/*
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
package java.awt;
import java.awt.image.ColorModel;
import sun.awt.AWTAccessor;
import sun.awt.AppContext;
import sun.awt.SunToolkit;
/**
* The GraphicsDevice
class describes the graphics devices
* that might be available in a particular graphics environment. These
* include screen and printer devices. Note that there can be many screens
* and many printers in an instance of {@link GraphicsEnvironment}. Each
* graphics device has one or more {@link GraphicsConfiguration} objects
* associated with it. These objects specify the different configurations
* in which the GraphicsDevice
can be used.
*
* In a multi-screen environment, the GraphicsConfiguration
* objects can be used to render components on multiple screens. The
* following code sample demonstrates how to create a JFrame
* object for each GraphicsConfiguration
on each screen
* device in the GraphicsEnvironment
:
*
* GraphicsEnvironment ge = GraphicsEnvironment. * getLocalGraphicsEnvironment(); * GraphicsDevice[] gs = ge.getScreenDevices(); * for (int j = 0; j < gs.length; j++) { * GraphicsDevice gd = gs[j]; * GraphicsConfiguration[] gc = * gd.getConfigurations(); * for (int i=0; i < gc.length; i++) { * JFrame f = new * JFrame(gs[j].getDefaultConfiguration()); * Canvas c = new Canvas(gc[i]); * Rectangle gcBounds = gc[i].getBounds(); * int xoffs = gcBounds.x; * int yoffs = gcBounds.y; * f.getContentPane().add(c); * f.setLocation((i*50)+xoffs, (i*60)+yoffs); * f.show(); * } * } **
* For more information on full-screen exclusive mode API, see the
*
* Full-Screen Exclusive Mode API Tutorial.
*
* @see GraphicsEnvironment
* @see GraphicsConfiguration
*/
public abstract class GraphicsDevice {
private Window fullScreenWindow;
private AppContext fullScreenAppContext; // tracks which AppContext
// created the FS window
// this lock is used for making synchronous changes to the AppContext's
// current full screen window
private final Object fsAppContextLock = new Object();
private Rectangle windowedModeBounds;
/**
* This is an abstract class that cannot be instantiated directly.
* Instances must be obtained from a suitable factory or query method.
* @see GraphicsEnvironment#getScreenDevices
* @see GraphicsEnvironment#getDefaultScreenDevice
* @see GraphicsConfiguration#getDevice
*/
protected GraphicsDevice() {
}
/**
* Device is a raster screen.
*/
public final static int TYPE_RASTER_SCREEN = 0;
/**
* Device is a printer.
*/
public final static int TYPE_PRINTER = 1;
/**
* Device is an image buffer. This buffer can reside in device
* or system memory but it is not physically viewable by the user.
*/
public final static int TYPE_IMAGE_BUFFER = 2;
/**
* Kinds of translucency supported by the underlying system.
*
* @see #isWindowTranslucencySupported
*
* @since 1.7
*/
public static enum WindowTranslucency {
/**
* Represents support in the underlying system for windows each pixel
* of which is guaranteed to be either completely opaque, with
* an alpha value of 1.0, or completely transparent, with an alpha
* value of 0.0.
*/
PERPIXEL_TRANSPARENT,
/**
* Represents support in the underlying system for windows all of
* the pixels of which have the same alpha value between or including
* 0.0 and 1.0.
*/
TRANSLUCENT,
/**
* Represents support in the underlying system for windows that
* contain or might contain pixels with arbitrary alpha values
* between and including 0.0 and 1.0.
*/
PERPIXEL_TRANSLUCENT;
}
/**
* Returns the type of this GraphicsDevice
.
* @return the type of this GraphicsDevice
, which can
* either be TYPE_RASTER_SCREEN, TYPE_PRINTER or TYPE_IMAGE_BUFFER.
* @see #TYPE_RASTER_SCREEN
* @see #TYPE_PRINTER
* @see #TYPE_IMAGE_BUFFER
*/
public abstract int getType();
/**
* Returns the identification string associated with this
* GraphicsDevice
.
*
* A particular program might use more than one
* GraphicsDevice
in a GraphicsEnvironment
.
* This method returns a String
identifying a
* particular GraphicsDevice
in the local
* GraphicsEnvironment
. Although there is
* no public method to set this String
, a programmer can
* use the String
for debugging purposes. Vendors of
* the JavaTM Runtime Environment can
* format the return value of the String
. To determine
* how to interpret the value of the String
, contact the
* vendor of your Java Runtime. To find out who the vendor is, from
* your program, call the
* {@link System#getProperty(String) getProperty} method of the
* System class with "java.vendor".
* @return a String
that is the identification
* of this GraphicsDevice
.
