/* * Copyright (c) 1995, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.net; import java.io.IOException; import java.io.InputStream; import java.io.InvalidObjectException; import java.io.ObjectStreamException; import java.io.ObjectStreamField; import java.io.ObjectInputStream.GetField; import java.util.Hashtable; import java.util.StringTokenizer; import sun.net.util.IPAddressUtil; import sun.security.util.SecurityConstants; /** * Class {@code URL} represents a Uniform Resource * Locator, a pointer to a "resource" on the World * Wide Web. A resource can be something as simple as a file or a * directory, or it can be a reference to a more complicated object, * such as a query to a database or to a search engine. More * information on the types of URLs and their formats can be found at: * * Types of URL *
* In general, a URL can be broken into several parts. Consider the * following example: *
** http://www.example.com/docs/resource1.html *
* The URL above indicates that the protocol to use is * {@code http} (HyperText Transfer Protocol) and that the * information resides on a host machine named * {@code www.example.com}. The information on that host * machine is named {@code /docs/resource1.html}. The exact * meaning of this name on the host machine is both protocol * dependent and host dependent. The information normally resides in * a file, but it could be generated on the fly. This component of * the URL is called the path component. *
* A URL can optionally specify a "port", which is the * port number to which the TCP connection is made on the remote host * machine. If the port is not specified, the default port for * the protocol is used instead. For example, the default port for * {@code http} is {@code 80}. An alternative port could be * specified as: *
** http://www.example.com:1080/docs/resource1.html *
* The syntax of {@code URL} is defined by RFC 2396: Uniform * Resource Identifiers (URI): Generic Syntax, amended by RFC 2732: Format for * Literal IPv6 Addresses in URLs. The Literal IPv6 address format * also supports scope_ids. The syntax and usage of scope_ids is described * here. *
* A URL may have appended to it a "fragment", also known * as a "ref" or a "reference". The fragment is indicated by the sharp * sign character "#" followed by more characters. For example, *
** http://java.sun.com/index.html#chapter1 *
* This fragment is not technically part of the URL. Rather, it * indicates that after the specified resource is retrieved, the * application is specifically interested in that part of the * document that has the tag {@code chapter1} attached to it. The * meaning of a tag is resource specific. *
* An application can also specify a "relative URL", * which contains only enough information to reach the resource * relative to another URL. Relative URLs are frequently used within * HTML pages. For example, if the contents of the URL: *
* contained within it the relative URL: ** http://java.sun.com/index.html *
* it would be a shorthand for: ** FAQ.html *
** http://java.sun.com/FAQ.html *
* The relative URL need not specify all the components of a URL. If * the protocol, host name, or port number is missing, the value is * inherited from the fully specified URL. The file component must be * specified. The optional fragment is not inherited. *
* The URL class does not itself encode or decode any URL components
* according to the escaping mechanism defined in RFC2396. It is the
* responsibility of the caller to encode any fields, which need to be
* escaped prior to calling URL, and also to decode any escaped fields,
* that are returned from URL. Furthermore, because URL has no knowledge
* of URL escaping, it does not recognise equivalence between the encoded
* or decoded form of the same URL. For example, the two URLs:
*
http://foo.com/hello world/ and http://foo.com/hello%20world* would be considered not equal to each other. *
* Note, the {@link java.net.URI} class does perform escaping of its * component fields in certain circumstances. The recommended way * to manage the encoding and decoding of URLs is to use {@link java.net.URI}, * and to convert between these two classes using {@link #toURI()} and * {@link URI#toURL()}. *
* The {@link URLEncoder} and {@link URLDecoder} classes can also be
* used, but only for HTML form encoding, which is not the same
* as the encoding scheme defined in RFC2396.
