/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; /** * A Red-Black tree based {@link NavigableMap} implementation. * The map is sorted according to the {@linkplain Comparable natural * ordering} of its keys, or by a {@link Comparator} provided at map * creation time, depending on which constructor is used. * *

This implementation provides guaranteed log(n) time cost for the * {@code containsKey}, {@code get}, {@code put} and {@code remove} * operations. Algorithms are adaptations of those in Cormen, Leiserson, and * Rivest's Introduction to Algorithms. * *

Note that the ordering maintained by a tree map, like any sorted map, and * whether or not an explicit comparator is provided, must be consistent * with {@code equals} if this sorted map is to correctly implement the * {@code Map} interface. (See {@code Comparable} or {@code Comparator} for a * precise definition of consistent with equals.) This is so because * the {@code Map} interface is defined in terms of the {@code equals} * operation, but a sorted map performs all key comparisons using its {@code * compareTo} (or {@code compare}) method, so two keys that are deemed equal by * this method are, from the standpoint of the sorted map, equal. The behavior * of a sorted map is well-defined even if its ordering is * inconsistent with {@code equals}; it just fails to obey the general contract * of the {@code Map} interface. * *

Note that this implementation is not synchronized. * If multiple threads access a map concurrently, and at least one of the * threads modifies the map structurally, it must be synchronized * externally. (A structural modification is any operation that adds or * deletes one or more mappings; merely changing the value associated * with an existing key is not a structural modification.) This is * typically accomplished by synchronizing on some object that naturally * encapsulates the map. * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the map:

 *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));
* *

The iterators returned by the {@code iterator} method of the collections * returned by all of this class's "collection view methods" are * fail-fast: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * {@code remove} method, the iterator will throw a {@link * ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

All {@code Map.Entry} pairs returned by methods in this class * and its views represent snapshots of mappings at the time they were * produced. They do not support the {@code Entry.setValue} * method. (Note however that it is possible to change mappings in the * associated map using {@code put}.) * *

This class is a member of the * * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Josh Bloch and Doug Lea * @see Map * @see HashMap * @see Hashtable * @see Comparable * @see Comparator * @see Collection * @since 1.2 */ public class TreeMap extends AbstractMap implements NavigableMap, Cloneable, java.io.Serializable { /** * The comparator used to maintain order in this tree map, or * null if it uses the natural ordering of its keys. * * @serial */ private final Comparator comparator; private transient Entry root = null; /** * The number of entries in the tree */ private transient int size = 0; /** * The number of structural modifications to the tree. */ private transient int modCount = 0; /** * Constructs a new, empty tree map, using the natural ordering of its * keys. All keys inserted into the map must implement the {@link * Comparable} interface. Furthermore, all such keys must be * mutually comparable: {@code k1.compareTo(k2)} must not throw * a {@code ClassCastException} for any keys {@code k1} and * {@code k2} in the map. If the user attempts to put a key into the * map that violates this constraint (for example, the user attempts to * put a string key into a map whose keys are integers), the * {@code put(Object key, Object value)} call will throw a * {@code ClassCastException}. */ public TreeMap() { comparator = null; } /** * Constructs a new, empty tree map, ordered according to the given * comparator. All keys inserted into the map must be mutually * comparable by the given comparator: {@code comparator.compare(k1, * k2)} must not throw a {@code ClassCastException} for any keys * {@code k1} and {@code k2} in the map. If the user attempts to put * a key into the map that violates this constraint, the {@code put(Object * key, Object value)} call will throw a * {@code ClassCastException}. * * @param comparator the comparator that will be used to order this map. * If {@code null}, the {@linkplain Comparable natural * ordering} of the keys will be used. */ public TreeMap(Comparator comparator) { this.comparator = comparator; } /** * Constructs a new tree map containing the same mappings as the given * map, ordered according to the natural ordering of its keys. * All keys inserted into the new map must implement the {@link * Comparable} interface. Furthermore, all such keys must be * mutually comparable: {@code k1.compareTo(k2)} must not throw * a {@code ClassCastException} for any keys {@code k1} and * {@code k2} in the map. This method runs in n*log(n) time. * * @param m the map whose mappings are to be placed in this map * @throws ClassCastException if the keys in m are not {@link Comparable}, * or are not mutually comparable * @throws NullPointerException if the specified map is null */ public TreeMap(Map m) { comparator = null; putAll(m); } /** * Constructs a new tree map containing the same mappings and * using the same ordering as the specified sorted map. This * method runs in linear time. * * @param m the sorted map whose mappings are to be placed in this map, * and whose comparator is to be used to sort this map * @throws NullPointerException if the specified map is null */ public TreeMap(SortedMap m) { comparator = m.comparator(); try { buildFromSorted(m.size(), m.entrySet().iterator(), null, null); } catch (java.io.IOException cannotHappen) { } catch (ClassNotFoundException cannotHappen) { } } // Query Operations /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map */ public int size() { return size; } /** * Returns {@code true} if this map contains a mapping for the specified * key. * * @param key key whose presence in this map is to be tested * @return {@code true} if this map contains a mapping for the * specified key * @throws ClassCastException if the specified key cannot be compared * with the keys currently in the map * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys */ public boolean containsKey(Object key) { return getEntry(key) != null; } /** * Returns {@code true} if this map maps one or more keys to the * specified value. More formally, returns {@code true} if and only if * this map contains at least one mapping to a value {@code v} such * that {@code (value==null ? v==null : value.equals(v))}. This * operation will probably require time linear in the map size for * most implementations. * * @param value value whose presence in this map is to be tested * @return {@code true} if a mapping to {@code value} exists; * {@code false} otherwise * @since 1.2 */ public boolean containsValue(Object value) { for (Entry e = getFirstEntry(); e != null; e = successor(e)) if (valEquals(value, e.value)) return true; return false; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key} compares * equal to {@code k} according to the map's ordering, then this * method returns {@code v}; otherwise it returns {@code null}. * (There can be at most one such mapping.) * *

