acc_vf_migration.c 42.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021 HiSilicon Limited. */

#include <linux/device.h>
#include <linux/debugfs.h>
#include <linux/eventfd.h>
#include <linux/file.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/sysfs.h>
#include <linux/vfio.h>

#include "acc_vf_migration.h"

#define VDM_OFFSET(x) offsetof(struct vfio_device_migration_info, x)
static struct dentry *mig_debugfs_root;
static int mig_root_ref;

/* return 0 VM acc device ready, -ETIMEDOUT hardware timeout */
static int qm_wait_dev_ready(struct hisi_qm *qm)
{
	u32 val;

	return readl_relaxed_poll_timeout(qm->io_base + QM_VF_STATE,
				val, !(val & 0x1), POLL_PERIOD, POLL_TIMEOUT);
}

/* 128 bit should be written to hardware at one time to trigger a mailbox */
static void qm_mb_write(struct hisi_qm *qm, const void *src)
{
	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
	unsigned long tmp0 = 0;
	unsigned long tmp1 = 0;

	if (!IS_ENABLED(CONFIG_ARM64)) {
		memcpy_toio(fun_base, src, 16);
		wmb();
		return;
	}

	asm volatile("ldp %0, %1, %3\n"
		     "stp %0, %1, %2\n"
		     "dsb sy\n"
		     : "=&r" (tmp0),
		       "=&r" (tmp1),
		       "+Q" (*((char __iomem *)fun_base))
		     : "Q" (*((char *)src))
		     : "memory");
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* 128 bit should be read from hardware at one time */
static void qm_mb_read(struct hisi_qm *qm, void *dst)
{
	const void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
	unsigned long tmp0 = 0, tmp1 = 0;

	if (!IS_ENABLED(CONFIG_ARM64)) {
		memcpy_fromio(dst, fun_base, 16);
		dma_wmb();
		return;
	}

	asm volatile("ldp %0, %1, %3\n"
		     "stp %0, %1, %2\n"
		     "dmb oshst\n"
		     : "=&r" (tmp0),
		       "=&r" (tmp1),
		       "+Q" (*((char *)dst))
		     : "Q" (*((char __iomem *)fun_base))
		     : "memory");
}

75
static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
76
			   u64 base, u16 queue, bool op)
77
{
78 79 80
	mailbox->w0 = cpu_to_le16((cmd) |
		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
		(0x1 << QM_MB_BUSY_SHIFT));
81
	mailbox->queue_num = cpu_to_le16(queue);
82 83
	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
84 85 86
	mailbox->rsvd = 0;
}

87
static int qm_wait_mb_ready(struct hisi_qm *qm)
88
{
89 90
	struct qm_mailbox mailbox;
	int i = 0;
91

92 93 94 95 96 97
	while (i++ < QM_MB_WAIT_READY_CNT) {
		qm_mb_read(qm, &mailbox);
		if (!((le16_to_cpu(mailbox.w0) >> QM_MB_BUSY_SHIFT) & 0x1))
			return 0;

		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
98 99
	}

100 101 102 103 104 105 106
	return -EBUSY;
}

static int qm_wait_mb_finish(struct hisi_qm *qm, struct qm_mailbox *mailbox)
{
	int i = 0;

107
	while (++i) {
108 109
		qm_mb_read(qm, mailbox);
		if (!((le16_to_cpu(mailbox->w0) >> QM_MB_BUSY_SHIFT) & 0x1))
110
			break;
111 112

		if (i == QM_MB_MAX_WAIT_CNT) {
113
			dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
114
			return -ETIMEDOUT;
115
		}
116 117 118 119 120 121 122

		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
	}

	if (le16_to_cpu(mailbox->w0) & QM_MB_STATUS_MASK) {
		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
		return -EIO;
123
	}
124

125 126 127
	return 0;
}

128
static int qm_mb(struct hisi_qm *qm, struct qm_mailbox *mailbox)
129 130 131
{
	int ret;

132 133 134 135
	mutex_lock(&qm->mailbox_lock);
	ret = qm_wait_mb_ready(qm);
	if (ret)
		goto unlock;
136

137 138
	qm_mb_write(qm, mailbox);
	ret = qm_wait_mb_finish(qm, mailbox);
139

140
unlock:
141 142 143 144 145
	mutex_unlock(&qm->mailbox_lock);

	return ret;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static int qm_config_set(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr,
			       u16 queue, bool op)
{
	struct qm_mailbox mailbox;

	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-0x%llx\n",
		queue, cmd, (unsigned long long)dma_addr);

	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);

	return qm_mb(qm, &mailbox);
}

static int qm_config_get(struct hisi_qm *qm, u64 *base, u8 cmd, u16 queue)
{
	struct qm_mailbox mailbox;
	int ret;

	qm_mb_pre_init(&mailbox, cmd, 0, queue, 1);

	ret = qm_mb(qm, &mailbox);
	if (ret)
		return ret;

	*base = le32_to_cpu(mailbox.base_l) |
		((u64)le32_to_cpu(mailbox.base_h) << 32);

	return 0;
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd,
	u16 index, u8 priority)
{
	void __iomem *io_base = qm->io_base;
	u16 randata = 0;
	u64 doorbell;

	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
			  QM_DOORBELL_SQ_CQ_BASE_V2;
	else
		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;

	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);

	writeq(doorbell, io_base);
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * Each state Reg is checked 100 times,
 * with a delay of 100 microseconds after each check
 */
static u32 acc_check_reg_state(struct hisi_qm *qm, u32 regs)
{
	int check_times = 0;
	u32 state;

	state = readl(qm->io_base + regs);
	while (state && check_times < ERROR_CHECK_TIMEOUT) {
		udelay(CHECK_DELAY_TIME);
		state = readl(qm->io_base + regs);
		check_times++;
	}

	return state;
}

/* Check the  PF's RAS state and Function INT state */
static int qm_check_int_state(struct acc_vf_migration *acc_vf_dev)
{
	struct hisi_qm *vfqm = acc_vf_dev->vf_qm;
	struct hisi_qm *qm = acc_vf_dev->pf_qm;
	struct device *dev = &qm->pdev->dev;
	u32 state;

	/* Check RAS state */
	state = acc_check_reg_state(qm, QM_ABNORMAL_INT_STATUS);
	if (state) {
		dev_err(dev, "failed to check QM RAS state!\n");
		return -EBUSY;
	}

	/* Check Function Communication  state between PF and VF */
	state = acc_check_reg_state(vfqm, QM_IFC_INT_STATUS);
	if (state) {
		dev_err(dev, "failed to check QM IFC INT state!\n");
		return -EBUSY;
	}
	state = acc_check_reg_state(vfqm, QM_IFC_INT_SET_V);
	if (state) {
		dev_err(dev, "failed to check QM IFC INT SET state!\n");
		return -EBUSY;
	}

