提交 49901e0c 编写于 作者: M mcimadamore

7175433: Inference cleanup: add helper class to handle inference variables

Summary: Add class to handle inference variables instantiation and associated info
Reviewed-by: jjg, dlsmith
上级 bd6a624a
......@@ -40,6 +40,8 @@ import com.sun.tools.javac.code.Lint;
import com.sun.tools.javac.code.Lint.LintCategory;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.comp.Infer.InferenceContext;
import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
import static com.sun.tools.javac.code.Flags.*;
import static com.sun.tools.javac.code.Flags.ANNOTATION;
......@@ -429,6 +431,8 @@ public class Check {
* Obtain a warner for this check context
*/
public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
public Infer.InferenceContext inferenceContext();
}
/**
......@@ -455,6 +459,10 @@ public class Check {
public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
return enclosingContext.checkWarner(pos, found, req);
}
public Infer.InferenceContext inferenceContext() {
return enclosingContext.inferenceContext();
}
}
/**
......@@ -471,6 +479,10 @@ public class Check {
public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
return convertWarner(pos, found, req);
}
public InferenceContext inferenceContext() {
return infer.emptyContext;
}
};
/** Check that a given type is assignable to a given proto-type.
......@@ -483,7 +495,16 @@ public class Check {
return checkType(pos, found, req, basicHandler);
}
Type checkType(final DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
if (inferenceContext.free(req)) {
inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
@Override
public void typesInferred(InferenceContext inferenceContext) {
checkType(pos, found, inferenceContext.asInstType(req, types), checkContext);
}
});
}
if (req.tag == ERROR)
return req;
if (req.tag == NONE)
......
......@@ -25,18 +25,21 @@
package com.sun.tools.javac.comp;
import com.sun.tools.javac.code.*;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.tree.JCTree.JCTypeCast;
import com.sun.tools.javac.tree.TreeInfo;
import com.sun.tools.javac.util.*;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.code.*;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
import java.util.HashMap;
import java.util.Map;
import static com.sun.tools.javac.code.TypeTags.*;
/** Helper class for type parameter inference, used by the attribution phase.
......@@ -76,40 +79,38 @@ public class Infer {
chk = Check.instance(context);
diags = JCDiagnostic.Factory.instance(context);
inferenceException = new InferenceException(diags);
}
/**
* This exception class is design to store a list of diagnostics corresponding
* to inference errors that can arise during a method applicability check.
*/
public static class InferenceException extends InapplicableMethodException {
private static final long serialVersionUID = 0;
List<JCDiagnostic> messages = List.nil();
InferenceException(JCDiagnostic.Factory diags) {
super(diags);
}
}
private final InferenceException inferenceException;
/***************************************************************************
* Auxiliary type values and classes
***************************************************************************/
@Override
InapplicableMethodException setMessage(JCDiagnostic diag) {
messages = messages.append(diag);
return this;
}
/** A mapping that turns type variables into undetermined type variables.
*/
List<Type> makeUndetvars(List<Type> tvars) {
List<Type> undetvars = Type.map(tvars, fromTypeVarFun);
for (Type t : undetvars) {
UndetVar uv = (UndetVar)t;
uv.hibounds = types.getBounds((TypeVar)uv.qtype);
@Override
public JCDiagnostic getDiagnostic() {
return messages.head;
}
return undetvars;
void clear() {
messages = List.nil();
}
//where
Mapping fromTypeVarFun = new Mapping("fromTypeVarFun") {
public Type apply(Type t) {
if (t.tag == TYPEVAR) return new UndetVar(t);
else return t.map(this);
}
};
private final InferenceException inferenceException;
/***************************************************************************
* Mini/Maximization of UndetVars
......@@ -119,7 +120,7 @@ public class Infer {
* Throw a NoInstanceException if this not possible.
