
			break;
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {

			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
				  D40_EVENTLINE_POS(event);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DEACTIVATE_EVENTLINE)
				break;
		}

		if (tries == D40_SUSPEND_MAX_IT) {
			chan_err(d40c,
				"unable to stop the event_line chl %d (log: %d)"
				"status %x\n", d40c->phy_chan->num,
				 d40c->log_num, status);
		}
		break;

	case D40_ACTIVATE_EVENTLINE:
1199 1200 1201 1202 1203
	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
1204 1205 1206 1207 1208
		tries = 100;
		while (--tries) {
			writel((D40_ACTIVATE_EVENTLINE <<
				D40_EVENTLINE_POS(event)) |
				~D40_EVENTLINE_MASK(event), addr);
1209

1210 1211 1212
			if (readl(addr) & D40_EVENTLINE_MASK(event))
				break;
		}
1213

1214 1215 1216 1217 1218
		if (tries != 99)
			dev_dbg(chan2dev(d40c),
				"[%s] workaround enable S%cLNK (%d tries)\n",
				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
				100 - tries);
1219

1220 1221
		WARN_ON(!tries);
		break;
1222

1223 1224 1225
	case D40_ROUND_EVENTLINE:
		BUG();
		break;
1226

1227 1228
	}
}
1229

1230 1231 1232
static void d40_config_set_event(struct d40_chan *d40c,
				 enum d40_events event_type)
{
1233 1234
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);

1235
	/* Enable event line connected to device (or memcpy) */
1236 1237
	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1238
		__d40_config_set_event(d40c, event_type, event,
1239
				       D40_CHAN_REG_SSLNK);
1240

1241
	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1242
		__d40_config_set_event(d40c, event_type, event,
1243
				       D40_CHAN_REG_SDLNK);
1244 1245
}

1246
static u32 d40_chan_has_events(struct d40_chan *d40c)
1247
{
1248
	void __iomem *chanbase = chan_base(d40c);
1249
	u32 val;
1250

1251 1252
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1253

1254
	return val;
1255 1256
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
	unsigned long flags;
	int ret = 0;
	u32 active_status;
	void __iomem *active_reg;

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;


	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	switch (command) {
	case D40_DMA_STOP:
	case D40_DMA_SUSPEND_REQ:

		active_status = (readl(active_reg) &
				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				 D40_CHAN_POS(d40c->phy_chan->num);

		if (active_status == D40_DMA_RUN)
			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
		else
			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);

		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
			ret = __d40_execute_command_phy(d40c, command);

		break;

	case D40_DMA_RUN:

		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
		ret = __d40_execute_command_phy(d40c, command);
		break;

	case D40_DMA_SUSPENDED:
		BUG();
		break;
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
	return ret;
}

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
	if (chan_is_logical(d40c))
		return __d40_execute_command_log(d40c, command);
	else
		return __d40_execute_command_phy(d40c, command);
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1334
	if (chan_is_physical(d40c))
1335 1336 1337 1338 1339
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1340
static void d40_config_write(struct d40_chan *d40c)
1341 1342 1343 1344 1345 1346 1347
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1348
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1349 1350 1351 1352
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1353
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1354 1355 1356

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1357
	if (chan_is_logical(d40c)) {
1358 1359 1360 1361
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1362
		/* Set default config for CFG reg */
1363 1364
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1365

1366
		/* Set LIDX for lcla */
1367 1368
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1369 1370 1371 1372

		/* Clear LNK which will be used by d40_chan_has_events() */
		writel(0, chanbase + D40_CHAN_REG_SSLNK);
		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1373 1374 1375
	}
}

1376 1377 1378 1379
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1380
	if (chan_is_logical(d40c))
1381 1382
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1383 1384 1385 1386 1387 1388
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1389
	return num_elt * d40c->dma_cfg.dst_info.data_width;
1390 1391 1392 1393 1394 1395
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1396
	if (chan_is_logical(d40c))
1397 1398
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1399 1400 1401
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1402 1403 1404
	return is_link;
}

1405
static int d40_pause(struct dma_chan *chan)
1406
{
1407
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1408 1409 1410
	int res = 0;
	unsigned long flags;

1411 1412 1413 1414 1415
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

1416 1417 1418
	if (!d40c->busy)
		return 0;

1419
	spin_lock_irqsave(&d40c->lock, flags);
1420
	pm_runtime_get_sync(d40c->base->dev);
1421 1422

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1423

1424 1425
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1426 1427 1428 1429
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1430
static int d40_resume(struct dma_chan *chan)
1431
{
1432
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1433 1434 1435
	int res = 0;
	unsigned long flags;

1436 1437 1438 1439 1440
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

1441 1442 1443
	if (!d40c->busy)
		return 0;

1444
	spin_lock_irqsave(&d40c->lock, flags);
1445
	pm_runtime_get_sync(d40c->base->dev);
1446 1447

	/* If bytes left to transfer or linked tx resume job */
1448
	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1449 1450
		res = d40_channel_execute_command(d40c, D40_DMA_RUN);

1451 1452
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1453 1454 1455 1456
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1457 1458 1459 1460 1461 1462 1463
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;
1464
	dma_cookie_t cookie;
1465 1466

	spin_lock_irqsave(&d40c->lock, flags);
1467
	cookie = dma_cookie_assign(tx);
1468 1469 1470
	d40_desc_queue(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);