*/
public abstract String getIDstring();
/**
* Returns all of the GraphicsConfiguration
* objects associated with this GraphicsDevice
.
* @return an array of GraphicsConfiguration
* objects that are associated with this
* GraphicsDevice
.
*/
public abstract GraphicsConfiguration[] getConfigurations();
/**
* Returns the default GraphicsConfiguration
* associated with this GraphicsDevice
.
* @return the default GraphicsConfiguration
* of this GraphicsDevice
.
*/
public abstract GraphicsConfiguration getDefaultConfiguration();
/**
* Returns the "best" configuration possible that passes the
* criteria defined in the {@link GraphicsConfigTemplate}.
* @param gct the GraphicsConfigTemplate
object
* used to obtain a valid GraphicsConfiguration
* @return a GraphicsConfiguration
that passes
* the criteria defined in the specified
* GraphicsConfigTemplate
.
* @see GraphicsConfigTemplate
*/
public GraphicsConfiguration
getBestConfiguration(GraphicsConfigTemplate gct) {
GraphicsConfiguration[] configs = getConfigurations();
return gct.getBestConfiguration(configs);
}
/**
* Returns true
if this GraphicsDevice
* supports full-screen exclusive mode.
* If a SecurityManager is installed, its
* checkPermission
method will be called
* with AWTPermission("fullScreenExclusive")
.
* isFullScreenSupported
returns true only if
* that permission is granted.
* @return whether full-screen exclusive mode is available for
* this graphics device
* @see java.awt.AWTPermission
* @since 1.4
*/
public boolean isFullScreenSupported() {
return false;
}
/**
* Enter full-screen mode, or return to windowed mode. The entered
* full-screen mode may be either exclusive or simulated. Exclusive
* mode is only available if isFullScreenSupported
* returns true
.
*
* Exclusive mode implies: *
Component.enableInputMethods(false)
to make a component
* a non-client of the input method framework.
* * Simulated full-screen mode resizes * the window to the size of the screen and positions it at (0,0). *
* When entering full-screen mode, if the window to be used as the * full-screen window is not visible, this method will make it visible. * It will remain visible when returning to windowed mode. *
* When entering full-screen mode, all the translucency effects are reset for * the window. Its shape is set to {@code null}, the opacity value is set to * 1.0f, and the background color alpha is set to 255 (completely opaque). * These values are not restored when returning to windowed mode. *
* When returning to windowed mode from an exclusive full-screen window,
* any display changes made by calling {@code setDisplayMode} are
* automatically restored to their original state.
*
* @param w a window to use as the full-screen window; {@code null}
* if returning to windowed mode. Some platforms expect the
* fullscreen window to be a top-level component (i.e., a Frame);
* therefore it is preferable to use a Frame here rather than a
* Window.
*
* @see #isFullScreenSupported
* @see #getFullScreenWindow
* @see #setDisplayMode
* @see Component#enableInputMethods
* @see Component#setVisible
*
* @since 1.4
*/
public void setFullScreenWindow(Window w) {
if (w != null) {
if (w.getShape() != null) {
w.setShape(null);
}
if (w.getOpacity() < 1.0f) {
w.setOpacity(1.0f);
}
Color bgColor = w.getBackground();
if ((bgColor != null) && (bgColor.getAlpha() < 255)) {
bgColor = new Color(bgColor.getRed(), bgColor.getGreen(),
bgColor.getBlue(), 255);
w.setBackground(bgColor);
}
}
if (fullScreenWindow != null && windowedModeBounds != null) {
// if the window went into fs mode before it was realized it may
// have (0,0) dimensions
if (windowedModeBounds.width == 0) windowedModeBounds.width = 1;
if (windowedModeBounds.height == 0) windowedModeBounds.height = 1;
fullScreenWindow.setBounds(windowedModeBounds);
}
// Set the full screen window
synchronized (fsAppContextLock) {
// Associate fullscreen window with current AppContext
if (w == null) {
fullScreenAppContext = null;
} else {
fullScreenAppContext = AppContext.getAppContext();
}
fullScreenWindow = w;
}
if (fullScreenWindow != null) {
windowedModeBounds = fullScreenWindow.getBounds();
// Note that we use the graphics configuration of the device,
// not the window's, because we're setting the fs window for
// this device.
Rectangle screenBounds = getDefaultConfiguration().getBounds();
fullScreenWindow.setBounds(screenBounds.x, screenBounds.y,
screenBounds.width, screenBounds.height);
fullScreenWindow.setVisible(true);
fullScreenWindow.toFront();
}
}
/**
* Returns the Window
object representing the
* full-screen window if the device is in full-screen mode.