*
* @author James Gosling
* @since JDK1.0
*/
public final class URL implements java.io.Serializable {
static final String BUILTIN_HANDLERS_PREFIX = "sun.net.www.protocol";
static final long serialVersionUID = -7627629688361524110L;
/**
* The property which specifies the package prefix list to be scanned
* for protocol handlers. The value of this property (if any) should
* be a vertical bar delimited list of package names to search through
* for a protocol handler to load. The policy of this class is that
* all protocol handlers will be in a class called
*
* {@code host} can be expressed as a host name or a literal
* IP address. If IPv6 literal address is used, it should be
* enclosed in square brackets ({@code '['} and {@code ']'}), as
* specified by RFC 2732;
* However, the literal IPv6 address format defined in RFC 2373: IP
* Version 6 Addressing Architecture is also accepted.
*
* Specifying a {@code port} number of {@code -1}
* indicates that the URL should use the default port for the
* protocol.
*
* If this is the first URL object being created with the specified
* protocol, a stream protocol handler object, an instance of
* class {@code URLStreamHandler}, is created for that protocol:
* Protocol handlers for the following protocols are guaranteed
* to exist on the search path :-
* No validation of the inputs is performed by this constructor.
*
* @param protocol the name of the protocol to use.
* @param host the name of the host.
* @param port the port number on the host.
* @param file the file on the host
* @exception MalformedURLException if an unknown protocol is specified.
* @see java.lang.System#getProperty(java.lang.String)
* @see java.net.URL#setURLStreamHandlerFactory(
* java.net.URLStreamHandlerFactory)
* @see java.net.URLStreamHandler
* @see java.net.URLStreamHandlerFactory#createURLStreamHandler(
* java.lang.String)
*/
public URL(String protocol, String host, int port, String file)
throws MalformedURLException
{
this(protocol, host, port, file, null);
}
/**
* Creates a URL from the specified {@code protocol}
* name, {@code host} name, and {@code file} name. The
* default port for the specified protocol is used.
*
* This method is equivalent to calling the four-argument
* constructor with the arguments being {@code protocol},
* {@code host}, {@code -1}, and {@code file}.
*
* No validation of the inputs is performed by this constructor.
*
* @param protocol the name of the protocol to use.
* @param host the name of the host.
* @param file the file on the host.
* @exception MalformedURLException if an unknown protocol is specified.
* @see java.net.URL#URL(java.lang.String, java.lang.String,
* int, java.lang.String)
*/
public URL(String protocol, String host, String file)
throws MalformedURLException {
this(protocol, host, -1, file);
}
/**
* Creates a {@code URL} object from the specified
* {@code protocol}, {@code host}, {@code port}
* number, {@code file}, and {@code handler}. Specifying
* a {@code port} number of {@code -1} indicates that
* the URL should use the default port for the protocol. Specifying
* a {@code handler} of {@code null} indicates that the URL
* should use a default stream handler for the protocol, as outlined
* for:
* java.net.URL#URL(java.lang.String, java.lang.String, int,
* java.lang.String)
*
* If the handler is not null and there is a security manager,
* the security manager's {@code checkPermission}
* method is called with a
* {@code NetPermission("specifyStreamHandler")} permission.
* This may result in a SecurityException.
*
* No validation of the inputs is performed by this constructor.
*
* @param protocol the name of the protocol to use.
* @param host the name of the host.
* @param port the port number on the host.
* @param file the file on the host
* @param handler the stream handler for the URL.
* @exception MalformedURLException if an unknown protocol is specified.
* @exception SecurityException
* if a security manager exists and its
* {@code checkPermission} method doesn't allow
* specifying a stream handler explicitly.