	/* Check submodule task state */
	switch (acc_vf_dev->acc_type) {
	case HISI_SEC:
		state = acc_check_reg_state(qm, SEC_CORE_INT_STATUS);
		if (state) {
			dev_err(dev, "failed to check QM SEC Core INT state!\n");
			return -EBUSY;
		}
		break;
	case HISI_HPRE:
		state = acc_check_reg_state(qm, HPRE_HAC_INT_STATUS);
		if (state) {
			dev_err(dev, "failed to check QM HPRE HAC INT state!\n");
			return -EBUSY;
		}
		break;
	case HISI_ZIP:
		state = acc_check_reg_state(qm, HZIP_CORE_INT_STATUS);
		if (state) {
			dev_err(dev, "failed to check QM ZIP Core INT state!\n");
			return -EBUSY;
		}
		break;
	default:
		dev_err(dev, "failed to detect acc module type!\n");
		return -EINVAL;
	}

	return 0;
}

static int qm_read_reg(struct hisi_qm *qm, u32 reg_addr,
			 u32 *data, u8 nums)
{
	int i;

	if (nums < 1 || nums > QM_REGS_MAX_LEN) {
		dev_err(&qm->pdev->dev, "QM read input parameter is error!\n");
		return -EINVAL;
	}

	for (i = 0; i < nums; i++) {
		data[i] = readl(qm->io_base + reg_addr);
		reg_addr += QM_REG_ADDR_OFFSET;
	}

	return 0;
}

static int qm_write_reg(struct hisi_qm *qm, u32 reg_addr,
			 u32 *data, u8 nums)
{
	int i;

	if (nums < 1 || nums > QM_REGS_MAX_LEN) {
		dev_err(&qm->pdev->dev, "QM write input parameter is error!\n");
		return -EINVAL;
	}

	for (i = 0; i < nums; i++) {
		writel(data[i], qm->io_base + reg_addr);
		reg_addr += QM_REG_ADDR_OFFSET;
	}

	return 0;
}

static int qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
{
	u64 sqc_vft;
	int ret;

315
	ret = qm_config_get(qm, &sqc_vft, QM_MB_CMD_SQC_VFT_V2, 0);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	if (ret)
		return ret;

	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
	*number = (QM_SQC_VFT_NUM_MASK_V2 &
		  (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;

	return 0;
}

static int qm_rw_regs_read(struct hisi_qm *qm, struct acc_vf_data *vf_data)
{
	struct device *dev = &qm->pdev->dev;
	int ret;

	ret = qm_read_reg(qm, QM_VF_AEQ_INT_MASK, &vf_data->aeq_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_VF_AEQ_INT_MASK!\n");
		return ret;
	}

	ret = qm_read_reg(qm, QM_VF_EQ_INT_MASK, &vf_data->eq_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_VF_EQ_INT_MASK!\n");
		return ret;
	}

	ret = qm_read_reg(qm, QM_IFC_INT_SOURCE_V,
			   &vf_data->ifc_int_source, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_IFC_INT_SOURCE_V!\n");
		return ret;
	}

	ret = qm_read_reg(qm, QM_IFC_INT_MASK, &vf_data->ifc_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_IFC_INT_MASK!\n");
		return ret;
	}

	ret = qm_read_reg(qm, QM_IFC_INT_SET_V, &vf_data->ifc_int_set, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_IFC_INT_SET_V!\n");
		return ret;
	}

	ret = qm_read_reg(qm, QM_PAGE_SIZE, &vf_data->page_size, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_PAGE_SIZE!\n");
		return ret;
	}

	ret = qm_read_reg(qm, QM_VF_STATE, &vf_data->vf_state, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_VF_STATE!\n");
		return ret;
	}

	/* QM_EQC_DW has 7 regs */
	ret = qm_read_reg(qm, QM_EQC_DW0, vf_data->qm_eqc_dw, 7);
	if (ret) {
		dev_err(dev, "failed to read QM_EQC_DW!\n");
		return ret;
	}

	/* QM_AEQC_DW has 7 regs */
	ret = qm_read_reg(qm, QM_AEQC_DW0, vf_data->qm_aeqc_dw, 7);
	if (ret) {
		dev_err(dev, "failed to read QM_AEQC_DW!\n");
		return ret;
	}

	return 0;
}

static int qm_rw_regs_write(struct hisi_qm *qm, struct acc_vf_data *vf_data)
{
	struct device *dev = &qm->pdev->dev;
	int ret;

	/* check VF state */
	if (unlikely(qm_wait_mb_ready(qm))) {
		dev_err(&qm->pdev->dev, "QM device is not ready to write!\n");
		return -EBUSY;
	}

	ret = qm_write_reg(qm, QM_VF_AEQ_INT_MASK, &vf_data->aeq_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_VF_AEQ_INT_MASK!\n");
		return ret;
	}

	ret = qm_write_reg(qm, QM_VF_EQ_INT_MASK, &vf_data->eq_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_VF_EQ_INT_MASK!\n");
		return ret;
	}

	ret = qm_write_reg(qm, QM_IFC_INT_SOURCE_V,
			   &vf_data->ifc_int_source, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_IFC_INT_SOURCE_V!\n");
		return ret;
	}

	ret = qm_write_reg(qm, QM_IFC_INT_MASK, &vf_data->ifc_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_IFC_INT_MASK!\n");
		return ret;
	}

	ret = qm_write_reg(qm, QM_IFC_INT_SET_V, &vf_data->ifc_int_set, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_IFC_INT_SET_V!\n");
		return ret;
	}

	ret = qm_write_reg(qm, QM_PAGE_SIZE, &vf_data->page_size, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_PAGE_SIZE!\n");
		return ret;
	}

	ret = qm_write_reg(qm, QM_VF_STATE, &vf_data->vf_state, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_VF_STATE!\n");
		return ret;
	}

	/* QM_EQC_DW has 7 regs */
	ret = qm_write_reg(qm, QM_EQC_DW0, vf_data->qm_eqc_dw, 7);
	if (ret) {
		dev_err(dev, "failed to write QM_EQC_DW!\n");
		return ret;
	}

	/* QM_AEQC_DW has 7 regs */
	ret = qm_write_reg(qm, QM_AEQC_DW0, vf_data->qm_aeqc_dw, 7);
	if (ret) {
		dev_err(dev, "failed to write QM_AEQC_DW!\n");
		return ret;
	}

	return 0;
}

462 463 464 465 466 467 468 469 470 471 472 473 474
static void vf_qm_xeqc_save(struct hisi_qm *qm,
	struct acc_vf_migration *acc_vf_dev)
{
	struct acc_vf_data *vf_data = acc_vf_dev->vf_data;
	u16 eq_head, aeq_head;

	eq_head = vf_data->qm_eqc_dw[0] & 0xFFFF;
	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, eq_head, 0);

	aeq_head = vf_data->qm_aeqc_dw[0] & 0xFFFF;
	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, aeq_head, 0);
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
/*
 * the vf QM have unbind from host, insmod in the VM
 * so, qm just have the addr from pci dev
 * others is null.
 * so we need read from the SEC hardware REGs.
 */
static int vf_migration_data_store(struct hisi_qm *qm,
			struct acc_vf_migration *acc_vf_dev)
{
	struct acc_vf_data *vf_data = acc_vf_dev->vf_data;
	struct device *dev = &qm->pdev->dev;
	int ret;

	ret = qm_rw_regs_read(qm, vf_data);
	if (ret) {
		dev_err(dev, "failed to read QM regs!\n");
		return -EINVAL;
	}

