/* * Copyright 2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package java.util; /** * This class implements the Dual-Pivot Quicksort algorithm by * Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. The algorithm * offers O(n log(n)) performance on many data sets that cause other * quicksorts to degrade to quadratic performance, and is typically * faster than traditional (one-pivot) Quicksort implementations. * * @author Vladimir Yaroslavskiy * @author Jon Bentley * @author Josh Bloch * * @version 2009.11.09 m765.827.v8 */ final class DualPivotQuicksort { // Suppresses default constructor private DualPivotQuicksort() {} /* * Tuning Parameters. */ /** * If the length of an array to be sorted is less than this * constant, insertion sort is used in preference to Quicksort. */ private static final int INSERTION_SORT_THRESHOLD = 32; /** * If the length of a byte array to be sorted is greater than * this constant, counting sort is used in preference to Quicksort. */ private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 128; /** * If the length of a short or char array to be sorted is greater * than this constant, counting sort is used in preference to Quicksort. */ private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 32768; /* * Sorting methods for the seven primitive types. */ /** * Sorts the specified array into ascending numerical order. * * @param a the array to be sorted */ public static void sort(int[] a) { doSort(a, 0, a.length - 1); } /** * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, * the range to be sorted is empty. * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted * @param toIndex the index of the last element, exclusive, to be sorted * @throws IllegalArgumentException if {@code fromIndex > toIndex} * @throws ArrayIndexOutOfBoundsException * if {@code fromIndex < 0} or {@code toIndex > a.length} */ public static void sort(int[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); doSort(a, fromIndex, toIndex - 1); } /** * Sorts the specified range of the array into ascending order. This * method differs from the public {@code sort} method in that the * {@code right} index is inclusive, and it does no range checking on * {@code left} or {@code right}. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(int[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { for (int k = left + 1; k <= right; k++) { int ak = a[k]; int j; for (j = k - 1; j >= left && ak < a[j]; j--) { a[j + 1] = a[j]; } a[j + 1] = ak; } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); } } /** * Sorts the specified range of the array into ascending order by the * Dual-Pivot Quicksort algorithm. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void dualPivotQuicksort(int[] a, int left, int right) { // Compute indices of five evenly spaced elements int sixth = (right - left + 1) / 6; int e1 = left + sixth; int e5 = right - sixth; int e3 = (left + right) >>> 1; // The midpoint int e4 = e3 + sixth; int e2 = e3 - sixth; // Sort these elements in place using a 5-element sorting network if (a[e1] > a[e2]) { int t = a[e1]; a[e1] = a[e2]; a[e2] = t; } if (a[e4] > a[e5]) { int t = a[e4]; a[e4] = a[e5]; a[e5] = t; } if (a[e1] > a[e3]) { int t = a[e1]; a[e1] = a[e3]; a[e3] = t; } if (a[e2] > a[e3]) { int t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e1] > a[e4]) { int t = a[e1]; a[e1] = a[e4]; a[e4] = t; } if (a[e3] > a[e4]) { int t = a[e3]; a[e3] = a[e4]; a[e4] = t; } if (a[e2] > a[e5]) { int t = a[e2]; a[e2] = a[e5]; a[e5] = t; } if (a[e2] > a[e3]) { int t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e4] > a[e5]) { int t = a[e4]; a[e4] = a[e5]; a[e5] = t; } /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and * the last of the sorted elements are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. */ int pivot1 = a[e2]; a[e2] = a[left]; int pivot2 = a[e4]; a[e4] = a[right]; /* * Partitioning * * left part center part right part * ------------------------------------------------------------ * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] * ------------------------------------------------------------ * ^ ^ ^ * | | | * less k great */ // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part boolean pivotsDiffer = pivot1 != pivot2; if (pivotsDiffer) { /* * Invariants: * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { int ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else if (ak > pivot2) { while (a[great] > pivot2 && k < great) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } else { // Pivots are equal /* * Partition degenerates to the traditional 3-way * (or "Dutch National Flag") partition: * * left part center part right part * ------------------------------------------------- * [ < pivot | == pivot | ? | > pivot ] * ------------------------------------------------- * * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { int ak = a[k]; if (ak == pivot1) { continue; } if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else { while (a[great] > pivot1) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivot values doSort(a, left, less - 