* @see java.lang.System#getProperty(java.lang.String)
* @see java.net.URL#setURLStreamHandlerFactory(
* java.net.URLStreamHandlerFactory)
* @see java.net.URLStreamHandler
* @see java.net.URLStreamHandlerFactory#createURLStreamHandler(
* java.lang.String)
* @see SecurityManager#checkPermission
* @see java.net.NetPermission
*/
public URL(String protocol, String host, int port, String file,
URLStreamHandler handler) throws MalformedURLException {
if (handler != null) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
// check for permission to specify a handler
checkSpecifyHandler(sm);
}
}
protocol = protocol.toLowerCase();
this.protocol = protocol;
if (host != null) {
/**
* if host is a literal IPv6 address,
* we will make it conform to RFC 2732
*/
if (host.indexOf(':') >= 0 && !host.startsWith("[")) {
host = "["+host+"]";
}
this.host = host;
if (port < -1) {
throw new MalformedURLException("Invalid port number :" +
port);
}
this.port = port;
authority = (port == -1) ? host : host + ":" + port;
}
Parts parts = new Parts(file);
path = parts.getPath();
query = parts.getQuery();
if (query != null) {
this.file = path + "?" + query;
} else {
this.file = path;
}
ref = parts.getRef();
// Note: we don't do full validation of the URL here. Too risky to change
// right now, but worth considering for future reference. -br
if (handler == null &&
(handler = getURLStreamHandler(protocol)) == null) {
throw new MalformedURLException("unknown protocol: " + protocol);
}
this.handler = handler;
if (host != null && isBuiltinStreamHandler(handler)) {
String s = IPAddressUtil.checkExternalForm(this);
if (s != null) {
throw new MalformedURLException(s);
}
}
if ("jar".equalsIgnoreCase(protocol)) {
if (handler instanceof sun.net.www.protocol.jar.Handler) {
// URL.openConnection() would throw a confusing exception
// so generate a better exception here instead.
String s = ((sun.net.www.protocol.jar.Handler) handler).checkNestedProtocol(file);
if (s != null) {
throw new MalformedURLException(s);
}
}
}
}
/**
* Creates a {@code URL} object from the {@code String}
* representation.
*
* This constructor is equivalent to a call to the two-argument
* constructor with a {@code null} first argument.
*
* @param spec the {@code String} to parse as a URL.
* @exception MalformedURLException if no protocol is specified, or an
* unknown protocol is found, or {@code spec} is {@code null}.
* @see java.net.URL#URL(java.net.URL, java.lang.String)
*/
public URL(String spec) throws MalformedURLException {
this(null, spec);
}
/**
* Creates a URL by parsing the given spec within a specified context.
*
* The new URL is created from the given context URL and the spec
* argument as described in
* RFC2396 "Uniform Resource Identifiers : Generic * Syntax" :
*
* If the scheme component is defined in the given spec and does not match
* the scheme of the context, then the new URL is created as an absolute
* URL based on the spec alone. Otherwise the scheme component is inherited
* from the context URL.
*
* If the authority component is present in the spec then the spec is
* treated as absolute and the spec authority and path will replace the
* context authority and path. If the authority component is absent in the
* spec then the authority of the new URL will be inherited from the
* context.
*
* If the spec's path component begins with a slash character
* "/" then the
* path is treated as absolute and the spec path replaces the context path.
*
* Otherwise, the path is treated as a relative path and is appended to the
* context path, as described in RFC2396. Also, in this case,
* the path is canonicalized through the removal of directory
* changes made by occurrences of ".." and ".".
*
* For a more detailed description of URL parsing, refer to RFC2396.
*
* @param context the context in which to parse the specification.
* @param spec the {@code String} to parse as a URL.
* @exception MalformedURLException if no protocol is specified, or an
* unknown protocol is found, or {@code spec} is {@code null}.
* @see java.net.URL#URL(java.lang.String, java.lang.String,
* int, java.lang.String)
* @see java.net.URLStreamHandler
* @see java.net.URLStreamHandler#parseURL(java.net.URL,
* java.lang.String, int, int)
*/
public URL(URL context, String spec) throws MalformedURLException {
this(context, spec, null);
}
/**
* Creates a URL by parsing the given spec with the specified handler
* within a specified context. If the handler is null, the parsing
* occurs as with the two argument constructor.
*
* @param context the context in which to parse the specification.
* @param spec the {@code String} to parse as a URL.
* @param handler the stream handler for the URL.