*/
void maximizeInst(UndetVar that, Warner warn) throws InferenceException {
List<Type> hibounds = Type.filter(that.hibounds, errorFilter);
List<Type> hibounds = Type.filter(that.hibounds, boundFilter);
if (that.eq.isEmpty()) {
if (hibounds.isEmpty())
that.inst = syms.objectType;
......@@ -137,10 +138,10 @@ public class Infer {
that.qtype, hibounds);
}
private Filter<Type> errorFilter = new Filter<Type>() {
private Filter<Type> boundFilter = new Filter<Type>() {
@Override
public boolean accepts(Type t) {
return !t.isErroneous();
return !t.isErroneous() && t.tag != BOT;
}
};
......@@ -148,11 +149,12 @@ public class Infer {
* Throw a NoInstanceException if this not possible.
*/
void minimizeInst(UndetVar that, Warner warn) throws InferenceException {
List<Type> lobounds = Type.filter(that.lobounds, errorFilter);
List<Type> lobounds = Type.filter(that.lobounds, boundFilter);
if (that.eq.isEmpty()) {
if (lobounds.isEmpty())
that.inst = syms.botType;
else if (lobounds.tail.isEmpty())
if (lobounds.isEmpty()) {
//do nothing - the inference variable is under-constrained
return;
} else if (lobounds.tail.isEmpty())
that.inst = lobounds.head.isPrimitive() ? syms.errType : lobounds.head;
else {
that.inst = types.lub(lobounds);
......@@ -166,31 +168,19 @@ public class Infer {
}
}
Type asUndetType(Type t, List<Type> undetvars) {
return types.subst(t, inferenceVars(undetvars), undetvars);
}
List<Type> inferenceVars(List<Type> undetvars) {
ListBuffer<Type> tvars = ListBuffer.lb();
for (Type uv : undetvars) {
tvars.append(((UndetVar)uv).qtype);
}
return tvars.toList();
}
/***************************************************************************
* Exported Methods
***************************************************************************/
/** Try to instantiate expression type `that' to given type `to'.
* If a maximal instantiation exists which makes this type
* a subtype of type `to', return the instantiated type.
* If no instantiation exists, or if several incomparable
/**
* Instantiate uninferred inference variables (JLS 15.12.2.8). First
* if the method return type is non-void, we derive constraints from the
* expected type - then we use declared bound well-formedness to derive additional
* constraints. If no instantiation exists, or if several incomparable
* best instantiations exist throw a NoInstanceException.
*/
public List<Type> instantiateUninferred(DiagnosticPosition pos,
List<Type> undetvars,
List<Type> tvars,
public void instantiateUninferred(DiagnosticPosition pos,
InferenceContext inferenceContext,
MethodType mtype,
Attr.ResultInfo resultInfo,
Warner warn) throws InferenceException {
......@@ -199,57 +189,49 @@ public class Infer {
to = mtype.getReturnType().tag <= VOID ?
mtype.getReturnType() : syms.objectType;
}
Type qtype1 = types.subst(mtype.getReturnType(), tvars, undetvars);
Type qtype1 = inferenceContext.asFree(mtype.getReturnType(), types);
if (!types.isSubtype(qtype1,
qtype1.tag == UNDETVAR ? types.boxedTypeOrType(to) : to)) {
throw inferenceException
.setMessage("infer.no.conforming.instance.exists",
tvars, mtype.getReturnType(), to);
inferenceContext.restvars(), mtype.getReturnType(), to);
}
List<Type> insttypes;
while (true) {
boolean stuck = true;
insttypes = List.nil();
for (Type t : undetvars) {
for (Type t : inferenceContext.undetvars) {
UndetVar uv = (UndetVar)t;
if (uv.inst == null && (uv.eq.nonEmpty() || !Type.containsAny(uv.hibounds, tvars))) {
if (uv.inst == null && (uv.eq.nonEmpty() || !inferenceContext.free(uv.hibounds))) {
maximizeInst((UndetVar)t, warn);
stuck = false;
}
insttypes = insttypes.append(uv.inst == null ? uv.qtype : uv.inst);
}
if (!Type.containsAny(insttypes, tvars)) {
if (inferenceContext.restvars().isEmpty()) {
//all variables have been instantiated - exit
break;
} else if (stuck) {
//some variables could not be instantiated because of cycles in
//upper bounds - provide a (possibly recursive) default instantiation
insttypes = types.subst(insttypes,
tvars,
instantiateAsUninferredVars(undetvars, tvars));
instantiateAsUninferredVars(inferenceContext);
break;
} else {
//some variables have been instantiated - replace newly instantiated
//variables in remaining upper bounds and continue
for (Type t : undetvars) {
for (Type t : inferenceContext.undetvars) {
UndetVar uv = (UndetVar)t;
uv.hibounds = types.subst(uv.hibounds, tvars, insttypes);
uv.hibounds = inferenceContext.asInstTypes(uv.hibounds, types);
}
}
}
return insttypes;
}
/**
* Infer cyclic inference variables as described in 15.12.2.8.