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @throws ClassCastException if the specified key cannot be compared * with the keys currently in the map * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys */ public V get(Object key) { Entry p = getEntry(key); return (p==null ? null : p.value); } public Comparator comparator() { return comparator; } /** * @throws NoSuchElementException {@inheritDoc} */ public K firstKey() { return key(getFirstEntry()); } /** * @throws NoSuchElementException {@inheritDoc} */ public K lastKey() { return key(getLastEntry()); } /** * Copies all of the mappings from the specified map to this map. * These mappings replace any mappings that this map had for any * of the keys currently in the specified map. * * @param map mappings to be stored in this map * @throws ClassCastException if the class of a key or value in * the specified map prevents it from being stored in this map * @throws NullPointerException if the specified map is null or * the specified map contains a null key and this map does not * permit null keys */ public void putAll(Map map) { int mapSize = map.size(); if (size==0 && mapSize!=0 && map instanceof SortedMap) { Comparator c = ((SortedMap)map).comparator(); if (c == comparator || (c != null && c.equals(comparator))) { ++modCount; try { buildFromSorted(mapSize, map.entrySet().iterator(), null, null); } catch (java.io.IOException cannotHappen) { } catch (ClassNotFoundException cannotHappen) { } return; } } super.putAll(map); } /** * Returns this map's entry for the given key, or {@code null} if the map * does not contain an entry for the key. * * @return this map's entry for the given key, or {@code null} if the map * does not contain an entry for the key * @throws ClassCastException if the specified key cannot be compared * with the keys currently in the map * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys */ final Entry getEntry(Object key) { // Offload comparator-based version for sake of performance if (comparator != null) return getEntryUsingComparator(key); if (key == null) throw new NullPointerException(); @SuppressWarnings("unchecked") Comparable k = (Comparable) key; Entry p = root; while (p != null) { int cmp = k.compareTo(p.key); if (cmp < 0) p = p.left; else if (cmp > 0) p = p.right; else return p; } return null; } /** * Version of getEntry using comparator. Split off from getEntry * for performance. (This is not worth doing for most methods, * that are less dependent on comparator performance, but is * worthwhile here.) */ final Entry getEntryUsingComparator(Object key) { @SuppressWarnings("unchecked") K k = (K) key; Comparator cpr = comparator; if (cpr != null) { Entry p = root; while (p != null) { int cmp = cpr.compare(k, p.key); if (cmp < 0) p = p.left; else if (cmp > 0) p = p.right; else return p; } } return null; } /** * Gets the entry corresponding to the specified key; if no such entry * exists, returns the entry for the least key greater than the specified * key; if no such entry exists (i.e., the greatest key in the Tree is less * than the specified key), returns {@code null}. */ final Entry getCeilingEntry(K key) { Entry p = root; while (p != null) { int cmp = compare(key, p.key); if (cmp < 0) { if (p.left != null) p = p.left; else return p; } else if (cmp > 0) { if (p.right != null) { p = p.right; } else { Entry parent = p.parent; Entry ch = p; while (parent != null && ch == parent.right) { ch = parent; parent = parent.parent; } return parent; } } else return p; } return null; } /** * Gets the entry corresponding to the specified key; if no such entry * exists, returns the entry for the greatest key less than the specified * key; if no such entry exists, returns {@code null}. */ final Entry getFloorEntry(K key) { Entry p = root; while (p != null) { int cmp = compare(key, p.key); if (cmp > 0) { if (p.right != null) p = p.right; else return p; } else if (cmp < 0) { if (p.left != null) { p = p.left; } else { Entry parent = p.parent; Entry ch = p; while (parent != null && ch == parent.left) { ch = parent; parent = parent.parent; } return parent; } } else return p; } return null; } /** * Gets the entry for the least key greater than the specified * key; if no such entry exists, returns the entry for the least * key greater than the specified key; if no such entry exists * returns {@code null}. */ final Entry getHigherEntry(K key) { Entry p = root; while (p != null) { int cmp = compare(key, p.key); if (cmp < 0) { if (p.left != null) p = p.left; else return p; } else { if (p.right != null) { p = p.right; } else { Entry parent = p.parent; Entry ch = p; while (parent != null && ch == parent.right) { ch = parent; parent = parent.parent; } return parent; } } } return null; } /** * Returns the entry for the greatest key less than the specified key; if * no such entry exists (i.e., the least key in the Tree is greater than * the specified key), returns {@code null}. */ final Entry getLowerEntry(K key) { Entry p = root; while (p != null) { int cmp = compare(key, p.key); if (cmp > 0) { if (p.right != null) p = p.right; else return p; } else { if (p.left != null) { p = p.left; } else { Entry parent = p.parent; Entry ch = p; while (parent != null && ch == parent.left) { ch = parent; parent = parent.parent; } return parent; } } } return null; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key}. * (A {@code null} return can also indicate that the map * previously associated {@code null} with {@code key}.) * @throws ClassCastException if the specified key cannot be compared * with the keys currently in the map * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys */ public V put(K key, V value) { Entry t = root; if (t == null) { compare(key, key); // type (and possibly null) check root = new Entry<>(key, value, null); size = 1; modCount++; return null; } int cmp; Entry parent; // split comparator and comparable paths Comparator cpr = comparator; if (cpr != null) { do { parent = t; cmp = cpr.compare(key, t.key); if (cmp < 0) t = t.left; else if (cmp > 0) t = t.right; else return t.setValue(value); } while (t != null); } else { if (key == null) throw new NullPointerException(); @SuppressWarnings("unchecked") Comparable k = (Comparable) key; do { parent = t; cmp = k.compareTo(t.key); if (cmp < 0) t = t.left; else if (cmp > 0) t = t.right; else return t.setValue(value); } while (t != null); } Entry e = new Entry<>(key, value, parent); if (cmp < 0) parent.left = e; else parent.right = e; fixAfterInsertion(e); size++; modCount++; return null; } /** * Removes the mapping for this key from this TreeMap if present. * * @param key key for which mapping should be removed * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key}. * (A {@code null} return can also indicate that the map * previously associated {@code null} with {@code key}.) * @throws ClassCastException if the specified key cannot be compared * with the keys currently in the map * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys */ public V remove(Object key) { Entry p = getEntry(key); if (p == null) return null; V oldValue = p.value; deleteEntry(p); return oldValue; } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ public void clear() { modCount++; size = 0; root = null; } /** * Returns a shallow copy of this {@code TreeMap} instance. (The keys and * values themselves are not cloned.) * * @return a shallow copy of this map */ public Object clone() { TreeMap clone; try { clone = (TreeMap) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } // Put clone into "virgin" state (except for comparator) clone.root = null; clone.size = 0; clone.modCount = 0; clone.entrySet = null; clone.navigableKeySet = null; clone.descendingMap = null; // Initialize clone with our mappings try { clone.buildFromSorted(size, entrySet().iterator(), null, null); } catch (java.io.IOException cannotHappen) { } catch (ClassNotFoundException cannotHappen) { } return clone; } // NavigableMap API methods /** * @since 1.6 */ public Map.Entry firstEntry() { return exportEntry(getFirstEntry()); } /** * @since 1.6 */ public Map.Entry lastEntry() { return exportEntry(getLastEntry()); } /** * @since 1.6 */ public Map.Entry pollFirstEntry() { Entry p = getFirstEntry(); Map.Entry result = exportEntry(p); if (p != null) deleteEntry(p); return result; } /** * @since 1.6 */ public Map.Entry pollLastEntry() { Entry p = getLastEntry(); Map.Entry result = exportEntry(p); if (p != null) deleteEntry(p); return result; } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys * @since 1.6 */ public Map.Entry lowerEntry(K key) { return exportEntry(getLowerEntry(key)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys * @since 1.6 */ public K lowerKey(K key) { return keyOrNull(getLowerEntry(key)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys * @since 1.6 */ public Map.Entry floorEntry(K key) { return exportEntry(getFloorEntry(key)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys * @since 1.6 */ public K floorKey(K key) { return keyOrNull(getFloorEntry(key)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys * @since 1.6 */ public Map.Entry ceilingEntry(K key) { return exportEntry(getCeilingEntry(key)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys * @since 1.6 */ public K ceilingKey(K key) { return keyOrNull(getCeilingEntry(key)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys * @since 1.6 */ public Map.Entry higherEntry(K key) { return exportEntry(getHigherEntry(key)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if the specified key is null * and this map uses natural ordering, or its comparator * does not permit null keys * @since 1.6 */ public K higherKey(K key) { return keyOrNull(getHigherEntry(key)); } // Views /** * Fields initialized to contain an instance of the entry set view * the first time this view is requested. Views are stateless, so * there's no reason to create more than one. */ private transient EntrySet entrySet = null; private transient KeySet navigableKeySet = null; private transient NavigableMap descendingMap = null; /** * Returns a {@link Set} view of the keys contained in this map. * The set's iterator returns the keys in ascending order. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or {@code addAll} * operations. */ public Set keySet() { return navigableKeySet(); } /** * @since 1.6 */ public NavigableSet navigableKeySet() { KeySet nks = navigableKeySet; return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this)); } /** * @since 1.6 */ public NavigableSet descendingKeySet() { return descendingMap().navigableKeySet(); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection's iterator returns the values in ascending order * of the corresponding keys. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own {@code remove} operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll} and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. */ public Collection values() { Collection vs = values; return (vs != null) ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. * The set's iterator returns the entries in ascending key order. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation, or through the * {@code setValue} operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Set.remove}, {@code removeAll}, {@code retainAll} and * {@code clear} operations. It does not support the * {@code add} or {@code addAll} operations. */ public Set> entrySet() { EntrySet es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * @since 1.6 */ public NavigableMap descendingMap() { NavigableMap km = descendingMap; return (km != null) ? km : (descendingMap = new DescendingSubMap<>(this, true, null, true, true, null, true)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code fromKey} or {@code toKey} is * null and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} * @since 1.6 */ public NavigableMap subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return new AscendingSubMap<>(this, false, fromKey, fromInclusive, false, toKey, toInclusive); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code toKey} is null * and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} * @since 1.6 */ public NavigableMap headMap(K toKey, boolean inclusive) { return new AscendingSubMap<>(this, true, null, true, false, toKey, inclusive); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code fromKey} is null * and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} * @since 1.6 */ public NavigableMap tailMap(K fromKey, boolean inclusive) { return new AscendingSubMap<>(this, false, fromKey, inclusive, true, null, true); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code fromKey} or {@code toKey} is * null and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} */ public SortedMap subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code toKey} is null * and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} */ public SortedMap headMap(K toKey) { return headMap(toKey, false); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code fromKey} is null * and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} */ public SortedMap tailMap(K fromKey) { return tailMap(fromKey, true); } // View