/* * Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.dyn; import java.lang.reflect.Constructor; import sun.dyn.Access; import sun.dyn.MemberName; import sun.dyn.MethodHandleImpl; import sun.dyn.util.VerifyAccess; import sun.dyn.util.Wrapper; import java.lang.reflect.Field; import java.lang.reflect.Method; import java.lang.reflect.Modifier; import java.util.List; import java.util.ArrayList; import java.util.Arrays; import sun.dyn.Invokers; import sun.dyn.MethodTypeImpl; import sun.reflect.Reflection; import static sun.dyn.MemberName.newIllegalArgumentException; import static sun.dyn.MemberName.newNoAccessException; /** * Fundamental operations and utilities for MethodHandle. * They fall into several categories: * *

* @author John Rose, JSR 292 EG */ public class MethodHandles { private MethodHandles() { } // do not instantiate private static final Access IMPL_TOKEN = Access.getToken(); private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(IMPL_TOKEN); static { MethodHandleImpl.initStatics(); } // See IMPL_LOOKUP below. //// Method handle creation from ordinary methods. /** Create a {@link Lookup} lookup object on the caller. * */ public static Lookup lookup() { return new Lookup(); } /** Version of lookup which is trusted minimally. * It can only be used to create method handles to * publicly accessible members. */ public static Lookup publicLookup() { return Lookup.PUBLIC_LOOKUP; } /** * A factory object for creating method handles, when the creation * requires access checking. Method handles do not perform * access checks when they are called; this is a major difference * from reflective {@link Method}, which performs access checking * against every caller, on every call. Method handle access * restrictions are enforced when a method handle is created. * The caller class against which those restrictions are enforced * is known as the "lookup class". {@link Lookup} embodies an * authenticated lookup class, and can be used to create any number * of access-checked method handles, all checked against a single * lookup class. *

* A class which needs to create method handles will call * {@code MethodHandles.lookup()} to create a factory for itself. * It may then use this factory to create method handles on * all of its methods, including private ones. * It may also delegate the lookup (e.g., to a metaobject protocol) * by passing the {@code Lookup} object to other code. * If this other code creates method handles, they will be access * checked against the original lookup class, and not with any higher * privileges. *

* Note that access checks only apply to named and reflected methods. * Other method handle creation methods, such as {@link #convertArguments}, * do not require any access checks, and can be done independently * of any lookup class. *

* A note about error conditions: A lookup can fail, because * the containing class is not accessible to the lookup class, or * because the desired class member is missing, or because the * desired class member is not accessible to the lookup class. * It can also fail if a security manager is installed and refuses * access. In any of these cases, an exception will be * thrown from the attempted lookup. * In general, the conditions under which a method handle may be * created for a method {@code M} are exactly as restrictive as the conditions * under which the lookup class could have compiled a call to {@code M}. * At least some of these error conditions are likely to be * represented by checked exceptions in the final version of this API. */ public static final class Lookup { private final Class lookupClass; /** Which class is performing the lookup? It is this class against * which checks are performed for visibility and access permissions. *

* This value is null if and only if this lookup was produced * by {@link MethodHandles#publicLookup}. */ public Class lookupClass() { return lookupClass; } /** Embody the current class (the lookupClass) as a lookup class * for method handle creation. * Must be called by from a method in this package, * which in turn is called by a method not in this package. * Also, don't make it private, lest javac interpose * an access$N method. */ Lookup() { this(IMPL_TOKEN, getCallerClassAtEntryPoint()); } Lookup(Access token, Class lookupClass) { // make sure we haven't accidentally picked up a privileged class: checkUnprivilegedlookupClass(lookupClass); this.lookupClass = lookupClass; } /** * Create a lookup on the specified class. * The result is guaranteed to have no more access privileges * than the original. */ public Lookup in(Class newLookupClass) { if (this == PUBLIC_LOOKUP) return PUBLIC_LOOKUP; if (newLookupClass == null) return PUBLIC_LOOKUP; if (newLookupClass == lookupClass) return this; if (this != IMPL_LOOKUP) { if (!VerifyAccess.isSamePackage(lookupClass, newLookupClass)) throw newNoAccessException(new MemberName(newLookupClass), this); checkUnprivilegedlookupClass(newLookupClass); } return new Lookup(newLookupClass); } private Lookup(Class lookupClass) { this.lookupClass = lookupClass; } // Make sure outer class is initialized first. static { IMPL_TOKEN.getClass(); } private static final Class PUBLIC_ONLY = sun.dyn.empty.Empty.class; /** Version of lookup which is trusted minimally. * It can only be used to create method handles to * publicly accessible members. */ static final Lookup PUBLIC_LOOKUP = new Lookup(PUBLIC_ONLY); /** Package-private version of lookup which is trusted. */ static final Lookup IMPL_LOOKUP = new Lookup(null); static { MethodHandleImpl.initLookup(IMPL_TOKEN, IMPL_LOOKUP); } private static void checkUnprivilegedlookupClass(Class lookupClass) { String name = lookupClass.getName(); if (name.startsWith("java.dyn.") || name.startsWith("sun.dyn.")) throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); } @Override public String toString() { if (lookupClass == PUBLIC_ONLY) return "public"; if (lookupClass == null) return "privileged"; return lookupClass.getName(); } // call this from an entry point method in Lookup with extraFrames=0. private static Class getCallerClassAtEntryPoint() { final int CALLER_DEPTH = 4; // 0: Reflection.getCC, 1: getCallerClassAtEntryPoint, // 2: Lookup., 3: MethodHandles.*, 4: caller // Note: This should be the only use of getCallerClass in this file. assert(Reflection.getCallerClass(CALLER_DEPTH-1) == MethodHandles.class); return Reflection.getCallerClass(CALLER_DEPTH); } /** * Produce a method handle for a static method. * The type of the method handle will be that of the method. * (Since static methods do not take receivers, there is no * additional receiver argument inserted into the method handle type, * as there would be with {@linkplain #findVirtual} or {@linkplain #findSpecial}.) * The method and all its argument types must be accessible to the lookup class. * If the method's class has not yet been initialized, that is done * immediately, before the method handle is returned. * @param defc the class from which the method is accessed * @param name the name of the method * @param type the type of the method * @return the desired method handle * @exception SecurityException TBD * @exception NoAccessException if the method does not exist or access checking fails */ public MethodHandle findStatic(Class defc, String name, MethodType type) throws NoAccessException { MemberName method = IMPL_NAMES.resolveOrFail(new MemberName(defc, name, type, Modifier.STATIC), true, lookupClass()); VerifyAccess.checkName(method, this); checkStatic(true, method, this); //throw NoSuchMethodException return MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, lookupClass()); } /** * Produce a method handle for a virtual method. * The type of the method handle will be that of the method, * with the receiver type ({@code defc}) prepended. * The method and all its argument types must be accessible to the lookup class. *