*/
private List<Type> instantiateAsUninferredVars(List<Type> undetvars, List<Type> tvars) {
Assert.check(undetvars.length() == tvars.length());
ListBuffer<Type> insttypes = ListBuffer.lb();
private void instantiateAsUninferredVars(InferenceContext inferenceContext) {
ListBuffer<Type> todo = ListBuffer.lb();
//step 1 - create fresh tvars
for (Type t : undetvars) {
for (Type t : inferenceContext.undetvars) {
UndetVar uv = (UndetVar)t;
if (uv.inst == null) {
TypeSymbol fresh_tvar = new TypeSymbol(Flags.SYNTHETIC, uv.qtype.tsym.name, null, uv.qtype.tsym.owner);
......@@ -257,25 +239,23 @@ public class Infer {
todo.append(uv);
uv.inst = fresh_tvar.type;
}
insttypes.append(uv.inst);
}
//step 2 - replace fresh tvars in their bounds
List<Type> formals = tvars;
List<Type> formals = inferenceContext.inferenceVars();
for (Type t : todo) {
UndetVar uv = (UndetVar)t;
TypeVar ct = (TypeVar)uv.inst;
ct.bound = types.glb(types.subst(types.getBounds(ct), tvars, insttypes.toList()));
ct.bound = types.glb(inferenceContext.asInstTypes(types.getBounds(ct), types));
if (ct.bound.isErroneous()) {
//report inference error if glb fails
reportBoundError(uv, BoundErrorKind.BAD_UPPER);
}
formals = formals.tail;
}
return insttypes.toList();
}
/** Instantiate method type `mt' by finding instantiations of
* `tvars' so that method can be applied to `argtypes'.
/** Instantiate a generic method type by finding instantiations for all its
* inference variables so that it can be applied to a given argument type list.
*/
public Type instantiateMethod(Env<AttrContext> env,
List<Type> tvars,
......@@ -287,83 +267,61 @@ public class Infer {
boolean useVarargs,
Warner warn) throws InferenceException {
//-System.err.println("instantiateMethod(" + tvars + ", " + mt + ", " + argtypes + ")"); //DEBUG
List<Type> undetvars = makeUndetvars(tvars);
final InferenceContext inferenceContext = new InferenceContext(tvars, types);
inferenceException.clear();
List<Type> capturedArgs =
rs.checkRawArgumentsAcceptable(env, undetvars, argtypes, mt.getParameterTypes(),
allowBoxing, useVarargs, warn, new InferenceCheckHandler(undetvars));
try {
rs.checkRawArgumentsAcceptable(env, inferenceContext, argtypes, mt.getParameterTypes(),
allowBoxing, useVarargs, warn, new InferenceCheckHandler(inferenceContext));
// minimize as yet undetermined type variables
for (Type t : undetvars)
minimizeInst((UndetVar) t, warn);
/** Type variables instantiated to bottom */
ListBuffer<Type> restvars = new ListBuffer<Type>();
/** Undet vars instantiated to bottom */
final ListBuffer<Type> restundet = new ListBuffer<Type>();
for (Type t : inferenceContext.undetvars) {
minimizeInst((UndetVar)t, warn);
}
/** Instantiated types or TypeVars if under-constrained */
ListBuffer<Type> insttypes = new ListBuffer<Type>();
checkWithinBounds(inferenceContext, warn);
/** Instantiated types or UndetVars if under-constrained */
ListBuffer<Type> undettypes = new ListBuffer<Type>();
mt = (MethodType)inferenceContext.asInstType(mt, types);
for (Type t : undetvars) {