class support class Values extends AbstractCollection { public Iterator iterator() { return new ValueIterator(getFirstEntry()); } public int size() { return TreeMap.this.size(); } public boolean contains(Object o) { return TreeMap.this.containsValue(o); } public boolean remove(Object o) { for (Entry e = getFirstEntry(); e != null; e = successor(e)) { if (valEquals(e.getValue(), o)) { deleteEntry(e); return true; } } return false; } public void clear() { TreeMap.this.clear(); } } class EntrySet extends AbstractSet> { public Iterator> iterator() { return new EntryIterator(getFirstEntry()); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object value = entry.getValue(); Entry p = getEntry(entry.getKey()); return p != null && valEquals(p.getValue(), value); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object value = entry.getValue(); Entry p = getEntry(entry.getKey()); if (p != null && valEquals(p.getValue(), value)) { deleteEntry(p); return true; } return false; } public int size() { return TreeMap.this.size(); } public void clear() { TreeMap.this.clear(); } } /* * Unlike Values and EntrySet, the KeySet class is static, * delegating to a NavigableMap to allow use by SubMaps, which * outweighs the ugliness of needing type-tests for the following * Iterator methods that are defined appropriately in main versus * submap classes. */ Iterator keyIterator() { return new KeyIterator(getFirstEntry()); } Iterator descendingKeyIterator() { return new DescendingKeyIterator(getLastEntry()); } static final class KeySet extends AbstractSet implements NavigableSet { private final NavigableMap m; KeySet(NavigableMap map) { m = map; } public Iterator iterator() { if (m instanceof TreeMap) return ((TreeMap)m).keyIterator(); else return ((TreeMap.NavigableSubMap)m).keyIterator(); } public Iterator descendingIterator() { if (m instanceof TreeMap) return ((TreeMap)m).descendingKeyIterator(); else return ((TreeMap.NavigableSubMap)m).descendingKeyIterator(); } public int size() { return m.size(); } public boolean isEmpty() { return m.isEmpty(); } public boolean contains(Object o) { return m.containsKey(o); } public void clear() { m.clear(); } public E lower(E e) { return m.lowerKey(e); } public E floor(E e) { return m.floorKey(e); } public E ceiling(E e) { return m.ceilingKey(e); } public E higher(E e) { return m.higherKey(e); } public E first() { return m.firstKey(); } public E last() { return m.lastKey(); } public Comparator comparator() { return m.comparator(); } public E pollFirst() { Map.Entry e = m.pollFirstEntry(); return (e == null) ? null : e.getKey(); } public E pollLast() { Map.Entry e = m.pollLastEntry(); return (e == null) ? null : e.getKey(); } public boolean remove(Object o) { int oldSize = size(); m.remove(o); return size() != oldSize; } public NavigableSet subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { return new KeySet<>(m.subMap(fromElement, fromInclusive, toElement, toInclusive)); } public NavigableSet headSet(E toElement, boolean inclusive) { return new KeySet<>(m.headMap(toElement, inclusive)); } public NavigableSet tailSet(E fromElement, boolean inclusive) { return new KeySet<>(m.tailMap(fromElement, inclusive)); } public SortedSet subSet(E fromElement, E toElement) { return subSet(fromElement, true, toElement, false); } public SortedSet headSet(E toElement) { return headSet(toElement, false); } public SortedSet tailSet(E fromElement) { return tailSet(fromElement, true); } public NavigableSet descendingSet() { return new KeySet<>(m.descendingMap()); } } /** * Base class for TreeMap Iterators */ abstract class PrivateEntryIterator implements Iterator { Entry next; Entry lastReturned; int expectedModCount; PrivateEntryIterator(Entry first) { expectedModCount = modCount; lastReturned = null; next = first; } public final boolean hasNext() { return next != null; } final Entry nextEntry() { Entry e = next; if (e == null) throw new NoSuchElementException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); next = successor(e); lastReturned = e; return e; } final Entry prevEntry() { Entry e = next; if (e == null) throw new NoSuchElementException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); next = predecessor(e); lastReturned = e; return e; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); // deleted entries are replaced by their successors if (lastReturned.left != null && lastReturned.right != null) next = lastReturned; deleteEntry(lastReturned); expectedModCount = modCount; lastReturned = null; } } final class EntryIterator extends PrivateEntryIterator> { EntryIterator(Entry first) { super(first); } public Map.Entry next() { return nextEntry(); } } final class ValueIterator extends PrivateEntryIterator { ValueIterator(Entry first) { super(first); } public V next() { return nextEntry().value; } } final class KeyIterator extends PrivateEntryIterator { KeyIterator(Entry first) { super(first); } public K next() { return nextEntry().key; } } final class DescendingKeyIterator extends PrivateEntryIterator { DescendingKeyIterator(Entry first) { super(first); } public K next() { return prevEntry().key; } } // Little utilities /** * Compares two keys using the correct comparison method for this TreeMap. */ @SuppressWarnings("unchecked") final int compare(Object k1, Object k2) { return comparator==null ? ((Comparable)k1).compareTo((K)k2) : comparator.compare((K)k1, (K)k2); } /** * Test two values for equality. Differs from o1.equals(o2) only in * that it copes with {@code null} o1 properly. */ static final boolean valEquals(Object o1, Object o2) { return (o1==null ? o2==null : o1.equals(o2)); } /** * Return SimpleImmutableEntry for entry, or null if null */ static Map.Entry exportEntry(TreeMap.Entry e) { return (e == null) ? null : new AbstractMap.SimpleImmutableEntry<>(e); } /** * Return key for entry, or null if null */ static K keyOrNull(TreeMap.Entry e) { return (e == null) ? null : e.key; } /** * Returns the key corresponding to the specified Entry. * @throws NoSuchElementException if the Entry is null */ static K key(Entry e) { if (e==null) throw new NoSuchElementException(); return e.key; } // SubMaps /** * Dummy value serving as unmatchable fence key for unbounded * SubMapIterators */ private static final Object UNBOUNDED = new Object(); /** * @serial include */ abstract static class NavigableSubMap extends AbstractMap implements NavigableMap, java.io.Serializable { /** * The backing map. */ final TreeMap m; /** * Endpoints are represented as triples (fromStart, lo, * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is * true, then the low (absolute) bound is the start of the * backing map, and the other values are ignored. Otherwise, * if loInclusive is true, lo is the inclusive bound, else lo * is the exclusive bound. Similarly for the upper bound. */ final K lo, hi; final boolean fromStart, toEnd; final boolean loInclusive, hiInclusive; NavigableSubMap(TreeMap