提交 7b2dba22 编写于 作者: A Amador Pahim

avocado.tests Remove tests moved to avocado-misc-tests repo

These tests were moved to
https://github.com/avocado-framework/avocado-misc-testsSigned-off-by: NAmador Pahim <apahim@redhat.com>
上级 6d822091
#!/usr/bin/env python
import os
import shutil
from avocado import Test
from avocado import main
from avocado.utils import process
class Aiostress(Test):
"""
aio-stress is a basic utility for testing the Linux kernel AIO api
"""
def setUp(self):
"""
Build 'aiostress'.
Source:
https://oss.oracle.com/~mason/aio-stress/aio-stress.c
"""
aiostress_c = self.params.get('aiostress_c', default='aio-stress.c')
c_path = self.get_data_path(aiostress_c)
shutil.copy(c_path, self.srcdir)
os.chdir(self.srcdir)
# This requires libaio.h in order to build
process.run('gcc -Wall -laio -lpthread -o aio-stress %s' % aiostress_c)
def test(self):
"""
Run aiostress
"""
os.chdir(self.srcdir)
# aio-stress needs a filename (foo) to run tests on.
cmd = ('./aio-stress foo')
process.run(cmd)
if __name__ == "__main__":
main()
/*
* Copyright (c) 2007 Oracle. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
*
* aio-stress
*
* will open or create each file on the command line, and start a series
* of aio to it.
*
* aio is done in a rotating loop. first file1 gets 8 requests, then
* file2, then file3 etc. As each file finishes writing, it is switched
* to reads
*
* io buffers are aligned in case you want to do raw io
*
* compile with gcc -Wall -laio -lpthread -o aio-stress aio-stress.c
*
* run aio-stress -h to see the options
*
* Please mail Chris Mason (chris.mason@oracle.com) with bug reports or patches
*/
#define _FILE_OFFSET_BITS 64
#define PROG_VERSION "0.22"
#define NEW_GETEVENTS
#include <stdio.h>
#include <errno.h>
#include <assert.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/time.h>
#include <libaio.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>
#include <string.h>
#include <pthread.h>
#define IO_FREE 0
#define IO_PENDING 1
#define RUN_FOREVER -1
#ifndef O_DIRECT
#define O_DIRECT 040000 /* direct disk access hint */
#endif
enum {
WRITE,
READ,
RWRITE,
RREAD,
LAST_STAGE,
};
#define USE_MALLOC 0
#define USE_SHM 1
#define USE_SHMFS 2
/*
* various globals, these are effectively read only by the time the threads
* are started
*/
long stages = 0;
unsigned long page_size_mask;
int o_direct = 0;
int o_sync = 0;
int latency_stats = 0;
int completion_latency_stats = 0;
int io_iter = 8;
int iterations = RUN_FOREVER;
int max_io_submit = 0;
long rec_len = 64 * 1024;
int depth = 64;
int num_threads = 1;
int num_contexts = 1;
off_t context_offset = 2 * 1024 * 1024;
int fsync_stages = 1;
int use_shm = 0;
int shm_id;
char *unaligned_buffer = NULL;
char *aligned_buffer = NULL;
int padded_reclen = 0;
int stonewall = 1;
int verify = 0;
char *verify_buf = NULL;
int unlink_files = 0;
struct io_unit;
struct thread_info;
/* pthread mutexes and other globals for keeping the threads in sync */
pthread_cond_t stage_cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t stage_mutex = PTHREAD_MUTEX_INITIALIZER;
int threads_ending = 0;
int threads_starting = 0;
struct timeval global_stage_start_time;
struct thread_info *global_thread_info;
/*
* latencies during io_submit are measured, these are the
* granularities for deviations
*/
#define DEVIATIONS 6
int deviations[DEVIATIONS] = { 100, 250, 500, 1000, 5000, 10000 };
struct io_latency {
double max;
double min;
double total_io;
double total_lat;
double deviations[DEVIATIONS];
};
/* container for a series of operations to a file */
struct io_oper {
/* already open file descriptor, valid for whatever operation you want */
int fd;
/* starting byte of the operation */
off_t start;
/* ending byte of the operation */
off_t end;
/* size of the read/write buffer */
int reclen;
/* max number of pending requests before a wait is triggered */
int depth;
/* current number of pending requests */
int num_pending;
/* last error, zero if there were none */
int last_err;
/* total number of errors hit. */
int num_err;
/* read,write, random, etc */
int rw;
/* number of ios that will get sent to aio */
int total_ios;
/* number of ios we've already sent */
int started_ios;
/* last offset used in an io operation */
off_t last_offset;
/* stonewalled = 1 when we got cut off before submitting all our ios */
int stonewalled;
/* list management */
struct io_oper *next;
struct io_oper *prev;
struct timeval start_time;
char *file_name;
};
/* a single io, and all the tracking needed for it */
struct io_unit {
/* note, iocb must go first! */
struct iocb iocb;
/* pointer to parent io operation struct */
struct io_oper *io_oper;
/* aligned buffer */
char *buf;
/* size of the aligned buffer (record size) */
int buf_size;
/* state of this io unit (free, pending, done) */
int busy;
/* result of last operation */
long res;
struct io_unit *next;
struct timeval io_start_time; /* time of io_submit */
};
struct thread_info {
io_context_t io_ctx;
pthread_t tid;
/* allocated array of io_unit structs */
struct io_unit *ios;
/* list of io units available for io */
struct io_unit *free_ious;
/* number of io units in the ios array */
int num_global_ios;
/* number of io units in flight */
int num_global_pending;
/* preallocated array of iocb pointers, only used in run_active */