UndetVar uv = (UndetVar)t;
if (uv.inst.tag == BOT) {
restvars.append(uv.qtype);
restundet.append(uv);
insttypes.append(uv.qtype);
undettypes.append(uv);
uv.inst = null;
} else {
insttypes.append(uv.inst);
undettypes.append(uv.inst);
}
}
checkWithinBounds(tvars, undetvars, insttypes.toList(), warn);
mt = (MethodType)types.subst(mt, tvars, insttypes.toList());
List<Type> restvars = inferenceContext.restvars();
if (!restvars.isEmpty() && resultInfo != null) {
List<Type> restInferred =
instantiateUninferred(env.tree.pos(), restundet.toList(), restvars.toList(), mt, resultInfo, warn);
checkWithinBounds(tvars, undetvars,
types.subst(insttypes.toList(), restvars.toList(), restInferred), warn);
mt = (MethodType)types.subst(mt, restvars.toList(), restInferred);
if (!restvars.isEmpty()) {
if (resultInfo != null) {
instantiateUninferred(env.tree.pos(), inferenceContext, mt, resultInfo, warn);
checkWithinBounds(inferenceContext, warn);
mt = (MethodType)inferenceContext.asInstType(mt, types);
if (rs.verboseResolutionMode.contains(VerboseResolutionMode.DEFERRED_INST)) {
log.note(env.tree.pos, "deferred.method.inst", msym, mt, resultInfo.pt);
}
}
if (restvars.isEmpty() || resultInfo != null) {
// check that actuals conform to inferred formals
checkArgumentsAcceptable(env, capturedArgs, mt.getParameterTypes(), allowBoxing, useVarargs, warn);
}
// return instantiated version of method type
return mt;
} finally {
inferenceContext.notifyChange(types);
}
}
//where
/** inference check handler **/
class InferenceCheckHandler implements Resolve.MethodCheckHandler {
List<Type> undetvars;
InferenceContext inferenceContext;
public InferenceCheckHandler(List<Type> undetvars) {
this.undetvars = undetvars;
public InferenceCheckHandler(InferenceContext inferenceContext) {
this.inferenceContext = inferenceContext;
}
public InapplicableMethodException arityMismatch() {
return inferenceException.setMessage("infer.arg.length.mismatch", inferenceVars(undetvars));
return inferenceException.setMessage("infer.arg.length.mismatch", inferenceContext.inferenceVars());
}
public InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details) {
String key = varargs ?
"infer.varargs.argument.mismatch" :
"infer.no.conforming.assignment.exists";
return inferenceException.setMessage(key,
inferenceVars(undetvars), details);
inferenceContext.inferenceVars(), details);
}
public InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected) {
return inferenceException.setMessage("inaccessible.varargs.type",
......@@ -371,51 +329,37 @@ public class Infer {
}
}
private void checkArgumentsAcceptable(Env<AttrContext> env, List<Type> actuals, List<Type> formals,
boolean allowBoxing, boolean useVarargs, Warner warn) {
try {
rs.checkRawArgumentsAcceptable(env, actuals, formals,
allowBoxing, useVarargs, warn);
}
catch (InapplicableMethodException ex) {
// inferred method is not applicable
throw inferenceException.setMessage(ex.getDiagnostic());
}
}
/** check that type parameters are within their bounds.