* (BUG NOTE: The type {@code Object} may be prepended instead * of the receiver type, if the receiver type is not on the boot class path. * This is due to a temporary JVM limitation, in which MethodHandle * claims to be unable to access such classes. To work around this * bug, use {@code convertArguments} to normalize the type of the leading * argument to a type on the boot class path, such as {@code Object}.) *

* When called, the handle will treat the first argument as a receiver * and dispatch on the receiver's type to determine which method * implementation to enter. * (The dispatching action is identical with that performed by an * {@code invokevirtual} or {@code invokeinterface} instruction.) * @param defc the class or interface from which the method is accessed * @param name the name of the method * @param type the type of the method, with the receiver argument omitted * @return the desired method handle * @exception SecurityException TBD * @exception NoAccessException if the method does not exist or access checking fails */ public MethodHandle findVirtual(Class defc, String name, MethodType type) throws NoAccessException { MemberName method = IMPL_NAMES.resolveOrFail(new MemberName(defc, name, type), true, lookupClass()); VerifyAccess.checkName(method, this); checkStatic(false, method, this); return MethodHandleImpl.findMethod(IMPL_TOKEN, method, true, lookupClass()); } /** * Produce an early-bound method handle for a virtual method, * as if called from an {@code invokespecial} * instruction from {@code caller}. * The type of the method handle will be that of the method, * with a suitably restricted receiver type (such as {@code caller}) prepended. * The method and all its argument types must be accessible * to the caller. *

* When called, the handle will treat the first argument as a receiver, * but will not dispatch on the receiver's type. * (This direct invocation action is identical with that performed by an * {@code invokespecial} instruction.) *

* If the explicitly specified caller class is not identical with the * lookup class, a security check TBD is performed. * @param defc the class or interface from which the method is accessed * @param name the name of the method, or "" for a constructor * @param type the type of the method, with the receiver argument omitted * @param specialCaller the proposed calling class to perform the {@code invokespecial} * @return the desired method handle * @exception SecurityException TBD * @exception NoAccessException if the method does not exist or access checking fails */ public MethodHandle findSpecial(Class defc, String name, MethodType type, Class specialCaller) throws NoAccessException { checkSpecialCaller(specialCaller, this); Lookup slookup = this.in(specialCaller); MemberName method = IMPL_NAMES.resolveOrFail(new MemberName(defc, name, type), false, slookup.lookupClass()); VerifyAccess.checkName(method, this); checkStatic(false, method, this); if (name.equals("")) { throw newNoAccessException("cannot directly invoke a constructor", method, null); } else if (defc.isInterface() || !defc.isAssignableFrom(specialCaller)) { throw newNoAccessException("method must be in a superclass of lookup class", method, slookup.lookupClass()); } return MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, slookup.lookupClass()); } /** * Produce an early-bound method handle for a non-static method. * The receiver must have a supertype {@code defc} in which a method * of the given name and type is accessible to the lookup class. * The method and all its argument types must be accessible to the lookup class. * The type of the method handle will be that of the method, * without any insertion of an additional receiver parameter. * The given receiver will be bound into the method handle, * so that every call to the method handle will invoke the * requested method on the given receiver. *

