/* * Copyright 1995-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package java.lang; import java.security.*; import java.io.FileDescriptor; import java.io.File; import java.io.FilePermission; import java.awt.AWTPermission; import java.util.PropertyPermission; import java.lang.RuntimePermission; import java.net.SocketPermission; import java.net.NetPermission; import java.util.Hashtable; import java.net.InetAddress; import java.lang.reflect.Member; import java.lang.reflect.*; import java.net.URL; import sun.security.util.SecurityConstants; /** * The security manager is a class that allows * applications to implement a security policy. It allows an * application to determine, before performing a possibly unsafe or * sensitive operation, what the operation is and whether * it is being attempted in a security context that allows the * operation to be performed. The * application can allow or disallow the operation. *
* The SecurityManager
class contains many methods with
* names that begin with the word check
. These methods
* are called by various methods in the Java libraries before those
* methods perform certain potentially sensitive operations. The
* invocation of such a check
method typically looks like this:
*
** SecurityManager security = System.getSecurityManager(); * if (security != null) { * security.checkXXX(argument, . . . ); * } *
* The security manager is thereby given an opportunity to prevent
* completion of the operation by throwing an exception. A security
* manager routine simply returns if the operation is permitted, but
* throws a SecurityException
if the operation is not
* permitted. The only exception to this convention is
* checkTopLevelWindow
, which returns a
* boolean
value.
*
* The current security manager is set by the
* setSecurityManager
method in class
* System
. The current security manager is obtained
* by the getSecurityManager
method.
*
* The special method * {@link SecurityManager#checkPermission(java.security.Permission)} * determines whether an access request indicated by a specified * permission should be granted or denied. The * default implementation calls * *
* AccessController.checkPermission(perm); ** *
* If a requested access is allowed,
* checkPermission
returns quietly. If denied, a
* SecurityException
is thrown.
*
* As of Java 2 SDK v1.2, the default implementation of each of the other
* check
methods in SecurityManager
is to
* call the SecurityManager checkPermission
method
* to determine if the calling thread has permission to perform the requested
* operation.
*
* Note that the checkPermission
method with
* just a single permission argument always performs security checks
* within the context of the currently executing thread.
* Sometimes a security check that should be made within a given context
* will actually need to be done from within a
* different context (for example, from within a worker thread).
* The {@link SecurityManager#getSecurityContext getSecurityContext} method
* and the {@link SecurityManager#checkPermission(java.security.Permission,
* java.lang.Object) checkPermission}
* method that includes a context argument are provided
* for this situation. The
* getSecurityContext
method returns a "snapshot"
* of the current calling context. (The default implementation
* returns an AccessControlContext object.) A sample call is
* the following:
*
*
* Object context = null; * SecurityManager sm = System.getSecurityManager(); * if (sm != null) context = sm.getSecurityContext(); ** *
* The checkPermission
method
* that takes a context object in addition to a permission
* makes access decisions based on that context,
* rather than on that of the current execution thread.
* Code within a different context can thus call that method,
* passing the permission and the
* previously-saved context object. A sample call, using the
* SecurityManager sm
obtained as in the previous example,
* is the following:
*
*
* if (sm != null) sm.checkPermission(permission, context); ** *
Permissions fall into these categories: File, Socket, Net,
* Security, Runtime, Property, AWT, Reflect, and Serializable.
* The classes managing these various
* permission categories are java.io.FilePermission
,
* java.net.SocketPermission
,
* java.net.NetPermission
,
* java.security.SecurityPermission
,
* java.lang.RuntimePermission
,
* java.util.PropertyPermission
,
* java.awt.AWTPermission
,
* java.lang.reflect.ReflectPermission
, and
* java.io.SerializablePermission
.
*
*
All but the first two (FilePermission and SocketPermission) are
* subclasses of java.security.BasicPermission
, which itself
* is an abstract subclass of the
* top-level class for permissions, which is
* java.security.Permission
. BasicPermission defines the
* functionality needed for all permissions that contain a name
* that follows the hierarchical property naming convention
* (for example, "exitVM", "setFactory", "queuePrintJob", etc).
* An asterisk
* may appear at the end of the name, following a ".", or by itself, to
* signify a wildcard match. For example: "a.*" or "*" is valid,
* "*a" or "a*b" is not valid.
*
*
FilePermission and SocketPermission are subclasses of the
* top-level class for permissions
* (java.security.Permission
). Classes like these
* that have a more complicated name syntax than that used by
* BasicPermission subclass directly from Permission rather than from
* BasicPermission. For example,
* for a java.io.FilePermission
object, the permission name is
* the path name of a file (or directory).