	/*
	 * every Reg is 32 bit, the dma address is 64 bit
	 * so, the dma address is store in the Reg2 and Reg1
	 */
498
	vf_data->eqe_dma = vf_data->qm_eqc_dw[QM_XQC_ADDR_HIGH];
499
	vf_data->eqe_dma <<= QM_XQC_ADDR_OFFSET;
500 501
	vf_data->eqe_dma |= vf_data->qm_eqc_dw[QM_XQC_ADDR_LOW];
	vf_data->aeqe_dma = vf_data->qm_aeqc_dw[QM_XQC_ADDR_HIGH];
502
	vf_data->aeqe_dma <<= QM_XQC_ADDR_OFFSET;
503
	vf_data->aeqe_dma |= vf_data->qm_aeqc_dw[QM_XQC_ADDR_LOW];
504 505

	/* Through SQC_BT/CQC_BT to get sqc and cqc address */
506
	ret = qm_config_get(qm, &vf_data->sqc_dma, QM_MB_CMD_SQC_BT, 0);
507 508 509 510 511
	if (ret) {
		dev_err(dev, "failed to read SQC addr!\n");
		return -EINVAL;
	}

512
	ret = qm_config_get(qm, &vf_data->cqc_dma, QM_MB_CMD_CQC_BT, 0);
513 514 515 516 517
	if (ret) {
		dev_err(dev, "failed to read CQC addr!\n");
		return -EINVAL;
	}

518 519 520
	/* Save eqc and aeqc interrupt information */
	vf_qm_xeqc_save(qm, acc_vf_dev);

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	return 0;
}

static void qm_dev_cmd_init(struct hisi_qm *qm)
{
	/* clear VF communication status registers. */
	writel(0x1, qm->io_base + QM_IFC_INT_SOURCE_V);

	/* enable pf and vf communication. */
	writel(0x0, qm->io_base + QM_IFC_INT_MASK);
}

static void vf_qm_fun_restart(struct hisi_qm *qm,
	struct acc_vf_migration *acc_vf_dev)
{
	struct acc_vf_data *vf_data = acc_vf_dev->vf_data;
	struct device *dev = &qm->pdev->dev;
	int i;

	/*
541 542 543 544
	 * When the Guest is rebooted or reseted, the SMMU page table
	 * will be destroyed, and the QP queue cannot be returned
	 * normally at this time. so if Guest acc driver have removed,
	 * don't need to restart QP.
545
	 */
546
	if (vf_data->vf_state != VF_READY) {
547 548 549 550 551 552 553 554 555 556 557 558
		dev_err(dev, "failed to restart VF!\n");
		return;
	}

	for (i = 0; i < qm->qp_num; i++)
		qm_db(qm, i, QM_DOORBELL_CMD_SQ, 0, 1);
}

static int vf_match_info_check(struct hisi_qm *qm,
	struct acc_vf_migration *acc_vf_dev)
{
	struct acc_vf_data *vf_data = acc_vf_dev->vf_data;
559
	struct hisi_qm *pf_qm = acc_vf_dev->pf_qm;
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	struct device *dev = &qm->pdev->dev;
	u32 que_iso_state;
	int ret;

	/* vf acc type check */
	if (vf_data->acc_type != acc_vf_dev->acc_type) {
		dev_err(dev, "failed to match VF acc type!\n");
		return -EINVAL;
	}

	/* vf qp num check */
	ret = qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
	if (ret || qm->qp_num <= 1) {
		dev_err(dev, "failed to get vft qp nums!\n");
		return ret;
	}

	if (vf_data->qp_num != qm->qp_num) {
		dev_err(dev, "failed to match VF qp num!\n");
		return -EINVAL;
	}

	/* vf isolation state check */
583
	ret = qm_read_reg(pf_qm, QM_QUE_ISO_CFG_V, &que_iso_state, 1);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (ret) {
		dev_err(dev, "failed to read QM_QUE_ISO_CFG_V!\n");
		return ret;
	}
	if (vf_data->que_iso_cfg != que_iso_state) {
		dev_err(dev, "failed to match isolation state!\n");
		return -EINVAL;
	}

	return 0;
}

static int vf_migration_data_recover(struct hisi_qm *qm,
	struct acc_vf_data *vf_data)
{
	struct device *dev = &qm->pdev->dev;
	int ret;

	qm->eqe_dma = vf_data->eqe_dma;
	qm->aeqe_dma = vf_data->aeqe_dma;
	qm->sqc_dma = vf_data->sqc_dma;
	qm->cqc_dma = vf_data->cqc_dma;

	qm->qp_base = vf_data->qp_base;
	qm->qp_num = vf_data->qp_num;

	ret = qm_rw_regs_write(qm, vf_data);
	if (ret) {
		dev_err(dev, "Set VF regs failed!\n");
		return ret;
	}

616
	ret = qm_config_set(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
617 618 619 620 621
	if (ret) {
		dev_err(dev, "Set sqc failed!\n");
		return ret;
	}

622
	ret = qm_config_set(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	if (ret) {
		dev_err(dev, "Set cqc failed!\n");
		return ret;
	}

	/* which ACC module need to reinit? */
	qm_dev_cmd_init(qm);

	return 0;
}

static int vf_qm_cache_wb(struct hisi_qm *qm)
{
	unsigned int val;

	writel(0x1, qm->io_base + QM_CACHE_WB_START);
	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
				       val, val & BIT(0), POLL_PERIOD,
				       POLL_TIMEOUT)) {
		dev_err(&qm->pdev->dev, "vf QM writeback sqc cache fail!\n");
		return -EINVAL;
	}

	return 0;
}

static int vf_qm_func_stop(struct hisi_qm *qm)
{
651
	return qm_config_set(qm, QM_MB_CMD_PAUSE_QM, 0, 0, 0);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
}

static int pf_qm_get_qp_num(struct hisi_qm *qm, int vf_id,
	u32 *rbase, u32 *rnumber)
{
	unsigned int val;
	u64 sqc_vft;
	int ret;

	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
					 val & BIT(0), POLL_PERIOD,
					 POLL_TIMEOUT);
	if (ret)
		return ret;

	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
	/* 0 mean SQC VFT */
	writel(0x0, qm->io_base + QM_VFT_CFG_TYPE);
	writel(vf_id, qm->io_base + QM_VFT_CFG);

	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);

	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
					 val & BIT(0), POLL_PERIOD,
					 POLL_TIMEOUT);
	if (ret)
		return ret;

	sqc_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) <<
		  QM_XQC_ADDR_OFFSET);
	*rbase = QM_SQC_VFT_BASE_MASK_V2 &
		 (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
	*rnumber = (QM_SQC_VFT_NUM_MASK_V2 &
		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;

	return 0;
}

static int pf_qm_state_pre_save(struct hisi_qm *qm,
		struct acc_vf_migration *acc_vf_dev)
{
	struct acc_vf_data *vf_data = acc_vf_dev->vf_data;
	struct device *dev = &qm->pdev->dev;
	int vf_id = acc_vf_dev->vf_id;
	int ret;

700
	/* Vf acc type save */
701 702
	vf_data->acc_type = acc_vf_dev->acc_type;

703 704 705
	/* Vf qp num save from PF */
	ret = pf_qm_get_qp_num(qm, vf_id, &vf_data->qp_base, &vf_data->qp_num);
	if (ret) {
706 707 708 709
		dev_err(dev, "failed to get vft qp nums!\n");
		return -EINVAL;
	}