* This is equivalent to the following expression: * * {@link #insertArguments}({@link #findVirtual}(defc, name, type), receiver) * * where {@code defc} is either {@code receiver.getClass()} or a super * type of that class, in which the requested method is accessible * to the lookup class. * @param receiver the object from which the method is accessed * @param name the name of the method * @param type the type of the method, with the receiver argument omitted * @return the desired method handle * @exception SecurityException TBD * @exception NoAccessException if the method does not exist or access checking fails */ public MethodHandle bind(Object receiver, String name, MethodType type) throws NoAccessException { Class rcvc = receiver.getClass(); // may get NPE MemberName reference = new MemberName(rcvc, name, type); MemberName method = IMPL_NAMES.resolveOrFail(reference, true, lookupClass()); VerifyAccess.checkName(method, this); checkStatic(false, method, this); MethodHandle dmh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, true, lookupClass()); MethodHandle bmh = MethodHandleImpl.bindReceiver(IMPL_TOKEN, dmh, receiver); if (bmh == null) throw newNoAccessException(method, this); return bmh; } /** * PROVISIONAL API, WORK IN PROGRESS: * Make a direct method handle to m, if the lookup class has permission. * If m is non-static, the receiver argument is treated as an initial argument. * If m is virtual, overriding is respected on every call. * Unlike the Core Reflection API, exceptions are not wrapped. * The type of the method handle will be that of the method, * with the receiver type prepended (but only if it is non-static). * If the method's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class. * If m is not public, do not share the resulting handle with untrusted parties. * @param m the reflected method * @return a method handle which can invoke the reflected method * @exception NoAccessException if access checking fails */ public MethodHandle unreflect(Method m) throws NoAccessException { return unreflectImpl(new MemberName(m), m.isAccessible(), true, false, this); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle for a reflected method. * It will bypass checks for overriding methods on the receiver, * as if by the {@code invokespecial} instruction. * The type of the method handle will be that of the method, * with the receiver type prepended. * If the method's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class, * as if {@code invokespecial} instruction were being linked. * @param m the reflected method * @return a method handle which can invoke the reflected method * @exception NoAccessException if access checking fails */ public MethodHandle unreflectSpecial(Method m, Class specialCaller) throws NoAccessException { checkSpecialCaller(specialCaller, this); Lookup slookup = this.in(specialCaller); MemberName mname = new MemberName(m); checkStatic(false, mname, this); return unreflectImpl(mname, m.isAccessible(), false, false, slookup); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle for a reflected constructor. * The type of the method handle will be that of the constructor, * with the return type changed to the declaring class. * The method handle will perform a {@code newInstance} operation, * creating a new instance of the constructor's class on the * arguments passed to the method handle. *

* If the constructor's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class. * @param ctor the reflected constructor * @return a method handle which can invoke the reflected constructor * @exception NoAccessException if access checking fails */ public MethodHandle unreflectConstructor(Constructor ctor) throws NoAccessException { MemberName m = new MemberName(ctor); return unreflectImpl(m, ctor.isAccessible(), false, false, this); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle giving read access to a reflected field. * The type of the method handle will have a return type of the field's * value type. * If the field is static, the method handle will take no arguments. * Otherwise, its single argument will be the instance containing * the field. * If the method's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class. * @param f the reflected field * @return a method handle which can load values from the reflected field * @exception NoAccessException if access checking fails */ public MethodHandle unreflectGetter(Field f) throws NoAccessException { MemberName m = new MemberName(f); return unreflectImpl(m, f.isAccessible(), false, false, this); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle giving write access to a reflected field. * The type of the method handle will have a void return type. * If the field is static, the method handle will take a single * argument, of the field's value type, the value to be stored. * Otherwise, the two arguments will be the instance containing * the field, and the value to be stored. * If the method's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class. * @param f the reflected field * @return a method handle which can store values into the reflected field * @exception NoAccessException if access checking fails */ public MethodHandle unreflectSetter(Field f) throws NoAccessException { MemberName m = new MemberName(f); return unreflectImpl(m, f.isAccessible(), false, true, this); } } static /*must not be public*/ MethodHandle findStaticFrom(Lookup lookup, Class defc, String name, MethodType type) throws NoAccessException { MemberName method = IMPL_NAMES.resolveOrFail(new MemberName(defc, name, type, Modifier.STATIC), true, lookup.lookupClass()); VerifyAccess.checkName(method, lookup); checkStatic(true, method, lookup); return MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, lookup.lookupClass()); } static void checkStatic(boolean wantStatic, MemberName m, Lookup lookup) { if (wantStatic != m.isStatic()) { String message = wantStatic ? "expected a static method" : "expected a non-static method"; throw newNoAccessException(message, m, lookup.lookupClass()); } } static void checkSpecialCaller(Class specialCaller, Lookup lookup) { if (lookup == Lookup.IMPL_LOOKUP) return; // privileged action assert(lookup.lookupClass() != null); if (!VerifyAccess.isSamePackageMember(specialCaller, lookup.lookupClass())) throw newNoAccessException("no private access", new MemberName(specialCaller), lookup.lookupClass()); } // Helper for creating handles on reflected methods and constructors. static MethodHandle unreflectImpl(MemberName m, boolean isAccessible, boolean doDispatch, boolean isSetter, Lookup lookup) { MethodType narrowMethodType = null; Class defc = m.getDeclaringClass(); boolean isSpecialInvoke = m.isInvocable() && !doDispatch; int mods = m.getModifiers(); if (m.isStatic()) { if (!isAccessible && VerifyAccess.isAccessible(defc, mods, lookup.lookupClass(), false) == null) throw newNoAccessException(m, lookup); } else { Class constraint; if (isAccessible) { // abbreviated access check for "unlocked" method constraint = doDispatch ? defc : lookup.lookupClass(); } else { constraint = VerifyAccess.isAccessible(defc, mods, lookup.lookupClass(), isSpecialInvoke); } if (constraint == null) { throw newNoAccessException(m, lookup); } if (constraint != defc && !constraint.isAssignableFrom(defc)) { if (!defc.isAssignableFrom(constraint)) throw newNoAccessException("receiver must be in caller class", m, lookup.lookupClass()); if (m.isInvocable()) narrowMethodType = m.getInvocationType().changeParameterType(0, constraint); else if (m.isField()) narrowMethodType = (!isSetter ? MethodType.methodType(m.getFieldType(), constraint) : MethodType.methodType(void.class, constraint, m.getFieldType())); } } if (m.isInvocable()) return MethodHandleImpl.findMethod(IMPL_TOKEN, m, doDispatch, lookup.lookupClass()); else if (m.isField()) return MethodHandleImpl.accessField(IMPL_TOKEN, m, isSetter, lookup.lookupClass()); else throw new InternalError(); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle giving read access to elements of an array. * The type of the method handle will have a return type of the array's * element type. Its first argument will be the array type, * and the second will be {@code int}. * @param arrayClass an array type * @return a method handle which can load values from the given array type * @throws IllegalArgumentException if arrayClass is not an array type */ public static MethodHandle arrayElementGetter(Class arrayClass) throws IllegalArgumentException { return MethodHandleImpl.accessArrayElement(IMPL_TOKEN, arrayClass, false); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle giving write access to elements of an array. * The type of the method handle will have a void return type. * Its last argument will be the array's element type. * The first and second arguments will be the array type and int. * @return a method handle which can store values into the array type * @throws IllegalArgumentException if arrayClass is not an array type */ public static MethodHandle arrayElementSetter(Class arrayClass) throws IllegalArgumentException { return MethodHandleImpl.accessArrayElement(IMPL_TOKEN, arrayClass, true); } /// method handle invocation (reflective style) /** * @deprecated Alias for MethodHandle.invokeVarargs. */ @Deprecated public static Object invokeVarargs(MethodHandle target, Object... arguments) throws Throwable { return target.invokeVarargs(arguments); } /** * @deprecated Alias for MethodHandle.invokeVarargs. */ @Deprecated public static Object invoke(MethodHandle target, Object... arguments) throws Throwable { return target.invokeVarargs(arguments); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which will invoke any method handle of the * given type on a standard set of {@code Object} type arguments. * The resulting invoker will be a method handle with the following * arguments: *

