/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
package java.util;
import java.lang.reflect.*;
/**
* This class contains various methods for manipulating arrays (such as
* sorting and searching). This class also contains a static factory
* that allows arrays to be viewed as lists.
*
*
The methods in this class all throw a NullPointerException if
* the specified array reference is null, except where noted.
*
*
The documentation for the methods contained in this class includes
* briefs description of the implementations. Such descriptions should
* be regarded as implementation notes, rather than parts of the
* specification. Implementors should feel free to substitute other
* algorithms, so long as the specification itself is adhered to. (For
* example, the algorithm used by sort(Object[]) does not have to be
* a mergesort, but it does have to be stable.)
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @author Josh Bloch
* @author Neal Gafter
* @author John Rose
* @since 1.2
*/
public class Arrays {
// Suppresses default constructor, ensuring non-instantiability.
private Arrays() {
}
// Sorting
/**
* Sorts the specified array of longs into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
*/
public static void sort(long[] a) {
sort1(a, 0, a.length);
}
/**
* Sorts the specified range of the specified array of longs into
* ascending numerical order. The range to be sorted extends from index
* fromIndex, inclusive, to index toIndex, exclusive.
* (If fromIndex==toIndex, the range to be sorted is empty.)
*
*
The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void sort(long[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
}
/**
* Sorts the specified array of ints into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
*/
public static void sort(int[] a) {
sort1(a, 0, a.length);
}
/**
* Sorts the specified range of the specified array of ints into
* ascending numerical order. The range to be sorted extends from index
* fromIndex, inclusive, to index toIndex, exclusive.
* (If fromIndex==toIndex, the range to be sorted is empty.)
*
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void sort(int[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
}
/**
* Sorts the specified array of shorts into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
*/
public static void sort(short[] a) {
sort1(a, 0, a.length);
}
/**
* Sorts the specified range of the specified array of shorts into
* ascending numerical order. The range to be sorted extends from index
* fromIndex, inclusive, to index toIndex, exclusive.
* (If fromIndex==toIndex, the range to be sorted is empty.)
*
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void sort(short[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
}
/**
* Sorts the specified array of chars into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
*/
public static void sort(char[] a) {
sort1(a, 0, a.length);
}
/**
* Sorts the specified range of the specified array of chars into
* ascending numerical order. The range to be sorted extends from index
* fromIndex, inclusive, to index toIndex, exclusive.
* (If fromIndex==toIndex, the range to be sorted is empty.)
*
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void sort(char[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
}
/**
* Sorts the specified array of bytes into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
*/
public static void sort(byte[] a) {
sort1(a, 0, a.length);
}
/**
* Sorts the specified range of the specified array of bytes into
* ascending numerical order. The range to be sorted extends from index
* fromIndex, inclusive, to index toIndex, exclusive.
* (If fromIndex==toIndex, the range to be sorted is empty.)
*
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void sort(byte[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
}
/**
* Sorts the specified array of doubles into ascending numerical order.
*
* The < relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* -0.0 == 0.0 is true and a NaN value
* compares neither less than, greater than, nor equal to any
* floating-point value, even itself. To allow the sort to
* proceed, instead of using the < relation to
* determine ascending numerical order, this method uses the total
* order imposed by {@link Double#compareTo}. This ordering
* differs from the < relation in that
* -0.0 is treated as less than 0.0 and
* NaN is considered greater than any other floating-point value.
* For the purposes of sorting, all NaN values are considered
* equivalent and equal.
*
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
*/
public static void sort(double[] a) {
sort2(a, 0, a.length);
}
/**
* Sorts the specified range of the specified array of doubles into
* ascending numerical order. The range to be sorted extends from index
* fromIndex, inclusive, to index toIndex, exclusive.
* (If fromIndex==toIndex, the range to be sorted is empty.)
*
* The < relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* -0.0 == 0.0 is true and a NaN value
* compares neither less than, greater than, nor equal to any
* floating-point value, even itself. To allow the sort to
* proceed, instead of using the < relation to
* determine ascending numerical order, this method uses the total
* order imposed by {@link Double#compareTo}. This ordering
* differs from the < relation in that
* -0.0 is treated as less than 0.0 and
* NaN is considered greater than any other floating-point value.
* For the purposes of sorting, all NaN values are considered
* equivalent and equal.
*
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void sort(double[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sort2(a, fromIndex, toIndex);
}
/**
* Sorts the specified array of floats into ascending numerical order.
*
* The < relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* -0.0f == 0.0f is true and a NaN value
* compares neither less than, greater than, nor equal to any
* floating-point value, even itself. To allow the sort to
* proceed, instead of using the < relation to
* determine ascending numerical order, this method uses the total
* order imposed by {@link Float#compareTo}. This ordering
* differs from the < relation in that
* -0.0f is treated as less than 0.0f and
* NaN is considered greater than any other floating-point value.
* For the purposes of sorting, all NaN values are considered
* equivalent and equal.
*
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
*/
public static void sort(float[] a) {
sort2(a, 0, a.length);
}
/**
* Sorts the specified range of the specified array of floats into
* ascending numerical order. The range to be sorted extends from index
* fromIndex, inclusive, to index toIndex, exclusive.
* (If fromIndex==toIndex, the range to be sorted is empty.)
*
* The < relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* -0.0f == 0.0f is true and a NaN value
* compares neither less than, greater than, nor equal to any
* floating-point value, even itself. To allow the sort to
* proceed, instead of using the < relation to
* determine ascending numerical order, this method uses the total
* order imposed by {@link Float#compareTo}. This ordering
* differs from the < relation in that
* -0.0f is treated as less than 0.0f and
* NaN is considered greater than any other floating-point value.
* For the purposes of sorting, all NaN values are considered
* equivalent and equal.
*
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void sort(float[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sort2(a, fromIndex, toIndex);
}
private static void sort2(double a[], int fromIndex, int toIndex) {
final long NEG_ZERO_BITS = Double.doubleToLongBits(-0.0d);
/*
* The sort is done in three phases to avoid the expense of using
* NaN and -0.0 aware comparisons during the main sort.
*/
/*
* Preprocessing phase: Move any NaN's to end of array, count the
* number of -0.0's, and turn them into 0.0's.
*/
int numNegZeros = 0;
int i = fromIndex, n = toIndex;
while(i < n) {
if (a[i] != a[i]) {
swap(a, i, --n);
} else {
if (a[i]==0 && Double.doubleToLongBits(a[i])==NEG_ZERO_BITS) {
a[i] = 0.0d;
numNegZeros++;
}
i++;
}
}
// Main sort phase: quicksort everything but the NaN's
sort1(a, fromIndex, n-fromIndex);
// Postprocessing phase: change 0.0's to -0.0's as required
if (numNegZeros != 0) {
int j = binarySearch0(a, fromIndex, n, 0.0d); // posn of ANY zero
do {
j--;
} while (j>=fromIndex && a[j]==0.0d);
// j is now one less than the index of the FIRST zero
for (int k=0; k=fromIndex && a[j]==0.0f);
// j is now one less than the index of the FIRST zero
for (int k=0; koff && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
long v = x[m];
// Establish Invariant: v* (v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(long x[], int a, int b) {
long t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private static void vecswap(long x[], int a, int b, int n) {
for (int i=0; i x[c] ? b : x[a] > x[c] ? c : a));
}
/**
* Sorts the specified sub-array of integers into ascending order.