1471
	return cookie;
1472 1473 1474 1475
}

static int d40_start(struct d40_chan *d40c)
{
1476
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1488
		if (!d40c->busy) {
1489
			d40c->busy = true;
1490 1491
			pm_runtime_get_sync(d40c->base->dev);
		}
1492 1493 1494 1495 1496 1497 1498

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1499 1500
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1501

1502 1503
		/* Start dma job */
		err = d40_start(d40c);
1504

1505 1506
		if (err)
			return NULL;
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1536

R
Rabin Vincent 已提交
1537 1538 1539 1540 1541
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1542

R
Rabin Vincent 已提交
1543 1544 1545 1546 1547 1548 1549
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

1550
		if (d40_queue_start(d40c) == NULL) {
R
Rabin Vincent 已提交
1551
			d40c->busy = false;
1552 1553 1554 1555

			pm_runtime_mark_last_busy(d40c->base->dev);
			pm_runtime_put_autosuspend(d40c->base->dev);
		}
1556

1557 1558 1559
		d40_desc_remove(d40d);
		d40_desc_done(d40c, d40d);
	}
1560

1561 1562 1563 1564 1565 1566 1567 1568
	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1569
	struct d40_desc *d40d;
1570
	unsigned long flags;
1571
	bool callback_active;
1572
	struct dmaengine_desc_callback cb;
1573 1574 1575

	spin_lock_irqsave(&d40c->lock, flags);

1576 1577 1578 1579 1580 1581
	/* Get first entry from the done list */
	d40d = d40_first_done(d40c);
	if (d40d == NULL) {
		/* Check if we have reached here for cyclic job */
		d40d = d40_first_active_get(d40c);
		if (d40d == NULL || !d40d->cyclic)
1582
			goto check_pending_tx;
1583
	}
1584

R
Rabin Vincent 已提交
1585
	if (!d40d->cyclic)
1586
		dma_cookie_complete(&d40d->txd);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1598
	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1599
	dmaengine_desc_get_callback(&d40d->txd, &cb);
1600

R
Rabin Vincent 已提交
1601 1602
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1603
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1604
			d40_desc_free(d40c, d40d);
1605 1606 1607 1608 1609
		} else if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
			d40_lcla_free_all(d40c, d40d);
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1620 1621
	if (callback_active)
		dmaengine_desc_callback_invoke(&cb, NULL);
1622 1623

	return;
1624
 check_pending_tx:
1625
	/* Rescue manouver if receiving double interrupts */
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	int i;
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;
1640 1641 1642
	u32 regs[base->gen_dmac.il_size];
	struct d40_interrupt_lookup *il = base->gen_dmac.il;
	u32 il_size = base->gen_dmac.il_size;
1643 1644 1645 1646

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
1647
	for (i = 0; i < il_size; i++)
1648 1649 1650 1651 1652
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
1653
				     BITS_PER_LONG * il_size, chan + 1);
1654 1655

		/* No more set bits found? */
1656
		if (chan == BITS_PER_LONG * il_size)
1657 1658 1659 1660 1661 1662 1663 1664 1665
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

		if (!d40c) {
			/*
			 * No error because this can happen if something else
			 * in the system is using the channel.
			 */
			continue;
		}

		/* ACK interrupt */
1676
		writel(BIT(idx), base->virtbase + il[row].clr);
1677

1678 1679 1680 1681 1682
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1683 1684
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
1698
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1699

1700
	if (!conf->dir) {
1701
		chan_err(d40c, "Invalid direction.\n");
1702 1703 1704
		res = -EINVAL;
	}

1705 1706 1707 1708
	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
	    (conf->dev_type < 0)) {
		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1709 1710 1711
		res = -EINVAL;
	}

1712
	if (conf->dir == DMA_DEV_TO_DEV) {
1713 1714 1715 1716
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1717
		chan_err(d40c, "periph to periph not supported\n");
1718 1719 1720
		res = -EINVAL;
	}

1721
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1722
	    conf->src_info.data_width !=
1723
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1724
	    conf->dst_info.data_width) {
1725 1726 1727 1728 1729
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1730
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1731 1732 1733
		res = -EINVAL;
	}

1734 1735 1736
	return res;
}

1737 1738 1739
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
			       bool is_src, int log_event_line, bool is_log,
			       bool *first_user)
1740 1741 1742
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1743 1744 1745 1746

	*first_user = ((phy->allocated_src | phy->allocated_dst)
			== D40_ALLOC_FREE);

1747
	if (!is_log) {
1748 1749 1750 1751 1752
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
1753
			goto found_unlock;
1754
		} else
1755
			goto not_found_unlock;
1756 1757 1758 1759 1760
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
1761
			goto not_found_unlock;
1762 1763 1764 1765

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

1766 1767
		if (!(phy->allocated_src & BIT(log_event_line))) {
			phy->allocated_src |= BIT(log_event_line);
1768
			goto found_unlock;
1769
		} else
1770
			goto not_found_unlock;
1771 1772
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
1773
			goto not_found_unlock;
1774 1775 1776 1777

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

1778 1779
		if (!(phy->allocated_dst & BIT(log_event_line))) {
			phy->allocated_dst |= BIT(log_event_line);
1780 1781
			goto found_unlock;
		}
1782
	}
1783
 not_found_unlock:
1784 1785
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
1786
 found_unlock:
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
1802
		goto unlock;
1803 1804 1805 1806
	}

	/* Logical channel */
	if (is_src) {
1807
		phy->allocated_src &= ~BIT(log_event_line);
1808 1809 1810
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
1811
		phy->allocated_dst &= ~BIT(log_event_line);
1812 1813 1814 1815 1816 1817
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);
1818
 unlock:
1819 1820 1821 1822 1823
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