710
	/* Vf isolation state save from PF */
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	ret = qm_read_reg(qm, QM_QUE_ISO_CFG_V, &vf_data->que_iso_cfg, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_QUE_ISO_CFG_V!\n");
		return ret;
	}

	return 0;
}

static int vf_qm_state_save(struct hisi_qm *qm,
		struct acc_vf_migration *acc_vf_dev)
{
	struct device *dev = &acc_vf_dev->vf_dev->dev;
	int ret;

	/*
	 * check VM task driver state
	 * if vf_ready == 0x1, skip migrate.
	 */
	if (unlikely(qm_wait_dev_ready(qm))) {
		acc_vf_dev->mig_ignore = true;
		dev_err(&qm->pdev->dev, "QM device is not ready to read!\n");
		return 0;
	}

	/* First stop the ACC vf function */
	ret = vf_qm_func_stop(qm);
	if (ret) {
		dev_err(dev, "failed to stop QM VF function!\n");
		return ret;
	}

	/* Check the VF's RAS and Interrution state */
	ret = qm_check_int_state(acc_vf_dev);
	if (ret) {
		dev_err(dev, "failed to check QM INT state!\n");
		goto state_error;
	}

	/* hisi_qm_cache_wb store cache data to DDR */
	ret = vf_qm_cache_wb(qm);
	if (ret) {
		dev_err(dev, "failed to writeback QM Cache!\n");
		goto state_error;
	}

	ret = vf_migration_data_store(qm, acc_vf_dev);
	if (ret) {
		dev_err(dev, "failed to get and store migration data!\n");
		goto state_error;
	}

	return 0;

state_error:
	vf_qm_fun_restart(qm, acc_vf_dev);
	return ret;
}

static int vf_qm_state_resume(struct hisi_qm *qm,
		struct acc_vf_migration *acc_vf_dev)
{
	struct device *dev = &acc_vf_dev->vf_dev->dev;
	int ret;

	/* recover data to VF */
	ret = vf_migration_data_recover(qm, acc_vf_dev->vf_data);
	if (ret) {
		dev_err(dev, "failed to recover the VF!\n");
		return ret;
	}

	/* restart all destination VF's QP */
	vf_qm_fun_restart(qm, acc_vf_dev);

	return 0;
}

static int acc_vf_set_device_state(struct acc_vf_migration *acc_vf_dev,
				       u32 state)
{
	struct vfio_device_migration_info *mig_ctl = acc_vf_dev->mig_ctl;
	struct device *dev = &acc_vf_dev->vf_dev->dev;
	struct hisi_qm *pfqm = acc_vf_dev->pf_qm;
	struct hisi_qm *qm = acc_vf_dev->vf_qm;
	int ret = 0;

	if (state == mig_ctl->device_state)
		return 0;

	switch (state) {
	case VFIO_DEVICE_STATE_RUNNING:
		if (!mig_ctl->data_size)
			break;

		if (mig_ctl->device_state == VFIO_DEVICE_STATE_RESUMING) {
			ret = vf_qm_state_resume(qm, acc_vf_dev);
			if (ret) {
				dev_err(dev, "failed to resume device!\n");
				return -EFAULT;
			}
		}

		break;
	case VFIO_DEVICE_STATE_SAVING | VFIO_DEVICE_STATE_RUNNING:
		/* ACC should in the pre cycle to read match information data */
		ret = pf_qm_state_pre_save(pfqm, acc_vf_dev);
		if (ret) {
			dev_err(dev, "failed to pre save device state!\n");
			return -EFAULT;
		}

		/* set the pending_byte and match data size */
		mig_ctl->data_size = QM_MATCH_SIZE;
		mig_ctl->pending_bytes = mig_ctl->data_size;

		break;
	case VFIO_DEVICE_STATE_SAVING:
		/* stop the vf function */
		ret = vf_qm_state_save(qm, acc_vf_dev);
		if (ret) {
			dev_err(dev, "failed to save device state!\n");
			return -EFAULT;
		}

		if (acc_vf_dev->mig_ignore) {
			mig_ctl->data_size = 0;
			mig_ctl->pending_bytes = 0;
			break;
		}

		/* set the pending_byte and data_size */
		mig_ctl->data_size = sizeof(struct acc_vf_data);
		mig_ctl->pending_bytes = mig_ctl->data_size;

		break;
	case VFIO_DEVICE_STATE_STOP:
	case VFIO_DEVICE_STATE_RESUMING:
		break;
	default:
		ret = -EFAULT;
	}

	if (!ret) {
		dev_info(dev, "migration state: %s ----------> %s!\n",
			 vf_dev_state[mig_ctl->device_state],
			 vf_dev_state[state]);
		mig_ctl->device_state = state;
	}

	return ret;
}

static int acc_vf_data_transfer(struct acc_vf_migration *acc_vf_dev,
	char __user *buf, size_t count, u64 pos, bool iswrite)
{
	struct vfio_device_migration_info *mig_ctl = acc_vf_dev->mig_ctl;
	void *data_addr = acc_vf_dev->vf_data;
	int ret = 0;

	if (!count) {
		dev_err(&acc_vf_dev->vf_dev->dev,
			"Qemu operation data size error!\n");
		return -EINVAL;
	}

	data_addr += pos - mig_ctl->data_offset;
	if (iswrite)  {
		ret = copy_from_user(data_addr, buf, count) ?
				     -EFAULT : count;
		if (ret == count)
			mig_ctl->pending_bytes += count;
	} else {
		ret = copy_to_user(buf, data_addr, count) ?
				   -EFAULT : count;
		if (ret == count)
			mig_ctl->pending_bytes -= count;
	}

	return ret;
}

static int acc_vf_region_migration_rw(struct acc_vf_migration *acc_vf_dev,
	char __user *buf, size_t count, loff_t *ppos, bool iswrite)
{
	struct vfio_device_migration_info *mig_ctl = acc_vf_dev->mig_ctl;
	struct device *dev = &acc_vf_dev->vf_dev->dev;
	struct hisi_qm *qm = acc_vf_dev->vf_qm;
	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
	u32 device_state;
	int ret = 0;

	switch (pos) {
	case VDM_OFFSET(device_state):
		if (count != sizeof(mig_ctl->device_state)) {
			ret = -EINVAL;
			break;
		}

		if (iswrite) {
			if (copy_from_user(&device_state, buf, count)) {
				ret = -EFAULT;
				break;
			}

			ret = acc_vf_set_device_state(acc_vf_dev,
					   device_state) ? ret : count;
		} else {
			ret = copy_to_user(buf, &mig_ctl->device_state,
					   count) ? -EFAULT : count;
		}
		break;
	case VDM_OFFSET(reserved):
		ret = -EFAULT;
		break;
	case VDM_OFFSET(pending_bytes):
		if (count != sizeof(mig_ctl->pending_bytes)) {
			ret = -EINVAL;
			break;
		}

		if (iswrite)
			ret = -EFAULT;
		else
			ret = copy_to_user(buf, &mig_ctl->pending_bytes,
					   count) ? -EFAULT : count;
		break;
	case VDM_OFFSET(data_offset):
		if (count != sizeof(mig_ctl->data_offset)) {
			ret = -EINVAL;
			break;
		}
		if (iswrite)
			ret = copy_from_user(&mig_ctl->data_offset, buf, count) ?
					     -EFAULT : count;
		else
			ret = copy_to_user(buf, &mig_ctl->data_offset, count) ?
					   -EFAULT : count;
		break;
	case VDM_OFFSET(data_size):
		if (count != sizeof(mig_ctl->data_size)) {
			ret = -EINVAL;
			break;
		}

		if (iswrite)
			ret = copy_from_user(&mig_ctl->data_size, buf, count) ?
					     -EFAULT : count;
		else
			ret = copy_to_user(buf, &mig_ctl->data_size, count) ?
					   -EFAULT : count;
		break;
	default:
		ret = -EFAULT;
		break;
	}