*/
private static void sort1(int x[], int off, int len) {
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; ioff && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
int v = x[m];
// Establish Invariant: v* (v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(int x[], int a, int b) {
int t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private static void vecswap(int x[], int a, int b, int n) {
for (int i=0; i x[c] ? b : x[a] > x[c] ? c : a));
}
/**
* Sorts the specified sub-array of shorts into ascending order.
*/
private static void sort1(short x[], int off, int len) {
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; ioff && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
short v = x[m];
// Establish Invariant: v* (v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(short x[], int a, int b) {
short t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private static void vecswap(short x[], int a, int b, int n) {
for (int i=0; i x[c] ? b : x[a] > x[c] ? c : a));
}
/**
* Sorts the specified sub-array of chars into ascending order.
*/
private static void sort1(char x[], int off, int len) {
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; ioff && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
char v = x[m];
// Establish Invariant: v* (v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(char x[], int a, int b) {
char t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private static void vecswap(char x[], int a, int b, int n) {
for (int i=0; i x[c] ? b : x[a] > x[c] ? c : a));
}
/**
* Sorts the specified sub-array of bytes into ascending order.
*/
private static void sort1(byte x[], int off, int len) {
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; ioff && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
byte v = x[m];
// Establish Invariant: v* (v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(byte x[], int a, int b) {
byte t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private static void vecswap(byte x[], int a, int b, int n) {
for (int i=0; i x[c] ? b : x[a] > x[c] ? c : a));
}
/**
* Sorts the specified sub-array of doubles into ascending order.
*/
private static void sort1(double x[], int off, int len) {
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; ioff && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
double v = x[m];
// Establish Invariant: v* (v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(double x[], int a, int b) {
double t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private static void vecswap(double x[], int a, int b, int n) {
for (int i=0; i x[c] ? b : x[a] > x[c] ? c : a));
}
/**
* Sorts the specified sub-array of floats into ascending order.
*/
private static void sort1(float x[], int off, int len) {
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; ioff && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
float v = x[m];
// Establish Invariant: v* (v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(float x[], int a, int b) {
float t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private static void vecswap(float x[], int a, int b, int n) {
for (int i=0; i x[c] ? b : x[a] > x[c] ? c : a));
}
/**
* Sorts the specified array of objects into ascending order, according to
* the {@linkplain Comparable natural ordering}
* of its elements. All elements in the array
* must implement the {@link Comparable} interface. Furthermore, all
* elements in the array must be mutually comparable (that is,
* e1.compareTo(e2) must not throw a ClassCastException
* for any elements e1 and e2 in the array).
*
* This sort is guaranteed to be stable: equal elements will
* not be reordered as a result of the sort.
*
* The sorting algorithm is a modified mergesort (in which the merge is
* omitted if the highest element in the low sublist is less than the
* lowest element in the high sublist). This algorithm offers guaranteed
* n*log(n) performance.
*
* @param a the array to be sorted
* @throws ClassCastException if the array contains elements that are not
* mutually comparable (for example, strings and integers).
*/
public static void sort(Object[] a) {
Object[] aux = a.clone();
mergeSort(aux, a, 0, a.length, 0);
}
/**
* Sorts the specified range of the specified array of objects into
* ascending order, according to the
* {@linkplain Comparable natural ordering} of its
* elements. The range to be sorted extends from index
* fromIndex, inclusive, to index toIndex, exclusive.
* (If fromIndex==toIndex, the range to be sorted is empty.) All
* elements in this range must implement the {@link Comparable}
* interface. Furthermore, all elements in this range must be mutually
* comparable (that is, e1.compareTo(e2) must not throw a
* ClassCastException for any elements e1 and
* e2 in the array).
*
* This sort is guaranteed to be stable: equal elements will
* not be reordered as a result of the sort.
*
* The sorting algorithm is a modified mergesort (in which the merge is
* omitted if the highest element in the low sublist is less than the
* lowest element in the high sublist). This algorithm offers guaranteed
* n*log(n) performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
* @throws ClassCastException if the array contains elements that are
* not mutually comparable (for example, strings and
* integers).
*/
public static void sort(Object[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
Object[] aux = copyOfRange(a, fromIndex, toIndex);
mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
}
/**
* Tuning parameter: list size at or below which insertion sort will be
* used in preference to mergesort or quicksort.
*/
private static final int INSERTIONSORT_THRESHOLD = 7;
/**
* Src is the source array that starts at index 0
* Dest is the (possibly larger) array destination with a possible offset
* low is the index in dest to start sorting
* high is the end index in dest to end sorting
* off is the offset to generate corresponding low, high in src
*/
private static void mergeSort(Object[] src,
Object[] dest,
int low,
int high,
int off) {
int length = high - low;
// Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i=low; ilow &&
((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
swap(dest, j, j-1);
return;
}
// Recursively sort halves of dest into src
int destLow = low;
int destHigh = high;
low += off;
high += off;
int mid = (low + high) >>> 1;
mergeSort(dest, src, low, mid, -off);
mergeSort(dest, src, mid, high, -off);
// If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}
// Merge sorted halves (now in src) into dest
for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
dest[i] = src[p++];
else
dest[i] = src[q++];
}
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(Object[] x, int a, int b) {
Object t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Sorts the specified array of objects according to the order induced by
* the specified comparator. All elements in the array must be
* mutually comparable by the specified comparator (that is,
* c.compare(e1, e2) must not throw a ClassCastException
* for any elements e1 and e2 in the array).
*
* This sort is guaranteed to be stable: equal elements will
* not be reordered as a result of the sort.
*
* The sorting algorithm is a modified mergesort (in which the merge is
* omitted if the highest element in the low sublist is less than the
* lowest element in the high sublist). This algorithm offers guaranteed
* n*log(n) performance.
*
* @param a the array to be sorted
* @param c the comparator to determine the order of the array. A
* null value indicates that the elements'
* {@linkplain Comparable natural ordering} should be used.
* @throws ClassCastException if the array contains elements that are
* not mutually comparable using the specified comparator.
*/
public static void sort(T[] a, Comparator super T> c) {
T[] aux = a.clone();
if (c==null)
mergeSort(aux, a, 0, a.length, 0);
else
mergeSort(aux, a, 0, a.length, 0, c);
}
/**
* Sorts the specified range of the specified array of objects according
* to the order induced by the specified comparator. The range to be
* sorted extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be sorted is empty.) All elements in the range must be
* mutually comparable by the specified comparator (that is,
* c.compare(e1, e2) must not throw a ClassCastException
* for any elements e1 and e2 in the range).