1824
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1825
{
1826
	int dev_type = d40c->dma_cfg.dev_type;
1827 1828 1829 1830 1831 1832
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
1833
	int num_phy_chans;
1834
	bool is_src;
1835
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1836 1837

	phys = d40c->base->phy_res;
1838
	num_phy_chans = d40c->base->num_phy_chans;
1839

1840
	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1841 1842
		log_num = 2 * dev_type;
		is_src = true;
1843 1844
	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		/* dst event lines are used for logical memcpy */
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
1855
		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1856
			/* Find physical half channel */
1857 1858
			if (d40c->dma_cfg.use_fixed_channel) {
				i = d40c->dma_cfg.phy_channel;
1859
				if (d40_alloc_mask_set(&phys[i], is_src,
1860 1861
						       0, is_log,
						       first_phy_user))
1862
					goto found_phy;
1863 1864 1865 1866 1867 1868 1869
			} else {
				for (i = 0; i < num_phy_chans; i++) {
					if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log,
						       first_phy_user))
						goto found_phy;
				}
1870 1871 1872 1873 1874
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1875 1876 1877
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
1878 1879
							       is_log,
							       first_phy_user))
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

		if (d40c->dma_cfg.use_fixed_channel) {
			i = d40c->dma_cfg.phy_channel;

			if ((i != phy_num) && (i != phy_num + 1)) {
				dev_err(chan2dev(d40c),
					"invalid fixed phy channel %d\n", i);
				return -EINVAL;
			}

			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
					       is_log, first_phy_user))
				goto found_log;

			dev_err(chan2dev(d40c),
				"could not allocate fixed phy channel %d\n", i);
			return -EINVAL;
		}

1914 1915 1916 1917 1918 1919 1920 1921
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1922 1923
						       event_line, is_log,
						       first_phy_user))
1924 1925 1926 1927 1928
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1929 1930
						       event_line, is_log,
						       first_phy_user))
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1956
		d40c->dma_cfg = dma40_memcpy_conf_log;
1957
		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1958

1959 1960 1961
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

1962 1963
	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
1964
		d40c->dma_cfg = dma40_memcpy_conf_phy;
1965 1966 1967 1968 1969 1970 1971 1972

		/* Generate interrrupt at end of transfer or relink. */
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);

		/* Generate interrupt on error. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);

1973
	} else {
1974
		chan_err(d40c, "No memcpy\n");
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
		return -EINVAL;
	}

	return 0;
}

static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1985
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1986 1987 1988 1989 1990 1991 1992
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
1993
		chan_err(d40c, "phy == null\n");
1994 1995 1996 1997 1998
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
1999
		chan_err(d40c, "channel already free\n");
2000 2001 2002
		return -EINVAL;
	}

2003 2004
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2005
		is_src = false;
2006
	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2007
		is_src = true;
2008
	else {
2009
		chan_err(d40c, "Unknown direction\n");
2010 2011 2012
		return -EINVAL;
	}

2013
	pm_runtime_get_sync(d40c->base->dev);
2014
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2015
	if (res) {
2016
		chan_err(d40c, "stop failed\n");
2017
		goto mark_last_busy;
2018 2019
	}

2020
	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2021

2022
	if (chan_is_logical(d40c))
2023
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2024 2025
	else
		d40c->base->lookup_phy_chans[phy->num] = NULL;
2026 2027 2028 2029 2030 2031 2032

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
2033
	d40c->phy_chan = NULL;
2034
	d40c->configured = false;
2035
 mark_last_busy:
2036 2037 2038
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
2039 2040
}

2041 2042
static bool d40_is_paused(struct d40_chan *d40c)
{
2043
	void __iomem *chanbase = chan_base(d40c);
2044 2045 2046 2047
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
2048
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2049 2050 2051

	spin_lock_irqsave(&d40c->lock, flags);

2052
	if (chan_is_physical(d40c)) {
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;
2063
		goto unlock;
2064 2065
	}

2066 2067
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2068
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2069
	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2070
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2071
	} else {
2072
		chan_err(d40c, "Unknown direction\n");
2073
		goto unlock;
2074
	}
2075

2076 2077 2078 2079 2080
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
2081
 unlock:
2082 2083 2084 2085 2086
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

2101 2102 2103
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2104 2105
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2106 2107 2108 2109
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2110
	int ret;
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
2127 2128 2129 2130 2131
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2132 2133
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2134 2135 2136 2137
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
2138
	unsigned long flags = 0;
2139 2140
	int ret;

R
Rabin Vincent 已提交
2141 2142 2143
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

2144 2145 2146 2147
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
2148
				src_info, dst_info, flags);
2149 2150 2151 2152 2153

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
2154
				dst_info, src_info, flags);
2155 2156 2157 2158 2159 2160 2161

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}

2162 2163 2164 2165
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
2166
	struct stedma40_chan_cfg *cfg;
2167
	struct d40_desc *desc;
2168
	int ret;
2169 2170 2171 2172 2173

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

2174
	cfg = &chan->dma_cfg;
2175 2176 2177 2178
	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
2179
		goto free_desc;
2180
	}
2181

2182 2183 2184
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
2185
		goto free_desc;
2186 2187 2188 2189 2190 2191 2192 2193 2194
	}

	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2195
 free_desc:
2196 2197
	d40_desc_free(chan, desc);
	return NULL;
2198 2199
}