struct iocb **iocbs;
/* preallocated array of events */
struct io_event *events;
/* size of the events array */
int num_global_events;
/* latency stats for io_submit */
struct io_latency io_submit_latency;
/* list of operations still in progress, and of those finished */
struct io_oper *active_opers;
struct io_oper *finished_opers;
/* number of files this thread is doing io on */
int num_files;
/* how much io this thread did in the last stage */
double stage_mb_trans;
/* latency completion stats i/o time from io_submit until io_getevents */
struct io_latency io_completion_latency;
};
/*
* return seconds between start_tv and stop_tv in double precision
*/
static double time_since(struct timeval *start_tv, struct timeval *stop_tv)
{
double sec, usec;
double ret;
sec = stop_tv->tv_sec - start_tv->tv_sec;
usec = stop_tv->tv_usec - start_tv->tv_usec;
if (sec > 0 && usec < 0) {
sec--;
usec += 1000000;
}
ret = sec + usec / (double)1000000;
if (ret < 0)
ret = 0;
return ret;
}
/*
* return seconds between start_tv and now in double precision
*/
static double time_since_now(struct timeval *start_tv)
{
struct timeval stop_time;
gettimeofday(&stop_time, NULL);
return time_since(start_tv, &stop_time);
}
/*
* Add latency info to latency struct
*/
static void calc_latency(struct timeval *start_tv, struct timeval *stop_tv,
struct io_latency *lat)
{
double delta;
int i;
delta = time_since(start_tv, stop_tv);
delta = delta * 1000;
if (delta > lat->max)
lat->max = delta;
if (!lat->min || delta < lat->min)
lat->min = delta;
lat->total_io++;
lat->total_lat += delta;
for (i = 0 ; i < DEVIATIONS ; i++) {
if (delta < deviations[i]) {
lat->deviations[i]++;
break;
}
}
}
static void oper_list_add(struct io_oper *oper, struct io_oper **list)
{
if (!*list) {
*list = oper;
oper->prev = oper->next = oper;
return;
}
oper->prev = (*list)->prev;
oper->next = *list;
(*list)->prev->next = oper;
(*list)->prev = oper;
return;
}
static void oper_list_del(struct io_oper *oper, struct io_oper **list)
{
if ((*list)->next == (*list)->prev && *list == (*list)->next) {
*list = NULL;
return;
}
oper->prev->next = oper->next;
oper->next->prev = oper->prev;
if (*list == oper)
*list = oper->next;
}
/* worker func to check error fields in the io unit */
static int check_finished_io(struct io_unit *io) {
int i;
if (io->res != io->buf_size) {
struct stat s;
fstat(io->io_oper->fd, &s);
/*
* If file size is large enough for the read, then this short
* read is an error.
*/
if ((io->io_oper->rw == READ || io->io_oper->rw == RREAD) &&
s.st_size > (io->iocb.u.c.offset + io->res)) {
fprintf(stderr, "io err %lu (%s) op %d, off %Lu size %d\n",
io->res, strerror(-io->res), io->iocb.aio_lio_opcode,
io->iocb.u.c.offset, io->buf_size);
io->io_oper->last_err = io->res;
io->io_oper->num_err++;
return -1;
}
}
if (verify && io->io_oper->rw == READ) {
if (memcmp(io->buf, verify_buf, io->io_oper->reclen)) {
fprintf(stderr, "verify error, file %s offset %Lu contents (offset:bad:good):\n",
io->io_oper->file_name, io->iocb.u.c.offset);
for (i = 0 ; i < io->io_oper->reclen ; i++) {
if (io->buf[i] != verify_buf[i]) {
fprintf(stderr, "%d:%c:%c ", i, io->buf[i], verify_buf[i]);
}
}
fprintf(stderr, "\n");
}
}
return 0;
}
/* worker func to check the busy bits and get an io unit ready for use */
static int grab_iou(struct io_unit *io, struct io_oper *oper) {
if (io->busy == IO_PENDING)
return -1;
io->busy = IO_PENDING;
io->res = 0;
io->io_oper = oper;
return 0;
}
char *stage_name(int rw) {
switch(rw) {
case WRITE:
return "write";
case READ:
return "read";
case RWRITE:
return "random write";
case RREAD:
return "random read";
}
return "unknown";
}
static inline double oper_mb_trans(struct io_oper *oper) {
return ((double)oper->started_ios * (double)oper->reclen) /
(double)(1024 * 1024);
}
static void print_time(struct io_oper *oper) {
double runtime;
double tput;
double mb;
runtime = time_since_now(&oper->start_time);
mb = oper_mb_trans(oper);
tput = mb / runtime;
fprintf(stderr, "%s on %s (%.2f MB/s) %.2f MB in %.2fs\n",
stage_name(oper->rw), oper->file_name, tput, mb, runtime);
}
static void print_lat(char *str, struct io_latency *lat) {
double avg = lat->total_lat / lat->total_io;
int i;
double total_counted = 0;
fprintf(stderr, "%s min %.2f avg %.2f max %.2f\n\t",
str, lat->min, avg, lat->max);
for (i = 0 ; i < DEVIATIONS ; i++) {
fprintf(stderr, " %.0f < %d", lat->deviations[i], deviations[i]);
total_counted += lat->deviations[i];
}
if (total_counted && lat->total_io - total_counted)
fprintf(stderr, " < %.0f", lat->total_io - total_counted);
fprintf(stderr, "\n");
memset(lat, 0, sizeof(*lat));
}
static void print_latency(struct thread_info *t)
{
struct io_latency *lat = &t->io_submit_latency;
print_lat("latency", lat);
}
static void print_completion_latency(struct thread_info *t)
{
struct io_latency *lat = &t->io_completion_latency;
print_lat("completion latency", lat);
}
/*
* updates the fields in the io operation struct that belongs to this
* io unit, and make the io unit reusable again
*/
void finish_io(struct thread_info *t, struct io_unit *io, long result,
struct timeval *tv_now) {
struct io_oper *oper = io->io_oper;
calc_latency(&io->io_start_time, tv_now, &t->io_completion_latency);
io->res = result;