*
* This sort is guaranteed to be stable: equal elements will
* not be reordered as a result of the sort.
*
* The sorting algorithm is a modified mergesort (in which the merge is
* omitted if the highest element in the low sublist is less than the
* lowest element in the high sublist). This algorithm offers guaranteed
* n*log(n) performance.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @param c the comparator to determine the order of the array. A
* null value indicates that the elements'
* {@linkplain Comparable natural ordering} should be used.
* @throws ClassCastException if the array contains elements that are not
* mutually comparable using the specified comparator.
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void sort(T[] a, int fromIndex, int toIndex,
Comparator super T> c) {
rangeCheck(a.length, fromIndex, toIndex);
T[] aux = copyOfRange(a, fromIndex, toIndex);
if (c==null)
mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
else
mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c);
}
/**
* Src is the source array that starts at index 0
* Dest is the (possibly larger) array destination with a possible offset
* low is the index in dest to start sorting
* high is the end index in dest to end sorting
* off is the offset into src corresponding to low in dest
*/
private static void mergeSort(Object[] src,
Object[] dest,
int low, int high, int off,
Comparator c) {
int length = high - low;
// Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i=low; ilow && c.compare(dest[j-1], dest[j])>0; j--)
swap(dest, j, j-1);
return;
}
// Recursively sort halves of dest into src
int destLow = low;
int destHigh = high;
low += off;
high += off;
int mid = (low + high) >>> 1;
mergeSort(dest, src, low, mid, -off, c);
mergeSort(dest, src, mid, high, -off, c);
// If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (c.compare(src[mid-1], src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}
// Merge sorted halves (now in src) into dest
for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0)
dest[i] = src[p++];
else
dest[i] = src[q++];
}
}
/**
* Check that fromIndex and toIndex are in range, and throw an
* appropriate exception if they aren't.
*/
private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex+")");
if (fromIndex < 0)
throw new ArrayIndexOutOfBoundsException(fromIndex);
if (toIndex > arrayLen)
throw new ArrayIndexOutOfBoundsException(toIndex);
}
// Searching
/**
* Searches the specified array of longs for the specified value using the
* binary search algorithm. The array must be sorted (as
* by the {@link #sort(long[])} method) prior to making this call. If it
* is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(long[] a, long key) {
return binarySearch0(a, 0, a.length, key);
}
/**
* Searches a range of
* the specified array of longs for the specified value using the
* binary search algorithm.
* The range must be sorted (as
* by the {@link #sort(long[], int, int)} method)
* prior to making this call. If it
* is not sorted, the results are undefined. If the range contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(long[] a, int fromIndex, int toIndex,
long key) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
}
// Like public version, but without range checks.
private static int binarySearch0(long[] a, int fromIndex, int toIndex,
long key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
/**
* Searches the specified array of ints for the specified value using the
* binary search algorithm. The array must be sorted (as
* by the {@link #sort(int[])} method) prior to making this call. If it
* is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(int[] a, int key) {
return binarySearch0(a, 0, a.length, key);
}
/**
* Searches a range of
* the specified array of ints for the specified value using the
* binary search algorithm.
* The range must be sorted (as
* by the {@link #sort(int[], int, int)} method)
* prior to making this call. If it
* is not sorted, the results are undefined. If the range contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(int[] a, int fromIndex, int toIndex,
int key) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
}
// Like public version, but without range checks.
private static int binarySearch0(int[] a, int fromIndex, int toIndex,
int key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
int midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
/**
* Searches the specified array of shorts for the specified value using
* the binary search algorithm. The array must be sorted
* (as by the {@link #sort(short[])} method) prior to making this call. If
* it is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(short[] a, short key) {
return binarySearch0(a, 0, a.length, key);
}
/**
* Searches a range of
* the specified array of shorts for the specified value using
* the binary search algorithm.
* The range must be sorted
* (as by the {@link #sort(short[], int, int)} method)
* prior to making this call. If
* it is not sorted, the results are undefined. If the range contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(short[] a, int fromIndex, int toIndex,
short key) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
}
// Like public version, but without range checks.
private static int binarySearch0(short[] a, int fromIndex, int toIndex,
short key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
short midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
/**
* Searches the specified array of chars for the specified value using the
* binary search algorithm. The array must be sorted (as
* by the {@link #sort(char[])} method) prior to making this call. If it
* is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(char[] a, char key) {
return binarySearch0(a, 0, a.length, key);
}
/**
* Searches a range of
* the specified array of chars for the specified value using the
* binary search algorithm.
* The range must be sorted (as
* by the {@link #sort(char[], int, int)} method)
* prior to making this call. If it
* is not sorted, the results are undefined. If the range contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(char[] a, int fromIndex, int toIndex,
char key) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
}
// Like public version, but without range checks.
private static int binarySearch0(char[] a, int fromIndex, int toIndex,
char key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
char midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
/**
* Searches the specified array of bytes for the specified value using the
* binary search algorithm. The array must be sorted (as
* by the {@link #sort(byte[])} method) prior to making this call. If it
* is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(byte[] a, byte key) {
return binarySearch0(a, 0, a.length, key);
}
/**
* Searches a range of
* the specified array of bytes for the specified value using the
* binary search algorithm.
* The range must be sorted (as
* by the {@link #sort(byte[], int, int)} method)
* prior to making this call. If it
* is not sorted, the results are undefined. If the range contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(byte[] a, int fromIndex, int toIndex,
byte key) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
}
// Like public version, but without range checks.
private static int binarySearch0(byte[] a, int fromIndex, int toIndex,
byte key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
byte midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
/**
* Searches the specified array of doubles for the specified value using
* the binary search algorithm. The array must be sorted
* (as by the {@link #sort(double[])} method) prior to making this call.
* If it is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found. This method considers all NaN values to be
* equivalent and equal.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(double[] a, double key) {
return binarySearch0(a, 0, a.length, key);
}
/**
* Searches a range of
* the specified array of doubles for the specified value using
* the binary search algorithm.
* The range must be sorted
* (as by the {@link #sort(double[], int, int)} method)
* prior to making this call.
* If it is not sorted, the results are undefined. If the range contains
* multiple elements with the specified value, there is no guarantee which
* one will be found. This method considers all NaN values to be
* equivalent and equal.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(double[] a, int fromIndex, int toIndex,
double key) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
}
// Like public version, but without range checks.
private static int binarySearch0(double[] a, int fromIndex, int toIndex,
double key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
double midVal = a[mid];
if (midVal < key)
low = mid + 1; // Neither val is NaN, thisVal is smaller
else if (midVal > key)
high = mid - 1; // Neither val is NaN, thisVal is larger
else {
long midBits = Double.doubleToLongBits(midVal);
long keyBits = Double.doubleToLongBits(key);
if (midBits == keyBits) // Values are equal
return mid; // Key found
else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN)
low = mid + 1;
else // (0.0, -0.0) or (NaN, !NaN)
high = mid - 1;
}
}
return -(low + 1); // key not found.