2200 2201 2202
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2203
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2204 2205
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2206 2207
	dma_addr_t src_dev_addr;
	dma_addr_t dst_dev_addr;
2208
	struct d40_desc *desc;
2209
	unsigned long flags;
2210
	int ret;
2211

2212 2213 2214
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2215 2216
	}

2217
	spin_lock_irqsave(&chan->lock, flags);
2218

2219 2220
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2221
		goto unlock;
2222

R
Rabin Vincent 已提交
2223 2224 2225
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

2226 2227
	src_dev_addr = 0;
	dst_dev_addr = 0;
2228 2229 2230 2231
	if (direction == DMA_DEV_TO_MEM)
		src_dev_addr = chan->runtime_addr;
	else if (direction == DMA_MEM_TO_DEV)
		dst_dev_addr = chan->runtime_addr;
2232 2233 2234

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2235
				      sg_len, src_dev_addr, dst_dev_addr);
2236 2237
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2238
				      sg_len, src_dev_addr, dst_dev_addr);
2239 2240 2241 2242

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
2243
		goto free_desc;
2244 2245
	}

2246 2247 2248 2249 2250 2251
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2252 2253 2254
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2255 2256 2257
 free_desc:
	d40_desc_free(chan, desc);
 unlock:
2258
	spin_unlock_irqrestore(&chan->lock, flags);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2276 2277 2278
	if (!err)
		d40c->configured = true;

2279 2280 2281 2282
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2283 2284 2285 2286
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
2287
	u32 rtreg;
2288 2289
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
2290
	u32 bit = BIT(event);
2291
	u32 prioreg;
2292
	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2293

2294
	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	/*
	 * Due to a hardware bug, in some cases a logical channel triggered by
	 * a high priority destination event line can generate extra packet
	 * transactions.
	 *
	 * The workaround is to not set the high priority level for the
	 * destination event lines that trigger logical channels.
	 */
	if (!src && chan_is_logical(d40c))
		highprio = false;

2306
	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

2321 2322
	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2323
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2324

2325 2326
	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2327
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2328 2329
}

2330 2331 2332 2333
#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2334
#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
				  struct of_dma *ofdma)
{
	struct stedma40_chan_cfg cfg;
	dma_cap_mask_t cap;
	u32 flags;

	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));

	dma_cap_zero(cap);
	dma_cap_set(DMA_SLAVE, cap);

	cfg.dev_type = dma_spec->args[0];
	flags = dma_spec->args[2];

	switch (D40_DT_FLAGS_MODE(flags)) {
	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
	}

	switch (D40_DT_FLAGS_DIR(flags)) {
	case 0:
2358
		cfg.dir = DMA_MEM_TO_DEV;
2359 2360 2361
		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	case 1:
2362
		cfg.dir = DMA_DEV_TO_MEM;
2363 2364 2365 2366 2367 2368 2369 2370 2371
		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	}

	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
		cfg.phy_channel = dma_spec->args[1];
		cfg.use_fixed_channel = true;
	}

2372 2373 2374
	if (D40_DT_FLAGS_HIGH_PRIO(flags))
		cfg.high_priority = true;

2375 2376 2377
	return dma_request_channel(cap, stedma40_filter, &cfg);
}

2378 2379 2380 2381 2382 2383 2384
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2385
	bool is_free_phy;
2386 2387
	spin_lock_irqsave(&d40c->lock, flags);

2388
	dma_cookie_init(chan);
2389

2390 2391
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2392
		err = d40_config_memcpy(d40c);
2393
		if (err) {
2394
			chan_err(d40c, "Failed to configure memcpy channel\n");
2395
			goto mark_last_busy;
2396
		}
2397 2398
	}

2399
	err = d40_allocate_channel(d40c, &is_free_phy);
2400
	if (err) {
2401
		chan_err(d40c, "Failed to allocate channel\n");
2402
		d40c->configured = false;
2403
		goto mark_last_busy;
2404 2405
	}

2406
	pm_runtime_get_sync(d40c->base->dev);
2407

2408 2409
	d40_set_prio_realtime(d40c);

2410
	if (chan_is_logical(d40c)) {
2411
		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2412
			d40c->lcpa = d40c->base->lcpa_base +
2413
				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2414 2415
		else
			d40c->lcpa = d40c->base->lcpa_base +
2416
				d40c->dma_cfg.dev_type *
2417
				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2418 2419 2420 2421

		/* Unmask the Global Interrupt Mask. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2422 2423
	}

2424 2425 2426 2427 2428 2429
	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
		 chan_is_logical(d40c) ? "logical" : "physical",
		 d40c->phy_chan->num,
		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");


2430 2431 2432 2433 2434
	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2435 2436
	if (is_free_phy)
		d40_config_write(d40c);
2437
 mark_last_busy:
2438 2439
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2440
	spin_unlock_irqrestore(&d40c->lock, flags);
2441
	return err;
2442 2443 2444 2445 2446 2447 2448 2449 2450
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2451
	if (d40c->phy_chan == NULL) {
2452
		chan_err(d40c, "Cannot free unallocated channel\n");
2453 2454 2455
		return;
	}

2456 2457 2458 2459 2460
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2461
		chan_err(d40c, "Failed to free channel\n");
2462 2463 2464 2465 2466 2467 2468
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2469
						       unsigned long dma_flags)
2470
{
2471 2472
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2473