*
*
Some of the permission classes have an "actions" list that tells
* the actions that are permitted for the object. For example,
* for a java.io.FilePermission
object, the actions list
* (such as "read, write") specifies which actions are granted for the
* specified file (or for files in the specified directory).
*
*
Other permission classes are for "named" permissions - * ones that contain a name but no actions list; you either have the * named permission or you don't. * *
Note: There is also a java.security.AllPermission
* permission that implies all permissions. It exists to simplify the work
* of system administrators who might need to perform multiple
* tasks that require all (or numerous) permissions.
*
* See
* Permissions in the JDK for permission-related information.
* This document includes, for example, a table listing the various SecurityManager
* check
methods and the permission(s) the default
* implementation of each such method requires.
* It also contains a table of all the version 1.2 methods
* that require permissions, and for each such method tells
* which permission it requires.
*
* For more information about SecurityManager
changes made in
* the JDK and advice regarding porting of 1.1-style security managers,
* see the security documentation.
*
* @author Arthur van Hoff
* @author Roland Schemers
*
* @see java.lang.ClassLoader
* @see java.lang.SecurityException
* @see java.lang.SecurityManager#checkTopLevelWindow(java.lang.Object)
* checkTopLevelWindow
* @see java.lang.System#getSecurityManager() getSecurityManager
* @see java.lang.System#setSecurityManager(java.lang.SecurityManager)
* setSecurityManager
* @see java.security.AccessController AccessController
* @see java.security.AccessControlContext AccessControlContext
* @see java.security.AccessControlException AccessControlException
* @see java.security.Permission
* @see java.security.BasicPermission
* @see java.io.FilePermission
* @see java.net.SocketPermission
* @see java.util.PropertyPermission
* @see java.lang.RuntimePermission
* @see java.awt.AWTPermission
* @see java.security.Policy Policy
* @see java.security.SecurityPermission SecurityPermission
* @see java.security.ProtectionDomain
*
* @since JDK1.0
*/
public
class SecurityManager {
/**
* This field is true
if there is a security check in
* progress; false
otherwise.
*
* @deprecated This type of security checking is not recommended.
* It is recommended that the checkPermission
* call be used instead.
*/
@Deprecated
protected boolean inCheck;
/*
* Have we been initialized. Effective against finalizer attacks.
*/
private boolean initialized = false;
/**
* returns true if the current context has been granted AllPermission
*/
private boolean hasAllPermission()
{
try {
checkPermission(SecurityConstants.ALL_PERMISSION);
return true;
} catch (SecurityException se) {
return false;
}
}
/**
* Tests if there is a security check in progress.
*
* @return the value of the inCheck
field. This field
* should contain true
if a security check is
* in progress,
* false
otherwise.
* @see java.lang.SecurityManager#inCheck
* @deprecated This type of security checking is not recommended.
* It is recommended that the checkPermission
* call be used instead.
*/
@Deprecated
public boolean getInCheck() {
return inCheck;
}
/**
* Constructs a new SecurityManager
.
*
*
If there is a security manager already installed, this method first
* calls the security manager's checkPermission
method
* with the RuntimePermission("createSecurityManager")
* permission to ensure the calling thread has permission to create a new
* security manager.
* This may result in throwing a SecurityException
.
*
* @exception java.lang.SecurityException if a security manager already
* exists and its checkPermission
method
* doesn't allow creation of a new security manager.
* @see java.lang.System#getSecurityManager()
* @see #checkPermission(java.security.Permission) checkPermission
* @see java.lang.RuntimePermission
*/
public SecurityManager() {
synchronized(SecurityManager.class) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
// ask the currently installed security manager if we
// can create a new one.
sm.checkPermission(new RuntimePermission
("createSecurityManager"));
}
initialized = true;
}
}
/**
* Returns the current execution stack as an array of classes.
*
* The length of the array is the number of methods on the execution
* stack. The element at index 0
is the class of the
* currently executing method, the element at index 1
is
* the class of that method's caller, and so on.
*
* @return the execution stack.
*/
protected native Class[] getClassContext();
/**
* Returns the class loader of the most recently executing method from
* a class defined using a non-system class loader. A non-system
* class loader is defined as being a class loader that is not equal to
* the system class loader (as returned
* by {@link ClassLoader#getSystemClassLoader}) or one of its ancestors.
*
* This method will return
* null
in the following three cases:
*
checkPermission
with
* java.security.AllPermission
does not
* result in a SecurityException.