io->busy = IO_FREE;
io->next = t->free_ious;
t->free_ious = io;
oper->num_pending--;
t->num_global_pending--;
check_finished_io(io);
if (oper->num_pending == 0 &&
(oper->started_ios == oper->total_ios || oper->stonewalled))
{
print_time(oper);
}
}
int read_some_events(struct thread_info *t) {
struct io_unit *event_io;
struct io_event *event;
int nr;
int i;
int min_nr = io_iter;
struct timeval stop_time;
if (t->num_global_pending < io_iter)
min_nr = t->num_global_pending;
#ifdef NEW_GETEVENTS
nr = io_getevents(t->io_ctx, min_nr, t->num_global_events, t->events,NULL);
#else
nr = io_getevents(t->io_ctx, t->num_global_events, t->events, NULL);
#endif
if (nr <= 0)
return nr;
gettimeofday(&stop_time, NULL);
for (i = 0 ; i < nr ; i++) {
event = t->events + i;
event_io = (struct io_unit *)((unsigned long)event->obj);
finish_io(t, event_io, event->res, &stop_time);
}
return nr;
}
/*
* finds a free io unit, waiting for pending requests if required. returns
* null if none could be found
*/
static struct io_unit *find_iou(struct thread_info *t, struct io_oper *oper)
{
struct io_unit *event_io;
int nr;
retry:
if (t->free_ious) {
event_io = t->free_ious;
t->free_ious = t->free_ious->next;
if (grab_iou(event_io, oper)) {
fprintf(stderr, "io unit on free list but not free\n");
abort();
}
return event_io;
}
nr = read_some_events(t);
if (nr > 0)
goto retry;
else
fprintf(stderr, "no free ious after read_some_events\n");
return NULL;
}
/*
* wait for all pending requests for this io operation to finish
*/
static int io_oper_wait(struct thread_info *t, struct io_oper *oper) {
struct io_event event;
struct io_unit *event_io;
if (oper == NULL) {
return 0;
}
if (oper->num_pending == 0)
goto done;
/* this func is not speed sensitive, no need to go wild reading
* more than one event at a time
*/
#ifdef NEW_GETEVENTS
while(io_getevents(t->io_ctx, 1, 1, &event, NULL) > 0) {
#else
while(io_getevents(t->io_ctx, 1, &event, NULL) > 0) {
#endif
struct timeval tv_now;
event_io = (struct io_unit *)((unsigned long)event.obj);
gettimeofday(&tv_now, NULL);
finish_io(t, event_io, event.res, &tv_now);
if (oper->num_pending == 0)
break;
}
done:
if (oper->num_err) {
fprintf(stderr, "%u errors on oper, last %u\n",
oper->num_err, oper->last_err);
}
return 0;
}
off_t random_byte_offset(struct io_oper *oper) {
off_t num;
off_t rand_byte = oper->start;
off_t range;
off_t offset = 1;
range = (oper->end - oper->start) / (1024 * 1024);
if ((page_size_mask+1) > (1024 * 1024))
offset = (page_size_mask+1) / (1024 * 1024);
if (range < offset)
range = 0;
else
range -= offset;
/* find a random mb offset */
num = 1 + (int)((double)range * rand() / (RAND_MAX + 1.0 ));
rand_byte += num * 1024 * 1024;
/* find a random byte offset */
num = 1 + (int)((double)(1024 * 1024) * rand() / (RAND_MAX + 1.0));
/* page align */
num = (num + page_size_mask) & ~page_size_mask;
rand_byte += num;
if (rand_byte + oper->reclen > oper->end) {
rand_byte -= oper->reclen;
}
return rand_byte;
}
/*
* build an aio iocb for an operation, based on oper->rw and the
* last offset used. This finds the struct io_unit that will be attached
* to the iocb, and things are ready for submission to aio after this
* is called.
*
* returns null on error
*/
static struct io_unit *build_iocb(struct thread_info *t, struct io_oper *oper)
{
struct io_unit *io;
off_t rand_byte;
io = find_iou(t, oper);
if (!io) {
fprintf(stderr, "unable to find io unit\n");
return NULL;
}
switch(oper->rw) {
case WRITE:
io_prep_pwrite(&io->iocb,oper->fd, io->buf, oper->reclen,
oper->last_offset);
oper->last_offset += oper->reclen;
break;
case READ:
io_prep_pread(&io->iocb,oper->fd, io->buf, oper->reclen,
oper->last_offset);
oper->last_offset += oper->reclen;
break;
case RREAD:
rand_byte = random_byte_offset(oper);
oper->last_offset = rand_byte;
io_prep_pread(&io->iocb,oper->fd, io->buf, oper->reclen,
rand_byte);
break;
case RWRITE:
rand_byte = random_byte_offset(oper);
oper->last_offset = rand_byte;
io_prep_pwrite(&io->iocb,oper->fd, io->buf, oper->reclen,
rand_byte);
break;
}
return io;
}
/*
* wait for any pending requests, and then free all ram associated with
* an operation. returns the last error the operation hit (zero means none)
*/
static int
finish_oper(struct thread_info *t, struct io_oper *oper)
{
unsigned long last_err;
io_oper_wait(t, oper);
last_err = oper->last_err;
if (oper->num_pending > 0) {
fprintf(stderr, "oper num_pending is %d\n", oper->num_pending);
}
close(oper->fd);
free(oper);
return last_err;
}
/*
* allocates an io operation and fills in all the fields. returns
* null on error
*/
static struct io_oper *
create_oper(int fd, int rw, off_t start, off_t end, int reclen, int depth,
int iter, char *file_name)
{
struct io_oper *oper;
oper = malloc (sizeof(*oper));
if (!oper) {
fprintf(stderr, "unable to allocate io oper\n");
return NULL;
}
memset(oper, 0, sizeof(*oper));
oper->depth = depth;
oper->start = start;
oper->end = end;
oper->last_offset = oper->start;
oper->fd = fd;
oper->reclen = reclen;
oper->rw = rw;
oper->total_ios = (oper->end - oper->start) / oper->reclen;
oper->file_name = file_name;
return oper;
}
/*
* does setup on num_ios worth of iocbs, but does not actually
* start any io
*/
int build_oper(struct thread_info *t, struct io_oper *oper, int num_ios,