2474 2475
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2476

2477 2478
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2479

2480 2481
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2482

2483 2484
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
			   DMA_MEM_TO_MEM, dma_flags);
2485 2486
}

2487
static struct dma_async_tx_descriptor *
2488 2489 2490 2491
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2492 2493 2494 2495
{
	if (dst_nents != src_nents)
		return NULL;

2496 2497
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents,
			   DMA_MEM_TO_MEM, dma_flags);
2498 2499
}

2500 2501 2502 2503
static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		  unsigned int sg_len, enum dma_transfer_direction direction,
		  unsigned long dma_flags, void *context)
2504
{
2505
	if (!is_slave_direction(direction))
2506 2507
		return NULL;

2508
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2509 2510
}

R
Rabin Vincent 已提交
2511 2512 2513
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2514
		     enum dma_transfer_direction direction, unsigned long flags)
R
Rabin Vincent 已提交
2515 2516 2517 2518 2519 2520
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2521
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2522 2523 2524
	if (!sg)
		return NULL;

R
Rabin Vincent 已提交
2525 2526 2527 2528 2529 2530
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

2531
	sg_chain(sg, periods + 1, sg);
R
Rabin Vincent 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2541 2542 2543 2544 2545
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2546
	enum dma_status ret;
2547

2548
	if (d40c->phy_chan == NULL) {
2549
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2550 2551 2552
		return -EINVAL;
	}

2553
	ret = dma_cookie_status(chan, cookie, txstate);
2554
	if (ret != DMA_COMPLETE && txstate)
2555
		dma_set_residue(txstate, stedma40_residue(chan));
2556

2557 2558
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
2559 2560 2561 2562 2563 2564 2565 2566 2567

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2568
	if (d40c->phy_chan == NULL) {
2569
		chan_err(d40c, "Channel is not allocated!\n");
2570 2571 2572
		return;
	}

2573 2574
	spin_lock_irqsave(&d40c->lock, flags);

2575 2576 2577
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2578 2579 2580 2581 2582 2583
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2584
static int d40_terminate_all(struct dma_chan *chan)
2585 2586 2587 2588 2589
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	int ret;

2590 2591 2592 2593 2594
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	spin_lock_irqsave(&d40c->lock, flags);

	pm_runtime_get_sync(d40c->base->dev);
	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (ret)
		chan_err(d40c, "Failed to stop channel\n");

	d40_term_all(d40c);
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}
	d40c->busy = false;

	spin_unlock_irqrestore(&d40c->lock, flags);
2612
	return 0;
2613 2614
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    u32 maxburst)
{
	int psize;

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2648
/* Runtime reconfiguration extension */
2649 2650
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2651 2652 2653
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2654
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2655
	dma_addr_t config_addr;
2656 2657 2658
	u32 src_maxburst, dst_maxburst;
	int ret;

2659 2660 2661 2662 2663
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

2664 2665 2666 2667
	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2668

2669
	if (config->direction == DMA_DEV_TO_MEM) {
2670
		config_addr = config->src_addr;
2671

2672
		if (cfg->dir != DMA_DEV_TO_MEM)
2673 2674 2675 2676
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
2677
		cfg->dir = DMA_DEV_TO_MEM;
2678

2679 2680 2681 2682 2683
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2684

2685
	} else if (config->direction == DMA_MEM_TO_DEV) {
2686
		config_addr = config->dst_addr;
2687

2688
		if (cfg->dir != DMA_MEM_TO_DEV)
2689 2690 2691 2692
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
2693
		cfg->dir = DMA_MEM_TO_DEV;
2694

2695 2696 2697 2698 2699
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2700 2701 2702 2703
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2704
		return -EINVAL;
2705 2706
	}

2707 2708 2709 2710 2711
	if (config_addr <= 0) {
		dev_err(d40c->base->dev, "no address supplied\n");
		return -EINVAL;
	}

2712
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2713
		dev_err(d40c->base->dev,
2714 2715 2716 2717 2718 2719
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2720 2721
	}

2722 2723 2724 2725 2726 2727 2728 2729
	if (src_maxburst > 16) {
		src_maxburst = 16;
		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
	} else if (dst_maxburst > 16) {
		dst_maxburst = 16;
		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
	}

2730 2731 2732 2733 2734
	/* Only valid widths are; 1, 2, 4 and 8. */
	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2735 2736
	    !is_power_of_2(src_addr_width) ||
	    !is_power_of_2(dst_addr_width))
2737 2738 2739 2740 2741
		return -EINVAL;

	cfg->src_info.data_width = src_addr_width;
	cfg->dst_info.data_width = dst_addr_width;

2742 2743 2744 2745
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_maxburst);
	if (ret)
		return ret;
2746

2747 2748 2749 2750
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_maxburst);
	if (ret)
		return ret;
2751

2752
	/* Fill in register values */
2753
	if (chan_is_logical(d40c))
2754 2755
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
2756
		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2757

2758 2759 2760 2761
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2762 2763
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2764
		dma_chan_name(chan),
2765
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2766 2767 2768 2769
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2770 2771
}

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

2792
		INIT_LIST_HEAD(&d40c->done);
2793 2794
		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2795
		INIT_LIST_HEAD(&d40c->pending_queue);
2796
		INIT_LIST_HEAD(&d40c->client);
2797
		INIT_LIST_HEAD(&d40c->prepare_queue);
2798 2799 2800 2801 2802 2803 2804 2805 2806

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2807 2808
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
2809
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2810
		dev->device_prep_slave_sg = d40_prep_slave_sg;
2811 2812
		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	}
2813 2814 2815

