/* * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; /** * The {@code Vector} class implements a growable array of * objects. Like an array, it contains components that can be * accessed using an integer index. However, the size of a * {@code Vector} can grow or shrink as needed to accommodate * adding and removing items after the {@code Vector} has been created. * *

Each vector tries to optimize storage management by maintaining a * {@code capacity} and a {@code capacityIncrement}. The * {@code capacity} is always at least as large as the vector * size; it is usually larger because as components are added to the * vector, the vector's storage increases in chunks the size of * {@code capacityIncrement}. An application can increase the * capacity of a vector before inserting a large number of * components; this reduces the amount of incremental reallocation. * *

* The iterators returned by this class's {@link #iterator() iterator} and * {@link #listIterator(int) listIterator} methods are fail-fast: * if the vector is structurally modified at any time after the iterator is * created, in any way except through the iterator's own * {@link ListIterator#remove() remove} or * {@link ListIterator#add(Object) add} methods, the iterator will throw a * {@link ConcurrentModificationException}. Thus, in the face of * concurrent modification, the iterator fails quickly and cleanly, rather * than risking arbitrary, non-deterministic behavior at an undetermined * time in the future. The {@link Enumeration Enumerations} returned by * the {@link #elements() elements} method are not fail-fast. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

As of the Java 2 platform v1.2, this class was retrofitted to * implement the {@link List} interface, making it a member of the * * Java Collections Framework. Unlike the new collection * implementations, {@code Vector} is synchronized. If a thread-safe * implementation is not needed, it is recommended to use {@link * ArrayList} in place of {@code Vector}. * * @author Lee Boynton * @author Jonathan Payne * @see Collection * @see LinkedList * @since JDK1.0 */ public class Vector extends AbstractList implements List, RandomAccess, Cloneable, java.io.Serializable { /** * The array buffer into which the components of the vector are * stored. The capacity of the vector is the length of this array buffer, * and is at least large enough to contain all the vector's elements. * *

Any array elements following the last element in the Vector are null. * * @serial */ protected Object[] elementData; /** * The number of valid components in this {@code Vector} object. * Components {@code elementData[0]} through * {@code elementData[elementCount-1]} are the actual items. * * @serial */ protected int elementCount; /** * The amount by which the capacity of the vector is automatically * incremented when its size becomes greater than its capacity. If * the capacity increment is less than or equal to zero, the capacity * of the vector is doubled each time it needs to grow. * * @serial */ protected int capacityIncrement; /** use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = -2767605614048989439L; /** * Constructs an empty vector with the specified initial capacity and * capacity increment. * * @param initialCapacity the initial capacity of the vector * @param capacityIncrement the amount by which the capacity is * increased when the vector overflows * @throws IllegalArgumentException if the specified initial capacity * is negative */ public Vector(int initialCapacity, int capacityIncrement) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); this.elementData = new Object[initialCapacity]; this.capacityIncrement = capacityIncrement; } /** * Constructs an empty vector with the specified initial capacity and * with its capacity increment equal to zero. * * @param initialCapacity the initial capacity of the vector * @throws IllegalArgumentException if the specified initial capacity * is negative */ public Vector(int initialCapacity) { this(initialCapacity, 0); } /** * Constructs an empty vector so that its internal data array * has size {@code 10} and its standard capacity increment is * zero. */ public Vector() { this(10); } /** * Constructs a vector containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @param c the collection whose elements are to be placed into this * vector * @throws NullPointerException if the specified collection is null * @since 1.2 */ public Vector(Collection c) { elementData = c.toArray(); elementCount = elementData.length; // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, elementCount, Object[].class); } /** * Copies the components of this vector into the specified array. * The item at index {@code k} in this vector is copied into * component {@code k} of {@code anArray}. * * @param anArray the array into which the components get copied * @throws NullPointerException if the given array is null * @throws IndexOutOfBoundsException if the specified array is not * large enough to hold all the components of this vector * @throws ArrayStoreException if a component of this vector is not of * a runtime type that can be stored in the specified array * @see #toArray(Object[]) */ public synchronized void copyInto(Object[] anArray) { System.arraycopy(elementData, 0, anArray, 0, elementCount); } /** * Trims the capacity of this vector to be the vector's current * size. If the capacity of this vector is larger than its current * size, then the capacity is changed to equal the size by replacing * its internal data array, kept in the field {@code elementData}, * with a smaller one. An application can use this operation to * minimize the storage of a vector. */ public synchronized void trimToSize() { modCount++; int oldCapacity = elementData.length; if (elementCount < oldCapacity) { elementData = Arrays.copyOf(elementData, elementCount); } } /** * Increases the capacity of this vector, if necessary, to ensure * that it can hold at least the number of components specified by * the minimum capacity argument. * *

