/* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package com.sun.crypto.provider; import java.util.*; import java.lang.*; import java.math.BigInteger; import java.security.InvalidAlgorithmParameterException; import java.security.InvalidKeyException; import java.security.Key; import java.security.NoSuchAlgorithmException; import java.security.SecureRandom; import java.security.spec.AlgorithmParameterSpec; import java.security.spec.InvalidKeySpecException; import javax.crypto.KeyAgreementSpi; import javax.crypto.ShortBufferException; import javax.crypto.SecretKey; import javax.crypto.spec.*; /** * This class implements the Diffie-Hellman key agreement protocol between * any number of parties. * * @author Jan Luehe * */ public final class DHKeyAgreement extends KeyAgreementSpi { private boolean generateSecret = false; private BigInteger init_p = null; private BigInteger init_g = null; private BigInteger x = BigInteger.ZERO; // the private value private BigInteger y = BigInteger.ZERO; /** * Verify the SunJCE provider in the constructor. * * @exception SecurityException if fails to verify * its own integrity */ public DHKeyAgreement() { if (!SunJCE.verifySelfIntegrity(this.getClass())) { throw new SecurityException("The SunJCE provider may have been " + "tampered."); } } /** * Initializes this key agreement with the given key and source of * randomness. The given key is required to contain all the algorithm * parameters required for this key agreement. * *
If the key agreement algorithm requires random bytes, it gets them
* from the given source of randomness, random.
* However, if the underlying
* algorithm implementation does not require any random bytes,
* random is ignored.
*
* @param key the party's private information. For example, in the case
* of the Diffie-Hellman key agreement, this would be the party's own
* Diffie-Hellman private key.
* @param random the source of randomness
*
* @exception InvalidKeyException if the given key is
* inappropriate for this key agreement, e.g., is of the wrong type or
* has an incompatible algorithm type.
*/
protected void engineInit(Key key, SecureRandom random)
throws InvalidKeyException
{
try {
engineInit(key, null, random);
} catch (InvalidAlgorithmParameterException e) {
// never happens, because we did not pass any parameters
}
}
/**
* Initializes this key agreement with the given key, set of
* algorithm parameters, and source of randomness.
*
* @param key the party's private information. For example, in the case
* of the Diffie-Hellman key agreement, this would be the party's own
* Diffie-Hellman private key.
* @param params the key agreement parameters
* @param random the source of randomness
*
* @exception InvalidKeyException if the given key is
* inappropriate for this key agreement, e.g., is of the wrong type or
* has an incompatible algorithm type.
* @exception InvalidAlgorithmParameterException if the given parameters
* are inappropriate for this key agreement.
*/
protected void engineInit(Key key, AlgorithmParameterSpec params,
SecureRandom random)
throws InvalidKeyException, InvalidAlgorithmParameterException
{
// ignore "random" parameter, because our implementation does not
// require any source of randomness
generateSecret = false;
init_p = null;
init_g = null;
if ((params != null) && !(params instanceof DHParameterSpec)) {
throw new InvalidAlgorithmParameterException
("Diffie-Hellman parameters expected");
}
if (!(key instanceof javax.crypto.interfaces.DHPrivateKey)) {
throw new InvalidKeyException("Diffie-Hellman private key "
+ "expected");
}
javax.crypto.interfaces.DHPrivateKey dhPrivKey;
dhPrivKey = (javax.crypto.interfaces.DHPrivateKey)key;
// check if private key parameters are compatible with
// initialized ones
if (params != null) {
init_p = ((DHParameterSpec)params).getP();
init_g = ((DHParameterSpec)params).getG();
}
BigInteger priv_p = dhPrivKey.getParams().getP();
BigInteger priv_g = dhPrivKey.getParams().getG();
if (init_p != null && priv_p != null && !(init_p.equals(priv_p))) {
throw new InvalidKeyException("Incompatible parameters");
}
if (init_g != null && priv_g != null && !(init_g.equals(priv_g))) {
throw new InvalidKeyException("Incompatible parameters");
}
if ((init_p == null && priv_p == null)
|| (init_g == null && priv_g == null)) {
throw new InvalidKeyException("Missing parameters");
}
init_p = priv_p;
init_g = priv_g;
// store the x value
this.x = dhPrivKey.getX();
}
/**
* Executes the next phase of this key agreement with the given
* key that was received from one of the other parties involved in this key
* agreement.