}
/**
* Searches the specified array of floats for the specified value using
* the binary search algorithm. The array must be sorted
* (as by the {@link #sort(float[])} method) prior to making this call. If
* it is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found. This method considers all NaN values to be
* equivalent and equal.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(float[] a, float key) {
return binarySearch0(a, 0, a.length, key);
}
/**
* Searches a range of
* the specified array of floats for the specified value using
* the binary search algorithm.
* The range must be sorted
* (as by the {@link #sort(float[], int, int)} method)
* prior to making this call. If
* it is not sorted, the results are undefined. If the range contains
* multiple elements with the specified value, there is no guarantee which
* one will be found. This method considers all NaN values to be
* equivalent and equal.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(float[] a, int fromIndex, int toIndex,
float key) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
}
// Like public version, but without range checks.
private static int binarySearch0(float[] a, int fromIndex, int toIndex,
float key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
float midVal = a[mid];
if (midVal < key)
low = mid + 1; // Neither val is NaN, thisVal is smaller
else if (midVal > key)
high = mid - 1; // Neither val is NaN, thisVal is larger
else {
int midBits = Float.floatToIntBits(midVal);
int keyBits = Float.floatToIntBits(key);
if (midBits == keyBits) // Values are equal
return mid; // Key found
else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN)
low = mid + 1;
else // (0.0, -0.0) or (NaN, !NaN)
high = mid - 1;
}
}
return -(low + 1); // key not found.
}
/**
* Searches the specified array for the specified object using the binary
* search algorithm. The array must be sorted into ascending order
* according to the
* {@linkplain Comparable natural ordering}
* of its elements (as by the
* {@link #sort(Object[])} method) prior to making this call.
* If it is not sorted, the results are undefined.
* (If the array contains elements that are not mutually comparable (for
* example, strings and integers), it cannot be sorted according
* to the natural ordering of its elements, hence results are undefined.)
* If the array contains multiple
* elements equal to the specified object, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws ClassCastException if the search key is not comparable to the
* elements of the array.
*/
public static int binarySearch(Object[] a, Object key) {
return binarySearch0(a, 0, a.length, key);
}
/**
* Searches a range of
* the specified array for the specified object using the binary
* search algorithm.
* The range must be sorted into ascending order
* according to the
* {@linkplain Comparable natural ordering}
* of its elements (as by the
* {@link #sort(Object[], int, int)} method) prior to making this
* call. If it is not sorted, the results are undefined.
* (If the range contains elements that are not mutually comparable (for
* example, strings and integers), it cannot be sorted according
* to the natural ordering of its elements, hence results are undefined.)
* If the range contains multiple
* elements equal to the specified object, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws ClassCastException if the search key is not comparable to the
* elements of the array within the specified range.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(Object[] a, int fromIndex, int toIndex,
Object key) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
}
// Like public version, but without range checks.
private static int binarySearch0(Object[] a, int fromIndex, int toIndex,
Object key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
Comparable midVal = (Comparable)a[mid];
int cmp = midVal.compareTo(key);
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
/**
* Searches the specified array for the specified object using the binary
* search algorithm. The array must be sorted into ascending order
* according to the specified comparator (as by the
* {@link #sort(Object[], Comparator) sort(T[], Comparator)}
* method) prior to making this call. If it is
* not sorted, the results are undefined.
* If the array contains multiple
* elements equal to the specified object, there is no guarantee which one
* will be found.
*
* @param a the array to be searched
* @param key the value to be searched for
* @param c the comparator by which the array is ordered. A
* null value indicates that the elements'
* {@linkplain Comparable natural ordering} should be used.
* @return index of the search key, if it is contained in the array;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or a.length if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws ClassCastException if the array contains elements that are not
* mutually comparable using the specified comparator,
* or the search key is not comparable to the
* elements of the array using this comparator.
*/
public static int binarySearch(T[] a, T key, Comparator super T> c) {
return binarySearch0(a, 0, a.length, key, c);
}
/**
* Searches a range of
* the specified array for the specified object using the binary
* search algorithm.
* The range must be sorted into ascending order
* according to the specified comparator (as by the
* {@link #sort(Object[], int, int, Comparator)
* sort(T[], int, int, Comparator)}
* method) prior to making this call.
* If it is not sorted, the results are undefined.
* If the range contains multiple elements equal to the specified object,
* there is no guarantee which one will be found.
*
* @param a the array to be searched
* @param fromIndex the index of the first element (inclusive) to be
* searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @param c the comparator by which the array is ordered. A
* null value indicates that the elements'
* {@linkplain Comparable natural ordering} should be used.
* @return index of the search key, if it is contained in the array
* within the specified range;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the point at which the
* key would be inserted into the array: the index of the first
* element in the range greater than the key,
* or toIndex if all
* elements in the range are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws ClassCastException if the range contains elements that are not
* mutually comparable using the specified comparator,
* or the search key is not comparable to the
* elements in the range using this comparator.
* @throws IllegalArgumentException
* if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0 or toIndex > a.length}
* @since 1.6
*/
public static int binarySearch(T[] a, int fromIndex, int toIndex,
T key, Comparator super T> c) {
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key, c);
}
// Like public version, but without range checks.
private static int binarySearch0(T[] a, int fromIndex, int toIndex,
T key, Comparator super T> c) {
if (c == null) {
return binarySearch0(a, fromIndex, toIndex, key);
}
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
T midVal = a[mid];
int cmp = c.compare(midVal, key);
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
// Equality Testing
/**
* Returns true if the two specified arrays of longs are
* equal to one another. Two arrays are considered equal if both
* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays
* are equal if they contain the same elements in the same order. Also,
* two array references are considered equal if both are null.
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
*/
public static boolean equals(long[] a, long[] a2) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; itrue if the two specified arrays of ints are
* equal to one another. Two arrays are considered equal if both
* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays
* are equal if they contain the same elements in the same order. Also,
* two array references are considered equal if both are null.
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
*/
public static boolean equals(int[] a, int[] a2) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; itrue if the two specified arrays of shorts are
* equal to one another. Two arrays are considered equal if both
* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays
* are equal if they contain the same elements in the same order. Also,
* two array references are considered equal if both are null.
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
*/
public static boolean equals(short[] a, short a2[]) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; itrue if the two specified arrays of chars are
* equal to one another. Two arrays are considered equal if both
* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays
* are equal if they contain the same elements in the same order. Also,
* two array references are considered equal if both are null.
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
*/
public static boolean equals(char[] a, char[] a2) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; itrue if the two specified arrays of bytes are
* equal to one another. Two arrays are considered equal if both
* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays
* are equal if they contain the same elements in the same order. Also,
* two array references are considered equal if both are null.