*
* checkPermission
* call be used instead.
*
* @see java.lang.ClassLoader#getSystemClassLoader() getSystemClassLoader
* @see #checkPermission(java.security.Permission) checkPermission
*/
@Deprecated
protected ClassLoader currentClassLoader()
{
ClassLoader cl = currentClassLoader0();
if ((cl != null) && hasAllPermission())
cl = null;
return cl;
}
private native ClassLoader currentClassLoader0();
/**
* Returns the class of the most recently executing method from
* a class defined using a non-system class loader. A non-system
* class loader is defined as being a class loader that is not equal to
* the system class loader (as returned
* by {@link ClassLoader#getSystemClassLoader}) or one of its ancestors.
*
* This method will return
* null
in the following three cases:
*
checkPermission
with
* java.security.AllPermission
does not
* result in a SecurityException.
*
* checkPermission
* call be used instead.
*
* @see java.lang.ClassLoader#getSystemClassLoader() getSystemClassLoader
* @see #checkPermission(java.security.Permission) checkPermission
*/
@Deprecated
protected Class> currentLoadedClass() {
Class c = currentLoadedClass0();
if ((c != null) && hasAllPermission())
c = null;
return c;
}
/**
* Returns the stack depth of the specified class.
*
* @param name the fully qualified name of the class to search for.
* @return the depth on the stack frame of the first occurrence of a
* method from a class with the specified name;
* -1
if such a frame cannot be found.
* @deprecated This type of security checking is not recommended.
* It is recommended that the checkPermission
* call be used instead.
*
*/
@Deprecated
protected native int classDepth(String name);
/**
* Returns the stack depth of the most recently executing method
* from a class defined using a non-system class loader. A non-system
* class loader is defined as being a class loader that is not equal to
* the system class loader (as returned
* by {@link ClassLoader#getSystemClassLoader}) or one of its ancestors.
* * This method will return * -1 in the following three cases:
*
checkPermission
with
* java.security.AllPermission
does not
* result in a SecurityException.
*
* checkPermission
* call be used instead.
*
* @see java.lang.ClassLoader#getSystemClassLoader() getSystemClassLoader
* @see #checkPermission(java.security.Permission) checkPermission
*/
@Deprecated
protected int classLoaderDepth()
{
int depth = classLoaderDepth0();
if (depth != -1) {
if (hasAllPermission())
depth = -1;
else
depth--; // make sure we don't include ourself
}
return depth;
}
private native int classLoaderDepth0();
/**
* Tests if a method from a class with the specified
* name is on the execution stack.
*
* @param name the fully qualified name of the class.
* @return true
if a method from a class with the specified
* name is on the execution stack; false
otherwise.
* @deprecated This type of security checking is not recommended.
* It is recommended that the checkPermission
* call be used instead.
*/
@Deprecated
protected boolean inClass(String name) {
return classDepth(name) >= 0;
}
/**
* Basically, tests if a method from a class defined using a
* class loader is on the execution stack.
*
* @return true
if a call to currentClassLoader
* has a non-null return value.
*
* @deprecated This type of security checking is not recommended.
* It is recommended that the checkPermission
* call be used instead.
* @see #currentClassLoader() currentClassLoader
*/
@Deprecated
protected boolean inClassLoader() {
return currentClassLoader() != null;
}
/**
* Creates an object that encapsulates the current execution
* environment. The result of this method is used, for example, by the
* three-argument checkConnect
method and by the
* two-argument checkRead
method.
* These methods are needed because a trusted method may be called
* on to read a file or open a socket on behalf of another method.
* The trusted method needs to determine if the other (possibly
* untrusted) method would be allowed to perform the operation on its
* own.
* The default implementation of this method is to return
* an AccessControlContext
object.
*
* @return an implementation-dependent object that encapsulates
* sufficient information about the current execution environment
* to perform some security checks later.
* @see java.lang.SecurityManager#checkConnect(java.lang.String, int,
* java.lang.Object) checkConnect
* @see java.lang.SecurityManager#checkRead(java.lang.String,
* java.lang.Object) checkRead
* @see java.security.AccessControlContext AccessControlContext
*/
public Object getSecurityContext() {
return AccessController.getContext();
}
/**
* Throws a SecurityException
if the requested
* access, specified by the given permission, is not permitted based
* on the security policy currently in effect.
*
* This method calls AccessController.checkPermission
* with the given permission.
*
* @param perm the requested permission.
* @exception SecurityException if access is not permitted based on
* the current security policy.
* @exception NullPointerException if the permission argument is
* null
.