struct iocb **my_iocbs)
{
int i;
struct io_unit *io;
if (oper->started_ios == 0)
gettimeofday(&oper->start_time, NULL);
if (num_ios == 0)
num_ios = oper->total_ios;
if ((oper->started_ios + num_ios) > oper->total_ios)
num_ios = oper->total_ios - oper->started_ios;
for( i = 0 ; i < num_ios ; i++) {
io = build_iocb(t, oper);
if (!io) {
return -1;
}
my_iocbs[i] = &io->iocb;
}
return num_ios;
}
/*
* runs through the iocbs in the array provided and updates
* counters in the associated oper struct
*/
static void update_iou_counters(struct iocb **my_iocbs, int nr,
struct timeval *tv_now)
{
struct io_unit *io;
int i;
for (i = 0 ; i < nr ; i++) {
io = (struct io_unit *)(my_iocbs[i]);
io->io_oper->num_pending++;
io->io_oper->started_ios++;
io->io_start_time = *tv_now; /* set time of io_submit */
}
}
/* starts some io for a given file, returns zero if all went well */
int run_built(struct thread_info *t, int num_ios, struct iocb **my_iocbs)
{
int ret;
struct timeval start_time;
struct timeval stop_time;
resubmit:
gettimeofday(&start_time, NULL);
ret = io_submit(t->io_ctx, num_ios, my_iocbs);
gettimeofday(&stop_time, NULL);
calc_latency(&start_time, &stop_time, &t->io_submit_latency);
if (ret != num_ios) {
/* some ios got through */
if (ret > 0) {
update_iou_counters(my_iocbs, ret, &stop_time);
my_iocbs += ret;
t->num_global_pending += ret;
num_ios -= ret;
}
/*
* we've used all the requests allocated in aio_init, wait and
* retry
*/
if (ret > 0 || ret == -EAGAIN) {
int old_ret = ret;
if ((ret = read_some_events(t) > 0)) {
goto resubmit;
} else {
fprintf(stderr, "ret was %d and now is %d\n", ret, old_ret);
abort();
}
}
fprintf(stderr, "ret %d (%s) on io_submit\n", ret, strerror(-ret));
return -1;
}
update_iou_counters(my_iocbs, ret, &stop_time);
t->num_global_pending += ret;
return 0;
}
/*
* changes oper->rw to the next in a command sequence, or returns zero
* to say this operation is really, completely done for
*/
static int restart_oper(struct io_oper *oper) {
int new_rw = 0;
if (oper->last_err)
return 0;
/* this switch falls through */
switch(oper->rw) {
case WRITE:
if (stages & (1 << READ))
new_rw = READ;
case READ:
if (!new_rw && stages & (1 << RWRITE))
new_rw = RWRITE;
case RWRITE:
if (!new_rw && stages & (1 << RREAD))
new_rw = RREAD;
}
if (new_rw) {
oper->started_ios = 0;
oper->last_offset = oper->start;
oper->stonewalled = 0;
/*
* we're restarting an operation with pending requests, so the
* timing info won't be printed by finish_io. Printing it here
*/
if (oper->num_pending)
print_time(oper);
oper->rw = new_rw;
return 1;
}
return 0;
}
static int oper_runnable(struct io_oper *oper) {
struct stat buf;
int ret;
/* first context is always runnable, if started_ios > 0, no need to
* redo the calculations
*/
if (oper->started_ios || oper->start == 0)
return 1;
/*
* only the sequential phases force delays in starting */
if (oper->rw >= RWRITE)
return 1;
ret = fstat(oper->fd, &buf);
if (ret < 0) {
perror("fstat");
exit(1);
}
if (S_ISREG(buf.st_mode) && buf.st_size < oper->start)
return 0;
return 1;
}
/*
* runs through all the io operations on the active list, and starts
* a chunk of io on each. If any io operations are completely finished,
* it either switches them to the next stage or puts them on the
* finished list.
*
* this function stops after max_io_submit iocbs are sent down the
* pipe, even if it has not yet touched all the operations on the
* active list. Any operations that have finished are moved onto
* the finished_opers list.
*/
static int run_active_list(struct thread_info *t,
int io_iter,
int max_io_submit)
{
struct io_oper *oper;
struct io_oper *built_opers = NULL;
struct iocb **my_iocbs = t->iocbs;
int ret = 0;
int num_built = 0;
oper = t->active_opers;
while(oper) {
if (!oper_runnable(oper)) {
oper = oper->next;
if (oper == t->active_opers)
break;
continue;
}
ret = build_oper(t, oper, io_iter, my_iocbs);
if (ret >= 0) {
my_iocbs += ret;
num_built += ret;
oper_list_del(oper, &t->active_opers);
oper_list_add(oper, &built_opers);
oper = t->active_opers;
if (num_built + io_iter > max_io_submit)
break;
} else
break;
}
if (num_built) {
ret = run_built(t, num_built, t->iocbs);
if (ret < 0) {
fprintf(stderr, "error %d on run_built\n", ret);
exit(1);
}
while(built_opers) {
oper = built_opers;
oper_list_del(oper, &built_opers);
oper_list_add(oper, &t->active_opers);
if (oper->started_ios == oper->total_ios) {
oper_list_del(oper, &t->active_opers);
oper_list_add(oper, &t->finished_opers);
}
}
}
return 0;
}
void drop_shm() {
int ret;
struct shmid_ds ds;
if (use_shm != USE_SHM)
return;
ret = shmctl(shm_id, IPC_RMID, &ds);
if (ret) {
perror("shmctl IPC_RMID");
}
}
void aio_setup(io_context_t *io_ctx, int n)
{
int res = io_queue_init(n, io_ctx);
if (res != 0) {
fprintf(stderr, "io_queue_setup(%d) returned %d (%s)\n",
n, res, strerror(-res));
exit(3);
}
}
/*
* allocate io operation and event arrays for a given thread
*/
int setup_ious(struct thread_info *t,
int num_files, int depth,
int reclen, int max_io_submit) {
int i;
size_t bytes = num_files * depth * sizeof(*t->ios);
t->ios = malloc(bytes);
if (!t->ios) {
fprintf(stderr, "unable to allocate io units\n");
return -1;
}
memset(t->ios, 0, bytes);
for (i = 0 ; i < depth * num_files; i++) {