* The invoker will apply reference casts as necessary and unbox primitive arguments, * as if by {@link #convertArguments}. * The return value of the invoker will be an {@code Object} reference, * boxing a primitive value if the original type returns a primitive, * and always null if the original type returns void. *

* This method is equivalent to the following code (though it may be more efficient): *

     * MethodHandle invoker = exactInvoker(type);
     * MethodType genericType = type.generic();
     * genericType = genericType.insertParameterType(0, MethodHandle.class);
     * return convertArguments(invoker, genericType);
     * 
* @param type the type of target methods which the invoker will apply to * @return a method handle suitable for invoking any method handle of the given type */ static public MethodHandle genericInvoker(MethodType type) { return invokers(type).genericInvoker(); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which will invoke any method handle of the * given type on a standard set of {@code Object} type arguments * and a single trailing {@code Object[]} array. * The resulting invoker will be a method handle with the following * arguments: * * The invoker will spread the varargs array, apply * reference casts as necessary, and unbox primitive arguments. * The return value of the invoker will be an {@code Object} reference, * boxing a primitive value if the original type returns a primitive, * and always null if the original type returns void. *

* This method is equivalent to the following code (though it may be more efficient): *

     * MethodHandle invoker = exactInvoker(type);
     * MethodType vaType = MethodType.makeGeneric(objectArgCount, true);
     * vaType = vaType.insertParameterType(0, MethodHandle.class);
     * return spreadArguments(invoker, vaType);
     * 
* @param type the desired target type * @param objectArgCount number of fixed (non-varargs) {@code Object} arguments * @return a method handle suitable for invoking any method handle of the given type */ static public MethodHandle varargsInvoker(MethodType type, int objectArgCount) { if (objectArgCount < 0 || objectArgCount > type.parameterCount()) throw new IllegalArgumentException("bad argument count "+objectArgCount); return invokers(type).varargsInvoker(objectArgCount); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which will take a invoke any method handle of the * given type. The resulting invoker will have a type which is * exactly equal to the desired type, except that it will accept * an additional leading argument of type {@code MethodHandle}. *

* This method is equivalent to the following code (though it may be more efficient): *

     * lookup().findVirtual(MethodHandle.class, "invoke", type);
     * 
* @param type the desired target type * @return a method handle suitable for invoking any method handle of the given type */ static public MethodHandle exactInvoker(MethodType type) { return invokers(type).exactInvoker(); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle equivalent to an invokedynamic instruction * which has been linked to the given call site. * Along with {@link Lookup#findVirtual}, {@link Lookup#findStatic}, * and {@link Lookup#findSpecial}, this completes the emulation * of the JVM's {@code invoke} instructions. *

This method is equivalent to the following code: *

     * MethodHandle getTarget, invoker, result;
     * getTarget = lookup().bind(site, "getTarget", methodType(MethodHandle.class));
     * invoker = exactInvoker(site.type());
     * result = foldArguments(invoker, getTarget)
     * 
* @return a method handle which always invokes the call site's target */ public static MethodHandle dynamicInvoker(CallSite site) { MethodHandle getTarget = MethodHandleImpl.bindReceiver(IMPL_TOKEN, CallSite.GET_TARGET, site); MethodHandle invoker = exactInvoker(site.type()); return foldArguments(invoker, getTarget); } static Invokers invokers(MethodType type) { return MethodTypeImpl.invokers(IMPL_TOKEN, type); } /** * WORK IN PROGRESS: * Perform value checking, exactly as if for an adapted method handle. * It is assumed that the given value is either null, of type T0, * or (if T0 is primitive) of the wrapper type corresponding to T0. * The following checks and conversions are made: * * If the value is discarded, null will be returned. * @param valueType * @param value * @return the value, converted if necessary * @throws java.lang.ClassCastException if a cast fails */ static T1 checkValue(Class t0, Class t1, Object value) throws ClassCastException { if (t0 == t1) { // no conversion needed; just reassert the same type if (t0.isPrimitive()) return Wrapper.asPrimitiveType(t1).cast(value); else return Wrapper.OBJECT.cast(value, t1); } boolean prim0 = t0.isPrimitive(), prim1 = t1.isPrimitive(); if (!prim0) { // check contract with caller Wrapper.OBJECT.cast(value, t0); if (!prim1) { return Wrapper.OBJECT.cast(value, t1); } // convert reference to primitive by unboxing Wrapper w1 = Wrapper.forPrimitiveType(t1); return w1.cast(value, t1); } // check contract with caller: Wrapper.asWrapperType(t0).cast(value); Wrapper w1 = Wrapper.forPrimitiveType(t1); return w1.cast(value, t1); } static Object checkValue(Class T1, Object value) throws ClassCastException { Class T0; if (value == null) T0 = Object.class; else T0 = value.getClass(); return checkValue(T0, T1, value); } /// method handle modification (creation from other method handles) /** * Produce a method handle which adapts the type of the * given method handle to a new type by pairwise argument conversion. * The original type and new type must have the same number of arguments. * The resulting method handle is guaranteed to confess a type * which is equal to the desired new type. *