* @exception MalformedURLException if no protocol is specified, or an
* unknown protocol is found, or {@code spec} is {@code null}.
* @exception SecurityException
* if a security manager exists and its
* {@code checkPermission} method doesn't allow
* specifying a stream handler.
* @see java.net.URL#URL(java.lang.String, java.lang.String,
* int, java.lang.String)
* @see java.net.URLStreamHandler
* @see java.net.URLStreamHandler#parseURL(java.net.URL,
* java.lang.String, int, int)
*/
public URL(URL context, String spec, URLStreamHandler handler)
throws MalformedURLException
{
String original = spec;
int i, limit, c;
int start = 0;
String newProtocol = null;
boolean aRef=false;
boolean isRelative = false;
// Check for permission to specify a handler
if (handler != null) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkSpecifyHandler(sm);
}
}
try {
limit = spec.length();
while ((limit > 0) && (spec.charAt(limit - 1) <= ' ')) {
limit--; //eliminate trailing whitespace
}
while ((start < limit) && (spec.charAt(start) <= ' ')) {
start++; // eliminate leading whitespace
}
if (spec.regionMatches(true, start, "url:", 0, 4)) {
start += 4;
}
if (start < spec.length() && spec.charAt(start) == '#') {
/* we're assuming this is a ref relative to the context URL.
* This means protocols cannot start w/ '#', but we must parse
* ref URL's like: "hello:there" w/ a ':' in them.
*/
aRef=true;
}
for (i = start ; !aRef && (i < limit) &&
((c = spec.charAt(i)) != '/') ; i++) {
if (c == ':') {
String s = spec.substring(start, i).toLowerCase();
if (isValidProtocol(s)) {
newProtocol = s;
start = i + 1;
}
break;
}
}
// Only use our context if the protocols match.
protocol = newProtocol;
if ((context != null) && ((newProtocol == null) ||
newProtocol.equalsIgnoreCase(context.protocol))) {
// inherit the protocol handler from the context
// if not specified to the constructor
if (handler == null) {
handler = context.handler;
}
// If the context is a hierarchical URL scheme and the spec
// contains a matching scheme then maintain backwards
// compatibility and treat it as if the spec didn't contain
// the scheme; see 5.2.3 of RFC2396
if (context.path != null && context.path.startsWith("/"))
newProtocol = null;
if (newProtocol == null) {
protocol = context.protocol;
authority = context.authority;
userInfo = context.userInfo;
host = context.host;
port = context.port;
file = context.file;
path = context.path;
isRelative = true;
}
}
if (protocol == null) {
throw new MalformedURLException("no protocol: "+original);
}
// Get the protocol handler if not specified or the protocol
// of the context could not be used
if (handler == null &&
(handler = getURLStreamHandler(protocol)) == null) {
throw new MalformedURLException("unknown protocol: "+protocol);
}
this.handler = handler;
i = spec.indexOf('#', start);
if (i >= 0) {
ref = spec.substring(i + 1, limit);
limit = i;
}
/*
* Handle special case inheritance of query and fragment
* implied by RFC2396 section 5.2.2.
*/
if (isRelative && start == limit) {
query = context.query;
if (ref == null) {
ref = context.ref;
}
}
handler.parseURL(this, spec, start, limit);
} catch(MalformedURLException e) {
throw e;
} catch(Exception e) {
MalformedURLException exception = new MalformedURLException(e.getMessage());
exception.initCause(e);
throw exception;
}
}
/*
* Returns true if specified string is a valid protocol name.
*/
private boolean isValidProtocol(String protocol) {
int len = protocol.length();
if (len < 1)
return false;
char c = protocol.charAt(0);
if (!Character.isLetter(c))
return false;
for (int i = 1; i < len; i++) {
c = protocol.charAt(i);
if (!Character.isLetterOrDigit(c) && c != '.' && c != '+' &&
c != '-') {
return false;
}
}
return true;
}
/*
* Checks for permission to specify a stream handler.