*
* @param key the key for this phase. For example, in the case of
* Diffie-Hellman between 2 parties, this would be the other party's
* Diffie-Hellman public key.
* @param lastPhase flag which indicates whether or not this is the last
* phase of this key agreement.
*
* @return the (intermediate) key resulting from this phase, or null if
* this phase does not yield a key
*
* @exception InvalidKeyException if the given key is inappropriate for
* this phase.
* @exception IllegalStateException if this key agreement has not been
* initialized.
*/
protected Key engineDoPhase(Key key, boolean lastPhase)
throws InvalidKeyException, IllegalStateException
{
if (!(key instanceof javax.crypto.interfaces.DHPublicKey)) {
throw new InvalidKeyException("Diffie-Hellman public key "
+ "expected");
}
javax.crypto.interfaces.DHPublicKey dhPubKey;
dhPubKey = (javax.crypto.interfaces.DHPublicKey)key;
if (init_p == null || init_g == null) {
throw new IllegalStateException("Not initialized");
}
// check if public key parameters are compatible with
// initialized ones
BigInteger pub_p = dhPubKey.getParams().getP();
BigInteger pub_g = dhPubKey.getParams().getG();
if (pub_p != null && !(init_p.equals(pub_p))) {
throw new InvalidKeyException("Incompatible parameters");
}
if (pub_g != null && !(init_g.equals(pub_g))) {
throw new InvalidKeyException("Incompatible parameters");
}
// store the y value
this.y = dhPubKey.getY();
// we've received a public key (from one of the other parties),
// so we are ready to create the secret, which may be an
// intermediate secret, in which case we wrap it into a
// Diffie-Hellman public key object and return it.
generateSecret = true;
if (lastPhase == false) {
byte[] intermediate = engineGenerateSecret();
return new DHPublicKey(new BigInteger(1, intermediate),
init_p, init_g);
} else {
return null;
}
}
/**
* Generates the shared secret and returns it in a new buffer.
*
*
This method resets this KeyAgreementSpi object,
* so that it
* can be reused for further key agreements. Unless this key agreement is
* reinitialized with one of the engineInit methods, the same
* private information and algorithm parameters will be used for
* subsequent key agreements.
*
* @return the new buffer with the shared secret
*
* @exception IllegalStateException if this key agreement has not been
* completed yet
*/
protected byte[] engineGenerateSecret()
throws IllegalStateException
{
if (generateSecret == false) {
throw new IllegalStateException
("Key agreement has not been completed yet");
}
// Reset the key agreement here (in case anything goes wrong)
generateSecret = false;
// get the modulus
BigInteger modulus = init_p;
BigInteger tmpResult = y.modPow(x, modulus);
byte[] secret = tmpResult.toByteArray();
/*
* BigInteger.toByteArray will sometimes put a sign byte up front, but
* we NEVER want one.
*/
if ((tmpResult.bitLength() % 8) == 0) {
byte retval[] = new byte[secret.length - 1];
System.arraycopy(secret, 1, retval, 0, retval.length);
return retval;
} else {
return secret;
}
}
/**
* Generates the shared secret, and places it into the buffer
* sharedSecret, beginning at offset.
*
*
If the sharedSecret buffer is too small to hold the
* result, a ShortBufferException is thrown.
* In this case, this call should be repeated with a larger output buffer.
*
*
This method resets this KeyAgreementSpi object,
* so that it
* can be reused for further key agreements. Unless this key agreement is
* reinitialized with one of the engineInit methods, the same
* private information and algorithm parameters will be used for
* subsequent key agreements.