If the current capacity of this vector is less than * {@code minCapacity}, then its capacity is increased by replacing its * internal data array, kept in the field {@code elementData}, with a * larger one. The size of the new data array will be the old size plus * {@code capacityIncrement}, unless the value of * {@code capacityIncrement} is less than or equal to zero, in which case * the new capacity will be twice the old capacity; but if this new size * is still smaller than {@code minCapacity}, then the new capacity will * be {@code minCapacity}. * * @param minCapacity the desired minimum capacity */ public synchronized void ensureCapacity(int minCapacity) { if (minCapacity > 0) { modCount++; ensureCapacityHelper(minCapacity); } } /** * This implements the unsynchronized semantics of ensureCapacity. * Synchronized methods in this class can internally call this * method for ensuring capacity without incurring the cost of an * extra synchronization. * * @see #ensureCapacity(int) */ private void ensureCapacityHelper(int minCapacity) { // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } /** * Sets the size of this vector. If the new size is greater than the * current size, new {@code null} items are added to the end of * the vector. If the new size is less than the current size, all * components at index {@code newSize} and greater are discarded. * * @param newSize the new size of this vector * @throws ArrayIndexOutOfBoundsException if the new size is negative */ public synchronized void setSize(int newSize) { modCount++; if (newSize > elementCount) { ensureCapacityHelper(newSize); } else { for (int i = newSize ; i < elementCount ; i++) { elementData[i] = null; } } elementCount = newSize; } /** * Returns the current capacity of this vector. * * @return the current capacity (the length of its internal * data array, kept in the field {@code elementData} * of this vector) */ public synchronized int capacity() { return elementData.length; } /** * Returns the number of components in this vector. * * @return the number of components in this vector */ public synchronized int size() { return elementCount; } /** * Tests if this vector has no components. * * @return {@code true} if and only if this vector has * no components, that is, its size is zero; * {@code false} otherwise. */ public synchronized boolean isEmpty() { return elementCount == 0; } /** * Returns an enumeration of the components of this vector. The * returned {@code Enumeration} object will generate all items in * this vector. The first item generated is the item at index {@code 0}, * then the item at index {@code 1}, and so on. * * @return an enumeration of the components of this vector * @see Iterator */ public Enumeration elements() { return new Enumeration() { int count = 0; public boolean hasMoreElements() { return count < elementCount; } public E nextElement() { synchronized (Vector.this) { if (count < elementCount) { return elementData(count++); } } throw new NoSuchElementException("Vector Enumeration"); } }; } /** * Returns {@code true} if this vector contains the specified element. * More formally, returns {@code true} if and only if this vector * contains at least one element {@code e} such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this vector is to be tested * @return {@code true} if this vector contains the specified element */ public boolean contains(Object o) { return indexOf(o, 0) >= 0; } /** * Returns the index of the first occurrence of the specified element * in this vector, or -1 if this vector does not contain the element. * More formally, returns the lowest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))), * or -1 if there is no such index. * * @param o element to search for * @return the index of the first occurrence of the specified element in * this vector, or -1 if this vector does not contain the element */ public int indexOf(Object o) { return indexOf(o, 0); } /** * Returns the index of the first occurrence of the specified element in * this vector, searching forwards from {@code index}, or returns -1 if * the element is not found. * More formally, returns the lowest index {@code i} such that * (i >= index && (o==null ? get(i)==null : o.equals(get(i)))), * or -1 if there is no such index. * * @param o element to search for * @param index index to start searching from * @return the index of the first occurrence of the element in * this vector at position {@code index} or later in the vector; * {@code -1} if the element is not found. * @throws IndexOutOfBoundsException if the specified index is negative * @see Object#equals(Object) */ public synchronized int indexOf(Object o, int index) { if (o == null) { for (int i = index ; i < elementCount ; i++) if (elementData[i]==null) return i; } else { for (int i = index ; i < elementCount ; i++) if (o.equals(elementData[i])) return i; } return -1; } /** * Returns the index of the last occurrence of the specified element * in this vector, or -1 if this vector does not contain the element. * More formally, returns the highest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))), * or -1 if there is no such index. * * @param o element to search for * @return the index of the last occurrence of the specified element in * this vector, or -1 if this vector does not contain the element */ public synchronized int lastIndexOf(Object o) { return lastIndexOf(o, elementCount-1); } /** * Returns the index of the last occurrence of the specified element in * this vector, searching backwards from {@code index}, or returns -1 if * the element is not found. * More formally, returns the highest index {@code i} such that * (i <= index && (o==null ? get(i)==null : o.equals(get(i)))), * or -1 if there is no such index. * * @param o element to search for * @param index index to start searching backwards from * @return the index of the last occurrence of the element at position * less than or equal to {@code index} in this vector; * -1 if the element is not found. * @throws IndexOutOfBoundsException if the specified index is greater * than or equal to the current size of this vector */ public synchronized int lastIndexOf(Object o, int index) { if (index >= elementCount) throw new IndexOutOfBoundsException(index + " >= "+ elementCount); if (o == null) { for (int i = index; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = index; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } /** * Returns the component at the specified index. * *