* If the original type and new type are equal, returns target. *

* The following conversions are applied as needed both to * arguments and return types. Let T0 and T1 be the differing * new and old parameter types (or old and new return types) * for corresponding values passed by the new and old method types. * Given those types T0, T1, one of the following conversions is applied * if possible: *

    *
  • If T0 and T1 are references, and T1 is not an interface type, * then a cast to T1 is applied. * (The types do not need to be related in any particular way.) *
  • If T0 and T1 are references, and T1 is an interface type, * then the value of type T0 is passed as a T1 without a cast. * (This treatment of interfaces follows the usage of the bytecode verifier.) *
  • If T0 and T1 are primitives, then a Java casting * conversion (JLS 5.5) is applied, if one exists. *
  • If T0 and T1 are primitives and one is boolean, * the boolean is treated as a one-bit unsigned integer. * (This treatment follows the usage of the bytecode verifier.) * A conversion from another primitive type behaves as if * it first converts to byte, and then masks all but the low bit. *
  • If T0 is a primitive and T1 a reference, a boxing * conversion is applied if one exists, possibly followed by * an reference conversion to a superclass. * T1 must be a wrapper class or a supertype of one. * If T1 is a wrapper class, T0 is converted if necessary * to T1's primitive type by one of the preceding conversions. * Otherwise, T0 is boxed, and its wrapper converted to T1. *
  • If T0 is a reference and T1 a primitive, an unboxing * conversion is applied if one exists, possibly preceded by * a reference conversion to a wrapper class. * T0 must be a wrapper class or a supertype of one. * If T0 is a wrapper class, its primitive value is converted * if necessary to T1 by one of the preceding conversions. * Otherwise, T0 is converted directly to the wrapper type for T1, * which is then unboxed. *
  • If the return type T1 is void, any returned value is discarded *
  • If the return type T0 is void and T1 a reference, a null value is introduced. *
  • If the return type T0 is void and T1 a primitive, a zero value is introduced. *
* @param target the method handle to invoke after arguments are retyped * @param newType the expected type of the new method handle * @return a method handle which delegates to {@code target} after performing * any necessary argument conversions, and arranges for any * necessary return value conversions * @throws IllegalArgumentException if the conversion cannot be made * @see MethodHandle#asType */ public static MethodHandle convertArguments(MethodHandle target, MethodType newType) { MethodType oldType = target.type(); if (oldType.equals(newType)) return target; MethodHandle res = MethodHandleImpl.convertArguments(IMPL_TOKEN, target, newType, oldType, null); if (res == null) throw newIllegalArgumentException("cannot convert to "+newType+": "+target); return res; } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which adapts the calling sequence of the * given method handle to a new type, by reordering the arguments. * The resulting method handle is guaranteed to confess a type * which is equal to the desired new type. *

* The given array controls the reordering. * Call {@code #I} the number of incoming parameters (the value * {@code newType.parameterCount()}, and call {@code #O} the number * of outgoing parameters (the value {@code target.type().parameterCount()}). * Then the length of the reordering array must be {@code #O}, * and each element must be a non-negative number less than {@code #I}. * For every {@code N} less than {@code #O}, the {@code N}-th * outgoing argument will be taken from the {@code I}-th incoming * argument, where {@code I} is {@code reorder[N]}. *

* The reordering array need not specify an actual permutation. * An incoming argument will be duplicated if its index appears * more than once in the array, and an incoming argument will be dropped * if its index does not appear in the array. *

* Pairwise conversions are applied as needed to arguments and return * values, as with {@link #convertArguments}. * @param target the method handle to invoke after arguments are reordered * @param newType the expected type of the new method handle * @param reorder a string which controls the reordering * @return a method handle which delegates to {@code target} after performing * any necessary argument motion and conversions, and arranges for any * necessary return value conversions */ public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int[] reorder) { MethodType oldType = target.type(); checkReorder(reorder, newType, oldType); return MethodHandleImpl.convertArguments(IMPL_TOKEN, target, newType, oldType, reorder); } private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) { if (reorder.length == oldType.parameterCount()) { int limit = newType.parameterCount(); boolean bad = false; for (int i : reorder) { if (i < 0 || i >= limit) { bad = true; break; } } if (!bad) return; } throw newIllegalArgumentException("bad reorder array"); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which adapts the type of the * given method handle to a new type, by spreading the final argument. * The resulting method handle is guaranteed to confess a type * which is equal to the desired new type. *

* The final parameter type of the new type must be an array type T[]. * This is the type of what is called the spread argument. * All other arguments of the new type are called ordinary arguments. *