*
* @param sharedSecret the buffer for the shared secret
* @param offset the offset in sharedSecret where the
* shared secret will be stored
*
* @return the number of bytes placed into sharedSecret
*
* @exception IllegalStateException if this key agreement has not been
* completed yet
* @exception ShortBufferException if the given output buffer is too small
* to hold the secret
*/
protected int engineGenerateSecret(byte[] sharedSecret, int offset)
throws IllegalStateException, ShortBufferException
{
if (generateSecret == false) {
throw new IllegalStateException
("Key agreement has not been completed yet");
}
if (sharedSecret == null) {
throw new ShortBufferException
("No buffer provided for shared secret");
}
BigInteger modulus = init_p;
byte[] secret = this.y.modPow(this.x, modulus).toByteArray();
// BigInteger.toByteArray will sometimes put a sign byte up front,
// but we NEVER want one.
if ((secret.length << 3) != modulus.bitLength()) {
if ((sharedSecret.length - offset) < (secret.length - 1)) {
throw new ShortBufferException
("Buffer too short for shared secret");
}
System.arraycopy(secret, 1, sharedSecret, offset,
secret.length - 1);
// Reset the key agreement here (not earlier!), so that people
// can recover from ShortBufferException above without losing
// internal state
generateSecret = false;
return secret.length - 1;
} else {
if ((sharedSecret.length - offset) < secret.length) {
throw new ShortBufferException
("Buffer too short to hold shared secret");
}
System.arraycopy(secret, 0, sharedSecret, offset, secret.length);
// Reset the key agreement here (not earlier!), so that people
// can recover from ShortBufferException above without losing
// internal state
generateSecret = false;
return secret.length;
}
}
/**
* Creates the shared secret and returns it as a secret key object
* of the requested algorithm type.
*
*
This method resets this KeyAgreementSpi object,
* so that it
* can be reused for further key agreements. Unless this key agreement is
* reinitialized with one of the engineInit methods, the same
* private information and algorithm parameters will be used for
* subsequent key agreements.
*
* @param algorithm the requested secret key algorithm
*
* @return the shared secret key
*
* @exception IllegalStateException if this key agreement has not been
* completed yet
* @exception NoSuchAlgorithmException if the requested secret key
* algorithm is not available
* @exception InvalidKeyException if the shared secret key material cannot
* be used to generate a secret key of the requested algorithm type (e.g.,
* the key material is too short)
*/
protected SecretKey engineGenerateSecret(String algorithm)
throws IllegalStateException, NoSuchAlgorithmException,
InvalidKeyException
{
if (algorithm == null) {
throw new NoSuchAlgorithmException("null algorithm");
}
byte[] secret = engineGenerateSecret();
if (algorithm.equalsIgnoreCase("DES")) {
// DES
return new DESKey(secret);
} else if (algorithm.equalsIgnoreCase("DESede")
|| algorithm.equalsIgnoreCase("TripleDES")) {
// Triple DES
return new DESedeKey(secret);
} else if (algorithm.equalsIgnoreCase("Blowfish")) {
// Blowfish
int keysize = secret.length;
if (keysize >= BlowfishConstants.BLOWFISH_MAX_KEYSIZE)
keysize = BlowfishConstants.BLOWFISH_MAX_KEYSIZE;
SecretKeySpec skey = new SecretKeySpec(secret, 0, keysize,
"Blowfish");
return skey;
} else if (algorithm.equalsIgnoreCase("AES")) {
// AES
int keysize = secret.length;
SecretKeySpec skey = null;
int idx = AESConstants.AES_KEYSIZES.length - 1;
while (skey == null && idx >= 0) {
// Generate the strongest key using the shared secret
// assuming the key sizes in AESConstants class are
// in ascending order
if (keysize >= AESConstants.AES_KEYSIZES[idx]) {
keysize = AESConstants.AES_KEYSIZES[idx];
skey = new SecretKeySpec(secret, 0, keysize, "AES");
}
idx--;
}
if (skey == null) {
throw new InvalidKeyException("Key material is too short");
}
return skey;
} else if (algorithm.equals("TlsPremasterSecret")) {
// return entire secret
return new SecretKeySpec(secret, "TlsPremasterSecret");
} else {
throw new NoSuchAlgorithmException("Unsupported secret key "
+ "algorithm: "+ algorithm);
}
}
}