This method is identical in functionality to the {@link #get(int)} * method (which is part of the {@link List} interface). * * @param index an index into this vector * @return the component at the specified index * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) */ public synchronized E elementAt(int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } return elementData(index); } /** * Returns the first component (the item at index {@code 0}) of * this vector. * * @return the first component of this vector * @throws NoSuchElementException if this vector has no components */ public synchronized E firstElement() { if (elementCount == 0) { throw new NoSuchElementException(); } return elementData(0); } /** * Returns the last component of the vector. * * @return the last component of the vector, i.e., the component at index * size() - 1. * @throws NoSuchElementException if this vector is empty */ public synchronized E lastElement() { if (elementCount == 0) { throw new NoSuchElementException(); } return elementData(elementCount - 1); } /** * Sets the component at the specified {@code index} of this * vector to be the specified object. The previous component at that * position is discarded. * *

The index must be a value greater than or equal to {@code 0} * and less than the current size of the vector. * *

This method is identical in functionality to the * {@link #set(int, Object) set(int, E)} * method (which is part of the {@link List} interface). Note that the * {@code set} method reverses the order of the parameters, to more closely * match array usage. Note also that the {@code set} method returns the * old value that was stored at the specified position. * * @param obj what the component is to be set to * @param index the specified index * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) */ public synchronized void setElementAt(E obj, int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } elementData[index] = obj; } /** * Deletes the component at the specified index. Each component in * this vector with an index greater or equal to the specified * {@code index} is shifted downward to have an index one * smaller than the value it had previously. The size of this vector * is decreased by {@code 1}. * *

The index must be a value greater than or equal to {@code 0} * and less than the current size of the vector. * *

This method is identical in functionality to the {@link #remove(int)} * method (which is part of the {@link List} interface). Note that the * {@code remove} method returns the old value that was stored at the * specified position. * * @param index the index of the object to remove * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) */ public synchronized void removeElementAt(int index) { modCount++; if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } else if (index < 0) { throw new ArrayIndexOutOfBoundsException(index); } int j = elementCount - index - 1; if (j > 0) { System.arraycopy(elementData, index + 1, elementData, index, j); } elementCount--; elementData[elementCount] = null; /* to let gc do its work */ } /** * Inserts the specified object as a component in this vector at the * specified {@code index}. Each component in this vector with * an index greater or equal to the specified {@code index} is * shifted upward to have an index one greater than the value it had * previously. * *

The index must be a value greater than or equal to {@code 0} * and less than or equal to the current size of the vector. (If the * index is equal to the current size of the vector, the new element * is appended to the Vector.) * *