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
*/
public static boolean equals(byte[] a, byte[] a2) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; itrue if the two specified arrays of booleans are
* equal to one another. Two arrays are considered equal if both
* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays
* are equal if they contain the same elements in the same order. Also,
* two array references are considered equal if both are null.
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
*/
public static boolean equals(boolean[] a, boolean[] a2) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; itrue if the two specified arrays of doubles are
* equal to one another. Two arrays are considered equal if both
* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays
* are equal if they contain the same elements in the same order. Also,
* two array references are considered equal if both are null.
*
* Two doubles d1 and d2 are considered equal if:
*
new Double(d1).equals(new Double(d2))
* (Unlike the == operator, this method considers
* NaN equals to itself, and 0.0d unequal to -0.0d.)
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
* @see Double#equals(Object)
*/
public static boolean equals(double[] a, double[] a2) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; itrue if the two specified arrays of floats are
* equal to one another. Two arrays are considered equal if both
* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays
* are equal if they contain the same elements in the same order. Also,
* two array references are considered equal if both are null.
*
* Two floats f1 and f2 are considered equal if:
*
new Float(f1).equals(new Float(f2))
* (Unlike the == operator, this method considers
* NaN equals to itself, and 0.0f unequal to -0.0f.)
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
* @see Float#equals(Object)
*/
public static boolean equals(float[] a, float[] a2) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; itrue if the two specified arrays of Objects are
* equal to one another. The two arrays are considered equal if
* both arrays contain the same number of elements, and all corresponding
* pairs of elements in the two arrays are equal. Two objects e1
* and e2 are considered equal if (e1==null ? e2==null
* : e1.equals(e2)). In other words, the two arrays are equal if
* they contain the same elements in the same order. Also, two array
* references are considered equal if both are null.
*
* @param a one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
*/
public static boolean equals(Object[] a, Object[] a2) {
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; ifromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void fill(long[] a, int fromIndex, int toIndex, long val) {
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
/**
* Assigns the specified int value to each element of the specified array
* of ints.
*
* @param a the array to be filled
* @param val the value to be stored in all elements of the array
*/
public static void fill(int[] a, int val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
/**
* Assigns the specified int value to each element of the specified
* range of the specified array of ints. The range to be filled
* extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void fill(int[] a, int fromIndex, int toIndex, int val) {
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
/**
* Assigns the specified short value to each element of the specified array
* of shorts.
*
* @param a the array to be filled
* @param val the value to be stored in all elements of the array
*/
public static void fill(short[] a, short val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
/**
* Assigns the specified short value to each element of the specified
* range of the specified array of shorts. The range to be filled
* extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void fill(short[] a, int fromIndex, int toIndex, short val) {
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
/**
* Assigns the specified char value to each element of the specified array
* of chars.
*
* @param a the array to be filled
* @param val the value to be stored in all elements of the array
*/
public static void fill(char[] a, char val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
/**
* Assigns the specified char value to each element of the specified
* range of the specified array of chars. The range to be filled
* extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void fill(char[] a, int fromIndex, int toIndex, char val) {
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
/**
* Assigns the specified byte value to each element of the specified array
* of bytes.
*
* @param a the array to be filled
* @param val the value to be stored in all elements of the array
*/
public static void fill(byte[] a, byte val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
/**
* Assigns the specified byte value to each element of the specified
* range of the specified array of bytes. The range to be filled
* extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void fill(byte[] a, int fromIndex, int toIndex, byte val) {
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
/**
* Assigns the specified boolean value to each element of the specified
* array of booleans.
*
* @param a the array to be filled
* @param val the value to be stored in all elements of the array
*/
public static void fill(boolean[] a, boolean val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
/**
* Assigns the specified boolean value to each element of the specified
* range of the specified array of booleans. The range to be filled
* extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void fill(boolean[] a, int fromIndex, int toIndex,
boolean val) {
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
/**
* Assigns the specified double value to each element of the specified
* array of doubles.
*
* @param a the array to be filled
* @param val the value to be stored in all elements of the array
*/
public static void fill(double[] a, double val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
/**
* Assigns the specified double value to each element of the specified
* range of the specified array of doubles. The range to be filled
* extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void fill(double[] a, int fromIndex, int toIndex,double val){
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
/**
* Assigns the specified float value to each element of the specified array
* of floats.
*
* @param a the array to be filled
* @param val the value to be stored in all elements of the array
*/
public static void fill(float[] a, float val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
/**
* Assigns the specified float value to each element of the specified
* range of the specified array of floats. The range to be filled
* extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
*/
public static void fill(float[] a, int fromIndex, int toIndex, float val) {
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
/**
* Assigns the specified Object reference to each element of the specified
* array of Objects.
*
* @param a the array to be filled
* @param val the value to be stored in all elements of the array
* @throws ArrayStoreException if the specified value is not of a
* runtime type that can be stored in the specified array
*/
public static void fill(Object[] a, Object val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
/**
* Assigns the specified Object reference to each element of the specified
* range of the specified array of Objects. The range to be filled
* extends from index fromIndex, inclusive, to index
* toIndex, exclusive. (If fromIndex==toIndex, the
* range to be filled is empty.)
*
* @param a the array to be filled
* @param fromIndex the index of the first element (inclusive) to be
* filled with the specified value
* @param toIndex the index of the last element (exclusive) to be
* filled with the specified value
* @param val the value to be stored in all elements of the array
* @throws IllegalArgumentException if fromIndex > toIndex
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
* toIndex > a.length
* @throws ArrayStoreException if the specified value is not of a
* runtime type that can be stored in the specified array
*/
public static void fill(Object[] a, int fromIndex, int toIndex, Object val) {
rangeCheck(a.length, fromIndex, toIndex);
for (int i = fromIndex; i < toIndex; i++)
a[i] = val;
}
// Cloning
/**
* Copies the specified array, truncating or padding with nulls (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain null.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
* The resulting array is of exactly the same class as the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with nulls
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static T[] copyOf(T[] original, int newLength) {
return (T[]) copyOf(original, newLength, original.getClass());
}
/**
* Copies the specified array, truncating or padding with nulls (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain null.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
* The resulting array is of the class newType.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @param newType the class of the copy to be returned
* @return a copy of the original array, truncated or padded with nulls
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @throws ArrayStoreException if an element copied from
* original is not of a runtime type that can be stored in
* an array of class newType
* @since 1.6
*/
public static T[] copyOf(U[] original, int newLength, Class extends T[]> newType) {
T[] copy = ((Object)newType == (Object)Object[].class)
? (T[]) new Object[newLength]
: (T[]) Array.newInstance(newType.getComponentType(), newLength);
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified array, truncating or padding with zeros (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain (byte)0.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with zeros
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static byte[] copyOf(byte[] original, int newLength) {
byte[] copy = new byte[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified array, truncating or padding with zeros (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain (short)0.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with zeros
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static short[] copyOf(short[] original, int newLength) {
short[] copy = new short[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified array, truncating or padding with zeros (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain 0.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with zeros
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static int[] copyOf(int[] original, int newLength) {
int[] copy = new int[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified array, truncating or padding with zeros (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain 0L.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with zeros
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static long[] copyOf(long[] original, int newLength) {
long[] copy = new long[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified array, truncating or padding with null characters (if necessary)
* so the copy has the specified length. For all indices that are valid
* in both the original array and the copy, the two arrays will contain
* identical values. For any indices that are valid in the copy but not
* the original, the copy will contain '\\u000'. Such indices
* will exist if and only if the specified length is greater than that of
* the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with null characters
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static char[] copyOf(char[] original, int newLength) {
char[] copy = new char[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified array, truncating or padding with zeros (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain 0f.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with zeros
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static float[] copyOf(float[] original, int newLength) {
float[] copy = new float[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified array, truncating or padding with zeros (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain 0d.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with zeros
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static double[] copyOf(double[] original, int newLength) {
double[] copy = new double[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified array, truncating or padding with false (if necessary)
* so the copy has the specified length. For all indices that are
* valid in both the original array and the copy, the two arrays will
* contain identical values. For any indices that are valid in the
* copy but not the original, the copy will contain false.