*/
private void checkSpecifyHandler(SecurityManager sm) {
sm.checkPermission(SecurityConstants.SPECIFY_HANDLER_PERMISSION);
}
/**
* Sets the fields of the URL. This is not a public method so that
* only URLStreamHandlers can modify URL fields. URLs are
* otherwise constant.
*
* @param protocol the name of the protocol to use
* @param host the name of the host
@param port the port number on the host
* @param file the file on the host
* @param ref the internal reference in the URL
*/
void set(String protocol, String host, int port,
String file, String ref) {
synchronized (this) {
this.protocol = protocol;
this.host = host;
authority = port == -1 ? host : host + ":" + port;
this.port = port;
this.file = file;
this.ref = ref;
/* This is very important. We must recompute this after the
* URL has been changed. */
hashCode = -1;
hostAddress = null;
int q = file.lastIndexOf('?');
if (q != -1) {
query = file.substring(q+1);
path = file.substring(0, q);
} else
path = file;
}
}
/**
* Sets the specified 8 fields of the URL. This is not a public method so
* that only URLStreamHandlers can modify URL fields. URLs are otherwise
* constant.
*
* @param protocol the name of the protocol to use
* @param host the name of the host
* @param port the port number on the host
* @param authority the authority part for the url
* @param userInfo the username and password
* @param path the file on the host
* @param ref the internal reference in the URL
* @param query the query part of this URL
* @since 1.3
*/
void set(String protocol, String host, int port,
String authority, String userInfo, String path,
String query, String ref) {
synchronized (this) {
this.protocol = protocol;
this.host = host;
this.port = port;
this.file = query == null ? path : path + "?" + query;
this.userInfo = userInfo;
this.path = path;
this.ref = ref;
/* This is very important. We must recompute this after the
* URL has been changed. */
hashCode = -1;
hostAddress = null;
this.query = query;
this.authority = authority;
}
}
/**
* Gets the query part of this {@code URL}.
*
* @return the query part of this {@code URL},
* or
*
* If the given object is not a URL then this method immediately returns
* {@code false}.
*
* Two URL objects are equal if they have the same protocol, reference
* equivalent hosts, have the same port number on the host, and the same
* file and fragment of the file.
*
* Two hosts are considered equivalent if both host names can be resolved
* into the same IP addresses; else if either host name can't be
* resolved, the host names must be equal without regard to case; or both
* host names equal to null.
*
* Since hosts comparison requires name resolution, this operation is a
* blocking operation.
*
* Note: The defined behavior for {@code equals} is known to
* be inconsistent with virtual hosting in HTTP.
*
* @param obj the URL to compare against.
* @return {@code true} if the objects are the same;
* {@code false} otherwise.
*/
public boolean equals(Object obj) {
if (!(obj instanceof URL))
return false;
URL u2 = (URL)obj;
return handler.equals(this, u2);
}
/**
* Creates an integer suitable for hash table indexing.
*
* The hash code is based upon all the URL components relevant for URL
* comparison. As such, this operation is a blocking operation.
*
* @return a hash code for this {@code URL}.
*/
public synchronized int hashCode() {
if (hashCode != -1)
return hashCode;
hashCode = handler.hashCode(this);
return hashCode;
}
/**
* Compares two URLs, excluding the fragment component.
*
* Returns {@code true} if this {@code URL} and the
* {@code other} argument are equal without taking the
* fragment component into consideration.
*
* @param other the {@code URL} to compare against.
* @return {@code true} if they reference the same remote object;
* {@code false} otherwise.
*/
public boolean sameFile(URL other) {
return handler.sameFile(this, other);
}
/**
* Constructs a string representation of this {@code URL}. The
* string is created by calling the {@code toExternalForm}
* method of the stream protocol handler for this object.
*
* @return a string representation of this object.
