/* * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.java2d.marlin; import java.awt.BasicStroke; import java.awt.Shape; import java.awt.geom.AffineTransform; import java.awt.geom.Path2D; import java.awt.geom.PathIterator; import java.lang.ref.Reference; import java.security.AccessController; import java.util.concurrent.ConcurrentLinkedQueue; import static sun.java2d.marlin.MarlinUtils.logInfo; import sun.awt.geom.PathConsumer2D; import sun.java2d.pipe.AATileGenerator; import sun.java2d.pipe.Region; import sun.java2d.pipe.RenderingEngine; import sun.security.action.GetPropertyAction; /** * Marlin RendererEngine implementation (derived from Pisces) */ public class MarlinRenderingEngine extends RenderingEngine implements MarlinConst { private static enum NormMode {ON_WITH_AA, ON_NO_AA, OFF} private static final float MIN_PEN_SIZE = 1f / NORM_SUBPIXELS; /** * Public constructor */ public MarlinRenderingEngine() { super(); logSettings(MarlinRenderingEngine.class.getName()); } /** * Create a widened path as specified by the parameters. *
* The specified {@code src} {@link Shape} is widened according * to the specified attribute parameters as per the * {@link BasicStroke} specification. * * @param src the source path to be widened * @param width the width of the widened path as per {@code BasicStroke} * @param caps the end cap decorations as per {@code BasicStroke} * @param join the segment join decorations as per {@code BasicStroke} * @param miterlimit the miter limit as per {@code BasicStroke} * @param dashes the dash length array as per {@code BasicStroke} * @param dashphase the initial dash phase as per {@code BasicStroke} * @return the widened path stored in a new {@code Shape} object * @since 1.7 */ @Override public Shape createStrokedShape(Shape src, float width, int caps, int join, float miterlimit, float dashes[], float dashphase) { final RendererContext rdrCtx = getRendererContext(); try { // initialize a large copyable Path2D to avoid a lot of array growing: final Path2D.Float p2d = (rdrCtx.p2d == null) ? (rdrCtx.p2d = new Path2D.Float(Path2D.WIND_NON_ZERO, INITIAL_MEDIUM_ARRAY)) : rdrCtx.p2d; // reset p2d.reset(); strokeTo(rdrCtx, src, null, width, NormMode.OFF, caps, join, miterlimit, dashes, dashphase, rdrCtx.transformerPC2D.wrapPath2d(p2d) ); // Use Path2D copy constructor (trim) return new Path2D.Float(p2d); } finally { // recycle the RendererContext instance returnRendererContext(rdrCtx); } } /** * Sends the geometry for a widened path as specified by the parameters * to the specified consumer. *
* The specified {@code src} {@link Shape} is widened according * to the parameters specified by the {@link BasicStroke} object. * Adjustments are made to the path as appropriate for the * {@link VALUE_STROKE_NORMALIZE} hint if the {@code normalize} * boolean parameter is true. * Adjustments are made to the path as appropriate for the * {@link VALUE_ANTIALIAS_ON} hint if the {@code antialias} * boolean parameter is true. *
* The geometry of the widened path is forwarded to the indicated * {@link PathConsumer2D} object as it is calculated. * * @param src the source path to be widened * @param bs the {@code BasicSroke} object specifying the * decorations to be applied to the widened path * @param normalize indicates whether stroke normalization should * be applied * @param antialias indicates whether or not adjustments appropriate * to antialiased rendering should be applied * @param consumer the {@code PathConsumer2D} instance to forward * the widened geometry to * @since 1.7 */ @Override public void strokeTo(Shape src, AffineTransform at, BasicStroke bs, boolean thin, boolean normalize, boolean antialias, final PathConsumer2D consumer) { final NormMode norm = (normalize) ? ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA) : NormMode.OFF; final RendererContext rdrCtx = getRendererContext(); try { strokeTo(rdrCtx, src, at, bs, thin, norm, antialias, consumer); } finally { // recycle the RendererContext instance returnRendererContext(rdrCtx); } } final void strokeTo(final RendererContext rdrCtx, Shape src, AffineTransform at, BasicStroke bs, boolean thin, NormMode normalize, boolean antialias, PathConsumer2D pc2d) { float lw; if (thin) { if (antialias) { lw = userSpaceLineWidth(at, MIN_PEN_SIZE); } else { lw = userSpaceLineWidth(at, 1.0f); } } else { lw = bs.getLineWidth(); } strokeTo(rdrCtx, src, at, lw, normalize, bs.getEndCap(), bs.getLineJoin(), bs.getMiterLimit(), bs.getDashArray(), bs.getDashPhase(), pc2d); } private final float userSpaceLineWidth(AffineTransform at, float lw) { float widthScale; if (at == null) { widthScale = 1.0f; } else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM | AffineTransform.TYPE_GENERAL_SCALE)) != 0) { widthScale = (float)Math.sqrt(at.getDeterminant()); } else { // First calculate the "maximum scale" of this transform. double A = at.getScaleX(); // m00 double C = at.getShearX(); // m01 double B = at.getShearY(); // m10 double D = at.getScaleY(); // m11 /* * Given a 2 x 2 affine matrix [ A B ] such that * [ C D ] * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to * find the maximum magnitude (norm) of the vector v' * with the constraint (x^2 + y^2 = 1). * The equation to maximize is * |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2) * or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2). * Since sqrt is monotonic we can maximize |v'|^2 * instead and plug in the substitution y = sqrt(1 - x^2). * Trigonometric equalities can then be used to get * rid of most of the sqrt terms. */ double EA = A*A + B*B; // x^2 coefficient double EB = 2.0*(A*C + B*D); // xy coefficient double EC = C*C + D*D; // y^2 coefficient /* * There is a lot of calculus omitted here. * * Conceptually, in the interests of understanding the * terms that the calculus produced we can consider * that EA and EC end up providing the lengths along * the major axes and the hypot term ends up being an * adjustment for the additional length along the off-axis * angle of rotated or sheared ellipses as well as an * adjustment for the fact that the equation below * averages the two major axis lengths. (Notice that * the hypot term contains a part which resolves to the * difference of these two axis lengths in the absence * of rotation.) * * In the calculus, the ratio of the EB and (EA-EC) terms * ends up being the tangent of 2*theta where theta is * the angle that the long axis of the ellipse makes * with the horizontal axis. Thus, this equation is * calculating the length of the hypotenuse of a triangle * along that axis. */ double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC)); // sqrt omitted, compare to squared limits below. double widthsquared = ((EA + EC + hypot)/2.0); widthScale = (float)Math.sqrt(widthsquared); } return (lw / widthScale); } final void strokeTo(final RendererContext rdrCtx, Shape src, AffineTransform at, float width, NormMode normalize, int caps, int join, float miterlimit, float dashes[], float dashphase, PathConsumer2D pc2d) { // We use strokerat and outat so that in Stroker and Dasher we can work only // with the pre-transformation coordinates. This will repeat a lot of // computations done in the path iterator, but the alternative is to // work with transformed paths and compute untransformed coordinates // as needed. This would be faster but I do not think the complexity // of working with both untransformed and transformed coordinates in // the same code is worth it. // However, if a path's width is constant after a transformation, // we can skip all this untransforming. // If normalization is off we save some transformations by not // transforming the input to pisces. Instead, we apply the // transformation after the path processing has been done. // We can't do this if normalization is on, because it isn't a good // idea to normalize before the transformation is applied. AffineTransform strokerat = null; AffineTransform