t->ios[i].buf = aligned_buffer;
aligned_buffer += padded_reclen;
t->ios[i].buf_size = reclen;
if (verify)
memset(t->ios[i].buf, 'b', reclen);
else
memset(t->ios[i].buf, 0, reclen);
t->ios[i].next = t->free_ious;
t->free_ious = t->ios + i;
}
if (verify) {
verify_buf = aligned_buffer;
memset(verify_buf, 'b', reclen);
}
t->iocbs = malloc(sizeof(struct iocb *) * max_io_submit);
if (!t->iocbs) {
fprintf(stderr, "unable to allocate iocbs\n");
goto free_buffers;
}
memset(t->iocbs, 0, max_io_submit * sizeof(struct iocb *));
t->events = malloc(sizeof(struct io_event) * depth * num_files);
if (!t->events) {
fprintf(stderr, "unable to allocate ram for events\n");
goto free_buffers;
}
memset(t->events, 0, num_files * sizeof(struct io_event)*depth);
t->num_global_ios = num_files * depth;
t->num_global_events = t->num_global_ios;
return 0;
free_buffers:
if (t->ios)
free(t->ios);
if (t->iocbs)
free(t->iocbs);
if (t->events)
free(t->events);
return -1;
}
/*
* The buffers used for file data are allocated as a single big
* malloc, and then each thread and operation takes a piece and uses
* that for file data. This lets us do a large shm or bigpages alloc
* and without trying to find a special place in each thread to map the
* buffers to
*/
int setup_shared_mem(int num_threads, int num_files, int depth,
int reclen, int max_io_submit)
{
char *p = NULL;
size_t total_ram;
padded_reclen = (reclen + page_size_mask) / (page_size_mask+1);
padded_reclen = padded_reclen * (page_size_mask+1);
total_ram = num_files * depth * padded_reclen + num_threads;
if (verify)
total_ram += padded_reclen;
if (use_shm == USE_MALLOC) {
p = malloc(total_ram + page_size_mask);
} else if (use_shm == USE_SHM) {
shm_id = shmget(IPC_PRIVATE, total_ram, IPC_CREAT | 0700);
if (shm_id < 0) {
perror("shmget");
drop_shm();
goto free_buffers;
}
p = shmat(shm_id, (char *)0x50000000, 0);
if ((long)p == -1) {
perror("shmat");
goto free_buffers;
}
/* won't really be dropped until we shmdt */
drop_shm();
} else if (use_shm == USE_SHMFS) {
char mmap_name[16]; /* /dev/shm/ + null + XXXXXX */
int fd;
strcpy(mmap_name, "/dev/shm/XXXXXX");
fd = mkstemp(mmap_name);
if (fd < 0) {
perror("mkstemp");
goto free_buffers;
}
unlink(mmap_name);
ftruncate(fd, total_ram);
shm_id = fd;
p = mmap((char *)0x50000000, total_ram,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (p == MAP_FAILED) {
perror("mmap");
goto free_buffers;
}
}
if (!p) {
fprintf(stderr, "unable to allocate buffers\n");
goto free_buffers;
}
unaligned_buffer = p;
p = (char*)((intptr_t) (p + page_size_mask) & ~page_size_mask);
aligned_buffer = p;
return 0;
free_buffers:
drop_shm();
if (unaligned_buffer)
free(unaligned_buffer);
return -1;
}
/*
* runs through all the thread_info structs and calculates a combined
* throughput
*/
void global_thread_throughput(struct thread_info *t, char *this_stage) {
int i;
double runtime = time_since_now(&global_stage_start_time);
double total_mb = 0;
double min_trans = 0;
for (i = 0 ; i < num_threads ; i++) {
total_mb += global_thread_info[i].stage_mb_trans;
if (!min_trans || t->stage_mb_trans < min_trans)
min_trans = t->stage_mb_trans;
}
if (total_mb) {
fprintf(stderr, "%s throughput (%.2f MB/s) ", this_stage,
total_mb / runtime);
fprintf(stderr, "%.2f MB in %.2fs", total_mb, runtime);
if (stonewall)
fprintf(stderr, " min transfer %.2fMB", min_trans);
fprintf(stderr, "\n");
}
}
/* this is the meat of the state machine. There is a list of
* active operations structs, and as each one finishes the required
* io it is moved to a list of finished operations. Once they have
* all finished whatever stage they were in, they are given the chance
* to restart and pick a different stage (read/write/random read etc)
*
* various timings are printed in between the stages, along with
* thread synchronization if there are more than one threads.
*/
int worker(struct thread_info *t)
{
struct io_oper *oper;
char *this_stage = NULL;
struct timeval stage_time;
int status = 0;
int iteration = 0;
int cnt;
aio_setup(&t->io_ctx, 512);
restart:
if (num_threads > 1) {
pthread_mutex_lock(&stage_mutex);
threads_starting++;
if (threads_starting == num_threads) {
threads_ending = 0;
gettimeofday(&global_stage_start_time, NULL);
pthread_cond_broadcast(&stage_cond);
}
while (threads_starting != num_threads)
pthread_cond_wait(&stage_cond, &stage_mutex);
pthread_mutex_unlock(&stage_mutex);
}
if (t->active_opers) {
this_stage = stage_name(t->active_opers->rw);
gettimeofday(&stage_time, NULL);
t->stage_mb_trans = 0;
}
cnt = 0;
/* first we send everything through aio */
while(t->active_opers && (cnt < iterations || iterations == RUN_FOREVER)) {
if (stonewall && threads_ending) {
oper = t->active_opers;
oper->stonewalled = 1;
oper_list_del(oper, &t->active_opers);
oper_list_add(oper, &t->finished_opers);
} else {
run_active_list(t, io_iter, max_io_submit);
}
cnt++;
}
if (latency_stats)
print_latency(t);
if (completion_latency_stats)
print_completion_latency(t);
/* then we wait for all the operations to finish */
oper = t->finished_opers;
do {
if (!oper)
break;
io_oper_wait(t, oper);
oper = oper->next;
} while(oper != t->finished_opers);
/* then we do an fsync to get the timing for any future operations
* right, and check to see if any of these need to get restarted