*/
void checkWithinBounds(List<Type> tvars,
List<Type> undetvars,
List<Type> arguments,
void checkWithinBounds(InferenceContext inferenceContext,
Warner warn)
throws InferenceException {
List<Type> args = arguments;
for (Type t : undetvars) {
List<Type> tvars = inferenceContext.inferenceVars();
for (Type t : inferenceContext.undetvars) {
UndetVar uv = (UndetVar)t;
uv.hibounds = types.subst(uv.hibounds, tvars, arguments);
uv.lobounds = types.subst(uv.lobounds, tvars, arguments);
uv.eq = types.subst(uv.eq, tvars, arguments);
checkCompatibleUpperBounds(uv, tvars);
if (args.head.tag != TYPEVAR || !args.head.containsAny(tvars)) {
Type inst = args.head;
uv.hibounds = inferenceContext.asInstTypes(uv.hibounds, types);
uv.lobounds = inferenceContext.asInstTypes(uv.lobounds, types);
uv.eq = inferenceContext.asInstTypes(uv.eq, types);
checkCompatibleUpperBounds(uv, inferenceContext.inferenceVars());
if (!inferenceContext.restvars().contains(tvars.head)) {
Type inst = inferenceContext.asInstType(t, types);
for (Type u : uv.hibounds) {
if (!types.isSubtypeUnchecked(inst, types.subst(u, tvars, undetvars), warn)) {
if (!types.isSubtypeUnchecked(inst, inferenceContext.asFree(u, types), warn)) {
reportBoundError(uv, BoundErrorKind.UPPER);
}
}
for (Type l : uv.lobounds) {
if (!types.isSubtypeUnchecked(types.subst(l, tvars, undetvars), inst, warn)) {
if (!types.isSubtypeUnchecked(inferenceContext.asFree(l, types), inst, warn)) {
reportBoundError(uv, BoundErrorKind.LOWER);
}
}
for (Type e : uv.eq) {
if (!types.isSameType(inst, types.subst(e, tvars, undetvars))) {
if (!types.isSameType(inst, inferenceContext.asFree(e, types))) {
reportBoundError(uv, BoundErrorKind.EQ);
}
}
}
args = args.tail;
tvars = tvars.tail;
}
}
......@@ -423,7 +367,7 @@ public class Infer {
// VGJ: sort of inlined maximizeInst() below. Adding
// bounds can cause lobounds that are above hibounds.
ListBuffer<Type> hiboundsNoVars = ListBuffer.lb();
for (Type t : Type.filter(uv.hibounds, errorFilter)) {
for (Type t : Type.filter(uv.hibounds, boundFilter)) {
if (!t.containsAny(tvars)) {
hiboundsNoVars.append(t);
}
......@@ -531,4 +475,199 @@ public class Infer {
return t;
}
};
/**
* Mapping that turns inference variables into undet vars
* (used by inference context)
*/
static Mapping fromTypeVarFun = new Mapping("fromTypeVarFun") {
public Type apply(Type t) {
if (t.tag == TYPEVAR) return new UndetVar(t);
else return t.map(this);
}
};
/**
* An inference context keeps track of the set of variables that are free
* in the current context. It provides utility methods for opening/closing
* types to their corresponding free/closed forms. It also provide hooks for
* attaching deferred post-inference action (see PendingCheck). Finally,
* it can be used as an entry point for performing upper/lower bound inference
* (see InferenceKind).
*/
static class InferenceContext {
/**
* Single-method-interface for defining inference callbacks. Certain actions
* (i.e. subtyping checks) might need to be redone after all inference variables
* have been fixed.
*/
interface FreeTypeListener {
void typesInferred(InferenceContext inferenceContext);
}
/** list of inference vars as undet vars */
List<Type> undetvars;
/** list of inference vars in this context */
List<Type> inferencevars;
java.util.Map<FreeTypeListener, List<Type>> freeTypeListeners =
new java.util.HashMap<FreeTypeListener, List<Type>>();
List<FreeTypeListener> freetypeListeners = List.nil();
public InferenceContext(List<Type> inferencevars, Types types) {
this.undetvars = Type.map(inferencevars, fromTypeVarFun);
this.inferencevars = inferencevars;
for (Type t : this.undetvars) {
UndetVar uv = (UndetVar)t;
uv.hibounds = types.getBounds((TypeVar)uv.qtype);
}
}
/**
* returns the list of free variables (as type-variables) in this
* inference context
*/
List<Type> inferenceVars() {
return inferencevars;
}
/**
* returns the list of uninstantiated variables (as type-variables) in this
* inference context (usually called after instantiate())
*/
List<Type> restvars() {
List<Type> undetvars = this.undetvars;
ListBuffer<Type> restvars = ListBuffer.lb();
for (Type t : instTypes()) {
UndetVar uv = (UndetVar)undetvars.head;
if (uv.qtype == t) {
restvars.append(t);
}
undetvars = undetvars.tail;
}
return restvars.toList();
}
/**
* is this type free?
