tcp_fastopen.c 9.6 KB
Newer Older
H
Herbert Xu 已提交
1
#include <linux/crypto.h>
2
#include <linux/err.h>
Y
Yuchung Cheng 已提交
3 4
#include <linux/init.h>
#include <linux/kernel.h>
5 6 7 8 9 10
#include <linux/list.h>
#include <linux/tcp.h>
#include <linux/rcupdate.h>
#include <linux/rculist.h>
#include <net/inetpeer.h>
#include <net/tcp.h>
Y
Yuchung Cheng 已提交
11

12
int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
13 14 15 16 17

struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;

static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);

18 19 20 21 22 23 24 25 26 27 28 29 30 31
void tcp_fastopen_init_key_once(bool publish)
{
	static u8 key[TCP_FASTOPEN_KEY_LENGTH];

	/* tcp_fastopen_reset_cipher publishes the new context
	 * atomically, so we allow this race happening here.
	 *
	 * All call sites of tcp_fastopen_cookie_gen also check
	 * for a valid cookie, so this is an acceptable risk.
	 */
	if (net_get_random_once(key, sizeof(key)) && publish)
		tcp_fastopen_reset_cipher(key, sizeof(key));
}

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
static void tcp_fastopen_ctx_free(struct rcu_head *head)
{
	struct tcp_fastopen_context *ctx =
	    container_of(head, struct tcp_fastopen_context, rcu);
	crypto_free_cipher(ctx->tfm);
	kfree(ctx);
}

int tcp_fastopen_reset_cipher(void *key, unsigned int len)
{
	int err;
	struct tcp_fastopen_context *ctx, *octx;

	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);

	if (IS_ERR(ctx->tfm)) {
		err = PTR_ERR(ctx->tfm);
error:		kfree(ctx);
		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
		return err;
	}
	err = crypto_cipher_setkey(ctx->tfm, key, len);
	if (err) {
		pr_err("TCP: TFO cipher key error: %d\n", err);
		crypto_free_cipher(ctx->tfm);
		goto error;
	}
	memcpy(ctx->key, key, len);

	spin_lock(&tcp_fastopen_ctx_lock);

	octx = rcu_dereference_protected(tcp_fastopen_ctx,
				lockdep_is_held(&tcp_fastopen_ctx_lock));
	rcu_assign_pointer(tcp_fastopen_ctx, ctx);
	spin_unlock(&tcp_fastopen_ctx_lock);

	if (octx)
		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
	return err;
}

76 77
static bool __tcp_fastopen_cookie_gen(const void *path,
				      struct tcp_fastopen_cookie *foc)
78 79
{
	struct tcp_fastopen_context *ctx;
80
	bool ok = false;
81 82 83 84

	rcu_read_lock();
	ctx = rcu_dereference(tcp_fastopen_ctx);
	if (ctx) {
85
		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
86
		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
87
		ok = true;
88 89
	}
	rcu_read_unlock();
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	return ok;
}

/* Generate the fastopen cookie by doing aes128 encryption on both
 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
 * addresses. For the longer IPv6 addresses use CBC-MAC.
 *
 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
 */
static bool tcp_fastopen_cookie_gen(struct request_sock *req,
				    struct sk_buff *syn,
				    struct tcp_fastopen_cookie *foc)
{
	if (req->rsk_ops->family == AF_INET) {
		const struct iphdr *iph = ip_hdr(syn);

		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
		return __tcp_fastopen_cookie_gen(path, foc);
	}

#if IS_ENABLED(CONFIG_IPV6)
	if (req->rsk_ops->family == AF_INET6) {
		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
		struct tcp_fastopen_cookie tmp;

		if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
116
			struct in6_addr *buf = &tmp.addr;
117
			int i;
118 119 120 121 122 123 124 125

			for (i = 0; i < 4; i++)
				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
			return __tcp_fastopen_cookie_gen(buf, foc);
		}
	}
#endif
	return false;
126
}
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
 * queue this additional data / FIN.
 */
void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
		return;

	skb = skb_clone(skb, GFP_ATOMIC);
	if (!skb)
		return;

	skb_dst_drop(skb);
144 145 146 147 148 149 150 151
	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
	 * to avoid double counting.  Also, tcp_segs_in() expects
	 * skb->len to include the tcp_hdrlen.  Hence, it should
	 * be called before __skb_pull().
	 */
	tp->segs_in = 0;
	tcp_segs_in(tp, skb);
152
	__skb_pull(skb, tcp_hdrlen(skb));
153
	sk_forced_mem_schedule(sk, skb->truesize);
154 155
	skb_set_owner_r(skb, sk);

156 157 158
	TCP_SKB_CB(skb)->seq++;
	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;

159 160 161 162 163 164 165 166
	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
	__skb_queue_tail(&sk->sk_receive_queue, skb);
	tp->syn_data_acked = 1;

	/* u64_stats_update_begin(&tp->syncp) not needed here,
	 * as we certainly are not changing upper 32bit value (0)
	 */
	tp->bytes_received = skb->len;
167 168 169

	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
		tcp_fin(sk);
170 171
}

172 173 174 175
static struct sock *tcp_fastopen_create_child(struct sock *sk,
					      struct sk_buff *skb,
					      struct dst_entry *dst,
					      struct request_sock *req)
176
{
177
	struct tcp_sock *tp;
178 179
	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
	struct sock *child;
180
	bool own_req;
181 182 183 184 185

	req->num_retrans = 0;
	req->num_timeout = 0;
	req->sk = NULL;