* @see java.net.URL#URL(java.lang.String, java.lang.String, int,
* java.lang.String)
* @see java.net.URLStreamHandler#toExternalForm(java.net.URL)
*/
public String toString() {
return toExternalForm();
}
/**
* Constructs a string representation of this {@code URL}. The
* string is created by calling the {@code toExternalForm}
* method of the stream protocol handler for this object.
*
* @return a string representation of this object.
* @see java.net.URL#URL(java.lang.String, java.lang.String,
* int, java.lang.String)
* @see java.net.URLStreamHandler#toExternalForm(java.net.URL)
*/
public String toExternalForm() {
return handler.toExternalForm(this);
}
/**
* Returns a {@link java.net.URI} equivalent to this URL.
* This method functions in the same way as {@code new URI (this.toString())}.
* Note, any URL instance that complies with RFC 2396 can be converted
* to a URI. However, some URLs that are not strictly in compliance
* can not be converted to a URI.
*
* @exception URISyntaxException if this URL is not formatted strictly according to
* to RFC2396 and cannot be converted to a URI.
*
* @return a URI instance equivalent to this URL.
* @since 1.5
*/
public URI toURI() throws URISyntaxException {
URI uri = new URI(toString());
if (authority != null && isBuiltinStreamHandler(handler)) {
String s = IPAddressUtil.checkAuthority(this);
if (s != null) throw new URISyntaxException(authority, s);
}
return uri;
}
/**
* Returns a {@link java.net.URLConnection URLConnection} instance that
* represents a connection to the remote object referred to by the
* {@code URL}.
*
* A new instance of {@linkplain java.net.URLConnection URLConnection} is
* created every time when invoking the
* {@linkplain java.net.URLStreamHandler#openConnection(URL)
* URLStreamHandler.openConnection(URL)} method of the protocol handler for
* this URL. It should be noted that a URLConnection instance does not establish
* the actual network connection on creation. This will happen only when
* calling {@linkplain java.net.URLConnection#connect() URLConnection.connect()}. If for the URL's protocol (such as HTTP or JAR), there
* exists a public, specialized URLConnection subclass belonging
* to one of the following packages or one of their subpackages:
* java.lang, java.io, java.util, java.net, the connection
* returned will be of that subclass. For example, for HTTP an
* HttpURLConnection will be returned, and for JAR a
* JarURLConnection will be returned. The {@code URLStreamHandlerFactory} instance is used to
*construct a stream protocol handler from a protocol name.
*
* If there is a security manager, this method first calls
* the security manager's {@code checkSetFactory} method
* to ensure the operation is allowed.
* This could result in a SecurityException.
*
* @param fac the desired factory.
* @exception Error if the application has already set a factory.
* @exception SecurityException if a security manager exists and its
* {@code checkSetFactory} method doesn't allow
* the operation.
* @see java.net.URL#URL(java.lang.String, java.lang.String,
* int, java.lang.String)
* @see java.net.URLStreamHandlerFactory
* @see SecurityManager#checkSetFactory
*/
public static void setURLStreamHandlerFactory(URLStreamHandlerFactory fac) {
synchronized (streamHandlerLock) {
if (factory != null) {
throw new Error("factory already defined");
}
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkSetFactory();
}
handlers.clear();
factory = fac;
}
}
/**
* A table of protocol handlers.
*/
static Hashtable
*
*
*
* If the value of that system property is not {@code null},
* it is interpreted as a list of packages separated by a vertical
* slash character '{@code |}'. The constructor tries to load
* the class named:
*
* java.protocol.handler.pkgs
*
* where <package> is replaced by the name of the package
* and <protocol> is replaced by the name of the protocol.
* If this class does not exist, or if the class exists but it is not
* a subclass of {@code URLStreamHandler}, then the next package
* in the list is tried.
*
* <package>.<protocol>.Handler
*
* If this class does not exist, or if the class exists but it is not a
* subclass of {@code URLStreamHandler}, then a
* {@code MalformedURLException} is thrown.
*
* <system default package>.<protocol>.Handler
*
* Protocol handlers for additional protocols may also be
* available.