*/
oper = t->finished_opers;
while(oper) {
if (fsync_stages)
fsync(oper->fd);
t->stage_mb_trans += oper_mb_trans(oper);
if (restart_oper(oper)) {
oper_list_del(oper, &t->finished_opers);
oper_list_add(oper, &t->active_opers);
oper = t->finished_opers;
continue;
}
oper = oper->next;
if (oper == t->finished_opers)
break;
}
if (t->stage_mb_trans && t->num_files > 0) {
double seconds = time_since_now(&stage_time);
fprintf(stderr, "thread %ld %s totals (%.2f MB/s) %.2f MB in %.2fs\n",
t - global_thread_info, this_stage, t->stage_mb_trans/seconds,
t->stage_mb_trans, seconds);
}
if (num_threads > 1) {
pthread_mutex_lock(&stage_mutex);
threads_ending++;
if (threads_ending == num_threads) {
threads_starting = 0;
pthread_cond_broadcast(&stage_cond);
global_thread_throughput(t, this_stage);
}
while(threads_ending != num_threads)
pthread_cond_wait(&stage_cond, &stage_mutex);
pthread_mutex_unlock(&stage_mutex);
}
/* someone got restarted, go back to the beginning */
if (t->active_opers && (cnt < iterations || iterations == RUN_FOREVER)) {
iteration++;
goto restart;
}
/* finally, free all the ram */
while(t->finished_opers) {
oper = t->finished_opers;
oper_list_del(oper, &t->finished_opers);
status = finish_oper(t, oper);
}
if (t->num_global_pending) {
fprintf(stderr, "global num pending is %d\n", t->num_global_pending);
}
io_queue_release(t->io_ctx);
return status;
}
typedef void * (*start_routine)(void *);
int run_workers(struct thread_info *t, int num_threads)
{
int ret;
int thread_ret;
int i;
for(i = 0 ; i < num_threads ; i++) {
ret = pthread_create(&t[i].tid, NULL, (start_routine)worker, t + i);
if (ret) {
perror("pthread_create");
exit(1);
}
}
for(i = 0 ; i < num_threads ; i++) {
ret = pthread_join(t[i].tid, (void *)&thread_ret);
if (ret) {
perror("pthread_join");
exit(1);
}
}
return 0;
}
off_t parse_size(char *size_arg, off_t mult) {
char c;
int num;
off_t ret;
c = size_arg[strlen(size_arg) - 1];
if (c > '9') {
size_arg[strlen(size_arg) - 1] = '\0';
}
num = atoi(size_arg);
switch(c) {
case 'g':
case 'G':
mult = 1024 * 1024 * 1024;
break;
case 'm':
case 'M':
mult = 1024 * 1024;
break;
case 'k':
case 'K':
mult = 1024;
break;
case 'b':
case 'B':
mult = 1;
break;
}
ret = mult * num;
return ret;
}
void print_usage(void) {
printf("usage: aio-stress [-s size] [-r size] [-a size] [-d num] [-b num]\n");
printf(" [-i num] [-t num] [-c num] [-C size] [-LlmnxhOSuv]\n");
printf(" [-I num] [-o num] file1 [file2 ...]\n");
printf("\t-a size in KB at which to align buffers\n");
printf("\t-b max number of iocbs to give io_submit at once\n");
printf("\t-c number of io contexts per file\n");
printf("\t-C offset between contexts, default 2MB\n");
printf("\t-s size in MB of the test file(s), default 1024MB\n");
printf("\t-r record size in KB used for each io, default 64KB\n");
printf("\t-d number of pending aio requests for each file, default 64\n");
printf("\t-i number of ios per file sent before switching\n\t to the next file, default 8\n");
printf("\t-I total number of ayncs IOs the program will run, default is run until Cntl-C\n");
printf("\t-O Use O_DIRECT (not available in 2.4 kernels),\n");
printf("\t-S Use O_SYNC for writes\n");
printf("\t-o add an operation to the list: write=0, read=1,\n");
printf("\t random write=2, random read=3.\n");
printf("\t repeat -o to specify multiple ops: -o 0 -o 1 etc.\n");
printf("\t-m shm use ipc shared memory for io buffers instead of malloc\n");
printf("\t-m shmfs mmap a file in /dev/shm for io buffers\n");
printf("\t-n no fsyncs between write stage and read stage\n");
printf("\t-l print io_submit latencies after each stage\n");
printf("\t-L print io completion latencies after each stage\n");
printf("\t-t number of threads to run\n");
printf("\t-u unlink files after completion\n");
printf("\t-v verification of bytes written\n");
printf("\t-x turn off thread stonewalling\n");
printf("\t-h this message\n");
printf("\n\t the size options (-a -s and -r) allow modifiers -s 400{k,m,g}\n");
printf("\t translate to 400KB, 400MB and 400GB\n");
printf("version %s\n", PROG_VERSION);
}
int main(int ac, char **av)
{
int rwfd;
int i;
int j;
int c;
off_t file_size = 1 * 1024 * 1024 * 1024;
int first_stage = WRITE;
struct io_oper *oper;
int status = 0;
int num_files = 0;
int open_fds = 0;
struct thread_info *t;
page_size_mask = getpagesize() - 1;
while(1) {
c = getopt(ac, av, "a:b:c:C:m:s:r:d:i:I:o:t:lLnhOSxvu");
if (c < 0)
break;
switch(c) {
case 'a':
page_size_mask = parse_size(optarg, 1024);
page_size_mask--;
break;
case 'c':
num_contexts = atoi(optarg);
break;
case 'C':
context_offset = parse_size(optarg, 1024 * 1024);
case 'b':
max_io_submit = atoi(optarg);
break;
case 's':
file_size = parse_size(optarg, 1024 * 1024);
break;
case 'd':
depth = atoi(optarg);
break;
case 'r':
rec_len = parse_size(optarg, 1024);
break;
case 'i':
io_iter = atoi(optarg);
break;
case 'I':
iterations = atoi(optarg);
break;
case 'n':
fsync_stages = 0;
break;
case 'l':
latency_stats = 1;
break;
case 'L':
completion_latency_stats = 1;
break;
case 'm':
if (!strcmp(optarg, "shm")) {
fprintf(stderr, "using ipc shm\n");
use_shm = USE_SHM;
} else if (!strcmp(optarg, "shmfs")) {
fprintf(stderr, "using /dev/shm for buffers\n");
use_shm = USE_SHMFS;
}
break;
case 'o':
i = atoi(optarg);