* The ordinary arguments of the new type are pairwise converted * to the initial parameter types of the old type, according to the * rules in {@link #convertArguments}. * Any additional arguments in the old type * are converted from the array element type T, * again according to the rules in {@link #convertArguments}. * The return value is converted according likewise. *

* The call verifies that the spread argument is in fact an array * of exactly the type length, i.e., the excess number of * arguments in the old type over the ordinary arguments in the new type. * If there are no excess arguments, the spread argument is also * allowed to be null. * @param target the method handle to invoke after the argument is prepended * @param newType the expected type of the new method handle * @return a new method handle which spreads its final argument, * before calling the original method handle */ public static MethodHandle spreadArguments(MethodHandle target, MethodType newType) { MethodType oldType = target.type(); int inargs = newType.parameterCount(); int outargs = oldType.parameterCount(); int spreadPos = inargs - 1; int numSpread = (outargs - spreadPos); MethodHandle res = null; if (spreadPos >= 0 && numSpread >= 0) { res = MethodHandleImpl.spreadArguments(IMPL_TOKEN, target, newType, spreadPos); } if (res == null) { throw newIllegalArgumentException("cannot spread "+newType+" to " +oldType); } return res; } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which adapts the type of the * given method handle to a new type, by collecting a series of * trailing arguments as elements to a single argument array. *

* This method may be used as an inverse to {@link #spreadArguments}. * The final parameter type of the old type must be an array type T[], * which is the type of what is called the spread argument. * The trailing arguments of the new type which correspond to * the spread argument are all converted to type T and collected * into an array before the original method is called. * @param target the method handle to invoke after the argument is prepended * @param newType the expected type of the new method handle * @return a new method handle which collects some trailing argument * into an array, before calling the original method handle */ public static MethodHandle collectArguments(MethodHandle target, MethodType newType) { MethodType oldType = target.type(); int inargs = newType.parameterCount(); int outargs = oldType.parameterCount(); int collectPos = outargs - 1; int numCollect = (inargs - collectPos); if (collectPos < 0 || numCollect < 0) throw newIllegalArgumentException("wrong number of arguments"); MethodHandle res = MethodHandleImpl.collectArguments(IMPL_TOKEN, target, newType, collectPos, null); if (res == null) { throw newIllegalArgumentException("cannot collect from "+newType+" to " +oldType); } return res; } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which calls the original method handle {@code target}, * after inserting the given argument(s) at the given position. * The formal parameters to {@code target} which will be supplied by those * arguments are called bound parameters, because the new method * will contain bindings for those parameters take from {@code values}. * The type of the new method handle will drop the types for the bound * parameters from the original target type, since the new method handle * will no longer require those arguments to be supplied by its callers. *

* Each given argument object must match the corresponding bound parameter type. * If a bound parameter type is a primitive, the argument object * must be a wrapper, and will be unboxed to produce the primitive value. *

* The pos may range between zero and N (inclusively), * where N is the number of argument types in resulting method handle * (after bound parameter types are dropped). * @param target the method handle to invoke after the argument is inserted * @param pos where to insert the argument (zero for the first) * @param values the series of arguments to insert * @return a new method handle which inserts an additional argument, * before calling the original method handle */ public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { int insCount = values.length; MethodType oldType = target.type(); ArrayList> ptypes = new ArrayList>(oldType.parameterList()); int outargs = oldType.parameterCount(); int inargs = outargs - insCount; if (inargs < 0) throw newIllegalArgumentException("too many values to insert"); if (pos < 0 || pos > inargs) throw newIllegalArgumentException("no argument type to append"); MethodHandle result = target; for (int i = 0; i < insCount; i++) { Object value = values[i]; Class valueType = oldType.parameterType(pos+i); value = checkValue(valueType, value); if (pos == 0 && !valueType.isPrimitive()) { // At least for now, make bound method handles a special case. MethodHandle bmh = MethodHandleImpl.bindReceiver(IMPL_TOKEN, result, value); if (bmh != null) { result = bmh; continue; } // else fall through to general adapter machinery } result = MethodHandleImpl.bindArgument(IMPL_TOKEN, result, pos, value); } return result; } @Deprecated // "use MethodHandles.insertArguments instead" public static MethodHandle insertArgument(MethodHandle target, int pos, Object value) { return insertArguments(target, pos, value); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which calls the original method handle, * after dropping the given argument(s) at the given position. * The type of the new method handle will insert the given argument * type(s), at that position, into the original handle's type. *

* The pos may range between zero and N, * where N is the number of argument types in target, * meaning to drop the first or last argument (respectively), * or an argument somewhere in between. *