*/
final boolean free(Type t) {
return t.containsAny(inferencevars);
}
final boolean free(List<Type> ts) {
for (Type t : ts) {
if (free(t)) return true;
}
return false;
}
/**
* Returns a list of free variables in a given type
*/
final List<Type> freeVarsIn(Type t) {
ListBuffer<Type> buf = ListBuffer.lb();
for (Type iv : inferenceVars()) {
if (t.contains(iv)) {
buf.add(iv);
}
}
return buf.toList();
}
final List<Type> freeVarsIn(List<Type> ts) {
ListBuffer<Type> buf = ListBuffer.lb();
for (Type t : ts) {
buf.appendList(freeVarsIn(t));
}
ListBuffer<Type> buf2 = ListBuffer.lb();
for (Type t : buf) {
if (!buf2.contains(t)) {
buf2.add(t);
}
}
return buf2.toList();
}
/**
* Replace all free variables in a given type with corresponding
* undet vars (used ahead of subtyping/compatibility checks to allow propagation
* of inference constraints).
*/
final Type asFree(Type t, Types types) {
return types.subst(t, inferencevars, undetvars);
}
final List<Type> asFree(List<Type> ts, Types types) {
ListBuffer<Type> buf = ListBuffer.lb();
for (Type t : ts) {
buf.append(asFree(t, types));
}
return buf.toList();
}
List<Type> instTypes() {
ListBuffer<Type> buf = ListBuffer.lb();
for (Type t : undetvars) {
UndetVar uv = (UndetVar)t;
buf.append(uv.inst != null ? uv.inst : uv.qtype);
}
return buf.toList();
}
/**
* Replace all free variables in a given type with corresponding
* instantiated types - if one or more free variable has not been
* fully instantiated, it will still be available in the resulting type.
*/
Type asInstType(Type t, Types types) {
return types.subst(t, inferencevars, instTypes());
}
List<Type> asInstTypes(List<Type> ts, Types types) {
ListBuffer<Type> buf = ListBuffer.lb();
for (Type t : ts) {
buf.append(asInstType(t, types));
}
return buf.toList();
}
/**
* Add custom hook for performing post-inference action
*/
void addFreeTypeListener(List<Type> types, FreeTypeListener ftl) {
freeTypeListeners.put(ftl, freeVarsIn(types));
}
/**
* Mark the inference context as complete and trigger evaluation
* of all deferred checks.
*/
void notifyChange(Types types) {
InferenceException thrownEx = null;
for (Map.Entry<FreeTypeListener, List<Type>> entry :
new HashMap<FreeTypeListener, List<Type>>(freeTypeListeners).entrySet()) {
if (!Type.containsAny(entry.getValue(), restvars())) {
try {
entry.getKey().typesInferred(this);
freeTypeListeners.remove(entry.getKey());
} catch (InferenceException ex) {
if (thrownEx == null) {
thrownEx = ex;
}
}
}
}
//inference exception multiplexing - present any inference exception
//thrown when processing listeners as a single one
if (thrownEx != null) {
throw thrownEx;
}
}
}
final InferenceContext emptyContext = new InferenceContext(List.<Type>nil(), types);
}
......@@ -31,6 +31,8 @@ import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.comp.Attr.ResultInfo;
import com.sun.tools.javac.comp.Check.CheckContext;
import com.sun.tools.javac.comp.Infer.InferenceContext;
import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
import com.sun.tools.javac.jvm.*;
import com.sun.tools.javac.tree.*;
......@@ -586,7 +588,7 @@ public class Resolve {
boolean allowBoxing,
boolean useVarargs,
Warner warn) {
checkRawArgumentsAcceptable(env, List.<Type>nil(), argtypes, formals,
checkRawArgumentsAcceptable(env, infer.emptyContext, argtypes, formals,
allowBoxing, useVarargs, warn, resolveHandler);
}
......@@ -606,8 +608,8 @@ public class Resolve {
*
* A method check handler (see above) is used in order to report errors.