* Such indices will exist if and only if the specified length
* is greater than that of the original array.
*
* @param original the array to be copied
* @param newLength the length of the copy to be returned
* @return a copy of the original array, truncated or padded with false elements
* to obtain the specified length
* @throws NegativeArraySizeException if newLength is negative
* @throws NullPointerException if original is null
* @since 1.6
*/
public static boolean[] copyOf(boolean[] original, int newLength) {
boolean[] copy = new boolean[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* null is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* The resulting array is of exactly the same class as the original array.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with nulls to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static T[] copyOfRange(T[] original, int from, int to) {
return copyOfRange(original, from, to, (Class) original.getClass());
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* null is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
* The resulting array is of the class newType.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @param newType the class of the copy to be returned
* @return a new array containing the specified range from the original array,
* truncated or padded with nulls to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @throws ArrayStoreException if an element copied from
* original is not of a runtime type that can be stored in
* an array of class newType.
* @since 1.6
*/
public static T[] copyOfRange(U[] original, int from, int to, Class extends T[]> newType) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
T[] copy = ((Object)newType == (Object)Object[].class)
? (T[]) new Object[newLength]
: (T[]) Array.newInstance(newType.getComponentType(), newLength);
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* (byte)0 is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with zeros to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static byte[] copyOfRange(byte[] original, int from, int to) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
byte[] copy = new byte[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* (short)0 is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with zeros to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static short[] copyOfRange(short[] original, int from, int to) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
short[] copy = new short[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* 0 is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with zeros to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static int[] copyOfRange(int[] original, int from, int to) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
int[] copy = new int[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* 0L is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with zeros to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static long[] copyOfRange(long[] original, int from, int to) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
long[] copy = new long[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* '\\u000' is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with null characters to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static char[] copyOfRange(char[] original, int from, int to) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
char[] copy = new char[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* 0f is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with zeros to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static float[] copyOfRange(float[] original, int from, int to) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
float[] copy = new float[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* 0d is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with zeros to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static double[] copyOfRange(double[] original, int from, int to) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
double[] copy = new double[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
/**
* Copies the specified range of the specified array into a new array.
* The initial index of the range (from) must lie between zero
* and original.length, inclusive. The value at
* original[from] is placed into the initial element of the copy
* (unless from == original.length or from == to).
* Values from subsequent elements in the original array are placed into
* subsequent elements in the copy. The final index of the range
* (to), which must be greater than or equal to from,
* may be greater than original.length, in which case
* false is placed in all elements of the copy whose index is
* greater than or equal to original.length - from. The length
* of the returned array will be to - from.
*
* @param original the array from which a range is to be copied
* @param from the initial index of the range to be copied, inclusive
* @param to the final index of the range to be copied, exclusive.
* (This index may lie outside the array.)
* @return a new array containing the specified range from the original array,
* truncated or padded with false elements to obtain the required length
* @throws ArrayIndexOutOfBoundsException if {@code from < 0}
* or {@code from > original.length}
* @throws IllegalArgumentException if from > to
* @throws NullPointerException if original is null
* @since 1.6
*/
public static boolean[] copyOfRange(boolean[] original, int from, int to) {
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
boolean[] copy = new boolean[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
}
// Misc
/**
* Returns a fixed-size list backed by the specified array. (Changes to
* the returned list "write through" to the array.) This method acts
* as bridge between array-based and collection-based APIs, in
* combination with {@link Collection#toArray}. The returned list is
* serializable and implements {@link RandomAccess}.
*
*
This method also provides a convenient way to create a fixed-size
* list initialized to contain several elements:
*
*
* @param a the array by which the list will be backed
* @return a list view of the specified array
*/
public static List asList(T... a) {
return new ArrayList(a);
}
/**
* @serial include
*/
private static class ArrayList extends AbstractList
implements RandomAccess, java.io.Serializable
{
private static final long serialVersionUID = -2764017481108945198L;
private final E[] a;
ArrayList(E[] array) {
if (array==null)
throw new NullPointerException();
a = array;
}
public int size() {
return a.length;
}
public Object[] toArray() {
return a.clone();
}
public T[] toArray(T[] a) {
int size = size();
if (a.length < size)
return Arrays.copyOf(this.a, size,
(Class extends T[]>) a.getClass());
System.arraycopy(this.a, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
public E get(int index) {
return a[index];
}
public E set(int index, E element) {
E oldValue = a[index];
a[index] = element;
return oldValue;
}
public int indexOf(Object o) {
if (o==null) {
for (int i=0; ilong arrays a and b
* such that Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is the same value that would be
* obtained by invoking the {@link List#hashCode() hashCode}
* method on a {@link List} containing a sequence of {@link Long}
* instances representing the elements of a in the same order.
* If a is null, this method returns 0.
*
* @param a the array whose hash value to compute
* @return a content-based hash code for a
* @since 1.5
*/
public static int hashCode(long a[]) {
if (a == null)
return 0;
int result = 1;
for (long element : a) {
int elementHash = (int)(element ^ (element >>> 32));
result = 31 * result + elementHash;
}
return result;
}
/**
* Returns a hash code based on the contents of the specified array.
* For any two non-null int arrays a and b
* such that Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is the same value that would be
* obtained by invoking the {@link List#hashCode() hashCode}
* method on a {@link List} containing a sequence of {@link Integer}
* instances representing the elements of a in the same order.
* If a is null, this method returns 0.
*
* @param a the array whose hash value to compute
* @return a content-based hash code for a
* @since 1.5
*/
public static int hashCode(int a[]) {
if (a == null)
return 0;
int result = 1;
for (int element : a)
result = 31 * result + element;
return result;
}
/**
* Returns a hash code based on the contents of the specified array.