	/* Transfer data section */
	if (pos >= mig_ctl->data_offset &&
	    pos < MIGRATION_REGION_SZ) {
		ret = acc_vf_data_transfer(acc_vf_dev, buf,
					   count, pos, iswrite);
		if (ret != count)
			return ret;
	}

	if (mig_ctl->device_state == VFIO_DEVICE_STATE_RESUMING &&
	    mig_ctl->pending_bytes == QM_MATCH_SIZE &&
	    mig_ctl->data_size == QM_MATCH_SIZE) {
		/* check the VF match information */
		ret = vf_match_info_check(qm, acc_vf_dev);
		if (ret) {
			dev_err(dev, "failed to check match information!\n");
			return -EFAULT;
		}
		ret = count;

		/* clear the VF match data size */
		mig_ctl->pending_bytes = 0;
		mig_ctl->data_size = 0;
	}
	return ret;
}

static int acc_vf_region_migration_mmap(struct acc_vf_migration *acc_vf_dev,
					struct acc_vf_region *region,
					struct vm_area_struct *vma)
{
	return -EFAULT;
}

static void acc_vf_region_migration_release(struct acc_vf_migration *acc_vf_dev,
					    struct acc_vf_region *region)
{
	kfree(acc_vf_dev->mig_ctl);
	acc_vf_dev->mig_ctl = NULL;
}

static const struct acc_vf_region_ops acc_vf_region_ops_migration = {
	.rw		= acc_vf_region_migration_rw,
	.release	= acc_vf_region_migration_release,
	.mmap		= acc_vf_region_migration_mmap,
};

static int acc_vf_register_region(struct acc_vf_migration *acc_vf_dev,
				   const struct acc_vf_region_ops *ops,
				   void *data)
{
	struct acc_vf_region *regions;

	regions = krealloc(acc_vf_dev->regions,
			   (acc_vf_dev->num_regions + 1) * sizeof(*regions),
			   GFP_KERNEL);
	if (!regions)
		return -ENOMEM;

	acc_vf_dev->regions = regions;
	regions[acc_vf_dev->num_regions].type =
		VFIO_REGION_TYPE_MIGRATION;
	regions[acc_vf_dev->num_regions].subtype =
		VFIO_REGION_SUBTYPE_MIGRATION;
	regions[acc_vf_dev->num_regions].ops = ops;
	regions[acc_vf_dev->num_regions].size =
		MIGRATION_REGION_SZ;
	regions[acc_vf_dev->num_regions].flags =
		VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE;
	regions[acc_vf_dev->num_regions].data = data;
	acc_vf_dev->num_regions++;

	return 0;
}

static long acc_vf_get_region_info(void *device_data,
				    unsigned int cmd, unsigned long arg)
{
	int num_vdev_regions = vfio_pci_num_regions(device_data);
	struct acc_vf_migration *acc_vf_dev =
		vfio_pci_vendor_data(device_data);
	struct vfio_region_info_cap_type cap_type;
	struct acc_vf_region *regions;
	struct vfio_region_info info;
	struct vfio_info_cap caps;
	unsigned long minsz;
	int index, ret;

	minsz = offsetofend(struct vfio_region_info, offset);

	if (cmd != VFIO_DEVICE_GET_REGION_INFO)
		return -EINVAL;

	if (copy_from_user(&info, (void __user *)arg, minsz))
		return -EFAULT;

	if (info.argsz < minsz)
		return -EINVAL;

	if (info.index < VFIO_PCI_NUM_REGIONS + num_vdev_regions)
		goto default_handle;

	index = info.index - VFIO_PCI_NUM_REGIONS - num_vdev_regions;
	if (index > acc_vf_dev->num_regions) {
		dev_err(&acc_vf_dev->vf_dev->dev,
			"failed to check region numbers!\n");
		return -EINVAL;
	}

	info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
	regions = acc_vf_dev->regions;
	info.size = regions[index].size;
	info.flags = regions[index].flags;
	caps.buf = NULL;
	caps.size = 0;
	cap_type.header.id = VFIO_REGION_INFO_CAP_TYPE;
	cap_type.header.version = 1;
	cap_type.type = regions[index].type;
	cap_type.subtype = regions[index].subtype;

	ret = vfio_info_add_capability(&caps, &cap_type.header,
				       sizeof(cap_type));
	if (ret)
		return ret;

	if (regions[index].ops->add_cap) {
		ret = regions[index].ops->add_cap(acc_vf_dev,
						  &regions[index], &caps);
		if (ret) {
			kfree(caps.buf);
			return ret;
		}
	}

	if (caps.size) {
		info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
		if (info.argsz < sizeof(info) + caps.size) {
			info.argsz = sizeof(info) + caps.size;
			info.cap_offset = 0;
		} else {
			vfio_info_cap_shift(&caps, sizeof(info));
			if (copy_to_user((void __user *)arg + sizeof(info),
					 caps.buf, caps.size)) {
				kfree(caps.buf);
				return -EFAULT;
			}
			info.cap_offset = sizeof(info);
		}
		kfree(caps.buf);
	}

	return copy_to_user((void __user *)arg, &info, minsz) ?
		-EFAULT : 0;

default_handle:
	ret = vfio_pci_ioctl(device_data, cmd, arg);
	if (ret)
		return ret;

	if (info.index == VFIO_PCI_BAR0_REGION_INDEX) {
		if (!acc_vf_dev->in_dirty_track)
			return ret;

		/* read default handler's data back */
		if (copy_from_user(&info, (void __user *)arg, minsz))
			return -EFAULT;

		info.flags = VFIO_REGION_INFO_FLAG_READ |
			     VFIO_REGION_INFO_FLAG_WRITE;
		/* update customized region info */
		if (copy_to_user((void __user *)arg, &info, minsz))
			return -EFAULT;
	}

	if (info.index == VFIO_PCI_BAR2_REGION_INDEX) {
		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
		/*
		 * ACC VF dev BAR2 region(64K) consists of both functional
		 * register space and migration control register space.
		 * Report only the first 32K(functional region) to Guest.
		 */
		info.size = pci_resource_len(acc_vf_dev->vf_dev, info.index) >> 1;
		info.flags = VFIO_REGION_INFO_FLAG_READ |
			     VFIO_REGION_INFO_FLAG_WRITE |
			     VFIO_REGION_INFO_FLAG_MMAP;
		if (copy_to_user((void __user *)arg, &info, minsz))
			return -EFAULT;
	}

	return ret;
}

static int acc_vf_open(void *device_data)
{
	struct acc_vf_migration *acc_vf_dev =
		vfio_pci_vendor_data(device_data);
	struct vfio_device_migration_info *mig_ctl;
	__u64 mig_offset;
	void *vf_data;
	int ret;

	if (!try_module_get(THIS_MODULE))
		return -ENODEV;

	mutex_lock(&acc_vf_dev->reflock);
	if (!acc_vf_dev->refcnt) {
		ret = acc_vf_register_region(acc_vf_dev,
					     &acc_vf_region_ops_migration,
					     NULL);
		if (ret)
			goto region_error;
		vfio_pci_set_vendor_regions(device_data,
					       acc_vf_dev->num_regions);