*/
List<Type> checkRawArgumentsAcceptable(Env<AttrContext> env,
List<Type> undetvars,
void checkRawArgumentsAcceptable(final Env<AttrContext> env,
final Infer.InferenceContext inferenceContext,
List<Type> argtypes,
List<Type> formals,
boolean allowBoxing,
......@@ -623,7 +625,7 @@ public class Resolve {
}
while (argtypes.nonEmpty() && formals.head != varargsFormal) {
ResultInfo resultInfo = methodCheckResult(formals.head, allowBoxing, false, undetvars, handler, warn);
ResultInfo resultInfo = methodCheckResult(formals.head, allowBoxing, false, inferenceContext, handler, warn);
checkedArgs.append(resultInfo.check(env.tree.pos(), argtypes.head));
argtypes = argtypes.tail;
formals = formals.tail;
......@@ -638,17 +640,29 @@ public class Resolve {
//the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
Type elt = types.elemtype(varargsFormal);
while (argtypes.nonEmpty()) {
ResultInfo resultInfo = methodCheckResult(elt, allowBoxing, true, undetvars, handler, warn);
ResultInfo resultInfo = methodCheckResult(elt, allowBoxing, true, inferenceContext, handler, warn);
checkedArgs.append(resultInfo.check(env.tree.pos(), argtypes.head));
argtypes = argtypes.tail;
}
//check varargs element type accessibility
if (undetvars.isEmpty() && !isAccessible(env, elt)) {
varargsAccessible(env, elt, handler, inferenceContext);
}
}
void varargsAccessible(final Env<AttrContext> env, final Type t, final Resolve.MethodCheckHandler handler, final InferenceContext inferenceContext) {
if (inferenceContext.free(t)) {
inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
@Override
public void typesInferred(InferenceContext inferenceContext) {
varargsAccessible(env, inferenceContext.asInstType(t, types), handler, inferenceContext);
}
});
} else {
if (!isAccessible(env, t)) {
Symbol location = env.enclClass.sym;
throw handler.inaccessibleVarargs(location, elt);
throw handler.inaccessibleVarargs(location, t);
}
}
return checkedArgs.toList();
}
/**
......@@ -659,13 +673,13 @@ public class Resolve {
MethodCheckHandler handler;
boolean useVarargs;
List<Type> undetvars;
Infer.InferenceContext inferenceContext;
Warner rsWarner;
public MethodCheckContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
public MethodCheckContext(MethodCheckHandler handler, boolean useVarargs, Infer.InferenceContext inferenceContext, Warner rsWarner) {
this.handler = handler;
this.useVarargs = useVarargs;
this.undetvars = undetvars;
this.inferenceContext = inferenceContext;
this.rsWarner = rsWarner;
}
......@@ -676,6 +690,10 @@ public class Resolve {
public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
return rsWarner;
}
public InferenceContext inferenceContext() {
return inferenceContext;
}
}
/**
......@@ -684,12 +702,12 @@ public class Resolve {
*/
class StrictMethodContext extends MethodCheckContext {
public StrictMethodContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
super(handler, useVarargs, undetvars, rsWarner);
public StrictMethodContext(MethodCheckHandler handler, boolean useVarargs, Infer.InferenceContext inferenceContext, Warner rsWarner) {
super(handler, useVarargs, inferenceContext, rsWarner);
}
public boolean compatible(Type found, Type req, Warner warn) {
return types.isSubtypeUnchecked(found, infer.asUndetType(req, undetvars), warn);
return types.isSubtypeUnchecked(found, inferenceContext.asFree(req, types), warn);
}
}
......@@ -699,12 +717,12 @@ public class Resolve {
*/
class LooseMethodContext extends MethodCheckContext {
public LooseMethodContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
super(handler, useVarargs, undetvars, rsWarner);
public LooseMethodContext(MethodCheckHandler handler, boolean useVarargs, Infer.InferenceContext inferenceContext, Warner rsWarner) {
super(handler, useVarargs, inferenceContext, rsWarner);
}
public boolean compatible(Type found, Type req, Warner warn) {
return types.isConvertible(found, infer.asUndetType(req, undetvars), warn);
return types.isConvertible(found, inferenceContext.asFree(req, types), warn);
}
}
......@@ -712,10 +730,10 @@ public class Resolve {
* Create a method check context to be used during method applicability check
*/
ResultInfo methodCheckResult(Type to, boolean allowBoxing, boolean useVarargs,
List<Type> undetvars, MethodCheckHandler methodHandler, Warner rsWarner) {
Infer.InferenceContext inferenceContext, MethodCheckHandler methodHandler, Warner rsWarner) {
MethodCheckContext checkContext = allowBoxing ?
new LooseMethodContext(methodHandler, useVarargs, undetvars, rsWarner) :
new StrictMethodContext(methodHandler, useVarargs, undetvars, rsWarner);
new LooseMethodContext(methodHandler, useVarargs, inferenceContext, rsWarner) :
new StrictMethodContext(methodHandler, useVarargs, inferenceContext, rsWarner);
return attr.new ResultInfo(VAL, to, checkContext) {
@Override
protected Type check(DiagnosticPosition pos, Type found) {
......@@ -735,16 +753,13 @@ public class Resolve {
this.diags = diags;
}
InapplicableMethodException setMessage() {
this.diagnostic = null;
return this;
return setMessage((JCDiagnostic)null);
}
InapplicableMethodException setMessage(String key) {
this.diagnostic = key != null ? diags.fragment(key) : null;
return this;
return setMessage(key != null ? diags.fragment(key) : null);
}
InapplicableMethodException setMessage(String key, Object... args) {
this.diagnostic = key != null ? diags.fragment(key, args) : null;
return this;
return setMessage(key != null ? diags.fragment(key, args) : null);
}
InapplicableMethodException setMessage(JCDiagnostic diag) {
this.diagnostic = diag;
......
T6638712c.java:16:9: compiler.err.cant.apply.symbol.1: kindname.method, sort, T[],java.util.Comparator<? super T>, java.lang.Enum[],java.util.Comparator<java.lang.Enum<?>>, kindname.class, T6638712c, (compiler.misc.no.conforming.assignment.exists: (compiler.misc.inconvertible.types: java.util.Comparator<java.lang.Enum<?>>, java.util.Comparator<? super java.lang.Enum>))
T6638712c.java:16:9: compiler.err.cant.apply.symbol.1: kindname.method, sort, T[],java.util.Comparator<? super T>, java.lang.Enum[],java.util.Comparator<java.lang.Enum<?>>, kindname.class, T6638712c, (compiler.misc.infer.no.conforming.assignment.exists: T, (compiler.misc.inconvertible.types: java.util.Comparator<java.lang.Enum<?>>, java.util.Comparator<? super java.lang.Enum>))
1 error
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 7175433 6313164
* @summary Inference cleanup: add helper class to handle inference variables
*
*/
import java.util.List;
class Bar {
private class Foo { }
<Z> List<Z> m(Object... o) { T7175433.assertTrue(true); return null; }
<Z> List<Z> m(Foo... o) { T7175433.assertTrue(false); return null; }
Foo getFoo() { return null; }
}
public class T7175433 {
static int assertionCount;
static void assertTrue(boolean b) {
assertionCount++;
if (!b) {
throw new AssertionError();
}
}
public static void main(String[] args) {
Bar b = new Bar();
b.m(b.getFoo());
assertTrue(assertionCount == 1);
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册