m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) { if (!fromStart && !toEnd) { if (m.compare(lo, hi) > 0) throw new IllegalArgumentException("fromKey > toKey"); } else { if (!fromStart) // type check m.compare(lo, lo); if (!toEnd) m.compare(hi, hi); } this.m = m; this.fromStart = fromStart; this.lo = lo; this.loInclusive = loInclusive; this.toEnd = toEnd; this.hi = hi; this.hiInclusive = hiInclusive; } // internal utilities final boolean tooLow(Object key) { if (!fromStart) { int c = m.compare(key, lo); if (c < 0 || (c == 0 && !loInclusive)) return true; } return false; } final boolean tooHigh(Object key) { if (!toEnd) { int c = m.compare(key, hi); if (c > 0 || (c == 0 && !hiInclusive)) return true; } return false; } final boolean inRange(Object key) { return !tooLow(key) && !tooHigh(key); } final boolean inClosedRange(Object key) { return (fromStart || m.compare(key, lo) >= 0) && (toEnd || m.compare(hi, key) >= 0); } final boolean inRange(Object key, boolean inclusive) { return inclusive ? inRange(key) : inClosedRange(key); } /* * Absolute versions of relation operations. * Subclasses map to these using like-named "sub" * versions that invert senses for descending maps */ final TreeMap.Entry absLowest() { TreeMap.Entry e = (fromStart ? m.getFirstEntry() : (loInclusive ? m.getCeilingEntry(lo) : m.getHigherEntry(lo))); return (e == null || tooHigh(e.key)) ? null : e; } final TreeMap.Entry absHighest() { TreeMap.Entry e = (toEnd ? m.getLastEntry() : (hiInclusive ? m.getFloorEntry(hi) : m.getLowerEntry(hi))); return (e == null || tooLow(e.key)) ? null : e; } final TreeMap.Entry absCeiling(K key) { if (tooLow(key)) return absLowest(); TreeMap.Entry e = m.getCeilingEntry(key); return (e == null || tooHigh(e.key)) ? null : e; } final TreeMap.Entry absHigher(K key) { if (tooLow(key)) return absLowest(); TreeMap.Entry e = m.getHigherEntry(key); return (e == null || tooHigh(e.key)) ? null : e; } final TreeMap.Entry absFloor(K key) { if (tooHigh(key)) return absHighest(); TreeMap.Entry e = m.getFloorEntry(key); return (e == null || tooLow(e.key)) ? null : e; } final TreeMap.Entry absLower(K key) { if (tooHigh(key)) return absHighest(); TreeMap.Entry e = m.getLowerEntry(key); return (e == null || tooLow(e.key)) ? null : e; } /** Returns the absolute high fence for ascending traversal */ final TreeMap.Entry absHighFence() { return (toEnd ? null : (hiInclusive ? m.getHigherEntry(hi) : m.getCeilingEntry(hi))); } /** Return the absolute low fence for descending traversal */ final TreeMap.Entry absLowFence() { return (fromStart ? null : (loInclusive ? m.getLowerEntry(lo) : m.getFloorEntry(lo))); } // Abstract methods defined in ascending vs descending classes // These relay to the appropriate absolute versions abstract TreeMap.Entry subLowest(); abstract TreeMap.Entry subHighest(); abstract TreeMap.Entry subCeiling(K key); abstract TreeMap.Entry subHigher(K key); abstract TreeMap.Entry subFloor(K key); abstract TreeMap.Entry subLower(K key); /** Returns ascending iterator from the perspective of this submap */ abstract Iterator keyIterator(); /** Returns descending iterator from the perspective of this submap */ abstract Iterator descendingKeyIterator(); // public methods public boolean isEmpty() { return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty(); } public int size() { return (fromStart && toEnd) ? m.size() : entrySet().size(); } public final boolean containsKey(Object key) { return inRange(key) && m.containsKey(key); } public final V put(K key, V value) { if (!inRange(key)) throw new IllegalArgumentException("key out of range"); return m.put(key, value); } public final V get(Object key) { return !inRange(key) ? null : m.get(key); } public final V remove(Object key) { return !inRange(key) ? null : m.remove(key); } public final Map.Entry ceilingEntry(K key) { return exportEntry(subCeiling(key)); } public final K ceilingKey(K key) { return keyOrNull(subCeiling(key)); } public final Map.Entry higherEntry(K key) { return exportEntry(subHigher(key)); } public final K higherKey(K key) { return keyOrNull(subHigher(key)); } public final Map.Entry floorEntry(K key) { return exportEntry(subFloor(key)); } public final K floorKey(K key) { return keyOrNull(subFloor(key)); } public final Map.Entry lowerEntry(K key) { return exportEntry(subLower(key)); } public final K lowerKey(K key) { return keyOrNull(subLower(key)); } public final K firstKey() { return key(subLowest()); } public final K lastKey() { return key(subHighest()); } public final Map.Entry firstEntry() { return exportEntry(subLowest()); } public final Map.Entry lastEntry() { return exportEntry(subHighest()); } public final Map.Entry pollFirstEntry() { TreeMap.Entry e = subLowest(); Map.Entry result = exportEntry(e); if (e != null) m.deleteEntry(e); return result; } public final Map.Entry pollLastEntry() { TreeMap.Entry e = subHighest(); Map.Entry result = exportEntry(e); if (e != null) m.deleteEntry(e); return result; } // Views transient NavigableMap descendingMapView = null; transient EntrySetView entrySetView = null; transient KeySet navigableKeySetView = null; public final NavigableSet navigableKeySet() { KeySet nksv = navigableKeySetView; return (nksv != null) ? nksv : (navigableKeySetView = new TreeMap.KeySet<>(this)); } public final Set keySet() { return navigableKeySet(); } public NavigableSet descendingKeySet() { return descendingMap().navigableKeySet(); } public final SortedMap subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } public final SortedMap headMap(K toKey) { return headMap(toKey, false); } public final SortedMap tailMap(K fromKey) { return tailMap(fromKey, true); } // View classes abstract class EntrySetView extends AbstractSet> { private transient int size = -1, sizeModCount; public int size() { if (fromStart && toEnd) return m.size(); if (size == -1 || sizeModCount != m.modCount) { sizeModCount = m.modCount; size = 0; Iterator i = iterator(); while (i.hasNext()) { size++; i.next(); } } return size; } public boolean isEmpty() { TreeMap.Entry n = absLowest(); return n == null || tooHigh(n.key); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); if (!inRange(key)) return false; TreeMap.Entry node = m.getEntry(key); return node != null && valEquals(node.getValue(), entry.getValue()); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); if (!inRange(key)) return false; TreeMap.Entry node = m.getEntry(key); if (node!