outat = null; PathIterator pi; int dashLen = -1; boolean recycleDashes = false; if (at != null && !at.isIdentity()) { final double a = at.getScaleX(); final double b = at.getShearX(); final double c = at.getShearY(); final double d = at.getScaleY(); final double det = a * d - c * b; if (Math.abs(det) <= (2f * Float.MIN_VALUE)) { // this rendering engine takes one dimensional curves and turns // them into 2D shapes by giving them width. // However, if everything is to be passed through a singular // transformation, these 2D shapes will be squashed down to 1D // again so, nothing can be drawn. // Every path needs an initial moveTo and a pathDone. If these // are not there this causes a SIGSEGV in libawt.so (at the time // of writing of this comment (September 16, 2010)). Actually, // I am not sure if the moveTo is necessary to avoid the SIGSEGV // but the pathDone is definitely needed. pc2d.moveTo(0f, 0f); pc2d.pathDone(); return; } // If the transform is a constant multiple of an orthogonal transformation // then every length is just multiplied by a constant, so we just // need to transform input paths to stroker and tell stroker // the scaled width. This condition is satisfied if // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we // leave a bit of room for error. if (nearZero(a*b + c*d) && nearZero(a*a + c*c - (b*b + d*d))) { final float scale = (float) Math.sqrt(a*a + c*c); if (dashes != null) { recycleDashes = true; dashLen = dashes.length; final float[] newDashes; if (dashLen <= INITIAL_ARRAY) { newDashes = rdrCtx.dasher.dashes_initial; } else { if (doStats) { RendererContext.stats.stat_array_dasher_dasher .add(dashLen); } newDashes = rdrCtx.getDirtyFloatArray(dashLen); } System.arraycopy(dashes, 0, newDashes, 0, dashLen); dashes = newDashes; for (int i = 0; i < dashLen; i++) { dashes[i] = scale * dashes[i]; } dashphase = scale * dashphase; } width = scale * width; pi = getNormalizingPathIterator(rdrCtx, normalize, src.getPathIterator(at)); // by now strokerat == null && outat == null. Input paths to // stroker (and maybe dasher) will have the full transform at // applied to them and nothing will happen to the output paths. } else { if (normalize != NormMode.OFF) { strokerat = at; pi = getNormalizingPathIterator(rdrCtx, normalize, src.getPathIterator(at)); // by now strokerat == at && outat == null. Input paths to // stroker (and maybe dasher) will have the full transform at // applied to them, then they will be normalized, and then // the inverse of *only the non translation part of at* will // be applied to the normalized paths. This won't cause problems // in stroker, because, suppose at = T*A, where T is just the // translation part of at, and A is the rest. T*A has already // been applied to Stroker/Dasher's input. Then Ainv will be // applied. Ainv*T*A is not equal to T, but it is a translation, // which means that none of stroker's assumptions about its // input will be violated. After all this, A will be applied // to stroker's output. } else { outat = at; pi = src.getPathIterator(null); // outat == at && strokerat == null. This is because if no // normalization is done, we can just apply all our // transformations to stroker's output. } } } else { // either at is null or it's the identity. In either case // we don't transform the path. pi = getNormalizingPathIterator(rdrCtx, normalize, src.getPathIterator(null)); } if (useSimplifier) { // Use simplifier after stroker before Renderer // to remove collinear segments (notably due to cap square) pc2d = rdrCtx.simplifier.init(pc2d); } // by now, at least one of outat and strokerat will be null. Unless at is not // a constant multiple of an orthogonal transformation, they will both be // null. In other cases, outat == at if normalization is off, and if // normalization is on, strokerat == at. final TransformingPathConsumer2D transformerPC2D = rdrCtx.transformerPC2D; pc2d = transformerPC2D.transformConsumer(pc2d, outat); pc2d = transformerPC2D.deltaTransformConsumer(pc2d, strokerat); pc2d = rdrCtx.stroker.init(pc2d, width, caps, join, miterlimit); if (dashes != null) { if (!recycleDashes) { dashLen = dashes.length; } pc2d = rdrCtx.dasher.init(pc2d, dashes, dashLen, dashphase, recycleDashes); } pc2d = transformerPC2D.inverseDeltaTransformConsumer(pc2d, strokerat); pathTo(rdrCtx, pi, pc2d); /* * Pipeline seems to be: * shape.getPathIterator * -> NormalizingPathIterator * -> inverseDeltaTransformConsumer * -> Dasher * -> Stroker * -> deltaTransformConsumer OR transformConsumer * * -> CollinearSimplifier to remove redundant segments * * -> pc2d = Renderer (bounding box) */ } private static boolean nearZero(final double num) { return Math.abs(num) < 2.0 * Math.ulp(num); } PathIterator getNormalizingPathIterator(final RendererContext rdrCtx, final NormMode mode, final PathIterator src) { switch (mode) { case ON_WITH_AA: // NormalizingPathIterator NearestPixelCenter: return rdrCtx.nPCPathIterator.init(src); case ON_NO_AA: // NearestPixel NormalizingPathIterator: return rdrCtx.nPQPathIterator.init(src); case OFF: // return original path iterator if normalization is disabled: return src; default: throw new InternalError("Unrecognized normalization mode"); } } abstract static class NormalizingPathIterator implements PathIterator { private PathIterator src; // the adjustment applied to the current position. private float curx_adjust, cury_adjust; // the adjustment applied to the last moveTo position. private float movx_adjust, movy_adjust; private final float[] tmp; NormalizingPathIterator(final float[] tmp) { this.tmp = tmp; } final NormalizingPathIterator init(final PathIterator src) { this.src = src; return this; // fluent API } /** * Disposes this path iterator: * clean up before reusing this instance */ final void dispose() { // free source PathIterator: this.src = null; } @Override public final int currentSegment(final float[] coords) { if (doMonitors) { RendererContext.stats.mon_npi_currentSegment.start(); } int lastCoord; final int type = src.currentSegment(coords); switch(type) { case PathIterator.SEG_MOVETO: case PathIterator.SEG_LINETO: lastCoord = 0; break; case PathIterator.SEG_QUADTO: lastCoord = 2; break; case PathIterator.SEG_CUBICTO: lastCoord = 4; break; case PathIterator.SEG_CLOSE: // we don't want to deal with this case later. We just exit now curx_adjust = movx_adjust; cury_adjust = movy_adjust; if (doMonitors) { RendererContext.stats.mon_npi_currentSegment.stop(); } return type; default: throw new InternalError("Unrecognized curve type"); } // TODO: handle NaN, Inf and overflow // normalize endpoint float coord, x_adjust, y_adjust; coord = coords[lastCoord]; x_adjust = normCoord(coord); // new coord coords[lastCoord] = x_adjust; x_adjust -= coord; coord = coords[lastCoord + 1]; y_adjust = normCoord(coord); // new coord coords[lastCoord + 1] = y_adjust; y_adjust -= coord; // now that the end points are done, normalize the control points switch(type) { case PathIterator.SEG_MOVETO: movx_adjust = x_adjust; movy_adjust = y_adjust; break; case PathIterator.SEG_LINETO: break; case PathIterator.SEG_QUADTO: coords[0] += (curx_adjust + x_adjust) / 2f; coords[1] += (cury_adjust + y_adjust) / 2f; break; case PathIterator.SEG_CUBICTO: coords[0] += curx_adjust; coords[1] += cury_adjust; coords[2] += x_adjust; coords[3] += y_adjust; break; case PathIterator.SEG_CLOSE: // handled earlier default: } curx_adjust = x_adjust; cury_adjust = y_adjust; if (doMonitors) { RendererContext.stats.mon_npi_currentSegment.stop(); } return type; } abstract float normCoord(final float coord); @Override public final int currentSegment(final double[] coords) { final float[] _tmp = tmp; // dirty int type = this.currentSegment(_tmp); for (int i = 0; i < 6; i++) { coords[i] = _tmp[i]; } return type; } @Override public final int getWindingRule() { return src.getWindingRule(); } @Override public final boolean isDone() { if (src.isDone()) { // Dispose this instance: dispose(); return true; } return false; } @Override public final void next() { src.next(); } static final class NearestPixelCenter extends NormalizingPathIterator { NearestPixelCenter(final float[] tmp) { super(tmp); } @Override float normCoord(final float coord) { // round to nearest pixel center return FloatMath.floor_f(coord) + 0.5f; } } static final class NearestPixelQuarter extends NormalizingPathIterator { NearestPixelQuarter(final float[] tmp) { super(tmp); } @Override float normCoord(final float coord) { // round to nearest (0.25, 0.25) pixel quarter return FloatMath.floor_f(coord + 0.25f) + 0.25f; } } } private static void pathTo(final RendererContext rdrCtx, final PathIterator pi, final PathConsumer2D pc2d) { // mark context as DIRTY: rdrCtx.dirty = true; final float[] coords = rdrCtx.float6; pathToLoop(coords, pi, pc2d); // mark context as CLEAN: rdrCtx.dirty = false; } private static void pathToLoop(final float[] coords, final PathIterator pi, final PathConsumer2D pc2d) { for (; !pi.isDone(); pi.next()) { switch (pi.currentSegment(coords)) { case PathIterator.SEG_MOVETO: pc2d.moveTo(coords[0], coords[1]); continue; case PathIterator.SEG_LINETO: pc2d.lineTo(coords[0], coords[1]); continue; case PathIterator.SEG_QUADTO: pc2d.quadTo(coords[0], coords[1], coords[2], coords[3]); continue; case PathIterator.SEG_CUBICTO: pc2d.curveTo(coords[0], coords[1], coords[2], coords[3], coords[4], coords[5]); continue; case PathIterator.SEG_CLOSE: pc2d.closePath(); continue; default: } } pc2d.pathDone(); } /** * Construct an antialiased tile generator for the given shape with * the given rendering attributes and store the bounds of the tile * iteration in the bbox parameter. * The {@code at} parameter specifies a transform that should affect * both the shape and the {@code BasicStroke} attributes. * The {@code clip} parameter specifies the current clip in effect * in device coordinates and can be used to prune the data for the * operation, but the renderer is not required to perform any * clipping. * If the {@code BasicStroke} parameter is null then the shape * should be filled as is, otherwise the attributes of the * {@code BasicStroke} should be used to specify a draw operation. * The {@code thin} parameter indicates whether or not the * transformed {@code BasicStroke} represents coordinates smaller * than the minimum resolution of the antialiasing rasterizer as * specified by the {@code getMinimumAAPenWidth()} method. *
* Upon returning, this method will fill the {@code bbox} parameter * with 4 values indicating the bounds of the iteration of the * tile generator. * The iteration order of the tiles will be as specified by the * pseudo-code: *
* for (y = bbox[1]; y < bbox[3]; y += tileheight) { * for (x = bbox[0]; x < bbox[2]; x += tilewidth) { * } * } ** If there is no output to be rendered, this method may return * null. * * @param s the shape to be rendered (fill or draw) * @param at the transform to be applied to the shape and the * stroke attributes * @param clip the current clip in effect in device coordinates * @param bs if non-null, a {@code BasicStroke} whose attributes * should be applied to this operation * @param thin true if the transformed stroke attributes are smaller * than the minimum dropout pen width * @param normalize true if the {@code VALUE_STROKE_NORMALIZE} * {@code RenderingHint} is in effect * @param bbox returns the bounds of the iteration * @return the {@code AATileGenerator} instance to be consulted * for tile coverages, or null if there is no output to render * @since 1.7 */ @Override public AATileGenerator getAATileGenerator(Shape s, AffineTransform at, Region clip, BasicStroke bs, boolean thin, boolean normalize, int bbox[]) { MarlinTileGenerator ptg = null; Renderer r = null; final RendererContext rdrCtx = getRendererContext(); try { // Test if at is identity: final AffineTransform _at = (at != null && !at.isIdentity()) ? at : null; final NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF; if (bs == null) { // fill shape: final PathIterator pi = getNormalizingPathIterator(rdrCtx, norm, s.getPathIterator(_at)); r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(), clip.getWidth(), clip.getHeight(), pi.getWindingRule()); // TODO: subdivide quad/cubic curves into monotonic curves ? pathTo(rdrCtx, pi, r); } else { // draw shape with given stroke: r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(), clip.getWidth(), clip.getHeight(), PathIterator.WIND_NON_ZERO); strokeTo(rdrCtx, s, _at, bs, thin, norm, true, r); } if (r.endRendering()) { ptg = rdrCtx.ptg.init(); ptg.getBbox(bbox); // note: do not returnRendererContext(rdrCtx) // as it will be called later by MarlinTileGenerator.dispose() r = null; } } finally { if (r != null) { // dispose renderer: r.dispose(); // recycle the RendererContext instance MarlinRenderingEngine.returnRendererContext(rdrCtx); } } // Return null to cancel AA tile generation (nothing to render) return ptg; } @Override public final AATileGenerator getAATileGenerator(double x, double y, double dx1, double dy1, double dx2, double dy2, double lw1, double lw2, Region clip, int bbox[]) { // REMIND: Deal with large coordinates! double ldx1, ldy1, ldx2, ldy2; boolean innerpgram = (lw1 > 0.0 && lw2 > 0.0); if (innerpgram) { ldx1 = dx1 * lw1; ldy1 = dy1 * lw1; ldx2 = dx2 * lw2; ldy2 = dy2 * lw2; x -= (ldx1 + ldx2) / 2.0; y -= (ldy1 + ldy2) / 2.0; dx1 += ldx1; dy1 += ldy1; dx2 += ldx2; dy2 += ldy2; if (lw1 > 1.0 && lw2 > 1.0) { // Inner parallelogram was entirely consumed by stroke... innerpgram = false; } } else { ldx1 = ldy1 = ldx2 = ldy2 = 0.0; } MarlinTileGenerator ptg = null; Renderer r = null; final RendererContext rdrCtx = getRendererContext(); try { r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(), clip.getWidth(), clip.getHeight(), Renderer.WIND_EVEN_ODD); r.moveTo((float) x, (float) y); r.lineTo((float) (x+dx1), (float) (y+dy1)); r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2)); r.lineTo((float) (x+dx2), (float) (y+dy2)); r.closePath(); if (innerpgram) { x += ldx1 + ldx2; y += ldy1 + ldy2; dx1 -= 2.0 * ldx1; dy1 -= 2.0 * ldy1; dx2 -= 2.0 * ldx2; dy2 -= 2.0 * ldy2; r.moveTo((float) x, (float) y); r.lineTo((float) (x+dx1), (float) (y+dy1)); r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2)); r.lineTo((float) (x+dx2), (float) (y+dy2)); r.closePath(); } r.pathDone(); if (r.endRendering()) { ptg = rdrCtx.ptg.init(); ptg.getBbox(bbox); // note: do not returnRendererContext(rdrCtx) // as it will be called later by MarlinTileGenerator.dispose() r = null; } } finally { if (r != null) { // dispose renderer: r.dispose(); // recycle the RendererContext instance MarlinRenderingEngine.returnRendererContext(rdrCtx); } } // Return null to cancel AA tile generation (nothing to render) return ptg; } /** * Returns the minimum pen width that the antialiasing rasterizer * can represent without dropouts occuring. * @since 1.7 */ @Override public float getMinimumAAPenSize() { return MIN_PEN_SIZE; } static { if (PathIterator.WIND_NON_ZERO != Renderer.WIND_NON_ZERO || PathIterator.WIND_EVEN_ODD != Renderer.WIND_EVEN_ODD || BasicStroke.JOIN_MITER != Stroker.JOIN_MITER || BasicStroke.JOIN_ROUND != Stroker.JOIN_ROUND || BasicStroke.JOIN_BEVEL != Stroker.JOIN_BEVEL || BasicStroke.CAP_BUTT != Stroker.CAP_BUTT || BasicStroke.CAP_ROUND != Stroker.CAP_ROUND || BasicStroke.CAP_SQUARE != Stroker.CAP_SQUARE) { throw new InternalError("mismatched renderer constants"); } } // --- RendererContext handling --- // use ThreadLocal or ConcurrentLinkedQueue to get one RendererContext private static final boolean useThreadLocal; // hard reference static final int REF_HARD = 0; // soft reference static final int REF_SOFT = 1; // weak reference static final int REF_WEAK = 2; // reference type stored in either TL or CLQ static final int REF_TYPE; // Per-thread RendererContext private static final ThreadLocal