stages |= 1 << i;
fprintf(stderr, "adding stage %s\n", stage_name(i));
break;
case 'O':
o_direct = O_DIRECT;
break;
case 'S':
o_sync = O_SYNC;
break;
case 't':
num_threads = atoi(optarg);
break;
case 'x':
stonewall = 0;
break;
case 'u':
unlink_files = 1;
break;
case 'v':
verify = 1;
break;
case 'h':
default:
print_usage();
exit(1);
}
}
/*
* make sure we don't try to submit more ios than we have allocated
* memory for
*/
if (depth < io_iter) {
io_iter = depth;
fprintf(stderr, "dropping io_iter to %d\n", io_iter);
}
if (optind >= ac) {
print_usage();
exit(1);
}
num_files = ac - optind;
if (num_threads > (num_files * num_contexts)) {
num_threads = num_files * num_contexts;
fprintf(stderr, "dropping thread count to the number of contexts %d\n",
num_threads);
}
t = malloc(num_threads * sizeof(*t));
if (!t) {
perror("malloc");
exit(1);
}
global_thread_info = t;
/* by default, allow a huge number of iocbs to be sent towards
* io_submit
*/
if (!max_io_submit)
max_io_submit = num_files * io_iter * num_contexts;
/*
* make sure we don't try to submit more ios than max_io_submit allows
*/
if (max_io_submit < io_iter) {
io_iter = max_io_submit;
fprintf(stderr, "dropping io_iter to %d\n", io_iter);
}
if (!stages) {
stages = (1 << WRITE) | (1 << READ) | (1 << RREAD) | (1 << RWRITE);
} else {
for (i = 0 ; i < LAST_STAGE; i++) {
if (stages & (1 << i)) {
first_stage = i;
fprintf(stderr, "starting with %s\n", stage_name(i));
break;
}
}
}
if (file_size < num_contexts * context_offset) {
fprintf(stderr, "file size %lu too small for %d contexts\n",
file_size, num_contexts);
exit(1);
}
fprintf(stderr, "file size %luMB, record size %luKB, depth %d, ios per iteration %d\n",
file_size / (1024 * 1024), rec_len / 1024, depth, io_iter);
fprintf(stderr, "max io_submit %d, buffer alignment set to %luKB\n",
max_io_submit, (page_size_mask + 1)/1024);
fprintf(stderr, "threads %d files %d contexts %d context offset %luMB verification %s\n",
num_threads, num_files, num_contexts,
context_offset / (1024 * 1024), verify ? "on" : "off");
/* open all the files and do any required setup for them */
for (i = optind ; i < ac ; i++) {
int thread_index;
for (j = 0 ; j < num_contexts ; j++) {
thread_index = open_fds % num_threads;
open_fds++;
rwfd = open(av[i], O_CREAT | O_RDWR | o_direct | o_sync, 0600);
assert(rwfd != -1);
oper = create_oper(rwfd, first_stage, j * context_offset,
file_size - j * context_offset, rec_len,
depth, io_iter, av[i]);
if (!oper) {
fprintf(stderr, "error in create_oper\n");
exit(-1);
}
oper_list_add(oper, &t[thread_index].active_opers);
t[thread_index].num_files++;
}
}
if (setup_shared_mem(num_threads, num_files * num_contexts,
depth, rec_len, max_io_submit))
{
exit(1);
}
for (i = 0 ; i < num_threads ; i++) {
if (setup_ious(&t[i], t[i].num_files, depth, rec_len, max_io_submit))
exit(1);
}
if (num_threads > 1){
printf("Running multi thread version num_threads:%d\n", num_threads);
run_workers(t, num_threads);
} else {
printf("Running single thread version \n");
status = worker(t);
}
if (unlink_files) {
for (i = optind ; i < ac ; i++) {
printf("Cleaning up file %s \n", av[i]);
unlink(av[i]);
}
}
if (status) {
exit(1);
}
return status;
}
#!/usr/bin/env python
import os
from avocado import Test
from avocado import main
from avocado.utils import archive
from avocado.utils import build
from avocado.utils import process
class Bonnie(Test):
"""
Bonnie++ is a benchmark suite that is aimed at performing a number
of simple tests of hard drive and file system performance.
"""
def setUp(self):
"""
Build bonnie++
Source:
http://www.coker.com.au/bonnie++/experimental/bonnie++-1.96.tgz
"""
bonnie_tarball = self.params.get('bonnie_tarball',
default='bonnie++-1.96.tgz')
tarball_path = self.get_data_path(bonnie_tarball)
archive.extract(tarball_path, self.srcdir)
bonnie_version = bonnie_tarball.split('.tgz')[0]
self.srcdir = os.path.join(self.srcdir, bonnie_version)
os.chdir(self.srcdir)
process.run('./configure')
build.make(self.srcdir)
def test(self):
"""
Run 'bonnie' with its arguments
"""
scratch_dir = self.params.get('scratch-dir', default=self.srcdir)
uid_to_use = self.params.get('uid-to-use', default=None)
number_to_stat = self.params.get('number-to-stat', default=2048)
args = []
args.append('-d %s' % scratch_dir)
args.append('-n %s' % number_to_stat)
if uid_to_use is not None:
args.append('-u %s' % uid_to_use)
cmd = ('%s/bonnie++ %s' % (self.srcdir, " ".join(args)))
process.run(cmd)
if __name__ == "__main__":
main()
# Bonnie options:
# bonnie++ [-d scratch-dir] [-c concurrency] [-s size(MiB)[:chunk-size(b)]]
# [-n number-to-stat[:max-size[:min-size][:num-directories[:chunk-size]]]]
# [-m machine-name] [-r ram-size-in-MiB]
# [-x number-of-tests] [-u uid-to-use:gid-to-use] [-g gid-to-use]
# [-q] [-f] [-b] [-p processes | -y] [-z seed | -Z random-file]
# [-D]
# Valid options in avocado test are bellow:
setup:
scratch-dir: null
uid-to-use: null
number-to-stat: null
#!/usr/bin/env python
import os
from avocado import Test
from avocado import main
from avocado.utils import archive
from avocado.utils import process
class Compilebench(Test):
"""
Compilebench tries to age a filesystem by simulating some of the
disk IO common in creating, compiling, patching, stating and
reading kernel trees.
