padlock-sha.c 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Cryptographic API.
 *
 * Support for VIA PadLock hardware crypto engine.
 *
 * Copyright (c) 2006  Michal Ludvig <michal@logix.cz>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */

15
#include <crypto/internal/hash.h>
16
#include <crypto/sha.h>
17
#include <linux/err.h>
18 19 20 21 22 23
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/scatterlist.h>
24
#include <asm/i387.h>
25 26 27 28 29 30 31
#include "padlock.h"

struct padlock_sha_ctx {
	char		*data;
	size_t		used;
	int		bypass;
	void (*f_sha_padlock)(const char *in, char *out, int count);
32
	struct shash_desc *fallback;
33 34 35 36
};

static inline struct padlock_sha_ctx *ctx(struct crypto_tfm *tfm)
{
37
	return crypto_tfm_ctx(tfm);
38 39 40 41 42 43 44 45
}

/* We'll need aligned address on the stack */
#define NEAREST_ALIGNED(ptr) \
	((void *)ALIGN((size_t)(ptr), PADLOCK_ALIGNMENT))

static struct crypto_alg sha1_alg, sha256_alg;

46
static int padlock_sha_bypass(struct crypto_tfm *tfm)
47
{
48 49
	int err = 0;

50
	if (ctx(tfm)->bypass)
51
		goto out;
52

53 54 55
	err = crypto_shash_init(ctx(tfm)->fallback);
	if (err)
		goto out;
56

57 58 59
	if (ctx(tfm)->data && ctx(tfm)->used)
		err = crypto_shash_update(ctx(tfm)->fallback, ctx(tfm)->data,
					  ctx(tfm)->used);
60 61 62

	ctx(tfm)->used = 0;
	ctx(tfm)->bypass = 1;
63 64 65

out:
	return err;
66 67 68 69 70 71 72 73 74 75 76
}

static void padlock_sha_init(struct crypto_tfm *tfm)
{
	ctx(tfm)->used = 0;
	ctx(tfm)->bypass = 0;
}

static void padlock_sha_update(struct crypto_tfm *tfm,
			const uint8_t *data, unsigned int length)
{
77 78
	int err;

79 80
	/* Our buffer is always one page. */
	if (unlikely(!ctx(tfm)->bypass &&
81 82 83 84
		     (ctx(tfm)->used + length > PAGE_SIZE))) {
		err = padlock_sha_bypass(tfm);
		BUG_ON(err);
	}
85 86

	if (unlikely(ctx(tfm)->bypass)) {
87 88
		err = crypto_shash_update(ctx(tfm)->fallback, data, length);
		BUG_ON(err);
89 90 91 92 93 94 95 96 97 98 99 100 101 102
		return;
	}

	memcpy(ctx(tfm)->data + ctx(tfm)->used, data, length);
	ctx(tfm)->used += length;
}

static inline void padlock_output_block(uint32_t *src,
		 	uint32_t *dst, size_t count)
{
	while (count--)
		*dst++ = swab32(*src++);
}

103
static void padlock_do_sha1(const char *in, char *out, int count)
104 105 106 107 108 109
{
	/* We can't store directly to *out as it may be unaligned. */
	/* BTW Don't reduce the buffer size below 128 Bytes!
	 *     PadLock microcode needs it that big. */
	char buf[128+16];
	char *result = NEAREST_ALIGNED(buf);
110
	int ts_state;
111

112 113 114 115 116
	((uint32_t *)result)[0] = SHA1_H0;
	((uint32_t *)result)[1] = SHA1_H1;
	((uint32_t *)result)[2] = SHA1_H2;
	((uint32_t *)result)[3] = SHA1_H3;
	((uint32_t *)result)[4] = SHA1_H4;
117
 
118 119
	/* prevent taking the spurious DNA fault with padlock. */
	ts_state = irq_ts_save();
120 121 122
	asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
		      : "+S"(in), "+D"(result)
		      : "c"(count), "a"(0));
123
	irq_ts_restore(ts_state);
124 125 126 127

	padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
}

128
static void padlock_do_sha256(const char *in, char *out, int count)
129 130 131 132 133 134
{
	/* We can't store directly to *out as it may be unaligned. */
	/* BTW Don't reduce the buffer size below 128 Bytes!
	 *     PadLock microcode needs it that big. */
	char buf[128+16];
	char *result = NEAREST_ALIGNED(buf);
135
	int ts_state;
136

137 138 139 140 141 142 143 144
	((uint32_t *)result)[0] = SHA256_H0;
	((uint32_t *)result)[1] = SHA256_H1;
	((uint32_t *)result)[2] = SHA256_H2;
	((uint32_t *)result)[3] = SHA256_H3;
	((uint32_t *)result)[4] = SHA256_H4;
	((uint32_t *)result)[5] = SHA256_H5;
	((uint32_t *)result)[6] = SHA256_H6;
	((uint32_t *)result)[7] = SHA256_H7;
145

146 147
	/* prevent taking the spurious DNA fault with padlock. */
	ts_state = irq_ts_save();
148 149 150
	asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
		      : "+S"(in), "+D"(result)
		      : "c"(count), "a"(0));
151
	irq_ts_restore(ts_state);
152 153 154 155 156 157

	padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
}

static void padlock_sha_final(struct crypto_tfm *tfm, uint8_t *out)
{
158 159
	int err;

160
	if (unlikely(ctx(tfm)->bypass)) {
161 162
		err = crypto_shash_final(ctx(tfm)->fallback, out);
		BUG_ON(err);
163 164 165 166 167 168 169 170 171 172
		ctx(tfm)->bypass = 0;
		return;
	}