2); doSort(a, great + 2, right); /* * If pivot1 == pivot2, all elements from center * part are equal and, therefore, already sorted */ if (!pivotsDiffer) { return; } /* * If center part is too large (comprises > 5/6 of * the array), swap internal pivot values to ends */ if (less < e1 && e5 < great) { while (a[less] == pivot1) { less++; } for (int k = less + 1; k <= great; k++) { if (a[k] == pivot1) { a[k] = a[less]; a[less++] = pivot1; } } while (a[great] == pivot2) { great--; } for (int k = great - 1; k >= less; k--) { if (a[k] == pivot2) { a[k] = a[great]; a[great--] = pivot2; } } } // Sort center part recursively, excluding known pivot values doSort(a, less, great); } /** * Sorts the specified array into ascending numerical order. * * @param a the array to be sorted */ public static void sort(long[] a) { doSort(a, 0, a.length - 1); } /** * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, * the range to be sorted is empty. * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted * @param toIndex the index of the last element, exclusive, to be sorted * @throws IllegalArgumentException if {@code fromIndex > toIndex} * @throws ArrayIndexOutOfBoundsException * if {@code fromIndex < 0} or {@code toIndex > a.length} */ public static void sort(long[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); doSort(a, fromIndex, toIndex - 1); } /** * Sorts the specified range of the array into ascending order. This * method differs from the public {@code sort} method in that the * {@code right} index is inclusive, and it does no range checking on * {@code left} or {@code right}. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(long[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { for (int k = left + 1; k <= right; k++) { long ak = a[k]; int j; for (j = k - 1; j >= left && ak < a[j]; j--) { a[j + 1] = a[j]; } a[j + 1] = ak; } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); } } /** * Sorts the specified range of the array into ascending order by the * Dual-Pivot Quicksort algorithm. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void dualPivotQuicksort(long[] a, int left, int right) { // Compute indices of five evenly spaced elements int sixth = (right - left + 1) / 6; int e1 = left + sixth; int e5 = right - sixth; int e3 = (left + right) >>> 1; // The midpoint int e4 = e3 + sixth; int e2 = e3 - sixth; // Sort these elements in place using a 5-element sorting network if (a[e1] > a[e2]) { long t = a[e1]; a[e1] = a[e2]; a[e2] = t; } if (a[e4] > a[e5]) { long t = a[e4]; a[e4] = a[e5]; a[e5] = t; } if (a[e1] > a[e3]) { long t = a[e1]; a[e1] = a[e3]; a[e3] = t; } if (a[e2] > a[e3]) { long t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e1] > a[e4]) { long t = a[e1]; a[e1] = a[e4]; a[e4] = t; } if (a[e3] > a[e4]) { long t = a[e3]; a[e3] = a[e4]; a[e4] = t; } if (a[e2] > a[e5]) { long t = a[e2]; a[e2] = a[e5]; a[e5] = t; } if (a[e2] > a[e3]) { long t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e4] > a[e5]) { long t = a[e4]; a[e4] = a[e5]; a[e5] = t; } /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and * the last of the sorted elements are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. */ long pivot1 = a[e2]; a[e2] = a[left]; long pivot2 = a[e4]; a[e4] = a[right]; /* * Partitioning * * left part center part right part * ------------------------------------------------------------ * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] * ------------------------------------------------------------ * ^ ^ ^ * | | | * less k great */ // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part boolean pivotsDiffer = pivot1 != pivot2; if (pivotsDiffer) { /* * Invariants: * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { long ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else if (ak > pivot2) { while (a[great] > pivot2 && k < great) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } else { // Pivots are equal /* * Partition degenerates to the traditional 3-way * (or "Dutch National Flag") partition: * * left part center part right part * ------------------------------------------------- * [ < pivot | == pivot | ? | > pivot ] * ------------------------------------------------- * * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { long ak = a[k]; if (ak == pivot1) { continue; } if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else { while (a[great] > pivot1) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivot values doSort(a, left, less - 2); doSort(a, great + 2, right); /* * If pivot1 == pivot2, all elements from center * part are equal and, therefore, already sorted */ if (!pivotsDiffer) { return; } /* * If center part is too large (comprises > 5/6 of * the array), swap internal pivot values to ends */ if (less < e1 && e5 < great) { while (a[less] == pivot1) { less++; } for (int k = less + 1; k <= great; k++) { if (a[k] == pivot1) { a[k] = a[less]; a[less++] = pivot1; } } while (a[great] == pivot2) { great--; } for (int k = great - 1; k >= less; k--) { if (a[k] == pivot2) { a[k] = a[great]; a[great--] = pivot2; } } } // Sort center part recursively, excluding