*
* @return the full-screen window, or null
if the device is
* not in full-screen mode.
* @see #setFullScreenWindow(Window)
* @since 1.4
*/
public Window getFullScreenWindow() {
Window returnWindow = null;
synchronized (fsAppContextLock) {
// Only return a handle to the current fs window if we are in the
// same AppContext that set the fs window
if (fullScreenAppContext == AppContext.getAppContext()) {
returnWindow = fullScreenWindow;
}
}
return returnWindow;
}
/**
* Returns true
if this GraphicsDevice
* supports low-level display changes.
* On some platforms low-level display changes may only be allowed in
* full-screen exclusive mode (i.e., if {@link #isFullScreenSupported()}
* returns {@code true} and the application has already entered
* full-screen mode using {@link #setFullScreenWindow}).
* @return whether low-level display changes are supported for this
* graphics device.
* @see #isFullScreenSupported
* @see #setDisplayMode
* @see #setFullScreenWindow
* @since 1.4
*/
public boolean isDisplayChangeSupported() {
return false;
}
/**
* Sets the display mode of this graphics device. This is only allowed
* if {@link #isDisplayChangeSupported()} returns {@code true} and may
* require first entering full-screen exclusive mode using
* {@link #setFullScreenWindow} providing that full-screen exclusive mode is
* supported (i.e., {@link #isFullScreenSupported()} returns
* {@code true}).
*
* * The display mode must be one of the display modes returned by * {@link #getDisplayModes()}, with one exception: passing a display mode * with {@link DisplayMode#REFRESH_RATE_UNKNOWN} refresh rate will result in * selecting a display mode from the list of available display modes with * matching width, height and bit depth. * However, passing a display mode with {@link DisplayMode#BIT_DEPTH_MULTI} * for bit depth is only allowed if such mode exists in the list returned by * {@link #getDisplayModes()}. *
* Example code: *
* Frame frame;
* DisplayMode newDisplayMode;
* GraphicsDevice gd;
* // create a Frame, select desired DisplayMode from the list of modes
* // returned by gd.getDisplayModes() ...
*
* if (gd.isFullScreenSupported()) {
* gd.setFullScreenWindow(frame);
* } else {
* // proceed in non-full-screen mode
* frame.setSize(...);
* frame.setLocation(...);
* frame.setVisible(true);
* }
*
* if (gd.isDisplayChangeSupported()) {
* gd.setDisplayMode(newDisplayMode);
* }
*
*
* @param dm The new display mode of this graphics device.
* @exception IllegalArgumentException if the DisplayMode
* supplied is null
, or is not available in the array returned
* by getDisplayModes
* @exception UnsupportedOperationException if
* isDisplayChangeSupported
returns false
* @see #getDisplayMode
* @see #getDisplayModes
* @see #isDisplayChangeSupported
* @since 1.4
*/
public void setDisplayMode(DisplayMode dm) {
throw new UnsupportedOperationException("Cannot change display mode");
}
/**
* Returns the current display mode of this
* GraphicsDevice
.
* The returned display mode is allowed to have a refresh rate
* {@link DisplayMode#REFRESH_RATE_UNKNOWN} if it is indeterminate.
* Likewise, the returned display mode is allowed to have a bit depth
* {@link DisplayMode#BIT_DEPTH_MULTI} if it is indeterminate or if multiple
* bit depths are supported.
* @return the current display mode of this graphics device.
* @see #setDisplayMode(DisplayMode)
* @since 1.4
*/
public DisplayMode getDisplayMode() {
GraphicsConfiguration gc = getDefaultConfiguration();
Rectangle r = gc.getBounds();
ColorModel cm = gc.getColorModel();
return new DisplayMode(r.width, r.height, cm.getPixelSize(), 0);
}
/**
* Returns all display modes available for this
* GraphicsDevice
.
* The returned display modes are allowed to have a refresh rate
* {@link DisplayMode#REFRESH_RATE_UNKNOWN} if it is indeterminate.
* Likewise, the returned display modes are allowed to have a bit depth
* {@link DisplayMode#BIT_DEPTH_MULTI} if it is indeterminate or if multiple
* bit depths are supported.
* @return all of the display modes available for this graphics device.
* @since 1.4
*/
public DisplayMode[] getDisplayModes() {
return new DisplayMode[] { getDisplayMode() };
}
/**
* This method returns the number of bytes available in
* accelerated memory on this device.
* Some images are created or cached
* in accelerated memory on a first-come,
* first-served basis. On some operating systems,
* this memory is a finite resource. Calling this method
* and scheduling the creation and flushing of images carefully may
* enable applications to make the most efficient use of
* that finite resource.
*