=null && valEquals(node.getValue(), entry.getValue())) { m.deleteEntry(node); return true; } return false; } } /** * Iterators for SubMaps */ abstract class SubMapIterator implements Iterator { TreeMap.Entry lastReturned; TreeMap.Entry next; final Object fenceKey; int expectedModCount; SubMapIterator(TreeMap.Entry first, TreeMap.Entry fence) { expectedModCount = m.modCount; lastReturned = null; next = first; fenceKey = fence == null ? UNBOUNDED : fence.key; } public final boolean hasNext() { return next != null && next.key != fenceKey; } final TreeMap.Entry nextEntry() { TreeMap.Entry e = next; if (e == null || e.key == fenceKey) throw new NoSuchElementException(); if (m.modCount != expectedModCount) throw new ConcurrentModificationException(); next = successor(e); lastReturned = e; return e; } final TreeMap.Entry prevEntry() { TreeMap.Entry e = next; if (e == null || e.key == fenceKey) throw new NoSuchElementException(); if (m.modCount != expectedModCount) throw new ConcurrentModificationException(); next = predecessor(e); lastReturned = e; return e; } final void removeAscending() { if (lastReturned == null) throw new IllegalStateException(); if (m.modCount != expectedModCount) throw new ConcurrentModificationException(); // deleted entries are replaced by their successors if (lastReturned.left != null && lastReturned.right != null) next = lastReturned; m.deleteEntry(lastReturned); lastReturned = null; expectedModCount = m.modCount; } final void removeDescending() { if (lastReturned == null) throw new IllegalStateException(); if (m.modCount != expectedModCount) throw new ConcurrentModificationException(); m.deleteEntry(lastReturned); lastReturned = null; expectedModCount = m.modCount; } } final class SubMapEntryIterator extends SubMapIterator> { SubMapEntryIterator(TreeMap.Entry first, TreeMap.Entry fence) { super(first, fence); } public Map.Entry next() { return nextEntry(); } public void remove() { removeAscending(); } } final class SubMapKeyIterator extends SubMapIterator { SubMapKeyIterator(TreeMap.Entry first, TreeMap.Entry fence) { super(first, fence); } public K next() { return nextEntry().key; } public void remove() { removeAscending(); } } final class DescendingSubMapEntryIterator extends SubMapIterator> { DescendingSubMapEntryIterator(TreeMap.Entry last, TreeMap.Entry fence) { super(last, fence); } public Map.Entry next() { return prevEntry(); } public void remove() { removeDescending(); } } final class DescendingSubMapKeyIterator extends SubMapIterator { DescendingSubMapKeyIterator(TreeMap.Entry last, TreeMap.Entry fence) { super(last, fence); } public K next() { return prevEntry().key; } public void remove() { removeDescending(); } } } /** * @serial include */ static final class AscendingSubMap extends NavigableSubMap { private static final long serialVersionUID = 912986545866124060L; AscendingSubMap(TreeMap m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) { super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive); } public Comparator comparator() { return m.comparator(); } public NavigableMap subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (!inRange(fromKey, fromInclusive)) throw new IllegalArgumentException("fromKey out of range"); if (!inRange(toKey, toInclusive)) throw new IllegalArgumentException("toKey out of range"); return new AscendingSubMap<>(m, false, fromKey, fromInclusive, false, toKey, toInclusive); } public NavigableMap headMap(K toKey, boolean inclusive) { if (!inRange(toKey, inclusive)) throw new IllegalArgumentException("toKey out of range"); return new AscendingSubMap<>(m, fromStart, lo, loInclusive, false, toKey, inclusive); } public NavigableMap tailMap(K fromKey, boolean inclusive) { if (!inRange(fromKey, inclusive)) throw new IllegalArgumentException("fromKey out of range"); return new AscendingSubMap<>(m, false, fromKey, inclusive, toEnd, hi, hiInclusive); } public NavigableMap descendingMap() { NavigableMap mv = descendingMapView; return (mv != null) ? mv : (descendingMapView = new DescendingSubMap<>(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive)); } Iterator keyIterator() { return new SubMapKeyIterator(absLowest(), absHighFence()); } Iterator descendingKeyIterator() { return new DescendingSubMapKeyIterator(absHighest(), absLowFence()); } final class AscendingEntrySetView extends EntrySetView { public Iterator> iterator() { return new SubMapEntryIterator(absLowest(), absHighFence()); } } public Set> entrySet() { EntrySetView es = entrySetView; return (es != null) ? es : new AscendingEntrySetView(); } TreeMap.Entry subLowest() { return absLowest(); } TreeMap.Entry subHighest() { return absHighest(); } TreeMap.Entry subCeiling(K key) { return absCeiling(key); } TreeMap.Entry subHigher(K key) { return absHigher(key); } TreeMap.Entry subFloor(K key) { return absFloor(key); } TreeMap.Entry subLower(K key) { return absLower(key); } } /** * @serial include */ static final class DescendingSubMap extends NavigableSubMap { private static final long serialVersionUID = 912986545866120460L; DescendingSubMap(TreeMap m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) { super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive); } private final Comparator reverseComparator = Collections.reverseOrder(m.comparator); public Comparator comparator() { return reverseComparator; } public NavigableMap subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (!inRange(fromKey, fromInclusive)) throw new IllegalArgumentException("fromKey out of range"); if (!inRange(toKey, toInclusive)) throw new IllegalArgumentException("toKey out of range"); return new DescendingSubMap<>(m, false, toKey, toInclusive, false, fromKey, fromInclusive); } public NavigableMap headMap(K toKey, boolean inclusive) { if (!inRange(toKey, inclusive)) throw new IllegalArgumentException("toKey out of range"); return new DescendingSubMap<>(m, false, toKey, inclusive, toEnd, hi, hiInclusive); } public NavigableMap tailMap(K fromKey, boolean inclusive) { if (!inRange(fromKey, inclusive)) throw new IllegalArgumentException("fromKey out of range"); return new DescendingSubMap<>(m, fromStart, lo, loInclusive, false, fromKey, inclusive); } public NavigableMap descendingMap() { NavigableMap mv = descendingMapView; return (mv != null) ? mv : (descendingMapView = new AscendingSubMap<>(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive)); } Iterator keyIterator() { return new DescendingSubMapKeyIterator(absHighest(), absLowFence()); } Iterator descendingKeyIterator() { return new SubMapKeyIterator(absLowest(), absHighFence()); } final class DescendingEntrySetView extends EntrySetView { public Iterator> iterator() { return new DescendingSubMapEntryIterator(absHighest(), absLowFence()); } } public Set> entrySet() { EntrySetView es = entrySetView; return (es != null) ? es : new DescendingEntrySetView(); } TreeMap.Entry subLowest() { return absHighest(); } TreeMap.Entry subHighest() { return absLowest(); } TreeMap.Entry subCeiling(K key) { return absFloor(key); } TreeMap.Entry subHigher(K key) { return absLower(key); } TreeMap.Entry subFloor(K key) { return absCeiling(key); } TreeMap.Entry subLower(K key) { return absHigher(key); } } /** * This class exists solely for the sake of serialization * compatibility with previous releases of TreeMap that did not * support NavigableMap. It translates an old-version SubMap into * a new-version