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2816
		dev->directions = BIT(DMA_MEM_TO_MEM);
2817 2818 2819 2820
		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
2821
		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2822 2823 2824 2825 2826
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2827 2828 2829
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2830 2831 2832 2833
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
2834 2835 2836 2837
	dev->device_config = d40_set_runtime_config;
	dev->device_pause = d40_pause;
	dev->device_resume = d40_resume;
	dev->device_terminate_all = d40_terminate_all;
2838
	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2839 2840 2841
	dev->dev = base->dev;
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2852
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2853

2854
	d40_ops_init(base, &base->dma_slave);
2855 2856 2857 2858

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2859
		d40_err(base->dev, "Failed to register slave channels\n");
2860
		goto exit;
2861 2862 2863
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2864
		      base->num_log_chans, base->num_memcpy_chans);
2865 2866 2867

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2868 2869 2870
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2871 2872 2873 2874

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2875
		d40_err(base->dev,
2876
			"Failed to register memcpy only channels\n");
2877
		goto unregister_slave;
2878 2879 2880 2881 2882 2883 2884 2885
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2886
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2887
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2888 2889

	d40_ops_init(base, &base->dma_both);
2890 2891 2892
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2893 2894
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2895
		goto unregister_memcpy;
2896 2897
	}
	return 0;
2898
 unregister_memcpy:
2899
	dma_async_device_unregister(&base->dma_memcpy);
2900
 unregister_slave:
2901
	dma_async_device_unregister(&base->dma_slave);
2902
 exit:
2903 2904 2905
	return err;
}

2906
/* Suspend resume functionality */
2907 2908
#ifdef CONFIG_PM_SLEEP
static int dma40_suspend(struct device *dev)
2909
{
2910 2911
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
2912 2913 2914 2915 2916
	int ret;

	ret = pm_runtime_force_suspend(dev);
	if (ret)
		return ret;
2917

2918 2919 2920
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
2921 2922
}

2923 2924 2925 2926 2927 2928
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

2929
	if (base->lcpa_regulator) {
2930
		ret = regulator_enable(base->lcpa_regulator);
2931 2932 2933
		if (ret)
			return ret;
	}
2934

2935
	return pm_runtime_force_resume(dev);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
}
#endif

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
	if (base->gen_dmac.backup)
		dma40_backup(base->virtbase, base->reg_val_backup_v4,
			     base->gen_dmac.backup,
			base->gen_dmac.backup_size,
			save);
}

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

3009
	d40_save_restore_registers(base, false);
3010 3011 3012 3013 3014

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}
3015
#endif
3016 3017

static const struct dev_pm_ops dma40_pm_ops = {
3018
	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3019
	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3020 3021
				dma40_runtime_resume,
				NULL)
3022 3023
};

3024 3025 3026 3027 3028 3029 3030 3031
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
3032
	int gcc = D40_DREG_GCC_ENA;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3044 3045 3046 3047 3048 3049 3050
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


3051 3052 3053
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3054
			base->phy_res[i].reserved = false;
3055 3056 3057 3058
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
3059 3060 3061

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3062 3063 3064 3065
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3066 3067 3068 3069 3070
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
3071
		num_phy_chans_avail--;
3072 3073
	}

3074 3075 3076 3077 3078 3079 3080
	/* Mark soft_lli channels */
	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
		int chan = base->plat_data->soft_lli_chans[i];

		base->phy_res[chan].use_soft_lli = true;
	}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

3098 3099 3100 3101 3102 3103 3104 3105 3106
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

3107 3108 3109 3110 3111
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3112
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3113 3114 3115 3116 3117
	struct clk *clk;
	void __iomem *virtbase;
	struct resource *res;
	struct d40_base *base;
	int num_log_chans;
3118
	int num_phy_chans;
3119
	int num_memcpy_chans;
3120
	int clk_ret = -EINVAL;
3121
	int i;
3122 3123 3124
	u32 pid;
	u32 cid;
	u8 rev;
3125 3126 3127

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
3128
		d40_err(&pdev->dev, "No matching clock found\n");
3129
		goto check_prepare_enabled;
3130 3131
	}

3132 3133 3134
	clk_ret = clk_prepare_enable(clk);
	if (clk_ret) {
		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3135
		goto disable_unprepare;
3136
	}
3137 3138 3139 3140

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
3141
		goto disable_unprepare;
3142 3143 3144

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
3145
		goto release_region;
3146 3147 3148

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
3149
		goto release_region;
3150

3151 3152 3153 3154 3155 3156 3157
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
3158

3159 3160
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3161
		goto unmap_io;
3162 3163
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3164
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3165 3166
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
3167
		goto unmap_io;
3168
	}
3169 3170 3171 3172 3173 3174
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
3175 3176
	 * AP9540v1 has revision 4
	 * DB8540v1 has revision 4
3177 3178
	 */
	rev = AMBA_REV_BITS(pid);
3179 3180
	if (rev < 2) {
		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3181
		goto unmap_io;
3182
	}
3183

3184
	/* The number of physical channels on this HW */
3185 3186 3187 3188
	if (plat_data->num_of_phy_chans)
		num_phy_chans = plat_data->num_of_phy_chans;
	else
		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3189

3190 3191 3192 3193 3194 3195
	/* The number of channels used for memcpy */
	if (plat_data->num_of_memcpy_chans)
		num_memcpy_chans = plat_data->num_of_memcpy_chans;
	else
		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);