* For any two short arrays a and b
* such that Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is the same value that would be
* obtained by invoking the {@link List#hashCode() hashCode}
* method on a {@link List} containing a sequence of {@link Short}
* instances representing the elements of a in the same order.
* If a is null, this method returns 0.
*
* @param a the array whose hash value to compute
* @return a content-based hash code for a
* @since 1.5
*/
public static int hashCode(short a[]) {
if (a == null)
return 0;
int result = 1;
for (short element : a)
result = 31 * result + element;
return result;
}
/**
* Returns a hash code based on the contents of the specified array.
* For any two char arrays a and b
* such that Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is the same value that would be
* obtained by invoking the {@link List#hashCode() hashCode}
* method on a {@link List} containing a sequence of {@link Character}
* instances representing the elements of a in the same order.
* If a is null, this method returns 0.
*
* @param a the array whose hash value to compute
* @return a content-based hash code for a
* @since 1.5
*/
public static int hashCode(char a[]) {
if (a == null)
return 0;
int result = 1;
for (char element : a)
result = 31 * result + element;
return result;
}
/**
* Returns a hash code based on the contents of the specified array.
* For any two byte arrays a and b
* such that Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is the same value that would be
* obtained by invoking the {@link List#hashCode() hashCode}
* method on a {@link List} containing a sequence of {@link Byte}
* instances representing the elements of a in the same order.
* If a is null, this method returns 0.
*
* @param a the array whose hash value to compute
* @return a content-based hash code for a
* @since 1.5
*/
public static int hashCode(byte a[]) {
if (a == null)
return 0;
int result = 1;
for (byte element : a)
result = 31 * result + element;
return result;
}
/**
* Returns a hash code based on the contents of the specified array.
* For any two boolean arrays a and b
* such that Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is the same value that would be
* obtained by invoking the {@link List#hashCode() hashCode}
* method on a {@link List} containing a sequence of {@link Boolean}
* instances representing the elements of a in the same order.
* If a is null, this method returns 0.
*
* @param a the array whose hash value to compute
* @return a content-based hash code for a
* @since 1.5
*/
public static int hashCode(boolean a[]) {
if (a == null)
return 0;
int result = 1;
for (boolean element : a)
result = 31 * result + (element ? 1231 : 1237);
return result;
}
/**
* Returns a hash code based on the contents of the specified array.
* For any two float arrays a and b
* such that Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is the same value that would be
* obtained by invoking the {@link List#hashCode() hashCode}
* method on a {@link List} containing a sequence of {@link Float}
* instances representing the elements of a in the same order.
* If a is null, this method returns 0.
*
* @param a the array whose hash value to compute
* @return a content-based hash code for a
* @since 1.5
*/
public static int hashCode(float a[]) {
if (a == null)
return 0;
int result = 1;
for (float element : a)
result = 31 * result + Float.floatToIntBits(element);
return result;
}
/**
* Returns a hash code based on the contents of the specified array.
* For any two double arrays a and b
* such that Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is the same value that would be
* obtained by invoking the {@link List#hashCode() hashCode}
* method on a {@link List} containing a sequence of {@link Double}
* instances representing the elements of a in the same order.
* If a is null, this method returns 0.
*
* @param a the array whose hash value to compute
* @return a content-based hash code for a
* @since 1.5
*/
public static int hashCode(double a[]) {
if (a == null)
return 0;
int result = 1;
for (double element : a) {
long bits = Double.doubleToLongBits(element);
result = 31 * result + (int)(bits ^ (bits >>> 32));
}
return result;
}
/**
* Returns a hash code based on the contents of the specified array. If
* the array contains other arrays as elements, the hash code is based on
* their identities rather than their contents. It is therefore
* acceptable to invoke this method on an array that contains itself as an
* element, either directly or indirectly through one or more levels of
* arrays.
*
*
For any two arrays a and b such that
* Arrays.equals(a, b), it is also the case that
* Arrays.hashCode(a) == Arrays.hashCode(b).
*
*
The value returned by this method is equal to the value that would
* be returned by Arrays.asList(a).hashCode(), unless a
* is null, in which case 0 is returned.
*
* @param a the array whose content-based hash code to compute
* @return a content-based hash code for a
* @see #deepHashCode(Object[])
* @since 1.5
*/
public static int hashCode(Object a[]) {
if (a == null)
return 0;
int result = 1;
for (Object element : a)
result = 31 * result + (element == null ? 0 : element.hashCode());
return result;
}
/**
* Returns a hash code based on the "deep contents" of the specified
* array. If the array contains other arrays as elements, the
* hash code is based on their contents and so on, ad infinitum.
* It is therefore unacceptable to invoke this method on an array that
* contains itself as an element, either directly or indirectly through
* one or more levels of arrays. The behavior of such an invocation is
* undefined.
*
*
For any two arrays a and b such that
* Arrays.deepEquals(a, b), it is also the case that
* Arrays.deepHashCode(a) == Arrays.deepHashCode(b).
*
*
The computation of the value returned by this method is similar to
* that of the value returned by {@link List#hashCode()} on a list
* containing the same elements as a in the same order, with one
* difference: If an element e of a is itself an array,
* its hash code is computed not by calling e.hashCode(), but as
* by calling the appropriate overloading of Arrays.hashCode(e)
* if e is an array of a primitive type, or as by calling
* Arrays.deepHashCode(e) recursively if e is an array
* of a reference type. If a is null, this method
* returns 0.
*
* @param a the array whose deep-content-based hash code to compute
* @return a deep-content-based hash code for a
* @see #hashCode(Object[])
* @since 1.5
*/
public static int deepHashCode(Object a[]) {
if (a == null)
return 0;
int result = 1;
for (Object element : a) {
int elementHash = 0;
if (element instanceof Object[])
elementHash = deepHashCode((Object[]) element);
else if (element instanceof byte[])
elementHash = hashCode((byte[]) element);
else if (element instanceof short[])
elementHash = hashCode((short[]) element);
else if (element instanceof int[])
elementHash = hashCode((int[]) element);
else if (element instanceof long[])
elementHash = hashCode((long[]) element);
else if (element instanceof char[])
elementHash = hashCode((char[]) element);
else if (element instanceof float[])
elementHash = hashCode((float[]) element);
else if (element instanceof double[])
elementHash = hashCode((double[]) element);
else if (element instanceof boolean[])
elementHash = hashCode((boolean[]) element);
else if (element != null)
elementHash = element.hashCode();
result = 31 * result + elementHash;
}
return result;
}
/**
* Returns true if the two specified arrays are deeply
* equal to one another. Unlike the {@link #equals(Object[],Object[])}
* method, this method is appropriate for use with nested arrays of
* arbitrary depth.
*
*
Two array references are considered deeply equal if both
* are null, or if they refer to arrays that contain the same
* number of elements and all corresponding pairs of elements in the two
* arrays are deeply equal.