This method is identical in functionality to the * {@link #add(int, Object) add(int, E)} * method (which is part of the {@link List} interface). Note that the * {@code add} method reverses the order of the parameters, to more closely * match array usage. * * @param obj the component to insert * @param index where to insert the new component * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index > size()}) */ public synchronized void insertElementAt(E obj, int index) { modCount++; if (index > elementCount) { throw new ArrayIndexOutOfBoundsException(index + " > " + elementCount); } ensureCapacityHelper(elementCount + 1); System.arraycopy(elementData, index, elementData, index + 1, elementCount - index); elementData[index] = obj; elementCount++; } /** * Adds the specified component to the end of this vector, * increasing its size by one. The capacity of this vector is * increased if its size becomes greater than its capacity. * *

This method is identical in functionality to the * {@link #add(Object) add(E)} * method (which is part of the {@link List} interface). * * @param obj the component to be added */ public synchronized void addElement(E obj) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = obj; } /** * Removes the first (lowest-indexed) occurrence of the argument * from this vector. If the object is found in this vector, each * component in the vector with an index greater or equal to the * object's index is shifted downward to have an index one smaller * than the value it had previously. * *

This method is identical in functionality to the * {@link #remove(Object)} method (which is part of the * {@link List} interface). * * @param obj the component to be removed * @return {@code true} if the argument was a component of this * vector; {@code false} otherwise. */ public synchronized boolean removeElement(Object obj) { modCount++; int i = indexOf(obj); if (i >= 0) { removeElementAt(i); return true; } return false; } /** * Removes all components from this vector and sets its size to zero. * *

This method is identical in functionality to the {@link #clear} * method (which is part of the {@link List} interface). */ public synchronized void removeAllElements() { modCount++; // Let gc do its work for (int i = 0; i < elementCount; i++) elementData[i] = null; elementCount = 0; } /** * Returns a clone of this vector. The copy will contain a * reference to a clone of the internal data array, not a reference * to the original internal data array of this {@code Vector} object. * * @return a clone of this vector */ public synchronized Object clone() { try { @SuppressWarnings("unchecked") Vector v = (Vector) super.clone(); v.elementData = Arrays.copyOf(elementData, elementCount); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } /** * Returns an array containing all of the elements in this Vector * in the correct order. * * @since 1.2 */ public synchronized Object[] toArray() { return Arrays.copyOf(elementData, elementCount); } /** * Returns an array containing all of the elements in this Vector in the * correct order; the runtime type of the returned array is that of the * specified array. If the Vector fits in the specified array, it is * returned therein. Otherwise, a new array is allocated with the runtime * type of the specified array and the size of this Vector. * *