	/* Pass the input buffer to PadLock microcode... */
	ctx(tfm)->f_sha_padlock(ctx(tfm)->data, out, ctx(tfm)->used);

	ctx(tfm)->used = 0;
}

173
static int padlock_cra_init(struct crypto_tfm *tfm)
174
{
175
	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
176 177
	struct crypto_shash *fallback_tfm;
	int err = -ENOMEM;
178

179 180 181 182
	/* For now we'll allocate one page. This
	 * could eventually be configurable one day. */
	ctx(tfm)->data = (char *)__get_free_page(GFP_KERNEL);
	if (!ctx(tfm)->data)
183
		goto out;
184 185

	/* Allocate a fallback and abort if it failed. */
186 187
	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
					  CRYPTO_ALG_NEED_FALLBACK);
188
	if (IS_ERR(fallback_tfm)) {
189 190
		printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
		       fallback_driver_name);
191 192
		err = PTR_ERR(fallback_tfm);
		goto out_free_page;
193 194
	}

195 196 197 198 199 200 201 202
	ctx(tfm)->fallback = kmalloc(sizeof(struct shash_desc) +
				     crypto_shash_descsize(fallback_tfm),
				     GFP_KERNEL);
	if (!ctx(tfm)->fallback)
		goto out_free_tfm;

	ctx(tfm)->fallback->tfm = fallback_tfm;
	ctx(tfm)->fallback->flags = 0;
203
	return 0;
204 205 206 207 208 209 210

out_free_tfm:
	crypto_free_shash(fallback_tfm);
out_free_page:
	free_page((unsigned long)(ctx(tfm)->data));
out:
	return err;
211 212 213 214 215 216
}

static int padlock_sha1_cra_init(struct crypto_tfm *tfm)
{
	ctx(tfm)->f_sha_padlock = padlock_do_sha1;

217
	return padlock_cra_init(tfm);
218 219 220 221 222 223
}

static int padlock_sha256_cra_init(struct crypto_tfm *tfm)
{
	ctx(tfm)->f_sha_padlock = padlock_do_sha256;

224
	return padlock_cra_init(tfm);
225 226 227 228 229 230 231 232 233
}

static void padlock_cra_exit(struct crypto_tfm *tfm)
{
	if (ctx(tfm)->data) {
		free_page((unsigned long)(ctx(tfm)->data));
		ctx(tfm)->data = NULL;
	}

234 235 236
	crypto_free_shash(ctx(tfm)->fallback->tfm);

	kzfree(ctx(tfm)->fallback);
237 238 239 240 241 242
}

static struct crypto_alg sha1_alg = {
	.cra_name		=	"sha1",
	.cra_driver_name	=	"sha1-padlock",
	.cra_priority		=	PADLOCK_CRA_PRIORITY,
243 244
	.cra_flags		=	CRYPTO_ALG_TYPE_DIGEST |
					CRYPTO_ALG_NEED_FALLBACK,
245
	.cra_blocksize		=	SHA1_BLOCK_SIZE,
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	.cra_ctxsize		=	sizeof(struct padlock_sha_ctx),
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(sha1_alg.cra_list),
	.cra_init		=	padlock_sha1_cra_init,
	.cra_exit		=	padlock_cra_exit,
	.cra_u			=	{
		.digest = {
			.dia_digestsize	=	SHA1_DIGEST_SIZE,
			.dia_init   	= 	padlock_sha_init,
			.dia_update 	=	padlock_sha_update,
			.dia_final  	=	padlock_sha_final,
		}
	}
};

static struct crypto_alg sha256_alg = {
	.cra_name		=	"sha256",
	.cra_driver_name	=	"sha256-padlock",
	.cra_priority		=	PADLOCK_CRA_PRIORITY,
265 266
	.cra_flags		=	CRYPTO_ALG_TYPE_DIGEST |
					CRYPTO_ALG_NEED_FALLBACK,
267
	.cra_blocksize		=	SHA256_BLOCK_SIZE,
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	.cra_ctxsize		=	sizeof(struct padlock_sha_ctx),
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(sha256_alg.cra_list),
	.cra_init		=	padlock_sha256_cra_init,
	.cra_exit		=	padlock_cra_exit,
	.cra_u			=	{
		.digest = {
			.dia_digestsize	=	SHA256_DIGEST_SIZE,
			.dia_init   	= 	padlock_sha_init,
			.dia_update 	=	padlock_sha_update,
			.dia_final  	=	padlock_sha_final,
		}
	}
};

static int __init padlock_init(void)
{
	int rc = -ENODEV;

	if (!cpu_has_phe) {
288
		printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n");
289 290 291 292
		return -ENODEV;
	}

	if (!cpu_has_phe_enabled) {
293
		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
		return -ENODEV;
	}

	rc = crypto_register_alg(&sha1_alg);
	if (rc)
		goto out;

	rc = crypto_register_alg(&sha256_alg);
	if (rc)
		goto out_unreg1;

	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");

	return 0;

out_unreg1:
	crypto_unregister_alg(&sha1_alg);
out:
	printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
	return rc;
}

static void __exit padlock_fini(void)
{
	crypto_unregister_alg(&sha1_alg);
	crypto_unregister_alg(&sha256_alg);
}

module_init(padlock_init);
module_exit(padlock_fini);

MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");

329 330
MODULE_ALIAS("sha1-all");
MODULE_ALIAS("sha256-all");
331 332
MODULE_ALIAS("sha1-padlock");
MODULE_ALIAS("sha256-padlock");