/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // (3-clause BSD License) // // Copyright (C) 2000-2016, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved. // Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved. // Copyright (C) 2015-2016, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * Neither the names of the copyright holders nor the names of the contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall copyright holders or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #ifdef HAVE_IMGCODEC_PXM #include #include "utils.hpp" #include "grfmt_pam.hpp" namespace cv { /* the PAM related fields */ #define MAX_PAM_HEADER_IDENITFIER_LENGTH 8 #define MAX_PAM_HEADER_VALUE_LENGTH 255 /* PAM header fields */ typedef enum { PAM_HEADER_NONE, PAM_HEADER_COMMENT, PAM_HEADER_ENDHDR, PAM_HEADER_HEIGHT, PAM_HEADER_WIDTH, PAM_HEADER_DEPTH, PAM_HEADER_MAXVAL, PAM_HEADER_TUPLTYPE, } PamHeaderFieldType; struct pam_header_field { PamHeaderFieldType type; char identifier[MAX_PAM_HEADER_IDENITFIER_LENGTH+1]; }; const static struct pam_header_field fields[] = { {PAM_HEADER_ENDHDR, "ENDHDR"}, {PAM_HEADER_HEIGHT, "HEIGHT"}, {PAM_HEADER_WIDTH, "WIDTH"}, {PAM_HEADER_DEPTH, "DEPTH"}, {PAM_HEADER_MAXVAL, "MAXVAL"}, {PAM_HEADER_TUPLTYPE, "TUPLTYPE"}, }; #define PAM_FIELDS_NO (sizeof (fields) / sizeof ((fields)[0])) typedef bool (*cvtFunc) (void *src, void *target, int width, int target_channels, int target_depth); struct channel_layout { uint rchan, gchan, bchan, graychan; }; struct pam_format { uint fmt; char name[MAX_PAM_HEADER_VALUE_LENGTH+1]; cvtFunc cvt_func; /* the channel layout that should be used when * imread_ creates a 3 channel or 1 channel image * used when no conversion function is available */ struct channel_layout layout; }; static bool rgb_convert (void *src, void *target, int width, int target_channels, int target_depth); const static struct pam_format formats[] = { {CV_IMWRITE_PAM_FORMAT_NULL, "", NULL, {0, 0, 0, 0} }, {CV_IMWRITE_PAM_FORMAT_BLACKANDWHITE, "BLACKANDWHITE", NULL, {0, 0, 0, 0} }, {CV_IMWRITE_PAM_FORMAT_GRAYSCALE, "GRAYSCALE", NULL, {0, 0, 0, 0} }, {CV_IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA, "GRAYSCALE_ALPHA", NULL, {0, 0, 0, 0} }, {CV_IMWRITE_PAM_FORMAT_RGB, "RGB", rgb_convert, {0, 1, 2, 0} }, {CV_IMWRITE_PAM_FORMAT_RGB_ALPHA, "RGB_ALPHA", NULL, {0, 1, 2, 0} }, }; #define PAM_FORMATS_NO (sizeof (fields) / sizeof ((fields)[0])) /* * conversion functions */ static bool rgb_convert (void *src, void *target, int width, int target_channels, int target_depth) { bool ret = false; if (target_channels == 3) { switch (target_depth) { case CV_8U: icvCvt_RGB2BGR_8u_C3R( (uchar*) src, 0, (uchar*) target, 0, Size(width,1) ); ret = true; break; case CV_16U: icvCvt_RGB2BGR_16u_C3R( (ushort *)src, 0, (ushort *)target, 0, Size(width,1) ); ret = true; break; default: break; } } else if (target_channels == 1) { switch (target_depth) { case CV_8U: icvCvt_BGR2Gray_8u_C3C1R( (uchar*) src, 0, (uchar*) target, 0, Size(width,1), 2 ); ret = true; break; case CV_16U: icvCvt_BGRA2Gray_16u_CnC1R( (ushort *)src, 0, (ushort *)target, 0, Size(width,1), 3, 2 ); ret = true; break; default: break; } } return ret; } /* * copy functions used as a fall back for undefined formats * or simpler conversion options */ static void basic_conversion (void *src, const struct channel_layout *layout, int src_sampe_size, int src_width, void *target, int target_channels, int target_depth) { switch (target_depth) { case CV_8U: { uchar *d = (uchar *)target, *s = (uchar *)src, *end = ((uchar *)src) + src_width; switch (target_channels) { case 1: for( ; s < end; d += 3, s += src_sampe_size ) d[0] = d[1] = d[2] = s[layout->graychan]; break; case 3: for( ; s < end; d += 3, s += src_sampe_size ) { d[0] = s[layout->bchan]; d[1] = s[layout->gchan]; d[2] = s[layout->rchan]; } break; default: CV_Error(Error::StsInternal, ""); } break; } case CV_16U: { ushort *d = (ushort *)target, *s = (ushort *)src, *end = ((ushort *)src) + src_width; switch (target_channels) { case 1: for( ; s < end; d += 3, s += src_sampe_size ) d[0] = d[1] = d[2] = s[layout->graychan]; break; case 3: for( ; s < end; d += 3, s += src_sampe_size ) { d[0] = s[layout->bchan]; d[1] = s[layout->gchan]; d[2] = s[layout->rchan]; } break; default: CV_Error(Error::StsInternal, ""); } break; } default: CV_Error(Error::StsInternal, ""); } } static bool ReadPAMHeaderLine( cv::RLByteStream& strm, CV_OUT PamHeaderFieldType &fieldtype, CV_OUT char value[MAX_PAM_HEADER_VALUE_LENGTH+1]) { int code; char ident[MAX_PAM_HEADER_IDENITFIER_LENGTH+1] = {}; do { code = strm.getByte(); } while ( isspace(code) ); if (code == '#') { /* we are in a comment, eat characters until linebreak */ do { code = strm.getByte(); } while( code != '\n' && code != '\r' ); fieldtype = PAM_HEADER_COMMENT; return true; } else if (code == '\n' || code == '\r' ) { fieldtype = PAM_HEADER_NONE; return true; } int ident_sz = 0; for (; ident_sz < MAX_PAM_HEADER_IDENITFIER_LENGTH; ident_sz++) { if (isspace(code)) break; ident[ident_sz] = (char)code; code = strm.getByte(); } CV_DbgAssert(ident_sz <= MAX_PAM_HEADER_IDENITFIER_LENGTH); ident[ident_sz] = 0; /* we may have filled the buffer and still have data */ if (!isspace(code)) return false; bool ident_found = false; for (uint i = 0; i < PAM_FIELDS_NO; i++) { if (0 == strncmp(fields[i].identifier, ident, std::min(ident_sz, MAX_PAM_HEADER_IDENITFIER_LENGTH) + 1)) { fieldtype = fields[i].type; ident_found = true; break; } } if (!ident_found) return false; memset(value, 0, sizeof(char) * (MAX_PAM_HEADER_VALUE_LENGTH + 1)); /* we may have an identifier that has no value */ if (code == '\n' || code == '\r') return true; do { code = strm.getByte(); } while (isspace(code)); /* read identifier value */ int value_sz = 0; for (; value_sz < MAX_PAM_HEADER_VALUE_LENGTH; value_sz++) { if (code == '\n' || code == '\r') break; value[value_sz] = (char)code; code = strm.getByte(); } CV_DbgAssert(value_sz <= MAX_PAM_HEADER_VALUE_LENGTH); value[value_sz] = 0; int pos = value_sz; /* should be terminated */ if (code != '\n' && code != '\r') return false; /* remove trailing white spaces */ while (--pos >= 0 && isspace(value[pos])) value[pos] = 0; return true; } static int ParseInt(const char *str, int len) { CV_Assert(len > 0); int pos = 0; bool is_negative = false; if (str[0] == '-') { is_negative = true; pos++; CV_Assert(isdigit(str[pos])); } uint64_t number = 0; while (pos < len && isdigit(str[pos])) { char ch = str[pos]; number = (number * 10) + (uint64_t)((int)ch - (int)'0'); CV_Assert(number < INT_MAX); pos++; } if (pos < len) CV_Assert(str[pos] == 0); return (is_negative) ? -(int)number : (int)number; } PAMDecoder::PAMDecoder() { m_offset = -1; m_buf_supported = true; bit_mode = false; selected_fmt = CV_IMWRITE_PAM_FORMAT_NULL; m_maxval = 0; m_channels = 0; m_sampledepth = 0; } PAMDecoder::~PAMDecoder() { m_strm.close(); } size_t PAMDecoder::signatureLength() const { return 3; } bool PAMDecoder::checkSignature( const String& signature ) const { return signature.size() >= 3 && signature[0] == 'P' && signature[1] == '7' && isspace(signature[2]); } ImageDecoder PAMDecoder::newDecoder() const { return