"""
def setUp(self):
"""
Extract compilebench
Source:
https://oss.oracle.com/~mason/compilebench/compilebench-0.6.tar.bz2
"""
cb_tarball = self.params.get('cb_tarball',
default='compilebench-0.6.tar.bz2')
tarball_path = self.get_data_path(cb_tarball)
archive.extract(tarball_path, self.srcdir)
cb_version = cb_tarball.split('.tar.')[0]
self.srcdir = os.path.join(self.srcdir, cb_version)
def test(self):
"""
Run 'compilebench' with its arguments
"""
initial_dirs = self.params.get('INITIAL_DIRS', default=10)
runs = self.params.get('RUNS', default=30)
args = []
args.append('-D %s ' % self.srcdir)
args.append('-s %s ' % self.srcdir)
args.append('-i %d ' % initial_dirs)
args.append('-r %d ' % runs)
# Using python explicitly due to the compilebench current
# shebang set to python2.4
cmd = ('python %s/compilebench %s' % (self.srcdir, " ".join(args)))
process.run(cmd)
if __name__ == "__main__":
main()
# Usage: compilebench [options]
# version: 0.6
#
# Options:
# -h, --help show this help message and exit
# -b BUFFER_SIZE, --buffer-size=BUFFER_SIZE
# buffer size (bytes)
# -i INITIAL_DIRS, --initial-dirs=INITIAL_DIRS
# number of dirs initially created
# -r RUNS, --runs=RUNS number of rand op runs
# -D DIRECTORY, --directory=DIRECTORY
# working directory
# -s SOURCES, --sources=SOURCES
# data set source file directory
# -t TRACE, --trace=TRACE
# blktrace output file
# -d DEVICE, --device=DEVICE
# blktrace device
# -m, --makej simulate a make -j on the initial dirs and exit
# -n, --no-sync don't sync and drop caches between each iteration
# Valid options in avocado test are bellow:
setup:
trees: !mux
default:
INITIAL_DIRS: null
quick:
INITIAL_DIRS: 5
runs: !mux
default:
RUNS: null
minimal:
RUNS: 1
#!/usr/bin/env python
import os
from avocado import Test
from avocado import main
from avocado.utils import archive
from avocado.utils import build
from avocado.utils import process
class FioTest(Test):
"""
fio is an I/O tool meant to be used both for benchmark and
stress/hardware verification.
:see: http://freecode.com/projects/fio
:param fio_tarbal: name of the tarbal of fio suite located in deps path
:param fio_job: config defining set of executed tests located in deps path
"""
def setUp(self):
"""
Build 'fio'.
"""
fio_tarball = self.params.get('fio_tarball',
default='fio-2.1.10.tar.bz2')
tarball_path = self.get_data_path(fio_tarball)
archive.extract(tarball_path, self.srcdir)
fio_version = fio_tarball.split('.tar.')[0]
self.srcdir = os.path.join(self.srcdir, fio_version)
build.make(self.srcdir)
def test(self):
"""
Execute 'fio' with appropriate parameters.
"""
os.chdir(self.srcdir)
fio_job = self.params.get('fio_job', default='fio-mixed.job')
cmd = ('./fio %s' % self.get_data_path(fio_job))
process.system(cmd)
if __name__ == "__main__":
main()
; fio-mixed.job
[global]
name=fio-sync
;directory=tmpfiles
rw=randrw
rwmixread=67
rwmixwrite=33
bsrange=16K-256K
direct=0
end_fsync=1
verify=crc32
;ioscheduler=x
numjobs=4
[file1]
size=100M
ioengine=sync
mem=malloc
[file2]
stonewall
size=100M
ioengine=posixaio
mem=shm
iodepth=4
[file3]
stonewall
size=100M
ioengine=mmap
mem=mmap
direct=1
[file4]
stonewall
size=100M
ioengine=splice
mem=malloc
direct=1
#!/usr/bin/env python
import os
import multiprocessing
from avocado import Test
from avocado import main
from avocado.utils import archive
from avocado.utils import disk
from avocado.utils import build
from avocado.utils import memory
from avocado.utils import process
class Stress(Test):
"""
Calls stress, a simple program which aims to impose certain types of
computing stress on the target machine.
@author: Yi Yang (yang.y.yi@gmail.com)
"""
def setUp(self):
"""
Build 'stress'.
Source:
http://people.seas.harvard.edu/~apw/stress/stress-1.0.4.tar.gz
"""
stress_tarball = self.params.get('stress_tarball',
default='stress-1.0.4.tar.gz')
tarball_path = self.get_data_path(stress_tarball)
archive.extract(tarball_path, self.srcdir)
stress_version = stress_tarball.split('.tar.')[0]
self.srcdir = os.path.join(self.srcdir, stress_version)
os.chdir(self.srcdir)
process.run('./configure')
build.make(self.srcdir)
def test(self):
"""
Execute 'stress' with proper arguments.
"""
length = self.params.get('stress_lenght', default=60)
threads = self.params.get('threads', default=None)
memory_per_thread = self.params.get('memory_per_thread', default=None)
file_size_per_thread = self.params.get('file_size_per_thread',
default=None)
if threads is None:
# We will use 2 workers of each type for each CPU detected
threads = 2 * multiprocessing.cpu_count()
if memory_per_thread is None:
# Sometimes the default memory used by each memory worker (256 M)
# might make our machine go OOM and then funny things might start to
# happen. Let's avoid that.
mb = (memory.freememtotal() +
memory.read_from_meminfo('SwapFree') / 2)
memory_per_thread = (mb * 1024) / threads
if file_size_per_thread is None:
# Even though unlikely, it's good to prevent from allocating more
# disk than this machine actually has on its autotest directory
# (limit the amount of disk used to max of 90 % of free space)
free_disk = disk.freespace(self.srcdir)
file_size_per_thread = 1024 ** 2
if (0.9 * free_disk) < file_size_per_thread * threads:
file_size_per_thread = (0.9 * free_disk) / threads
# Number of CPU workers spinning on sqrt()
args = '--cpu %d ' % threads
# Number of IO workers spinning on sync()
args += '--io %d ' % threads
# Number of Memory workers spinning on malloc()/free()
args += '--vm %d ' % threads
# Amount of memory used per each worker
args += '--vm-bytes %d ' % memory_per_thread
# Number of HD workers spinning on write()/ulink()
args += '--hdd %d ' % threads
# Size of the files created by each worker in bytes
args += '--hdd-bytes %d ' % file_size_per_thread
# Time for which the stress test will run
args += '--timeout %d ' % length
# Verbose flag
args += '--verbose'
os.chdir(self.srcdir)
cmd = ('./src/stress %s' % args)
process.run(cmd)
if __name__ == "__main__":
main()
setup:
duration: !mux
default:
stress_lenght: 60
quick:
stress_lenght: 5
workers: !mux
default:
threads: null
minimal:
threads: 1
memory:
memory_per_thread: null
files:
file_size_per_thread: null
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册