known pivot values doSort(a, less, great); } /** * Sorts the specified array into ascending numerical order. * * @param a the array to be sorted */ public static void sort(short[] a) { doSort(a, 0, a.length - 1); } /** * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, * the range to be sorted is empty. * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted * @param toIndex the index of the last element, exclusive, to be sorted * @throws IllegalArgumentException if {@code fromIndex > toIndex} * @throws ArrayIndexOutOfBoundsException * if {@code fromIndex < 0} or {@code toIndex > a.length} */ public static void sort(short[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); doSort(a, fromIndex, toIndex - 1); } /** The number of distinct short values. */ private static final int NUM_SHORT_VALUES = 1 << 16; /** * Sorts the specified range of the array into ascending order. This * method differs from the public {@code sort} method in that the * {@code right} index is inclusive, and it does no range checking on * {@code left} or {@code right}. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(short[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { for (int k = left + 1; k <= right; k++) { short ak = a[k]; int j; for (j = k - 1; j >= left && ak < a[j]; j--) { a[j + 1] = a[j]; } a[j + 1] = ak; } } else if (right-left+1 > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { // Use counting sort on huge arrays int[] count = new int[NUM_SHORT_VALUES]; for (int i = left; i <= right; i++) { count[a[i] - Short.MIN_VALUE]++; } for (int i = 0, k = left; i < count.length && k <= right; i++) { short value = (short) (i + Short.MIN_VALUE); for (int s = count[i]; s > 0; s--) { a[k++] = value; } } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); } } /** * Sorts the specified range of the array into ascending order by the * Dual-Pivot Quicksort algorithm. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void dualPivotQuicksort(short[] a, int left, int right) { // Compute indices of five evenly spaced elements int sixth = (right - left + 1) / 6; int e1 = left + sixth; int e5 = right - sixth; int e3 = (left + right) >>> 1; // The midpoint int e4 = e3 + sixth; int e2 = e3 - sixth; // Sort these elements in place using a 5-element sorting network if (a[e1] > a[e2]) { short t = a[e1]; a[e1] = a[e2]; a[e2] = t; } if (a[e4] > a[e5]) { short t = a[e4]; a[e4] = a[e5]; a[e5] = t; } if (a[e1] > a[e3]) { short t = a[e1]; a[e1] = a[e3]; a[e3] = t; } if (a[e2] > a[e3]) { short t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e1] > a[e4]) { short t = a[e1]; a[e1] = a[e4]; a[e4] = t; } if (a[e3] > a[e4]) { short t = a[e3]; a[e3] = a[e4]; a[e4] = t; } if (a[e2] > a[e5]) { short t = a[e2]; a[e2] = a[e5]; a[e5] = t; } if (a[e2] > a[e3]) { short t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e4] > a[e5]) { short t = a[e4]; a[e4] = a[e5]; a[e5] = t; } /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and * the last of the sorted elements are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. */ short pivot1 = a[e2]; a[e2] = a[left]; short pivot2 = a[e4]; a[e4] = a[right]; /* * Partitioning * * left part center part right part * ------------------------------------------------------------ * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] * ------------------------------------------------------------ * ^ ^ ^ * | | | * less k great */ // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part boolean pivotsDiffer = pivot1 != pivot2; if (pivotsDiffer) { /* * Invariants: * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { short ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else if (ak > pivot2) { while (a[great] > pivot2 && k < great) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } else { // Pivots are equal /* * Partition degenerates to the traditional 3-way * (or "Dutch National Flag") partition: * * left part center part right part * ------------------------------------------------- * [ < pivot | == pivot | ? | > pivot ] * ------------------------------------------------- * * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { short ak = a[k]; if (ak == pivot1) { continue; } if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else { while (a[great] > pivot1) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivot values doSort(a, left, less - 2); doSort(a, great + 2, right); /* * If pivot1 == pivot2, all elements from center * part are equal and, therefore, already sorted */ if (!pivotsDiffer) { return; } /* * If center part is too large (comprises > 5/6 of * the array), swap internal pivot values to ends */ if (less < e1 && e5 < great) { while (a[less] == pivot1) { less++; } for (int k = less + 1; k <= great; k++) { if (a[k] == pivot1) { a[k] = a[less]; a[less++] = pivot1; } } while (a[great] == pivot2) { great--; } for (int k = great - 1; k >= less; k--) { if (a[k] == pivot2) { a[k] = a[great]; a[great--] = pivot2; } } } // Sort center part recursively, excluding known pivot values doSort(a, less, great); } /** * Sorts the specified array into ascending numerical order. * * @param