AscendingSubMap. This class is never otherwise * used. * * @serial include */ private class SubMap extends AbstractMap implements SortedMap, java.io.Serializable { private static final long serialVersionUID = -6520786458950516097L; private boolean fromStart = false, toEnd = false; private K fromKey, toKey; private Object readResolve() { return new AscendingSubMap<>(TreeMap.this, fromStart, fromKey, true, toEnd, toKey, false); } public Set> entrySet() { throw new InternalError(); } public K lastKey() { throw new InternalError(); } public K firstKey() { throw new InternalError(); } public SortedMap subMap(K fromKey, K toKey) { throw new InternalError(); } public SortedMap headMap(K toKey) { throw new InternalError(); } public SortedMap tailMap(K fromKey) { throw new InternalError(); } public Comparator comparator() { throw new InternalError(); } } // Red-black mechanics private static final boolean RED = false; private static final boolean BLACK = true; /** * Node in the Tree. Doubles as a means to pass key-value pairs back to * user (see Map.Entry). */ static final class Entry implements Map.Entry { K key; V value; Entry left = null; Entry right = null; Entry parent; boolean color = BLACK; /** * Make a new cell with given key, value, and parent, and with * {@code null} child links, and BLACK color. */ Entry(K key, V value, Entry parent) { this.key = key; this.value = value; this.parent = parent; } /** * Returns the key. * * @return the key */ public K getKey() { return key; } /** * Returns the value associated with the key. * * @return the value associated with the key */ public V getValue() { return value; } /** * Replaces the value currently associated with the key with the given * value. * * @return the value associated with the key before this method was * called */ public V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return valEquals(key,e.getKey()) && valEquals(value,e.getValue()); } public int hashCode() { int keyHash = (key==null ? 0 : key.hashCode()); int valueHash = (value==null ? 0 : value.hashCode()); return keyHash ^ valueHash; } public String toString() { return key + "=" + value; } } /** * Returns the first Entry in the TreeMap (according to the TreeMap's * key-sort function). Returns null if the TreeMap is empty. */ final Entry getFirstEntry() { Entry p = root; if (p != null) while (p.left != null) p = p.left; return p; } /** * Returns the last Entry in the TreeMap (according to the TreeMap's * key-sort function). Returns null if the TreeMap is empty. */ final Entry getLastEntry() { Entry p = root; if (p != null) while (p.right != null) p = p.right; return p; } /** * Returns the successor of the specified Entry, or null if no such. */ static TreeMap.Entry successor(Entry t) { if (t == null) return null; else if (t.right != null) { Entry p = t.right; while (p.left != null) p = p.left; return p; } else { Entry p = t.parent; Entry ch = t; while (p != null && ch == p.right) { ch = p; p = p.parent; } return p; } } /** * Returns the predecessor of the specified Entry, or null if no such. */ static Entry predecessor(Entry t) { if (t == null) return null; else if (t.left != null) { Entry p = t.left; while (p.right != null) p = p.right; return p; } else { Entry p = t.parent; Entry ch = t; while (p != null && ch == p.left) { ch = p; p = p.parent; } return p; } } /** * Balancing operations. * * Implementations of rebalancings during insertion and deletion are * slightly different than the CLR version. Rather than using dummy * nilnodes, we use a set of accessors that deal properly with null. They * are used to avoid messiness surrounding nullness checks in the main * algorithms. */ private static boolean colorOf(Entry p) { return (p == null ? BLACK : p.color); } private static Entry parentOf(Entry p) { return (p == null ? null: p.parent); } private static void setColor(Entry p, boolean c) { if (p != null) p.color = c; } private static Entry leftOf(Entry p) { return (p == null) ? null: p.left; } private static Entry rightOf(Entry p) { return (p == null) ? null: p.right; } /** From CLR */ private void rotateLeft(Entry p) { if (p != null) { Entry r = p.right; p.right = r.left; if (r.left != null) r.left.parent = p; r.parent = p.parent; if (p.parent == null) root = r; else if (p.parent.left == p) p.parent.left = r; else p.parent.right = r; r.left = p; p.parent = r; } } /** From CLR */ private void rotateRight(Entry p) { if (p != null) { Entry l = p.left; p.left = l.right; if (l.right != null) l.right.parent = p; l.parent = p.parent; if (p.parent == null) root = l; else if (p.parent.right == p) p.parent.right = l; else p.parent.left = l; l.right = p; p.parent = l; } } /** From CLR */ private void fixAfterInsertion(Entry x) { x.color = RED; while (x != null && x != root && x.parent.color == RED) { if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { Entry y = rightOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); setColor(y, BLACK); setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } else { if (x == rightOf(parentOf(x))) { x = parentOf(x); rotateLeft(x); } setColor(parentOf(x), BLACK); setColor(parentOf(parentOf(x)), RED); rotateRight(parentOf(parentOf(x))); } } else { Entry y = leftOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); setColor(y, BLACK); setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } else { if (x == leftOf(parentOf(x))) { x = parentOf(x); rotateRight(x); } setColor(parentOf(x), BLACK); setColor(parentOf(parentOf(x)), RED); rotateLeft(parentOf(parentOf(x))); } } } root.color = BLACK; } /** * Delete node p, and then rebalance the tree. */ private void deleteEntry(Entry p) { modCount++; size--; // If strictly internal, copy successor's element to p and then make p // point to successor. if (p.left != null && p.right != null) { Entry s = successor(p); p.key = s.key; p.value = s.value; p = s; } // p has 2 children // Start fixup at replacement node, if it exists. Entry replacement = (p.left != null ? p.left : p.right); if (replacement != null) { // Link replacement to parent replacement.parent = p.parent; if (p.parent == null) root = replacement; else if (p == p.parent.left) p.parent.left = replacement; else p.parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion. p.left = p.right = p.parent = null; // Fix replacement if (p.color == BLACK) fixAfterDeletion(replacement); } else if (p.parent == null) { // return if we are the only node. root = null; } else { // No children. Use self as phantom replacement and unlink. if (p.color == BLACK) fixAfterDeletion(p); if (p.parent != null) { if (p == p.parent.left) p.parent.left = null; else if (p == p.parent.right) p.parent.right = null; p.parent = null; } } } /** From CLR */ private void fixAfterDeletion(Entry x) { while (x != root && colorOf(x) == BLACK) { if (x == leftOf(parentOf(x))) { Entry sib = rightOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateLeft(parentOf(x)); sib = rightOf(parentOf(x)); } if (colorOf(leftOf(sib)) == BLACK && colorOf(rightOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(rightOf(sib)) == BLACK) { setColor(leftOf(sib), BLACK); setColor(sib, RED); rotateRight(sib); sib = rightOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(rightOf(sib), BLACK); rotateLeft(parentOf(x)); x = root; } } else { // symmetric Entry sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateRight(parentOf(x)); sib = leftOf(parentOf(x)); } if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(leftOf(sib)) == BLACK) { setColor(rightOf(sib), BLACK); setColor(sib, RED); rotateLeft(sib); sib = leftOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(leftOf(sib), BLACK); rotateRight(parentOf(x)); x = root; } } } setColor(x, BLACK); } private static final long serialVersionUID = 919286545866124006L; /** * Save the state of the {@code TreeMap} instance to a stream (i.e., * serialize it). * * @serialData The size of the TreeMap (the number of key-value * mappings) is emitted (int), followed by the key (Object) * and value (Object) for each key-value mapping represented * by the TreeMap. The key-value mappings are emitted in * key-order (as determined by the TreeMap's Comparator, * or by the keys' natural ordering if the TreeMap has no * Comparator). */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out the Comparator and any hidden stuff s.defaultWriteObject(); // Write out size (number of Mappings) s.writeInt(size); // Write out keys and values (alternating) for (Iterator> i = entrySet().iterator(); i.hasNext(); ) { Map.Entry e = i.next(); s.writeObject(e.getKey()); s.writeObject(e.getValue()); } } /** * Reconstitute the {@code TreeMap} instance from a stream (i.e., * deserialize it). */ private void readObject(final java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in the Comparator and any hidden stuff s.defaultReadObject(); // Read in size int size = s.readInt(); buildFromSorted(size, null, s, null); } /** Intended to be called only from TreeSet.readObject */ void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal) throws java.io.IOException, ClassNotFoundException { buildFromSorted(size, null, s, defaultVal); } /** Intended to be called only from TreeSet.addAll */ void addAllForTreeSet(SortedSet set, V defaultVal) { try { buildFromSorted(set.size(), set.iterator(), null, defaultVal); } catch (java.io.IOException cannotHappen) { } catch (ClassNotFoundException cannotHappen) { } } /** * Linear time tree building algorithm from sorted data. Can accept keys * and/or values from iterator or stream. This leads to too many * parameters, but seems better than alternatives. The four formats * that this method accepts are: * * 1) An iterator of Map.Entries. (it != null, defaultVal == null). * 2) An iterator of keys. (it != null, defaultVal != null). * 3) A stream of alternating serialized keys and values. * (it == null, defaultVal == null). * 4) A stream of serialized keys. (it == null, defaultVal != null). * * It is assumed that the comparator of the TreeMap is already set prior * to calling this method. * * @param size the number of keys (or key-value pairs) to be read from * the iterator or stream * @param it If non-null, new entries are created from entries * or keys read from this iterator. * @param str If non-null, new entries are created from keys and * possibly values read from this stream in serialized form. * Exactly one of it and str should be non-null. * @param defaultVal if non-null, this default value is used for * each value in the map. If null, each value is read from * iterator or stream, as described above. * @throws java.io.IOException propagated from stream reads. This cannot * occur if str is null. * @throws ClassNotFoundException propagated from readObject. * This cannot occur if str is null. */ private void buildFromSorted(int size, Iterator it, java.io.ObjectInputStream str, V defaultVal) throws java.io.IOException, ClassNotFoundException { this.size = size; root = buildFromSorted(0, 0, size-1, computeRedLevel(size), it, str, defaultVal); } /** * Recursive "helper method" that does the real work of the * previous method. Identically named parameters have * identical definitions. Additional parameters are documented below. * It is assumed that the comparator and size fields of the TreeMap are * already set prior to calling this method. (It ignores both fields.) * * @param level the current level of tree. Initial call should be 0. * @param lo the first element index of this subtree. Initial should be 0. * @param hi the last element index of this subtree. Initial should be * size-1. * @param redLevel the level at which nodes should be red. * Must be equal to computeRedLevel for tree of this size. */ @SuppressWarnings("unchecked") private final Entry buildFromSorted(int level, int lo, int hi, int redLevel, Iterator it, java.io.ObjectInputStream str, V defaultVal) throws java.io.IOException, ClassNotFoundException { /* * Strategy: The root is the middlemost element. To get to it, we * have to first recursively construct the entire left subtree, * so as to grab all of its elements. We can then proceed with right * subtree. * * The lo and hi arguments are the minimum and maximum * indices to pull out of the iterator or stream for current subtree. * They are not actually indexed, we just proceed sequentially, * ensuring that items are extracted in corresponding order. */ if (hi < lo) return null; int mid = (lo + hi) >>> 1; Entry left = null; if (lo < mid) left = buildFromSorted(level+1, lo, mid - 1, redLevel, it, str, defaultVal); // extract key and/or value from iterator or stream K key; V value; if (it != null) { if (defaultVal==null) { Map.Entry entry = (Map.Entry)it.next(); key = (K)entry.getKey(); value = (V)entry.getValue(); } else { key = (K)it.next(); value = defaultVal; } } else { // use stream key = (K) str.readObject(); value = (defaultVal != null ? defaultVal : (V) str.readObject()); } Entry middle = new Entry<>(key, value, null); // color nodes in non-full bottommost level red if (level == redLevel) middle.color = RED; if (left != null) { middle.left = left; left.parent = middle; } if (mid < hi) { Entry right = buildFromSorted(level+1, mid+1, hi, redLevel, it, str, defaultVal); middle.right = right; right.parent = middle; } return middle; } /** * Find the level down to which to assign all nodes BLACK. This is the * last `full' level of the complete binary tree produced by * buildTree. The remaining nodes are colored RED. (This makes a `nice' * set of color assignments wrt future insertions.) This level number is * computed by finding the number of splits needed to reach the zeroeth * node. (The answer is ~lg(N), but in any case must be computed by same * quick O(lg(N)) loop.) */ private static int computeRedLevel(int sz) { int level = 0; for (int m = sz - 1; m >= 0; m = m / 2 - 1) level++; return level; } }