*
*
Two possibly null elements e1 and e2 are
* deeply equal if any of the following conditions hold:
*
*
e1 and e2 are both arrays of object reference
* types, and Arrays.deepEquals(e1, e2) would return true
*
e1 and e2 are arrays of the same primitive
* type, and the appropriate overloading of
* Arrays.equals(e1, e2) would return true.
*
e1 == e2
*
e1.equals(e2) would return true.
*
* Note that this definition permits null elements at any depth.
*
*
If either of the specified arrays contain themselves as elements
* either directly or indirectly through one or more levels of arrays,
* the behavior of this method is undefined.
*
* @param a1 one array to be tested for equality
* @param a2 the other array to be tested for equality
* @return true if the two arrays are equal
* @see #equals(Object[],Object[])
* @since 1.5
*/
public static boolean deepEquals(Object[] a1, Object[] a2) {
if (a1 == a2)
return true;
if (a1 == null || a2==null)
return false;
int length = a1.length;
if (a2.length != length)
return false;
for (int i = 0; i < length; i++) {
Object e1 = a1[i];
Object e2 = a2[i];
if (e1 == e2)
continue;
if (e1 == null)
return false;
// Figure out whether the two elements are equal
boolean eq;
if (e1 instanceof Object[] && e2 instanceof Object[])
eq = deepEquals ((Object[]) e1, (Object[]) e2);
else if (e1 instanceof byte[] && e2 instanceof byte[])
eq = equals((byte[]) e1, (byte[]) e2);
else if (e1 instanceof short[] && e2 instanceof short[])
eq = equals((short[]) e1, (short[]) e2);
else if (e1 instanceof int[] && e2 instanceof int[])
eq = equals((int[]) e1, (int[]) e2);
else if (e1 instanceof long[] && e2 instanceof long[])
eq = equals((long[]) e1, (long[]) e2);
else if (e1 instanceof char[] && e2 instanceof char[])
eq = equals((char[]) e1, (char[]) e2);
else if (e1 instanceof float[] && e2 instanceof float[])
eq = equals((float[]) e1, (float[]) e2);
else if (e1 instanceof double[] && e2 instanceof double[])
eq = equals((double[]) e1, (double[]) e2);
else if (e1 instanceof boolean[] && e2 instanceof boolean[])
eq = equals((boolean[]) e1, (boolean[]) e2);
else
eq = e1.equals(e2);
if (!eq)
return false;
}
return true;
}
/**
* Returns a string representation of the contents of the specified array.
* The string representation consists of a list of the array's elements,
* enclosed in square brackets ("[]"). Adjacent elements are
* separated by the characters ", " (a comma followed by a
* space). Elements are converted to strings as by
* String.valueOf(long). Returns "null" if a
* is null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @since 1.5
*/
public static String toString(long[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the contents of the specified array.
* The string representation consists of a list of the array's elements,
* enclosed in square brackets ("[]"). Adjacent elements are
* separated by the characters ", " (a comma followed by a
* space). Elements are converted to strings as by
* String.valueOf(int). Returns "null" if a is
* null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @since 1.5
*/
public static String toString(int[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the contents of the specified array.
* The string representation consists of a list of the array's elements,
* enclosed in square brackets ("[]"). Adjacent elements are
* separated by the characters ", " (a comma followed by a
* space). Elements are converted to strings as by
* String.valueOf(short). Returns "null" if a
* is null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @since 1.5
*/
public static String toString(short[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the contents of the specified array.
* The string representation consists of a list of the array's elements,
* enclosed in square brackets ("[]"). Adjacent elements are
* separated by the characters ", " (a comma followed by a
* space). Elements are converted to strings as by
* String.valueOf(char). Returns "null" if a
* is null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @since 1.5
*/
public static String toString(char[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the contents of the specified array.
* The string representation consists of a list of the array's elements,
* enclosed in square brackets ("[]"). Adjacent elements
* are separated by the characters ", " (a comma followed
* by a space). Elements are converted to strings as by
* String.valueOf(byte). Returns "null" if
* a is null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @since 1.5
*/
public static String toString(byte[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the contents of the specified array.
* The string representation consists of a list of the array's elements,
* enclosed in square brackets ("[]"). Adjacent elements are
* separated by the characters ", " (a comma followed by a
* space). Elements are converted to strings as by
* String.valueOf(boolean). Returns "null" if
* a is null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @since 1.5
*/
public static String toString(boolean[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the contents of the specified array.
* The string representation consists of a list of the array's elements,
* enclosed in square brackets ("[]"). Adjacent elements are
* separated by the characters ", " (a comma followed by a
* space). Elements are converted to strings as by
* String.valueOf(float). Returns "null" if a
* is null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @since 1.5
*/
public static String toString(float[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the contents of the specified array.
* The string representation consists of a list of the array's elements,
* enclosed in square brackets ("[]"). Adjacent elements are
* separated by the characters ", " (a comma followed by a
* space). Elements are converted to strings as by
* String.valueOf(double). Returns "null" if a
* is null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @since 1.5
*/
public static String toString(double[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the contents of the specified array.
* If the array contains other arrays as elements, they are converted to
* strings by the {@link Object#toString} method inherited from
* Object, which describes their identities rather than
* their contents.
*
*
The value returned by this method is equal to the value that would
* be returned by Arrays.asList(a).toString(), unless a
* is null, in which case "null" is returned.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @see #deepToString(Object[])
* @since 1.5
*/
public static String toString(Object[] a) {
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(String.valueOf(a[i]));
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
/**
* Returns a string representation of the "deep contents" of the specified
* array. If the array contains other arrays as elements, the string
* representation contains their contents and so on. This method is
* designed for converting multidimensional arrays to strings.
*
*
The string representation consists of a list of the array's
* elements, enclosed in square brackets ("[]"). Adjacent
* elements are separated by the characters ", " (a comma
* followed by a space). Elements are converted to strings as by
* String.valueOf(Object), unless they are themselves
* arrays.
*
*
If an element e is an array of a primitive type, it is
* converted to a string as by invoking the appropriate overloading of
* Arrays.toString(e). If an element e is an array of a
* reference type, it is converted to a string as by invoking
* this method recursively.
*
*
To avoid infinite recursion, if the specified array contains itself
* as an element, or contains an indirect reference to itself through one
* or more levels of arrays, the self-reference is converted to the string
* "[...]". For example, an array containing only a reference
* to itself would be rendered as "[[...]]".
*
*
This method returns "null" if the specified array
* is null.
*
* @param a the array whose string representation to return
* @return a string representation of a
* @see #toString(Object[])
* @since 1.5
*/
public static String deepToString(Object[] a) {
if (a == null)
return "null";
int bufLen = 20 * a.length;
if (a.length != 0 && bufLen <= 0)
bufLen = Integer.MAX_VALUE;
StringBuilder buf = new StringBuilder(bufLen);
deepToString(a, buf, new HashSet