186 187
	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
							 NULL, &own_req);
188
	if (!child)
189
		return NULL;
190

191 192 193
	spin_lock(&queue->fastopenq.lock);
	queue->fastopenq.qlen++;
	spin_unlock(&queue->fastopenq.lock);
194 195 196 197 198 199 200 201

	/* Initialize the child socket. Have to fix some values to take
	 * into account the child is a Fast Open socket and is created
	 * only out of the bits carried in the SYN packet.
	 */
	tp = tcp_sk(child);

	tp->fastopen_rsk = req;
202
	tcp_rsk(req)->tfo_listener = true;
203 204 205 206 207 208 209

	/* RFC1323: The window in SYN & SYN/ACK segments is never
	 * scaled. So correct it appropriately.
	 */
	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);

	/* Activate the retrans timer so that SYNACK can be retransmitted.
210
	 * The request socket is not added to the ehash
211 212 213 214 215
	 * because it's been added to the accept queue directly.
	 */
	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);

216
	atomic_set(&req->rsk_refcnt, 2);
217 218 219 220 221 222 223 224

	/* Now finish processing the fastopen child socket. */
	inet_csk(child)->icsk_af_ops->rebuild_header(child);
	tcp_init_congestion_control(child);
	tcp_mtup_init(child);
	tcp_init_metrics(child);
	tcp_init_buffer_space(child);

225 226 227 228 229
	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;

	tcp_fastopen_add_skb(child, skb);

	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
230
	tp->rcv_wup = tp->rcv_nxt;
231 232
	/* tcp_conn_request() is sending the SYNACK,
	 * and queues the child into listener accept queue.
233 234
	 */
	return child;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
}

static bool tcp_fastopen_queue_check(struct sock *sk)
{
	struct fastopen_queue *fastopenq;

	/* Make sure the listener has enabled fastopen, and we don't
	 * exceed the max # of pending TFO requests allowed before trying
	 * to validating the cookie in order to avoid burning CPU cycles
	 * unnecessarily.
	 *
	 * XXX (TFO) - The implication of checking the max_qlen before
	 * processing a cookie request is that clients can't differentiate
	 * between qlen overflow causing Fast Open to be disabled
	 * temporarily vs a server not supporting Fast Open at all.
	 */
251 252
	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
	if (fastopenq->max_qlen == 0)
253 254 255 256 257 258
		return false;

	if (fastopenq->qlen >= fastopenq->max_qlen) {
		struct request_sock *req1;
		spin_lock(&fastopenq->lock);
		req1 = fastopenq->rskq_rst_head;
259
		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
260 261
			__NET_INC_STATS(sock_net(sk),
					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
262
			spin_unlock(&fastopenq->lock);
263 264 265 266 267
			return false;
		}
		fastopenq->rskq_rst_head = req1->dl_next;
		fastopenq->qlen--;
		spin_unlock(&fastopenq->lock);
268
		reqsk_put(req1);
269 270 271 272
	}
	return true;
}

273 274 275 276
/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
 * cookie request (foc->len == 0).
 */
277 278 279 280
struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
			      struct request_sock *req,
			      struct tcp_fastopen_cookie *foc,
			      struct dst_entry *dst)
281
{
282 283
	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
284
	struct sock *child;
285

286
	if (foc->len == 0) /* Client requests a cookie */
287
		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
288

289 290 291 292
	if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
	      (syn_data || foc->len >= 0) &&
	      tcp_fastopen_queue_check(sk))) {
		foc->len = -1;
293
		return NULL;
294 295
	}

296 297 298
	if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
		goto fastopen;

299 300
	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
	    tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
301
	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
302 303
	    foc->len == valid_foc.len &&
	    !memcmp(foc->val, valid_foc.val, foc->len)) {
304 305 306 307 308 309 310 311
		/* Cookie is valid. Create a (full) child socket to accept
		 * the data in SYN before returning a SYN-ACK to ack the
		 * data. If we fail to create the socket, fall back and
		 * ack the ISN only but includes the same cookie.
		 *
		 * Note: Data-less SYN with valid cookie is allowed to send
		 * data in SYN_RECV state.
		 */
312
fastopen:
313 314
		child = tcp_fastopen_create_child(sk, skb, dst, req);
		if (child) {
315
			foc->len = -1;
316 317
			NET_INC_STATS(sock_net(sk),
				      LINUX_MIB_TCPFASTOPENPASSIVE);
318
			return child;
319
		}
320
		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
321
	} else if (foc->len > 0) /* Client presents an invalid cookie */
322
		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
323

324
	valid_foc.exp = foc->exp;
325
	*foc = valid_foc;
326
	return NULL;
327
}
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
			       struct tcp_fastopen_cookie *cookie)
{
	unsigned long last_syn_loss = 0;
	int syn_loss = 0;

	tcp_fastopen_cache_get(sk, mss, cookie, &syn_loss, &last_syn_loss);

	/* Recurring FO SYN losses: no cookie or data in SYN */
	if (syn_loss > 1 &&
	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
		cookie->len = -1;
		return false;
	}
	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) {
		cookie->len = -1;
		return true;
	}
	return cookie->len > 0;
}