a the array to be sorted */ public static void sort(char[] a) { doSort(a, 0, a.length - 1); } /** * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, * the range to be sorted is empty. * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted * @param toIndex the index of the last element, exclusive, to be sorted * @throws IllegalArgumentException if {@code fromIndex > toIndex} * @throws ArrayIndexOutOfBoundsException * if {@code fromIndex < 0} or {@code toIndex > a.length} */ public static void sort(char[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); doSort(a, fromIndex, toIndex - 1); } /** The number of distinct char values. */ private static final int NUM_CHAR_VALUES = 1 << 16; /** * Sorts the specified range of the array into ascending order. This * method differs from the public {@code sort} method in that the * {@code right} index is inclusive, and it does no range checking on * {@code left} or {@code right}. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(char[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { for (int k = left + 1; k <= right; k++) { char ak = a[k]; int j; for (j = k - 1; j >= left && ak < a[j]; j--) { a[j + 1] = a[j]; } a[j + 1] = ak; } } else if (right-left+1 > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { // Use counting sort on huge arrays int[] count = new int[NUM_CHAR_VALUES]; for (int i = left; i <= right; i++) { count[a[i]]++; } for (int i = 0, k = left; i < count.length && k <= right; i++) { for (int s = count[i]; s > 0; s--) { a[k++] = (char) i; } } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); } } /** * Sorts the specified range of the array into ascending order by the * Dual-Pivot Quicksort algorithm. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void dualPivotQuicksort(char[] a, int left, int right) { // Compute indices of five evenly spaced elements int sixth = (right - left + 1) / 6; int e1 = left + sixth; int e5 = right - sixth; int e3 = (left + right) >>> 1; // The midpoint int e4 = e3 + sixth; int e2 = e3 - sixth; // Sort these elements in place using a 5-element sorting network if (a[e1] > a[e2]) { char t = a[e1]; a[e1] = a[e2]; a[e2] = t; } if (a[e4] > a[e5]) { char t = a[e4]; a[e4] = a[e5]; a[e5] = t; } if (a[e1] > a[e3]) { char t = a[e1]; a[e1] = a[e3]; a[e3] = t; } if (a[e2] > a[e3]) { char t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e1] > a[e4]) { char t = a[e1]; a[e1] = a[e4]; a[e4] = t; } if (a[e3] > a[e4]) { char t = a[e3]; a[e3] = a[e4]; a[e4] = t; } if (a[e2] > a[e5]) { char t = a[e2]; a[e2] = a[e5]; a[e5] = t; } if (a[e2] > a[e3]) { char t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e4] > a[e5]) { char t = a[e4]; a[e4] = a[e5]; a[e5] = t; } /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and * the last of the sorted elements are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. */ char pivot1 = a[e2]; a[e2] = a[left]; char pivot2 = a[e4]; a[e4] = a[right]; /* * Partitioning * * left part center part right part * ------------------------------------------------------------ * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] * ------------------------------------------------------------ * ^ ^ ^ * | | | * less k great */ // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part boolean pivotsDiffer = pivot1 != pivot2; if (pivotsDiffer) { /* * Invariants: * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { char ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else if (ak > pivot2) { while (a[great] > pivot2 && k < great) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } else { // Pivots are equal /* * Partition degenerates to the traditional 3-way * (or "Dutch National Flag") partition: * * left part center part right part * ------------------------------------------------- * [ < pivot | == pivot | ? | > pivot ] * ------------------------------------------------- * * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { char ak = a[k]; if (ak == pivot1) { continue; } if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else { while (a[great] > pivot1) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivot values doSort(a, left, less - 2); doSort(a, great + 2, right); /* * If pivot1 == pivot2, all elements from center * part are equal and, therefore, already sorted */ if (!pivotsDiffer) { return; } /* * If center part is too large (comprises > 5/6 of * the array), swap internal pivot values to ends */ if (less < e1 && e5 < great) { while (a[less] == pivot1) { less++; } for (int k = less + 1; k <= great; k++) { if (a[k] == pivot1) { a[k] = a[less]; a[less++] = pivot1; } } while (a[great] == pivot2) { great--; } for (int k = great - 1; k >= less; k--) { if (a[k] == pivot2) { a[k] = a[great]; a[great--] = pivot2; } } } // Sort center part recursively, excluding known pivot values doSort(a, less, great); } /** * Sorts the specified array into ascending numerical order. * * @param a the array to be sorted */ public static void sort(byte[] a) { doSort(a, 0, a.length - 1); } /** * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, * the range to be sorted is empty. * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted * @param toIndex the index of the last element, exclusive, to be sorted * @throws IllegalArgumentException if {@code fromIndex > toIndex} * @throws ArrayIndexOutOfBoundsException * if {@code fromIndex < 0} or {@code toIndex > a.length} */ public static void sort(byte[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); doSort(a, fromIndex, toIndex - 1); } /** The number of distinct byte values. */ private static final int NUM_BYTE_VALUES = 1 << 8; /** * Sorts the specified range of the array into ascending order. This * method differs from the public {@code sort} method in that the * {@code right} index is inclusive, and it does no range checking on * {@code left} or {@code right}. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(byte[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { for (int k = left + 1; k <= right; k++) { byte ak = a[k]; int j; for (j = k - 1; j >= left && ak < a[j]; j--) { a[j + 1] = a[j]; } a[j + 1] = ak; } } else if (right - left + 1 > COUNTING_SORT_THRESHOLD_FOR_BYTE) { // Use counting sort on huge arrays int[] count = new int[NUM_BYTE_VALUES]; for (int i = left; i <= right; i++) { count[a[i] - Byte.MIN_VALUE]++; } for (int i = 0, k = left; i < count.length && k <= right; i++) { byte value = (byte) (i + Byte.MIN_VALUE); for (int s = count[i]; s > 0; s--) { a[k++] = value; } } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); } } /** * Sorts the specified range of the array into ascending order by the * Dual-Pivot Quicksort algorithm. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void dualPivotQuicksort(byte[] a, int left, int right) { // Compute indices of five evenly spaced elements int sixth = (right - left + 1) / 6; int e1 = left + sixth; int e5 = right - sixth; int e3 = (left + right) >>> 1; // The midpoint int e4 = e3 + sixth; int e2 = e3 - sixth; // Sort these elements in place using a 5-element sorting network if (a[e1] > a[e2]) { byte t = a[e1]; a[e1] = a[e2]; a[e2] = t; } if (a[e4] > a[e5]) { byte t = a[e4]; a[e4] = a[e5]; a[e5] = t; } if (a[e1] > a[e3]) { byte t = a[e1]; a[e1] = a[e3]; a[e3] = t; } if (a[e2] > a[e3]) { byte t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e1] > a[e4]) { byte t = a[e1]; a[e1] = a[e4]; a[e4] = t; } if (a[e3] > a[e4]) { byte t = a[e3]; a[e3] = a[e4]; a[e4] = t; } if (a[e2] > a[e5]) { byte t = a[e2]; a[e2] = a[e5]; a[e5] = t; } if (a[e2] > a[e3]) { byte t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e4] > a[e5]) { byte t = a[e4]; a[e4] = a[e5]; a[e5] = t; } /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and * the last of the sorted elements are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. */ byte pivot1 = a[e2]; a[e2] = a[left]; byte pivot2 = a[e4]; a[e4] = a[right]; /* * Partitioning * * left part center part right part * ------------------------------------------------------------ * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] * ------------------------------------------------------------ * ^ ^ ^ * | | | * less k great */ // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part boolean pivotsDiffer = pivot1 != pivot2; if (pivotsDiffer) { /* * Invariants: * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { byte ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else if (ak > pivot2) { while (a[great] > pivot2 && k < great) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } else { // Pivots are equal /* * Partition degenerates to the traditional 3-way * (or "Dutch National Flag") partition: * * left part center part right part * ------------------------------------------------- * [ < pivot | == pivot | ? | > pivot ] * ------------------------------------------------- * * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { byte ak = a[k]; if (ak == pivot1) { continue; } if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else { while (a[great] > pivot1) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivot values doSort(a, left, less - 2); doSort(a, great + 2, right); /* * If pivot1 == pivot2, all elements from center * part are equal and, therefore, already sorted */ if (!pivotsDiffer) { return; } /* * If center part is too large (comprises > 5/6 of * the array), swap internal pivot values to ends */ if (less < e1 && e5 < great) { while (a[less] == pivot1) { less++; } for (int k = less + 1; k <= great; k++) { if (a[k] == pivot1) { a[k] = a[less]; a[less++] = pivot1; } } while (a[great] == pivot2) { great--; } for (int k = great - 1; k >= less; k--) { if (a[k] == pivot2) { a[k] = a[great]; a[great--] = pivot2; } } } // Sort center part recursively, excluding known pivot values doSort(a, less, great); } /** * Sorts the specified array into ascending numerical order. * *

The {@code <} relation does not provide a total order on all float * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} * value compares neither less than, greater than, nor equal to any value, * even itself. This method uses the total order imposed by the method * {@link Float#compareTo}: {@code -0.0f} is treated as less than value * {@code 0.0f} and {@code Float.NaN} is considered greater than any * other value and all {@code Float.NaN} values are considered equal. * * @param a the array to be sorted */ public static void sort(float[] a) { sortNegZeroAndNaN(a, 0, a.length - 1); } /** * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, * the range to be sorted is empty. * *