		/* the data region must follow migration info */
		mig_offset = sizeof(struct vfio_device_migration_info);
		mig_ctl = kzalloc(MIGRATION_REGION_SZ, GFP_KERNEL);
		if (!mig_ctl) {
			ret = -ENOMEM;
			goto mig_error;
		}
		acc_vf_dev->mig_ctl = mig_ctl;

		vf_data = (void *)mig_ctl + mig_offset;
		acc_vf_dev->vf_data = vf_data;

		mig_ctl->device_state = VFIO_DEVICE_STATE_RUNNING;
		mig_ctl->data_offset = mig_offset;
		mig_ctl->data_size = 0;
	}

	ret = vfio_pci_open(device_data);
	if (ret)
		goto open_error;

	acc_vf_dev->refcnt++;
	mutex_unlock(&acc_vf_dev->reflock);

	return 0;

open_error:
	if (!acc_vf_dev->refcnt) {
		kfree(acc_vf_dev->mig_ctl);
		acc_vf_dev->mig_ctl = NULL;
	}
mig_error:
	vfio_pci_set_vendor_regions(device_data, 0);
region_error:
	mutex_unlock(&acc_vf_dev->reflock);
	module_put(THIS_MODULE);
	return ret;
}

static void acc_vf_release(void *device_data)
{
	struct acc_vf_migration *acc_vf_dev =
		vfio_pci_vendor_data(device_data);
	int i;

	mutex_lock(&acc_vf_dev->reflock);
	if (!--acc_vf_dev->refcnt) {
		for (i = 0; i < acc_vf_dev->num_regions; i++) {
			if (!acc_vf_dev->regions[i].ops)
				continue;
			acc_vf_dev->regions[i].ops->release(acc_vf_dev,
						&acc_vf_dev->regions[i]);
		}
		kfree(acc_vf_dev->regions);
		acc_vf_dev->regions = NULL;
		acc_vf_dev->num_regions = 0;
		vfio_pci_set_vendor_regions(device_data, 0);

		kfree(acc_vf_dev->mig_ctl);
		acc_vf_dev->mig_ctl = NULL;
	}
	vfio_pci_release(device_data);
	mutex_unlock(&acc_vf_dev->reflock);
	module_put(THIS_MODULE);
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
static void acc_vf_reset(void *device_data)
{
	struct acc_vf_migration *acc_vf_dev =
		vfio_pci_vendor_data(device_data);
	struct hisi_qm *qm = acc_vf_dev->vf_qm;
	struct device *dev = &qm->pdev->dev;
	u32 vf_state = VF_NOT_READY;
	int ret;

	dev_info(dev, "QEMU prepare to Reset Guest!\n");
	ret = qm_write_reg(qm, QM_VF_STATE, &vf_state, 1);
	if (ret)
		dev_err(dev, "failed to write QM_VF_STATE\n");
}

1263 1264 1265 1266 1267 1268
static long acc_vf_ioctl(void *device_data,
			  unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case VFIO_DEVICE_GET_REGION_INFO:
		return acc_vf_get_region_info(device_data, cmd, arg);
1269 1270 1271
	case VFIO_DEVICE_RESET:
		acc_vf_reset(device_data);
		return vfio_pci_ioctl(device_data, cmd, arg);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	default:
		return vfio_pci_ioctl(device_data, cmd, arg);
	}
}

static ssize_t acc_vf_read(void *device_data, char __user *buf,
			    size_t count, loff_t *ppos)
{
	struct acc_vf_migration *acc_vf_dev =
		vfio_pci_vendor_data(device_data);
	int num_vdev_regions = vfio_pci_num_regions(device_data);
	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
	int num_vendor_region = acc_vf_dev->num_regions;
	struct acc_vf_region *region;

	if (index >= VFIO_PCI_NUM_REGIONS + num_vdev_regions +
	    num_vendor_region) {
		dev_err(&acc_vf_dev->vf_dev->dev,
			"failed to check read regions index!\n");
		return -EINVAL;
	}

	if (index < VFIO_PCI_NUM_REGIONS + num_vdev_regions)
		return vfio_pci_read(device_data, buf, count, ppos);

	index -= VFIO_PCI_NUM_REGIONS + num_vdev_regions;

	region = &acc_vf_dev->regions[index];
	if (!region->ops->rw) {
		dev_err(&acc_vf_dev->vf_dev->dev,
			"failed to check regions read ops!\n");
		return -EINVAL;
	}

	return region->ops->rw(acc_vf_dev, buf, count, ppos, false);
}

static ssize_t acc_vf_write(void *device_data, const char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct acc_vf_migration *acc_vf_dev =
		vfio_pci_vendor_data(device_data);
	int num_vdev_regions = vfio_pci_num_regions(device_data);
	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
	int num_vendor_region = acc_vf_dev->num_regions;
	struct acc_vf_region *region;

	if (index == VFIO_PCI_BAR0_REGION_INDEX)
		pr_debug("vfio bar 0 write\n");

	if (index >= VFIO_PCI_NUM_REGIONS + num_vdev_regions +
	    num_vendor_region) {
		dev_err(&acc_vf_dev->vf_dev->dev,
			"failed to check write regions index!\n");
		return -EINVAL;
	}

	if (index < VFIO_PCI_NUM_REGIONS + num_vdev_regions)
		return vfio_pci_write(device_data, buf, count, ppos);

	index -= VFIO_PCI_NUM_REGIONS + num_vdev_regions;

	region = &acc_vf_dev->regions[index];

	if (!region->ops->rw) {
		dev_err(&acc_vf_dev->vf_dev->dev,
			"failed to check regions write ops!\n");
		return -EINVAL;
	}

	return region->ops->rw(acc_vf_dev, (char __user *)buf,
			       count, ppos, true);
}

static int acc_vf_mmap(void *device_data, struct vm_area_struct *vma)
{
	return vfio_pci_mmap(device_data, vma);
}

static void acc_vf_request(void *device_data, unsigned int count)
{
	vfio_pci_request(device_data, count);
}

static struct vfio_device_ops acc_vf_device_ops_node = {
	.name		= "acc_vf",
	.open		= acc_vf_open,
	.release	= acc_vf_release,
	.ioctl		= acc_vf_ioctl,
	.read		= acc_vf_read,
	.write		= acc_vf_write,
	.mmap		= acc_vf_mmap,
	.request	= acc_vf_request,
};

static ssize_t acc_vf_debug_read(struct file *filp, char __user *buffer,
			   size_t count, loff_t *pos)
{
	char buf[VFIO_DEV_DBG_LEN];
	int len;