3196 3197
	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;

3198
	dev_info(&pdev->dev,
3199 3200
		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
		 rev, &res->start, num_phy_chans, num_log_chans);
3201 3202

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3203
		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3204 3205
		       sizeof(struct d40_chan), GFP_KERNEL);

3206
	if (base == NULL)
3207
		goto unmap_io;
3208

3209
	base->rev = rev;
3210
	base->clk = clk;
3211
	base->num_memcpy_chans = num_memcpy_chans;
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	if (base->plat_data->num_of_phy_chans == 14) {
		base->gen_dmac.backup = d40_backup_regs_v4b;
		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
		base->gen_dmac.il = il_v4b;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
		base->gen_dmac.init_reg = dma_init_reg_v4b;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
	} else {
		if (base->rev >= 3) {
			base->gen_dmac.backup = d40_backup_regs_v4a;
			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
		}
		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
		base->gen_dmac.il = il_v4a;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
		base->gen_dmac.init_reg = dma_init_reg_v4a;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
	}

3252 3253
	base->phy_res = kcalloc(num_phy_chans,
				sizeof(*base->phy_res),
3254 3255
				GFP_KERNEL);
	if (!base->phy_res)
3256
		goto free_base;
3257

3258 3259
	base->lookup_phy_chans = kcalloc(num_phy_chans,
					 sizeof(*base->lookup_phy_chans),
3260 3261
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
3262
		goto free_phy_res;
3263

3264 3265
	base->lookup_log_chans = kcalloc(num_log_chans,
					 sizeof(*base->lookup_log_chans),
3266 3267
					 GFP_KERNEL);
	if (!base->lookup_log_chans)
3268
		goto free_phy_chans;
3269

3270 3271 3272
	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
						  sizeof(d40_backup_regs_chan),
						  GFP_KERNEL);
3273
	if (!base->reg_val_backup_chan)
3274
		goto free_log_chans;
3275

3276 3277 3278 3279
	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
					    * D40_LCLA_LINK_PER_EVENT_GRP,
					    sizeof(*base->lcla_pool.alloc_map),
					    GFP_KERNEL);
3280
	if (!base->lcla_pool.alloc_map)
3281
		goto free_backup_chan;
3282

3283 3284 3285 3286
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
3287
		goto free_map;
3288

3289
	return base;
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
 free_map:
	kfree(base->lcla_pool.alloc_map);
 free_backup_chan:
	kfree(base->reg_val_backup_chan);
 free_log_chans:
	kfree(base->lookup_log_chans);
 free_phy_chans:
	kfree(base->lookup_phy_chans);
 free_phy_res:
	kfree(base->phy_res);
 free_base:
	kfree(base);
 unmap_io:
	iounmap(virtbase);
 release_region:
	release_mem_region(res->start, resource_size(res));
 check_prepare_enabled:
3307
	if (!clk_ret)
3308
 disable_unprepare:
3309 3310
		clk_disable_unprepare(clk);
	if (!IS_ERR(clk))
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
		clk_put(clk);
	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;
3323 3324
	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
	u32 reg_size = base->gen_dmac.init_reg_size;
3325

3326
	for (i = 0; i < reg_size; i++)
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
3359
	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3360 3361

	/* Write which interrupt to clear */
3362
	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3363

3364 3365 3366
	/* These are __initdata and cannot be accessed after init */
	base->gen_dmac.init_reg = NULL;
	base->gen_dmac.init_reg_size = 0;
3367 3368
}

3369 3370
static int __init d40_lcla_allocate(struct d40_base *base)
{
3371
	struct d40_lcla_pool *pool = &base->lcla_pool;
3372 3373
	unsigned long *page_list;
	int i, j;
3374
	int ret;
3375 3376 3377 3378 3379 3380

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
3381 3382 3383
	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
				  sizeof(*page_list),
				  GFP_KERNEL);
3384 3385
	if (!page_list)
		return -ENOMEM;
3386 3387 3388 3389 3390 3391 3392 3393 3394

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3395 3396
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3397
			ret = -ENOMEM;
3398 3399 3400

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
3401
			goto free_page_list;
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3415 3416 3417 3418
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3419 3420 3421 3422 3423 3424 3425 3426 3427
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
3428
			goto free_page_list;
3429 3430 3431 3432 3433 3434
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3435 3436 3437 3438 3439 3440
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
3441
		goto free_page_list;
3442 3443
	}

3444 3445
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
3446
	ret = 0;
3447
 free_page_list:
3448 3449 3450 3451
	kfree(page_list);
	return ret;
}

3452 3453 3454 3455
static int __init d40_of_probe(struct platform_device *pdev,
			       struct device_node *np)
{
	struct stedma40_platform_data *pdata;
3456
	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3457
	const __be32 *list;
3458

3459
	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3460 3461 3462
	if (!pdata)
		return -ENOMEM;

3463 3464 3465 3466 3467
	/* If absent this value will be obtained from h/w. */
	of_property_read_u32(np, "dma-channels", &num_phy);
	if (num_phy > 0)
		pdata->num_of_phy_chans = num_phy;

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	list = of_get_property(np, "memcpy-channels", &num_memcpy);
	num_memcpy /= sizeof(*list);

	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
		d40_err(&pdev->dev,
			"Invalid number of memcpy channels specified (%d)\n",
			num_memcpy);
		return -EINVAL;
	}
	pdata->num_of_memcpy_chans = num_memcpy;

	of_property_read_u32_array(np, "memcpy-channels",
				   dma40_memcpy_channels,
				   num_memcpy);