* Example: *

     *   MethodHandle cat = MethodHandles.lookup().
     *     findVirtual(String.class, "concat", String.class, String.class);
     *   System.out.println(cat.<String>invoke("x", "y")); // xy
     *   MethodHandle d0 = dropArguments(cat, 0, String.class);
     *   System.out.println(d0.<String>invoke("x", "y", "z")); // xy
     *   MethodHandle d1 = dropArguments(cat, 1, String.class);
     *   System.out.println(d1.<String>invoke("x", "y", "z")); // xz
     *   MethodHandle d2 = dropArguments(cat, 2, String.class);
     *   System.out.println(d2.<String>invoke("x", "y", "z")); // yz
     *   MethodHandle d12 = dropArguments(cat, 1, String.class, String.class);
     *   System.out.println(d12.<String>invoke("w", "x", "y", "z")); // wz
     * 
* @param target the method handle to invoke after the argument is dropped * @param valueTypes the type(s) of the argument to drop * @param pos which argument to drop (zero for the first) * @return a new method handle which drops an argument of the given type, * before calling the original method handle */ public static MethodHandle dropArguments(MethodHandle target, int pos, List> valueTypes) { if (valueTypes.size() == 0) return target; MethodType oldType = target.type(); int outargs = oldType.parameterCount(); int inargs = outargs + valueTypes.size(); if (pos < 0 || pos >= inargs) throw newIllegalArgumentException("no argument type to remove"); ArrayList> ptypes = new ArrayList>(oldType.parameterList()); ptypes.addAll(pos, valueTypes); MethodType newType = MethodType.methodType(oldType.returnType(), ptypes); return MethodHandleImpl.dropArguments(IMPL_TOKEN, target, newType, pos); } public static MethodHandle dropArguments(MethodHandle target, int pos, Class... valueTypes) { return dropArguments(target, pos, Arrays.asList(valueTypes)); } /** * PROVISIONAL API, WORK IN PROGRESS: * Adapt a target method handle {@code target} by pre-processing * one or more of its arguments, each with its own unary filter function, * and then calling the target with each pre-processed argument * replaced by the result of its corresponding filter function. *

* The pre-processing is performed by one or more method handles, * specified in the non-null elements of the {@code filters} array. * (If there are no such elements, the original target is returned.) * Each filter (that is, each non-null element of {@code filters}) * is applied to the corresponding argument of the adapter. *

* If a filter {@code F} applies to the {@code N}th argument of * the method handle, then {@code F} must be a method handle which * takes exactly one argument. The type of {@code F}'s sole argument * replaces the corresponding argument type of the target * in the resulting adapted method handle. * The return type of {@code F} must be identical to the corresponding * parameter type of the target. *

* It is an error if there are non-null elements of {@code filters} * which do not correspond to argument positions in the target. * The actual length of the target array may be any number, it need * not be the same as the parameter count of the target type. * (This provides an easy way to filter just the first argument or two * of a target method handle.) *

Here is pseudocode for the resulting adapter: *

     * // there are N arguments in the A sequence
     * T target(A[N]...);
     * [i<N] V[i] filter[i](B[i]) = filters[i] ?: identity;
     * T adapter(B[N]... b) {
     *   A[N] a...;
     *   [i<N] a[i] = filter[i](b[i]);
     *   return target(a...);
     * }
     * 
* @param target the method handle to invoke after arguments are filtered * @param filters method handles to call initially on filtered arguments * @return method handle which incorporates the specified argument filtering logic * @throws IllegalArgumentException if a non-null element of {@code filters} * does not match a corresponding argument type of {@code target} */ public static MethodHandle filterArguments(MethodHandle target, MethodHandle... filters) { MethodType targetType = target.type(); MethodHandle adapter = target; MethodType adapterType = targetType; int pos = -1, maxPos = targetType.parameterCount(); for (MethodHandle filter : filters) { pos += 1; if (filter == null) continue; if (pos >= maxPos) throw newIllegalArgumentException("too many filters"); MethodType filterType = filter.type(); if (filterType.parameterCount() != 1 || filterType.returnType() != targetType.parameterType(pos)) throw newIllegalArgumentException("target and filter types do not match"); adapterType = adapterType.changeParameterType(pos, filterType.parameterType(0)); adapter = MethodHandleImpl.filterArgument(IMPL_TOKEN, adapter, pos, filter); } MethodType midType = adapter.type(); if (midType != adapterType) adapter = MethodHandleImpl.convertArguments(IMPL_TOKEN, adapter, adapterType, midType, null); return adapter; } /** * PROVISIONAL API, WORK IN PROGRESS: * Adapt a target method handle {@code target} by pre-processing * some of its arguments, and then calling the target with * the result of the pre-processing, plus all original arguments. *

* The pre-processing is performed by a second method handle, the {@code combiner}. * The first {@code N} arguments passed to the adapter, * are copied to the combiner, which then produces a result. * (Here, {@code N} is defined as the parameter count of the adapter.) * After this, control passes to the {@code target}, with both the result * of the combiner, and all the original incoming arguments. *

* The first argument type of the target must be identical with the * return type of the combiner. * The resulting adapter is the same type as the target, except that the * initial argument type of the target is dropped. *

* (Note that {@link #dropArguments} can be used to remove any arguments * that either the {@code combiner} or {@code target} does not wish to receive. * If some of the incoming arguments are destined only for the combiner, * consider using {@link #collectArguments} instead, since those * arguments will not need to be live on the stack on entry to the * target.) *

* The first argument of the target must be identical with the * return value of the combiner. *

Here is pseudocode for the resulting adapter: *

     * // there are N arguments in the A sequence
     * T target(V, A[N]..., B...);
     * V combiner(A...);
     * T adapter(A... a, B... b) {
     *   V v = combiner(a...);
     *   return target(v, a..., b...);
     * }
     * 
* @param target the method handle to invoke after arguments are combined * @param combiner method handle to call initially on the incoming arguments * @return method handle which incorporates the specified argument folding logic * @throws IllegalArgumentException if the first argument type of * {@code target} is not the same as {@code combiner}'s return type, * or if the next {@code foldArgs} argument types of {@code target} * are not identical with the argument types of {@code combiner} */ public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { MethodType targetType = target.type(); MethodType combinerType = combiner.type(); int foldArgs = combinerType.parameterCount(); boolean ok = (targetType.parameterCount() >= 1 + foldArgs); if (!ok) throw misMatchedTypes("target and combiner types", targetType, combinerType); MethodType newType = targetType.dropParameterTypes(0, 1); return MethodHandleImpl.foldArguments(IMPL_TOKEN, target, newType, combiner); } /** * PROVISIONAL API, WORK IN PROGRESS: * Make a method handle which adapts a target method handle, * by guarding it with a test, a boolean-valued method handle. * If the guard fails, a fallback handle is called instead. * All three method handles must have the same corresponding * argument and return types, except that the return type * of the test must be boolean, and the test is allowed * to have fewer arguments than the other two method handles. *