If the Vector fits in the specified array with room to spare * (i.e., the array has more elements than the Vector), * the element in the array immediately following the end of the * Vector is set to null. (This is useful in determining the length * of the Vector only if the caller knows that the Vector * does not contain any null elements.) * * @param a the array into which the elements of the Vector are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the Vector * @throws ArrayStoreException if the runtime type of a is not a supertype * of the runtime type of every element in this Vector * @throws NullPointerException if the given array is null * @since 1.2 */ @SuppressWarnings("unchecked") public synchronized T[] toArray(T[] a) { if (a.length < elementCount) return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass()); System.arraycopy(elementData, 0, a, 0, elementCount); if (a.length > elementCount) a[elementCount] = null; return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } /** * Returns the element at the specified position in this Vector. * * @param index index of the element to return * @return object at the specified index * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) * @since 1.2 */ public synchronized E get(int index) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); return elementData(index); } /** * Replaces the element at the specified position in this Vector with the * specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) * @since 1.2 */ public synchronized E set(int index, E element) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } /** * Appends the specified element to the end of this Vector. * * @param e element to be appended to this Vector * @return {@code true} (as specified by {@link Collection#add}) * @since 1.2 */ public synchronized boolean add(E e) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; } /** * Removes the first occurrence of the specified element in this Vector * If the Vector does not contain the element, it is unchanged. More * formally, removes the element with the lowest index i such that * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such * an element exists). * * @param o element to be removed from this Vector, if present * @return true if the Vector contained the specified element * @since 1.2 */ public boolean remove(Object o) { return removeElement(o); } /** * Inserts the specified element at the specified position in this Vector. * Shifts the element currently at that position (if any) and any * subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index > size()}) * @since 1.2 */ public void add(int index, E element) { insertElementAt(element, index); } /** * Removes the element at the specified position in this Vector. * Shifts any subsequent elements to the left (subtracts one from their * indices). Returns the element that was removed from the Vector. * * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) * @param index the index of the element to be removed * @return element that was removed * @since 1.2 */ public synchronized E remove(int index) { modCount++; if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); int numMoved = elementCount - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--elementCount] = null; // Let gc do its work return oldValue; } /** * Removes all of the elements from this Vector. The Vector will * be empty after this call returns (unless it throws an exception). * * @since 1.2 */ public void clear() { removeAllElements(); } // Bulk Operations /** * Returns true if this Vector contains all of the elements in the * specified Collection. * * @param c a collection whose elements will be tested for containment * in this Vector * @return true if this Vector contains all of the elements in the * specified collection * @throws NullPointerException if the specified collection is null */ public synchronized boolean containsAll(Collection c) { return super.containsAll(c); } /** * Appends all of the elements in the specified Collection to the end of * this Vector, in the order that they are returned by the specified * Collection's Iterator. The behavior of this operation is undefined if * the specified Collection is modified while the operation is in progress. * (This implies that the behavior of this call is undefined if the * specified Collection is this Vector, and this Vector is nonempty.) * * @param c elements to be inserted into this Vector * @return {@code true} if this Vector changed as a result of the call * @throws NullPointerException if the specified collection is null * @since 1.2 */ public synchronized boolean addAll(Collection c) { modCount++; Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); System.arraycopy(a, 0, elementData, elementCount, numNew); elementCount += numNew; return numNew != 0; } /** * Removes from this Vector all of its elements that are contained in the * specified Collection. * * @param c a collection of elements to be removed from the Vector * @return true if this Vector changed as a result of the call * @throws ClassCastException if the types of one or more elements * in this vector are incompatible with the specified * collection * (optional) * @throws NullPointerException if this vector contains one or more null * elements and the specified collection does not support null * elements * (optional), * or if the specified collection is null * @since 1.2 */ public synchronized boolean removeAll(Collection c) { return super.removeAll(c); } /** * Retains only the elements in this Vector that are contained in the * specified Collection. In other words, removes from this Vector all * of its elements that are not contained in the specified Collection. * * @param c a collection of elements to be retained in this Vector * (all other elements are removed) * @return true if this Vector changed as a result of the call * @throws ClassCastException if the types of one or more elements * in this vector are incompatible with the specified * collection * (optional) * @throws NullPointerException if this vector contains one or more null * elements and the specified collection does not support null * elements * (optional), * or if the specified collection is null * @since 1.2 */ public synchronized boolean retainAll(Collection c) { return super.retainAll(c); } /** * Inserts all of the elements in the specified Collection into this * Vector at the specified position. Shifts the element currently at * that position (if any) and any subsequent elements to the right * (increases their indices). The new elements will appear in the Vector * in the order that they are returned by the specified Collection's * iterator. * * @param index index at which to insert the first element from the * specified collection * @param c elements to be inserted into this Vector * @return {@code true} if this Vector changed as a result of the call * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index > size()}) * @throws NullPointerException if the specified collection is null * @since 1.2 */ public synchronized boolean addAll(int index, Collection c) { modCount++; if (index < 0 || index > elementCount) throw new ArrayIndexOutOfBoundsException(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); int numMoved = elementCount - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); elementCount += numNew; return numNew != 0; } /** * Compares the specified Object with this Vector for equality. Returns * true if and only if the specified Object is also a List, both Lists * have the same size, and all corresponding pairs of elements in the two * Lists are equal. (Two elements {@code e1} and * {@code e2} are equal if {@code (e1==null ? e2==null : * e1.equals(e2))}.) In other words, two Lists are defined to be * equal if they contain the same elements in the same order. * * @param o the Object to be compared for equality with this Vector * @return true if the specified Object is equal to this Vector */ public synchronized boolean equals(Object o) { return super.equals(o); } /** * Returns the hash code value for this Vector. */ public synchronized int hashCode() { return super.hashCode(); } /** * Returns a string representation of this Vector, containing * the String representation of each element. */ public synchronized String toString() { return super.toString(); } /** * Returns a view of the portion of this List between fromIndex, * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are * equal, the returned List is empty.) The returned List is backed by this * List, so changes in the returned List are reflected in this List, and * vice-versa. The returned List supports all of the optional List * operations supported by this List. * *