3483 3484 3485
	list = of_get_property(np, "disabled-channels", &num_disabled);
	num_disabled /= sizeof(*list);

3486
	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
		d40_err(&pdev->dev,
			"Invalid number of disabled channels specified (%d)\n",
			num_disabled);
		return -EINVAL;
	}

	of_property_read_u32_array(np, "disabled-channels",
				   pdata->disabled_channels,
				   num_disabled);
	pdata->disabled_channels[num_disabled] = -1;

3498 3499 3500 3501 3502
	pdev->dev.platform_data = pdata;

	return 0;
}

3503 3504
static int __init d40_probe(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3505
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3506
	struct device_node *np = pdev->dev.of_node;
3507
	int ret = -ENOENT;
3508
	struct d40_base *base;
3509
	struct resource *res;
3510 3511 3512
	int num_reserved_chans;
	u32 val;

3513 3514
	if (!plat_data) {
		if (np) {
3515
			if (d40_of_probe(pdev, np)) {
3516
				ret = -ENOMEM;
3517
				goto report_failure;
3518 3519 3520
			}
		} else {
			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3521
			goto report_failure;
3522 3523
		}
	}
3524

3525
	base = d40_hw_detect_init(pdev);
3526
	if (!base)
3527
		goto report_failure;
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3540
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3541
		goto destroy_cache;
3542 3543 3544 3545 3546 3547 3548
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3549
		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3550
		goto destroy_cache;
3551 3552 3553 3554 3555 3556
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
3557 3558
			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
			 __func__, val, &res->start);
3559 3560 3561 3562 3563 3564
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3565
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3566
		goto destroy_cache;
3567
	}
3568 3569 3570 3571 3572 3573 3574 3575
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
3576
			goto destroy_cache;
3577 3578 3579 3580 3581 3582
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3583
			goto destroy_cache;
3584 3585
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3586

3587 3588 3589 3590
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3591
			goto destroy_cache;
3592
		}
3593 3594 3595 3596 3597 3598 3599 3600
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3601
		d40_err(&pdev->dev, "No IRQ defined\n");
3602
		goto destroy_cache;
3603 3604
	}

3605 3606 3607 3608 3609
	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3610
			ret = PTR_ERR(base->lcpa_regulator);
3611
			base->lcpa_regulator = NULL;
3612
			goto destroy_cache;
3613 3614 3615 3616 3617 3618 3619 3620
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
3621
			goto destroy_cache;
3622 3623 3624
		}
	}

3625 3626 3627 3628 3629 3630 3631 3632 3633
	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);

	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_mark_last_busy(base->dev);
	pm_runtime_set_active(base->dev);
	pm_runtime_enable(base->dev);

3634 3635
	ret = d40_dmaengine_init(base, num_reserved_chans);
	if (ret)
3636
		goto destroy_cache;
3637

3638
	base->dev->dma_parms = &base->dma_parms;
3639 3640
	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
	if (ret) {
3641
		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3642
		goto destroy_cache;
3643 3644
	}

3645 3646
	d40_hw_init(base);

3647
	if (np) {
3648 3649
		ret = of_dma_controller_register(np, d40_xlate, NULL);
		if (ret)
3650 3651 3652 3653
			dev_err(&pdev->dev,
				"could not register of_dma_controller\n");
	}

3654 3655
	dev_info(base->dev, "initialized\n");
	return 0;
3656
 destroy_cache:
3657 3658 3659
	kmem_cache_destroy(base->desc_slab);
	if (base->virtbase)
		iounmap(base->virtbase);
3660

3661 3662 3663 3664
	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
		iounmap(base->lcla_pool.base);
		base->lcla_pool.base = NULL;
	}
3665

3666 3667 3668 3669
	if (base->lcla_pool.dma_addr)
		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
				 SZ_1K * base->num_phy_chans,
				 DMA_TO_DEVICE);
3670

3671 3672 3673
	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
		free_pages((unsigned long)base->lcla_pool.base,
			   base->lcla_pool.pages);
3674

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	kfree(base->lcla_pool.base_unaligned);

	if (base->phy_lcpa)
		release_mem_region(base->phy_lcpa,
				   base->lcpa_size);
	if (base->phy_start)
		release_mem_region(base->phy_start,
				   base->phy_size);
	if (base->clk) {
		clk_disable_unprepare(base->clk);
		clk_put(base->clk);
	}

	if (base->lcpa_regulator) {
		regulator_disable(base->lcpa_regulator);
		regulator_put(base->lcpa_regulator);
3691 3692
	}

3693 3694 3695 3696 3697
	kfree(base->lcla_pool.alloc_map);
	kfree(base->lookup_log_chans);
	kfree(base->lookup_phy_chans);
	kfree(base->phy_res);
	kfree(base);
3698
 report_failure:
3699
	d40_err(&pdev->dev, "probe failed\n");
3700 3701 3702
	return ret;
}

3703 3704 3705 3706 3707
static const struct of_device_id d40_match[] = {
        { .compatible = "stericsson,dma40", },
        {}
};

3708 3709 3710
static struct platform_driver d40_driver = {
	.driver = {
		.name  = D40_NAME,
3711
		.pm = &dma40_pm_ops,
3712
		.of_match_table = d40_match,
3713 3714 3715
	},
};

R
Rabin Vincent 已提交
3716
static int __init stedma40_init(void)
3717 3718 3719
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3720
subsys_initcall(stedma40_init);