*
*
* http, https, file, and jar
*
* The reference is parsed into the scheme, authority, path, query and
* fragment parts. If the path component is empty and the scheme,
* authority, and query components are undefined, then the new URL is a
* reference to the current document. Otherwise, the fragment and query
* parts present in the spec are used in the new URL.
*
* <scheme>://<authority><path>?<query>#<fragment>
*
null
if one does not exist
* @since 1.3
*/
public String getQuery() {
return query;
}
/**
* Gets the path part of this {@code URL}.
*
* @return the path part of this {@code URL}, or an
* empty string if one does not exist
* @since 1.3
*/
public String getPath() {
return path;
}
/**
* Gets the userInfo part of this {@code URL}.
*
* @return the userInfo part of this {@code URL}, or
* null
if one does not exist
* @since 1.3
*/
public String getUserInfo() {
return userInfo;
}
/**
* Gets the authority part of this {@code URL}.
*
* @return the authority part of this {@code URL}
* @since 1.3
*/
public String getAuthority() {
return authority;
}
/**
* Gets the port number of this {@code URL}.
*
* @return the port number, or -1 if the port is not set
*/
public int getPort() {
return port;
}
/**
* Gets the default port number of the protocol associated
* with this {@code URL}. If the URL scheme or the URLStreamHandler
* for the URL do not define a default port number,
* then -1 is returned.
*
* @return the port number
* @since 1.4
*/
public int getDefaultPort() {
return handler.getDefaultPort();
}
/**
* Gets the protocol name of this {@code URL}.
*
* @return the protocol of this {@code URL}.
*/
public String getProtocol() {
return protocol;
}
/**
* Gets the host name of this {@code URL}, if applicable.
* The format of the host conforms to RFC 2732, i.e. for a
* literal IPv6 address, this method will return the IPv6 address
* enclosed in square brackets ({@code '['} and {@code ']'}).
*
* @return the host name of this {@code URL}.
*/
public String getHost() {
return host;
}
/**
* Gets the file name of this {@code URL}.
* The returned file portion will be
* the same as getPath()
, plus the concatenation of
* the value of getQuery()
, if any. If there is
* no query portion, this method and getPath()
will
* return identical results.
*
* @return the file name of this {@code URL},
* or an empty string if one does not exist
*/
public String getFile() {
return file;
}
/**
* Gets the anchor (also known as the "reference") of this
* {@code URL}.
*
* @return the anchor (also known as the "reference") of this
* {@code URL}, or null
if one does not exist
*/
public String getRef() {
return ref;
}
/**
* Compares this URL for equality with another object.
*
* @return an input stream for reading from the URL connection.
* @exception IOException if an I/O exception occurs.
* @see java.net.URL#openConnection()
* @see java.net.URLConnection#getInputStream()
*/
public final InputStream openStream() throws java.io.IOException {
return openConnection().getInputStream();
}
/**
* Gets the contents of this URL. This method is a shorthand for:
*
* openConnection().getInputStream()
*
*
* @return the contents of this URL.
* @exception IOException if an I/O exception occurs.
* @see java.net.URLConnection#getContent()
*/
public final Object getContent() throws java.io.IOException {
return openConnection().getContent();
}
/**
* Gets the contents of this URL. This method is a shorthand for:
*
* openConnection().getContent()
*
*
* @param classes an array of Java types
* @return the content object of this URL that is the first match of
* the types specified in the classes array.
* null if none of the requested types are supported.
* @exception IOException if an I/O exception occurs.
* @see java.net.URLConnection#getContent(Class[])
* @since 1.3
*/
public final Object getContent(Class[] classes)
throws java.io.IOException {
return openConnection().getContent(classes);
}
/**
* The URLStreamHandler factory.
*/
static URLStreamHandlerFactory factory;
/**
* Sets an application's {@code URLStreamHandlerFactory}.
* This method can be called at most once in a given Java Virtual
* Machine.
*
*
* openConnection().getContent(Class[])
*