Here is pseudocode for the resulting adapter: *

     * boolean test(A...);
     * T target(A...,B...);
     * T fallback(A...,B...);
     * T adapter(A... a,B... b) {
     *   if (test(a...))
     *     return target(a..., b...);
     *   else
     *     return fallback(a..., b...);
     * }
     * 
* @param test method handle used for test, must return boolean * @param target method handle to call if test passes * @param fallback method handle to call if test fails * @return method handle which incorporates the specified if/then/else logic * @throws IllegalArgumentException if {@code test} does not return boolean, * or if all three method types do not match (with the return * type of {@code test} changed to match that of {@code target}). */ public static MethodHandle guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback) { MethodType gtype = test.type(); MethodType ttype = target.type(); MethodType ftype = fallback.type(); if (ttype != ftype) throw misMatchedTypes("target and fallback types", ttype, ftype); MethodType gtype2 = ttype.changeReturnType(boolean.class); if (gtype2 != gtype) { if (gtype.returnType() != boolean.class) throw newIllegalArgumentException("guard type is not a predicate "+gtype); int gpc = gtype.parameterCount(), tpc = ttype.parameterCount(); if (gpc < tpc) { test = dropArguments(test, gpc, ttype.parameterList().subList(gpc, tpc)); gtype = test.type(); } if (gtype2 != gtype) throw misMatchedTypes("target and test types", ttype, gtype); } /* { MethodHandle invoke = findVirtual(MethodHandle.class, "invoke", target.type()); static MethodHandle choose(boolean z, MethodHandle t, MethodHandle f) { return z ? t : f; } static MethodHandle compose(MethodHandle f, MethodHandle g) { Class initargs = g.type().parameterArray(); f = dropArguments(f, 1, initargs); // ignore 2nd copy of args return combineArguments(f, g); } // choose = \z.(z ? target : fallback) MethodHandle choose = findVirtual(MethodHandles.class, "choose", MethodType.methodType(boolean.class, MethodHandle.class, MethodHandle.class)); choose = appendArgument(choose, target); choose = appendArgument(choose, fallback); MethodHandle dispatch = compose(choose, test); // dispatch = \(a...).(test(a...) ? target : fallback) return combineArguments(invoke, dispatch, 0); // return \(a...).((test(a...) ? target : fallback).invoke(a...)) } */ return MethodHandleImpl.makeGuardWithTest(IMPL_TOKEN, test, target, fallback); } static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) { return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); } /** * PROVISIONAL API, WORK IN PROGRESS: * Make a method handle which adapts a target method handle, * by running it inside an exception handler. * If the target returns normally, the adapter returns that value. * If an exception matching the specified type is thrown, the fallback * handle is called instead on the exception, plus the original arguments. *

* The handler must have leading parameter of {@code exType} or a supertype, * followed by arguments which correspond (how? TBD) to * all the parameters of the target. * The target and handler must return the same type. *

Here is pseudocode for the resulting adapter: *

     * T target(A...);
     * T handler(ExType, A...);
     * T adapter(A... a) {
     *   try {
     *     return target(a...);
     *   } catch (ExType ex) {
     *     return handler(ex, a...);
     *   }
     * }
     * 
* @param target method handle to call * @param exType the type of exception which the handler will catch * @param handler method handle to call if a matching exception is thrown * @return method handle which incorporates the specified try/catch logic * @throws IllegalArgumentException if {@code handler} does not accept * the given exception type, or if the method handle types do * not match in their return types and their * corresponding parameters */ public static MethodHandle catchException(MethodHandle target, Class exType, MethodHandle handler) { MethodType targetType = target.type(); MethodType handlerType = handler.type(); boolean ok = (targetType.parameterCount() == handlerType.parameterCount() - 1); // for (int i = 0; ok && i < numExArgs; i++) { // if (targetType.parameterType(i) != handlerType.parameterType(1+i)) // ok = false; // } if (!ok) throw newIllegalArgumentException("target and handler types do not match"); return MethodHandleImpl.makeGuardWithCatch(IMPL_TOKEN, target, exType, handler); } /** * Produce a method handle which will throw exceptions of the given {@code exType}. * The method handle will accept a single argument of {@code exType}, * and immediately throw it as an exception. * The method type will nominally specify a return of {@code returnType}. * The return type may be anything convenient: It doesn't matter to the * method handle's behavior, since it will never return normally. */ public static MethodHandle throwException(Class returnType, Class exType) { return MethodHandleImpl.throwException(IMPL_TOKEN, MethodType.methodType(returnType, exType)); } /** Alias for {@link MethodType#methodType}. */ @Deprecated // "use MethodType.methodType instead" public static MethodType methodType(Class rtype) { return MethodType.methodType(rtype); } /** Alias for {@link MethodType#methodType}. */ @Deprecated // "use MethodType.methodType instead" public static MethodType methodType(Class rtype, Class ptype) { return MethodType.methodType(rtype, ptype); } /** Alias for {@link MethodType#methodType}. */ @Deprecated // "use MethodType.methodType instead" public static MethodType methodType(Class rtype, Class ptype0, Class... ptypes) { return MethodType.methodType(rtype, ptype0, ptypes); } }