This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays). Any operation that expects * a List can be used as a range operation by operating on a subList view * instead of a whole List. For example, the following idiom * removes a range of elements from a List: *

     *      list.subList(from, to).clear();
     * 
* Similar idioms may be constructed for indexOf and lastIndexOf, * and all of the algorithms in the Collections class can be applied to * a subList. * *

The semantics of the List returned by this method become undefined if * the backing list (i.e., this List) is structurally modified in * any way other than via the returned List. (Structural modifications are * those that change the size of the List, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * * @param fromIndex low endpoint (inclusive) of the subList * @param toIndex high endpoint (exclusive) of the subList * @return a view of the specified range within this List * @throws IndexOutOfBoundsException if an endpoint index value is out of range * {@code (fromIndex < 0 || toIndex > size)} * @throws IllegalArgumentException if the endpoint indices are out of order * {@code (fromIndex > toIndex)} */ public synchronized List subList(int fromIndex, int toIndex) { return Collections.synchronizedList(super.subList(fromIndex, toIndex), this); } /** * Removes from this list all of the elements whose index is between * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. * Shifts any succeeding elements to the left (reduces their index). * This call shortens the list by {@code (toIndex - fromIndex)} elements. * (If {@code toIndex==fromIndex}, this operation has no effect.) */ protected synchronized void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = elementCount - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // Let gc do its work int newElementCount = elementCount - (toIndex-fromIndex); while (elementCount != newElementCount) elementData[--elementCount] = null; } /** * Save the state of the {@code Vector} instance to a stream (that * is, serialize it). * This method performs synchronization to ensure the consistency * of the serialized data. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final java.io.ObjectOutputStream.PutField fields = s.putFields(); final Object[] data; synchronized (this) { fields.put("capacityIncrement", capacityIncrement); fields.put("elementCount", elementCount); data = elementData.clone(); } fields.put("elementData", data); s.writeFields(); } /** * Returns a list iterator over the elements in this list (in proper * sequence), starting at the specified position in the list. * The specified index indicates the first element that would be * returned by an initial call to {@link ListIterator#next next}. * An initial call to {@link ListIterator#previous previous} would * return the element with the specified index minus one. * *

The returned list iterator is fail-fast. * * @throws IndexOutOfBoundsException {@inheritDoc} */ public synchronized ListIterator listIterator(int index) { if (index < 0 || index > elementCount) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } /** * Returns a list iterator over the elements in this list (in proper * sequence). * *

The returned list iterator is fail-fast. * * @see #listIterator(int) */ public synchronized ListIterator listIterator() { return new ListItr(0); } /** * Returns an iterator over the elements in this list in proper sequence. * *

The returned iterator is fail-fast. * * @return an iterator over the elements in this list in proper sequence */ public synchronized Iterator iterator() { return new Itr(); } /** * An optimized version of AbstractList.Itr */ private class Itr implements Iterator { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; public boolean hasNext() { // Racy but within spec, since modifications are checked // within or after synchronization in next/previous return cursor != elementCount; } public E next() { synchronized (Vector.this) { checkForComodification(); int i = cursor; if (i >= elementCount) throw new NoSuchElementException(); cursor = i + 1; return elementData(lastRet = i); } } public void remove() { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.remove(lastRet); expectedModCount = modCount; } cursor = lastRet; lastRet = -1; } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * An optimized version of AbstractList.ListItr */ final class ListItr extends Itr implements ListIterator { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public E previous() { synchronized (Vector.this) { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); cursor = i; return elementData(lastRet = i); } } public void set(E e) { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.set(lastRet, e); } } public void add(E e) { int i = cursor; synchronized (Vector.this) { checkForComodification(); Vector.this.add(i, e); expectedModCount = modCount; } cursor = i + 1; lastRet = -1; } } }