	len = scnprintf(buf, VFIO_DEV_DBG_LEN, "%s\n",
			"echo 0: test vf data store\n"
			"echo 1: test vf data writeback\n"
			"echo 2: test vf send mailbox\n"
			"echo 3: dump vf dev data\n"
			"echo 4: dump migration state\n");

	return simple_read_from_buffer(buffer, count, pos, buf, len);
}

static ssize_t acc_vf_debug_write(struct file *filp, const char __user *buffer,
			    size_t count, loff_t *pos)
{
	struct acc_vf_migration *acc_vf_dev = filp->private_data;
	struct device *dev = &acc_vf_dev->vf_dev->dev;
	struct hisi_qm *qm = acc_vf_dev->vf_qm;
	char tbuf[VFIO_DEV_DBG_LEN];
	unsigned long val;
	u64 data;
	int len, ret;

	if (*pos)
		return 0;

	if (count >= VFIO_DEV_DBG_LEN)
		return -ENOSPC;

	len = simple_write_to_buffer(tbuf, VFIO_DEV_DBG_LEN - 1,
					pos, buffer, count);
	if (len < 0)
		return len;
	tbuf[len] = '\0';
	if (kstrtoul(tbuf, 0, &val))
		return -EFAULT;

	switch (val) {
	case STATE_SAVE:
		ret = vf_qm_state_save(qm, acc_vf_dev);
		if (ret)
			return -EINVAL;
		break;
	case STATE_RESUME:
		ret = vf_qm_state_resume(qm, acc_vf_dev);
		if (ret)
			return -EINVAL;
		break;
	case MB_TEST:
		data = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
		dev_info(dev, "debug mailbox addr: 0x%lx, mailbox val: 0x%llx\n",
			 (uintptr_t)qm->phys_base, data);
		break;
	case MIG_DATA_DUMP:
		dev_info(dev, "dumped vf migration data:\n");
		print_hex_dump(KERN_INFO, "Mig Data:", DUMP_PREFIX_OFFSET,
				VFIO_DBG_LOG_LEN, 1,
				(unsigned char *)acc_vf_dev->vf_data,
				sizeof(struct acc_vf_data), false);
		break;
	case MIG_DEV_SHOW:
		if (!acc_vf_dev->mig_ctl)
			dev_info(dev, "migration region have release!\n");
		else
			dev_info(dev,
				 "device  state: %u\n"
				 "data   offset: %llu\n"
				 "data     size: %llu\n"
				 "pending bytes: %llu\n"
				 "data     addr: 0x%lx\n",
				 acc_vf_dev->mig_ctl->device_state,
				 acc_vf_dev->mig_ctl->data_offset,
				 acc_vf_dev->mig_ctl->data_size,
				 acc_vf_dev->mig_ctl->pending_bytes,
				 (uintptr_t)acc_vf_dev->vf_data);
		break;
	default:
		return -EINVAL;
	}

	return count;
}

static const struct file_operations acc_vf_debug_fops = {
	.owner = THIS_MODULE,
	.open = simple_open,
	.read = acc_vf_debug_read,
	.write = acc_vf_debug_write,
};

static ssize_t acc_vf_state_read(struct file *filp, char __user *buffer,
			   size_t count, loff_t *pos)
{
	struct acc_vf_migration *acc_vf_dev = filp->private_data;
	char buf[VFIO_DEV_DBG_LEN];
	u32 state;
	int len;

	if (!acc_vf_dev->mig_ctl) {
		len = scnprintf(buf, VFIO_DEV_DBG_LEN, "%s\n", "Invalid\n");
	} else {
		state = acc_vf_dev->mig_ctl->device_state;
		switch (state) {
		case VFIO_DEVICE_STATE_RUNNING:
			len = scnprintf(buf, VFIO_DEV_DBG_LEN, "%s\n",
				"RUNNING\n");
			break;
		case VFIO_DEVICE_STATE_SAVING | VFIO_DEVICE_STATE_RUNNING:
			len = scnprintf(buf, VFIO_DEV_DBG_LEN, "%s\n",
				"SAVING and RUNNING\n");
			break;
		case VFIO_DEVICE_STATE_SAVING:
			len = scnprintf(buf, VFIO_DEV_DBG_LEN, "%s\n",
				"SAVING\n");
			break;
		case VFIO_DEVICE_STATE_STOP:
			len = scnprintf(buf, VFIO_DEV_DBG_LEN, "%s\n",
				"STOP\n");
			break;
		case VFIO_DEVICE_STATE_RESUMING:
			len = scnprintf(buf, VFIO_DEV_DBG_LEN, "%s\n",
				"RESUMING\n");
			break;
		default:
			len = scnprintf(buf, VFIO_DEV_DBG_LEN, "%s\n",
				"Error\n");
		}
	}

	return simple_read_from_buffer(buffer, count, pos, buf, len);
}

static const struct file_operations acc_vf_state_fops = {
	.owner = THIS_MODULE,
	.open = simple_open,
	.read = acc_vf_state_read,
};

static void vf_debugfs_init(struct acc_vf_migration *acc_vf_dev)
{
	char name[VFIO_DEV_DBG_LEN];
	int node_id;

	if (!mig_root_ref)
		mig_debugfs_root = debugfs_create_dir("vfio_acc", NULL);
	mutex_lock(&acc_vf_dev->reflock);
	mig_root_ref++;
	mutex_unlock(&acc_vf_dev->reflock);

	node_id = dev_to_node(&acc_vf_dev->vf_dev->dev);
	if (node_id < 0)
		node_id = 0;

	if (acc_vf_dev->acc_type == HISI_SEC)
		scnprintf(name, VFIO_DEV_DBG_LEN, "sec_vf%d-%d",
			  node_id, acc_vf_dev->vf_id);
	else if (acc_vf_dev->acc_type == HISI_HPRE)
		scnprintf(name, VFIO_DEV_DBG_LEN, "hpre_vf%d-%d",
			  node_id, acc_vf_dev->vf_id);
	else
		scnprintf(name, VFIO_DEV_DBG_LEN, "zip_vf%d-%d",
			  node_id, acc_vf_dev->vf_id);

	acc_vf_dev->debug_root = debugfs_create_dir(name, mig_debugfs_root);

	debugfs_create_file("debug", 0644, acc_vf_dev->debug_root,
			    acc_vf_dev, &acc_vf_debug_fops);
	debugfs_create_file("state", 0444, acc_vf_dev->debug_root,
			    acc_vf_dev, &acc_vf_state_fops);
}

static void vf_debugfs_exit(struct acc_vf_migration *acc_vf_dev)
{
	debugfs_remove_recursive(acc_vf_dev->debug_root);

	mutex_lock(&acc_vf_dev->reflock);
	mig_root_ref--;
	mutex_unlock(&acc_vf_dev->reflock);

	if (!mig_root_ref)
		debugfs_remove_recursive(mig_debugfs_root);
}

static int qm_acc_type_init(struct acc_vf_migration *acc_vf_dev)
{
	struct hisi_qm *qm = acc_vf_dev->vf_qm;
	int i;

	acc_vf_dev->acc_type = 0;
	for (i = 0; i < ARRAY_SIZE(vf_acc_types); i++) {
		if (!strncmp(qm->dev_name, vf_acc_types[i].name,
		    strlen(vf_acc_types[i].name)))
			acc_vf_dev->acc_type = vf_acc_types[i].type;
	}
	if (!acc_vf_dev->acc_type) {
		dev_err(&acc_vf_dev->vf_dev->dev, "failed to check acc type!\n");
		return -EINVAL;
	}