The {@code <} relation does not provide a total order on all float * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} * value compares neither less than, greater than, nor equal to any value, * even itself. This method uses the total order imposed by the method * {@link Float#compareTo}: {@code -0.0f} is treated as less than value * {@code 0.0f} and {@code Float.NaN} is considered greater than any * other value and all {@code Float.NaN} values are considered equal. * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted * @param toIndex the index of the last element, exclusive, to be sorted * @throws IllegalArgumentException if {@code fromIndex > toIndex} * @throws ArrayIndexOutOfBoundsException * if {@code fromIndex < 0} or {@code toIndex > a.length} */ public static void sort(float[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sortNegZeroAndNaN(a, fromIndex, toIndex - 1); } /** * Sorts the specified range of the array into ascending order. The * sort is done in three phases to avoid expensive comparisons in the * inner loop. The comparisons would be expensive due to anomalies * associated with negative zero {@code -0.0f} and {@code Float.NaN}. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void sortNegZeroAndNaN(float[] a, int left, int right) { /* * Phase 1: Count negative zeros and move NaNs to end of array */ final int NEGATIVE_ZERO = Float.floatToIntBits(-0.0f); int numNegativeZeros = 0; int n = right; for (int k = left; k <= n; k++) { float ak = a[k]; if (ak == 0.0f && NEGATIVE_ZERO == Float.floatToIntBits(ak)) { a[k] = 0.0f; numNegativeZeros++; } else if (ak != ak) { // i.e., ak is NaN a[k--] = a[n]; a[n--] = Float.NaN; } } /* * Phase 2: Sort everything except NaNs (which are already in place) */ doSort(a, left, n); /* * Phase 3: Turn positive zeros back into negative zeros as appropriate */ if (numNegativeZeros == 0) { return; } // Find first zero element int zeroIndex = findAnyZero(a, left, n); for (int i = zeroIndex - 1; i >= left && a[i] == 0.0f; i--) { zeroIndex = i; } // Turn the right number of positive zeros back into negative zeros for (int i = zeroIndex, m = zeroIndex + numNegativeZeros; i < m; i++) { a[i] = -0.0f; } } /** * Returns the index of some zero element in the specified range via * binary search. The range is assumed to be sorted, and must contain * at least one zero. * * @param a the array to be searched * @param low the index of the first element, inclusive, to be searched * @param high the index of the last element, inclusive, to be searched */ private static int findAnyZero(float[] a, int low, int high) { while (true) { int middle = (low + high) >>> 1; float middleValue = a[middle]; if (middleValue < 0.0f) { low = middle + 1; } else if (middleValue > 0.0f) { high = middle - 1; } else { // middleValue == 0.0f return middle; } } } /** * Sorts the specified range of the array into ascending order. This * method differs from the public {@code sort} method in three ways: * {@code right} index is inclusive, it does no range checking on * {@code left} or {@code right}, and it does not handle negative * zeros or NaNs in the array. * * @param a the array to be sorted, which must not contain -0.0f or NaN * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(float[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { for (int k = left + 1; k <= right; k++) { float ak = a[k]; int j; for (j = k - 1; j >= left && ak < a[j]; j--) { a[j + 1] = a[j]; } a[j + 1] = ak; } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); } } /** * Sorts the specified range of the array into ascending order by the * Dual-Pivot Quicksort algorithm. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void dualPivotQuicksort(float[] a, int left, int right) { // Compute indices of five evenly spaced elements int sixth = (right - left + 1) / 6; int e1 = left + sixth; int e5 = right - sixth; int e3 = (left + right) >>> 1; // The midpoint int e4 = e3 + sixth; int e2 = e3 - sixth; // Sort these elements in place using a 5-element sorting network if (a[e1] > a[e2]) { float t = a[e1]; a[e1] = a[e2]; a[e2] = t; } if (a[e4] > a[e5]) { float t = a[e4]; a[e4] = a[e5]; a[e5] = t; } if (a[e1] > a[e3]) { float t = a[e1]; a[e1] = a[e3]; a[e3] = t; } if (a[e2] > a[e3]) { float t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e1] > a[e4]) { float t = a[e1]; a[e1] = a[e4]; a[e4] = t; } if (a[e3] > a[e4]) { float t = a[e3]; a[e3] = a[e4]; a[e4] = t; } if (a[e2] > a[e5]) { float t = a[e2]; a[e2] = a[e5]; a[e5] = t; } if (a[e2] > a[e3]) { float t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e4] > a[e5]) { float t = a[e4]; a[e4] = a[e5]; a[e5] = t; } /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and * the last of the sorted elements are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. */ float pivot1 = a[e2]; a[e2] = a[left]; float pivot2 = a[e4]; a[e4] = a[right]; /* * Partitioning * * left part center part right part * ------------------------------------------------------------ * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] * ------------------------------------------------------------ * ^ ^ ^ * | | | * less k great */ // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part boolean pivotsDiffer = pivot1 != pivot2; if (pivotsDiffer) { /* * Invariants: * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { float ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else if (ak > pivot2) { while (a[great] > pivot2 && k < great) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } else { // Pivots are equal /* * Partition degenerates to the traditional 3-way * (or "Dutch National Flag") partition: * * left part center part right part * ------------------------------------------------- * [ < pivot | == pivot | ? | > pivot ] * ------------------------------------------------- * * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { float ak = a[k]; if (ak == pivot1) { continue; } if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else { while (a[great] > pivot1) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivot values doSort(a, left, less - 2); doSort(a, great + 2, right); /* * If pivot1 == pivot2, all elements from center * part are equal and, therefore, already sorted */ if (!pivotsDiffer) { return; } /* * If center part is too large (comprises > 5/6 of * the array), swap internal pivot values to ends */ if (less < e1 && e5 < great) { while (a[less] == pivot1) { less++; } for (int k = less + 1; k <= great; k++) { if (a[k] == pivot1) { a[k] = a[less]; a[less++] = pivot1; } } while (a[great] == pivot2) { great--; } for (int k = great - 1; k >= less; k--) { if (a[k] == pivot2) { a[k] = a[great]; a[great--] = pivot2; } } } // Sort center part recursively, excluding known pivot values doSort(a, less, great); } /** * Sorts the specified array into ascending numerical order. * *

The {@code <} relation does not provide a total order on all double * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} * value compares neither less than, greater than, nor equal to any value, * even itself. This method uses the total order imposed by the method * {@link Double#compareTo}: {@code -0.0d} is treated as less than value * {@code 0.0d} and {@code Double.NaN} is considered greater than any * other value and all {@code Double.NaN} values are considered equal. * * @param a the array to be sorted */ public static void sort(double[] a) { sortNegZeroAndNaN(a, 0, a.length - 1); } /** * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, * the range to be sorted is empty. * *

The {@code <} relation does not provide a total order on all double * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} * value compares neither less than, greater than, nor equal to any value, * even itself. This method uses the total order imposed by the method * {@link Double#compareTo}: {@code -0.0d} is treated as less than value * {@code 0.0d} and {@code Double.NaN} is considered greater than any * other value and all {@code Double.NaN} values are considered equal. * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted * @param toIndex the index of the last element, exclusive, to be sorted * @throws IllegalArgumentException if {@code fromIndex > toIndex} * @throws ArrayIndexOutOfBoundsException * if {@code fromIndex < 0} or {@code toIndex > a.length} */ public static void sort(double[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sortNegZeroAndNaN(a, fromIndex, toIndex - 1); } /** * Sorts the specified range of the array into ascending order. The * sort is done in three phases to avoid expensive comparisons in the * inner loop. The comparisons would be expensive due to anomalies * associated with negative zero {@code -0.0d} and {@code Double.NaN}. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void sortNegZeroAndNaN(double[] a, int left, int right) { /* * Phase 1: Count negative zeros and move NaNs to end of array */ final long NEGATIVE_ZERO = Double.doubleToLongBits(-0.0d); int numNegativeZeros = 0; int n = right; for (int k = left; k <= n; k++) { double ak = a[k]; if (ak == 0.0d && NEGATIVE_ZERO == Double.doubleToLongBits(ak)) { a[k] = 0.0d; numNegativeZeros++; } else if (ak != ak) { // i.e., ak is NaN a[k--] = a[n]; a[n--] = Double.NaN; } } /* * Phase 2: Sort everything except NaNs (which are already in place) */ doSort(a, left, n); /* * Phase 3: Turn positive zeros back into negative zeros as appropriate */ if (numNegativeZeros == 0) { return; } // Find first zero element int zeroIndex = findAnyZero(a, left, n); for (int i = zeroIndex - 1; i >= left && a[i] == 0.0d; i--) { zeroIndex = i; } // Turn the right number of positive zeros back into negative zeros for (int i = zeroIndex, m = zeroIndex + numNegativeZeros; i < m; i++) { a[i] = -0.0d; } } /** * Returns the index of some zero element in the specified range via * binary search. The range is assumed to be sorted, and