makePtr(); } bool PAMDecoder::readHeader() { PamHeaderFieldType fieldtype = PAM_HEADER_NONE; char value[MAX_PAM_HEADER_VALUE_LENGTH+1]; int byte; if( !m_buf.empty() ) { if( !m_strm.open(m_buf) ) return false; } else if( !m_strm.open( m_filename )) return false; try { byte = m_strm.getByte(); if( byte != 'P' ) throw RBS_BAD_HEADER; byte = m_strm.getByte(); if (byte != '7') throw RBS_BAD_HEADER; byte = m_strm.getByte(); if (byte != '\n' && byte != '\r') throw RBS_BAD_HEADER; bool flds_endhdr = false, flds_height = false, flds_width = false, flds_depth = false, flds_maxval = false; do { if (!ReadPAMHeaderLine(m_strm, fieldtype, value)) throw RBS_BAD_HEADER; switch (fieldtype) { case PAM_HEADER_NONE: case PAM_HEADER_COMMENT: continue; case PAM_HEADER_ENDHDR: flds_endhdr = true; break; case PAM_HEADER_HEIGHT: if (flds_height) throw RBS_BAD_HEADER; m_height = ParseInt(value, MAX_PAM_HEADER_VALUE_LENGTH); flds_height = true; break; case PAM_HEADER_WIDTH: if (flds_width) throw RBS_BAD_HEADER; m_width = ParseInt(value, MAX_PAM_HEADER_VALUE_LENGTH); flds_width = true; break; case PAM_HEADER_DEPTH: if (flds_depth) throw RBS_BAD_HEADER; m_channels = ParseInt(value, MAX_PAM_HEADER_VALUE_LENGTH); flds_depth = true; break; case PAM_HEADER_MAXVAL: if (flds_maxval) throw RBS_BAD_HEADER; m_maxval = ParseInt(value, MAX_PAM_HEADER_VALUE_LENGTH); if ( m_maxval > 65535 ) throw RBS_BAD_HEADER; m_sampledepth = (m_maxval > 255) ? CV_16U : CV_8U; if (m_maxval == 1) bit_mode = true; flds_maxval = true; break; case PAM_HEADER_TUPLTYPE: { bool format_found = false; for (uint i=0; i= 1 && m_channels <= 4, "Unsupported number of channels"); m_type = CV_MAKETYPE(m_sampledepth, m_channels); m_offset = m_strm.getPos(); return true; } // failed m_offset = -1; m_width = m_height = -1; m_strm.close(); return false; } catch (...) { m_offset = -1; m_width = m_height = -1; m_strm.close(); throw; } } bool PAMDecoder::readData(Mat& img) { uchar* data = img.ptr(); const int target_channels = img.channels(); size_t imp_stride = img.step; const int sample_depth = CV_ELEM_SIZE1(m_type); const int src_elems_per_row = m_width*m_channels; const int src_stride = src_elems_per_row*sample_depth; PaletteEntry palette[256] = {}; const struct pam_format *fmt = NULL; struct channel_layout layout = { 0, 0, 0, 0 }; // normalized to 1-channel grey format /* setting buffer to max data size so scaling up is possible */ AutoBuffer _src(src_elems_per_row * 2); uchar* src = _src.data(); if( m_offset < 0 || !m_strm.isOpened()) return false; if (selected_fmt != CV_IMWRITE_PAM_FORMAT_NULL) fmt = &formats[selected_fmt]; else { /* default layout handling */ if (m_channels >= 3) { layout.bchan = 0; layout.gchan = 1; layout.rchan = 2; } } { m_strm.setPos( m_offset ); /* the case where data fits the opencv matrix */ if (m_sampledepth == img.depth() && target_channels == m_channels && !bit_mode) { /* special case for 16bit images with wrong endianness */ if (m_sampledepth == CV_16U && !isBigEndian()) { for (int y = 0; y < m_height; y++, data += imp_stride) { m_strm.getBytes( src, src_stride ); for (int x = 0; x < src_elems_per_row; x++) { uchar v = src[x * 2]; data[x * 2] = src[x * 2 + 1]; data[x * 2 + 1] = v; } } } else { m_strm.getBytes( data, src_stride * m_height ); } } else { /* black and white mode */ if (bit_mode) { if( target_channels == 1 ) { uchar gray_palette[2] = {0, 255}; for (int y = 0; y < m_height; y++, data += imp_stride) { m_strm.getBytes( src, src_stride ); FillGrayRow1( data, src, m_width, gray_palette ); } } else if ( target_channels == 3 ) { FillGrayPalette( palette, 1 , false ); for (int y = 0; y < m_height; y++, data += imp_stride) { m_strm.getBytes( src, src_stride ); FillColorRow1( data, src, m_width, palette ); } } else { CV_Error(Error::StsError, cv::format("Unsupported value of target_channels: %d", target_channels)); } } else { for (int y = 0; y < m_height; y++, data += imp_stride) { m_strm.getBytes( src, src_stride ); /* endianness correction */ if( m_sampledepth == CV_16U && !isBigEndian() ) { for (int x = 0; x < src_elems_per_row; x++) { uchar v = src[x * 2]; src[x * 2] = src[x * 2 + 1]; src[x * 2 + 1] = v; } } /* scale down */ if( img.depth() == CV_8U && m_sampledepth == CV_16U ) { for (int x = 0; x < src_elems_per_row; x++) { int v = ((ushort *)src)[x]; src[x] = (uchar)(v >> 8); } } /* if we are only scaling up/down then we can then copy the data */ if (target_channels == m_channels) { memcpy (data, src, imp_stride); } /* perform correct conversion based on format */ else if (fmt) { bool funcout = false; if (fmt->cvt_func) funcout = fmt->cvt_func (src, data, m_width, target_channels, img.depth()); /* fall back to default if there is no conversion function or it * can't handle the specified characteristics */ if (!funcout) basic_conversion (src, &fmt->layout, m_channels, m_width, data, target_channels, img.depth()); /* default to selecting the first available channels */ } else { basic_conversion (src, &layout, m_channels, m_width, data, target_channels, img.depth()); } } } } } return true; } ////////////////////////////////////////////////////////////////////////////////////////// PAMEncoder::PAMEncoder() { m_description = "Portable arbitrary format (*.pam)"; m_buf_supported = true; } PAMEncoder::~PAMEncoder() { } ImageEncoder PAMEncoder::newEncoder() const { return makePtr(); } bool PAMEncoder::isFormatSupported( int depth ) const { return depth == CV_8U || depth == CV_16U; } bool PAMEncoder::write( const Mat& img, const std::vector& params ) { WLByteStream strm; int width = img.cols, height = img.rows; int stride = width*(int)img.elemSize(); const uchar* data = img.ptr(); const struct pam_format *fmt = NULL; int x, y, tmp, bufsize = 256; /* parse save file type */ for( size_t i = 0; i < params.size(); i += 2 ) if( params[i] == CV_IMWRITE_PAM_TUPLETYPE ) { if ( params[i+1] > CV_IMWRITE_PAM_FORMAT_NULL && params[i+1] < (int) PAM_FORMATS_NO) fmt = &formats[params[i+1]]; } if( m_buf ) { if( !strm.open(*m_buf) ) return false; m_buf->reserve( alignSize(256 + stride*height, 256)); } else if( !strm.open(m_filename) ) return false; tmp = width * (int)img.elemSize(); if (bufsize < tmp) bufsize = tmp; AutoBuffer _buffer(bufsize); char* buffer = _buffer.data(); /* write header */ tmp = 0; tmp += sprintf( buffer, "P7\n"); tmp += sprintf( buffer + tmp, "WIDTH %d\n", width); tmp += sprintf( buffer + tmp, "HEIGHT %d\n", height); tmp += sprintf( buffer + tmp, "DEPTH %d\n", img.channels()); tmp += sprintf( buffer + tmp, "MAXVAL %d\n", (1 << img.elemSize1()*8) - 1); if (fmt) tmp += sprintf( buffer + tmp, "TUPLTYPE %s\n", fmt->name ); sprintf( buffer + tmp, "ENDHDR\n" ); strm.putBytes( buffer, (int)strlen(buffer) ); /* write data */ if (img.depth() == CV_8U) strm.putBytes( data, stride*height ); else if (img.depth() == CV_16U) { /* fix endianness */ if (!isBigEndian()) { for( y = 0; y < height; y++ ) { memcpy( buffer, img.ptr(y), stride ); for( x = 0; x < stride; x += 2 ) { uchar v = buffer[x]; buffer[x] = buffer[x + 1]; buffer[x + 1] = v; } strm.putBytes( buffer, stride ); } } else strm.putBytes( data, stride*height ); } else CV_Error(Error::StsInternal, ""); strm.close(); return true; } } #endif