	return 0;
}

static int vf_qm_pci_init(struct pci_dev *pdev, struct hisi_qm *vfqm)
{
	struct device *dev = &pdev->dev;
	u32 val;
	int ret;

	ret = pci_request_mem_regions(pdev, vfqm->dev_name);
	if (ret < 0) {
		dev_err(dev, "failed to request mem regions!\n");
		return ret;
	}

	vfqm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
	vfqm->io_base = devm_ioremap(dev, pci_resource_start(pdev, PCI_BAR_2),
				     pci_resource_len(pdev, PCI_BAR_2));
	if (!vfqm->io_base) {
		ret = -EIO;
		goto err_ioremap;
	}

	val = readl(vfqm->io_base + QM_QUE_ISO_CFG_V);
	val = val & BIT(0);
	if (val) {
		vfqm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
		vfqm->db_io_base = devm_ioremap(dev, pci_resource_start(pdev,
				PCI_BAR_4), pci_resource_len(pdev, PCI_BAR_4));
		if (!vfqm->db_io_base) {
			ret = -EIO;
			goto err_db_ioremap;
		}
	} else {
		vfqm->db_phys_base = vfqm->phys_base;
		vfqm->db_io_base = vfqm->io_base;
	}

	vfqm->pdev = pdev;
	mutex_init(&vfqm->mailbox_lock);

	/*
	 * Allow VF devices to be loaded in VM when
	 * it loaded in migration driver
	 */
	pci_release_mem_regions(pdev);

	return 0;

err_db_ioremap:
	devm_iounmap(dev, vfqm->io_base);
err_ioremap:
	pci_release_mem_regions(pdev);
	return ret;
}

static int acc_vf_dev_init(struct pci_dev *pdev, struct hisi_qm *pf_qm,
			   struct acc_vf_migration *acc_vf_dev)
{
	struct hisi_qm *vf_qm;
	int ret;

	vf_qm = kzalloc(sizeof(struct hisi_qm), GFP_KERNEL);
	if (!vf_qm)
		return -ENOMEM;

	/* get vf qm dev name from pf */
	vf_qm->dev_name = pf_qm->dev_name;
	vf_qm->fun_type = QM_HW_VF;
	acc_vf_dev->vf_qm = vf_qm;
	acc_vf_dev->pf_qm = pf_qm;

	ret = vf_qm_pci_init(pdev, vf_qm);
	if (ret)
		goto init_qm_error;

	ret = qm_acc_type_init(acc_vf_dev);
	if (ret)
		goto init_qm_error;

	return 0;

init_qm_error:
	kfree(vf_qm);
	return -ENOMEM;
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static int hisi_acc_get_vf_id(struct pci_dev *dev)
{
	struct pci_dev *pf;

	if (!dev->is_virtfn)
		return -EINVAL;

	pf = pci_physfn(dev);
	return (((dev->bus->number << 8) + dev->devfn) -
		((pf->bus->number << 8) + pf->devfn + pf->sriov->offset)) /
	       pf->sriov->stride;
}

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static void *acc_vf_probe(struct pci_dev *pdev)
{
	struct acc_vf_migration *acc_vf_dev;
	struct pci_dev *pf_dev, *vf_dev;
	struct hisi_qm *pf_qm;
	int vf_id, ret;

	pf_dev = pdev->physfn;
	vf_dev = pdev;
	/*
	 * the VF driver have been remove after unbind
	 * the PF driver have probe
	 */
	pf_qm = pci_get_drvdata(pf_dev);
	if (!pf_qm) {
		dev_err(&pdev->dev, "host qm driver not insmod!\n");
		return ERR_PTR(-EINVAL);
	}
	if (pf_qm->ver < QM_HW_V3) {
		dev_err(&pdev->dev,
			"device can't support migration! version: 0x%x\n",
			pf_qm->ver);
		return ERR_PTR(-EINVAL);
	}

1695
	vf_id = hisi_acc_get_vf_id(vf_dev);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	if (vf_id < 0) {
		dev_info(&pdev->dev, "vf device: %s, vf id: %d\n",
			 pf_qm->dev_name, vf_id);
		return ERR_PTR(-EINVAL);
	}

	acc_vf_dev = kzalloc(sizeof(*acc_vf_dev), GFP_KERNEL);
	if (!acc_vf_dev)
		return ERR_PTR(-ENOMEM);

	ret = acc_vf_dev_init(pdev, pf_qm, acc_vf_dev);
	if (ret) {
		kfree(acc_vf_dev);
		return ERR_PTR(-ENOMEM);
	}

1712
	acc_vf_dev->vf_id = vf_id + 1;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	acc_vf_dev->vf_vendor = pdev->vendor;
	acc_vf_dev->vf_device = pdev->device;
	acc_vf_dev->pf_dev = pf_dev;
	acc_vf_dev->vf_dev = vf_dev;
	acc_vf_dev->mig_ignore = false;
	mutex_init(&acc_vf_dev->reflock);

	vf_debugfs_init(acc_vf_dev);

	return acc_vf_dev;
}

static void acc_vf_remove(void *vendor_data)
{
	struct acc_vf_migration *acc_vf_dev = vendor_data;
	struct device *dev = &acc_vf_dev->vf_dev->dev;
	struct hisi_qm *qm = acc_vf_dev->vf_qm;

	vf_debugfs_exit(acc_vf_dev);

	devm_iounmap(dev, qm->io_base);

	kfree(qm);
	kfree(acc_vf_dev);
}

static struct vfio_pci_vendor_driver_ops  sec_vf_mig_ops = {
	.owner		= THIS_MODULE,
	.name		= "hisi_sec2",
	.probe		= acc_vf_probe,
	.remove		= acc_vf_remove,
	.device_ops	= &acc_vf_device_ops_node,
};

static struct vfio_pci_vendor_driver_ops  hpre_vf_mig_ops = {
	.owner		= THIS_MODULE,
	.name		= "hisi_hpre",
	.probe		= acc_vf_probe,
	.remove		= acc_vf_remove,
	.device_ops	= &acc_vf_device_ops_node,
};

static struct vfio_pci_vendor_driver_ops  zip_vf_mig_ops = {
	.owner		= THIS_MODULE,
	.name		= "hisi_zip",
	.probe		= acc_vf_probe,
	.remove		= acc_vf_remove,
	.device_ops	= &acc_vf_device_ops_node,
};

static int __init acc_vf_module_init(void)
{
	__vfio_pci_register_vendor_driver(&sec_vf_mig_ops);

	__vfio_pci_register_vendor_driver(&hpre_vf_mig_ops);

	__vfio_pci_register_vendor_driver(&zip_vf_mig_ops);

	return 0;
};

static void __exit acc_vf_module_exit(void)
{
	vfio_pci_unregister_vendor_driver(&acc_vf_device_ops_node);
};
module_init(acc_vf_module_init);
module_exit(acc_vf_module_exit);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Longfang Liu <liulongfang@huawei.com>");
MODULE_DESCRIPTION("HiSilicon Accelerator VF live migration driver");