must contain * at least one zero. * * @param a the array to be searched * @param low the index of the first element, inclusive, to be searched * @param high the index of the last element, inclusive, to be searched */ private static int findAnyZero(double[] a, int low, int high) { while (true) { int middle = (low + high) >>> 1; double middleValue = a[middle]; if (middleValue < 0.0d) { low = middle + 1; } else if (middleValue > 0.0d) { high = middle - 1; } else { // middleValue == 0.0d return middle; } } } /** * Sorts the specified range of the array into ascending order. This * method differs from the public {@code sort} method in three ways: * {@code right} index is inclusive, it does no range checking on * {@code left} or {@code right}, and it does not handle negative * zeros or NaNs in the array. * * @param a the array to be sorted, which must not contain -0.0d and NaN * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(double[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { for (int k = left + 1; k <= right; k++) { double ak = a[k]; int j; for (j = k - 1; j >= left && ak < a[j]; j--) { a[j + 1] = a[j]; } a[j + 1] = ak; } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); } } /** * Sorts the specified range of the array into ascending order by the * Dual-Pivot Quicksort algorithm. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void dualPivotQuicksort(double[] a, int left, int right) { // Compute indices of five evenly spaced elements int sixth = (right - left + 1) / 6; int e1 = left + sixth; int e5 = right - sixth; int e3 = (left + right) >>> 1; // The midpoint int e4 = e3 + sixth; int e2 = e3 - sixth; // Sort these elements in place using a 5-element sorting network if (a[e1] > a[e2]) { double t = a[e1]; a[e1] = a[e2]; a[e2] = t; } if (a[e4] > a[e5]) { double t = a[e4]; a[e4] = a[e5]; a[e5] = t; } if (a[e1] > a[e3]) { double t = a[e1]; a[e1] = a[e3]; a[e3] = t; } if (a[e2] > a[e3]) { double t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e1] > a[e4]) { double t = a[e1]; a[e1] = a[e4]; a[e4] = t; } if (a[e3] > a[e4]) { double t = a[e3]; a[e3] = a[e4]; a[e4] = t; } if (a[e2] > a[e5]) { double t = a[e2]; a[e2] = a[e5]; a[e5] = t; } if (a[e2] > a[e3]) { double t = a[e2]; a[e2] = a[e3]; a[e3] = t; } if (a[e4] > a[e5]) { double t = a[e4]; a[e4] = a[e5]; a[e5] = t; } /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and * the last of the sorted elements are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. */ double pivot1 = a[e2]; a[e2] = a[left]; double pivot2 = a[e4]; a[e4] = a[right]; /* * Partitioning * * left part center part right part * ------------------------------------------------------------ * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] * ------------------------------------------------------------ * ^ ^ ^ * | | | * less k great */ // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part boolean pivotsDiffer = pivot1 != pivot2; if (pivotsDiffer) { /* * Invariants: * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { double ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else if (ak > pivot2) { while (a[great] > pivot2 && k < great) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } else { // Pivots are equal /* * Partition degenerates to the traditional 3-way * (or "Dutch National Flag") partition: * * left part center part right part * ------------------------------------------------- * [ < pivot | == pivot | ? | > pivot ] * ------------------------------------------------- * * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part */ for (int k = less; k <= great; k++) { double ak = a[k]; if (ak == pivot1) { continue; } if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } else { while (a[great] > pivot1) { great--; } a[k] = a[great]; a[great--] = ak; ak = a[k]; if (ak < pivot1) { a[k] = a[less]; a[less++] = ak; } } } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivot values doSort(a, left, less - 2); doSort(a, great + 2, right); /* * If pivot1 == pivot2, all elements from center * part are equal and, therefore, already sorted */ if (!pivotsDiffer) { return; } /* * If center part is too large (comprises > 5/6 of * the array), swap internal pivot values to ends */ if (less < e1 && e5 < great) { while (a[less] == pivot1) { less++; } for (int k = less + 1; k <= great; k++) { if (a[k] == pivot1) { a[k] = a[less]; a[less++] = pivot1; } } while (a[great] == pivot2) { great--; } for (int k = great - 1; k >= less; k--) { if (a[k] == pivot2) { a[k] = a[great]; a[great--] = pivot2; } } } // Sort center part recursively, excluding known pivot values doSort(a, less, great); } /** * Checks that {@code fromIndex} and {@code toIndex} are in * the range and throws an appropriate exception, if they aren't. */ private static void rangeCheck(int length, int fromIndex, int toIndex) { if (fromIndex > toIndex) { throw new IllegalArgumentException( "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } if (fromIndex < 0) { throw new ArrayIndexOutOfBoundsException(fromIndex); } if (toIndex > length) { throw new ArrayIndexOutOfBoundsException(toIndex); } } }