* @since 1.2
*/
public void checkPermission(Permission perm) {
java.security.AccessController.checkPermission(perm);
}
/**
* Throws a SecurityException
if the
* specified security context is denied access to the resource
* specified by the given permission.
* The context must be a security
* context returned by a previous call to
* getSecurityContext
and the access control
* decision is based upon the configured security policy for
* that security context.
*
* If context
is an instance of
* AccessControlContext
then the
* AccessControlContext.checkPermission
method is
* invoked with the specified permission.
*
* If context
is not an instance of
* AccessControlContext
then a
* SecurityException
is thrown.
*
* @param perm the specified permission
* @param context a system-dependent security context.
* @exception SecurityException if the specified security context
* is not an instance of AccessControlContext
* (e.g., is null
), or is denied access to the
* resource specified by the given permission.
* @exception NullPointerException if the permission argument is
* null
.
* @see java.lang.SecurityManager#getSecurityContext()
* @see java.security.AccessControlContext#checkPermission(java.security.Permission)
* @since 1.2
*/
public void checkPermission(Permission perm, Object context) {
if (context instanceof AccessControlContext) {
((AccessControlContext)context).checkPermission(perm);
} else {
throw new SecurityException();
}
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to create a new class loader.
*
* This method calls checkPermission
with the
* RuntimePermission("createClassLoader")
* permission.
*
* If you override this method, then you should make a call to
* super.checkCreateClassLoader
* at the point the overridden method would normally throw an
* exception.
*
* @exception SecurityException if the calling thread does not
* have permission
* to create a new class loader.
* @see java.lang.ClassLoader#ClassLoader()
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkCreateClassLoader() {
checkPermission(SecurityConstants.CREATE_CLASSLOADER_PERMISSION);
}
/**
* reference to the root thread group, used for the checkAccess
* methods.
*/
private static ThreadGroup rootGroup = getRootGroup();
private static ThreadGroup getRootGroup() {
ThreadGroup root = Thread.currentThread().getThreadGroup();
while (root.getParent() != null) {
root = root.getParent();
}
return root;
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to modify the thread argument.
*
* This method is invoked for the current security manager by the
* stop
, suspend
, resume
,
* setPriority
, setName
, and
* setDaemon
methods of class Thread
.
*
* If the thread argument is a system thread (belongs to
* the thread group with a null
parent) then
* this method calls checkPermission
with the
* RuntimePermission("modifyThread")
permission.
* If the thread argument is not a system thread,
* this method just returns silently.
*
* Applications that want a stricter policy should override this
* method. If this method is overridden, the method that overrides
* it should additionally check to see if the calling thread has the
* RuntimePermission("modifyThread")
permission, and
* if so, return silently. This is to ensure that code granted
* that permission (such as the JDK itself) is allowed to
* manipulate any thread.
*
* If this method is overridden, then
* super.checkAccess
should
* be called by the first statement in the overridden method, or the
* equivalent security check should be placed in the overridden method.
*
* @param t the thread to be checked.
* @exception SecurityException if the calling thread does not have
* permission to modify the thread.
* @exception NullPointerException if the thread argument is
* null
.
* @see java.lang.Thread#resume() resume
* @see java.lang.Thread#setDaemon(boolean) setDaemon
* @see java.lang.Thread#setName(java.lang.String) setName
* @see java.lang.Thread#setPriority(int) setPriority
* @see java.lang.Thread#stop() stop
* @see java.lang.Thread#suspend() suspend
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkAccess(Thread t) {
if (t == null) {
throw new NullPointerException("thread can't be null");
}
if (t.getThreadGroup() == rootGroup) {
checkPermission(SecurityConstants.MODIFY_THREAD_PERMISSION);
} else {
// just return
}
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to modify the thread group argument.
*
* This method is invoked for the current security manager when a
* new child thread or child thread group is created, and by the
* setDaemon
, setMaxPriority
,
* stop
, suspend
, resume
, and
* destroy
methods of class ThreadGroup
.
*
* If the thread group argument is the system thread group (
* has a null
parent) then
* this method calls checkPermission
with the
* RuntimePermission("modifyThreadGroup")
permission.
* If the thread group argument is not the system thread group,
* this method just returns silently.
*
* Applications that want a stricter policy should override this
* method. If this method is overridden, the method that overrides
* it should additionally check to see if the calling thread has the
* RuntimePermission("modifyThreadGroup")
permission, and
* if so, return silently. This is to ensure that code granted
* that permission (such as the JDK itself) is allowed to
* manipulate any thread.
*
* If this method is overridden, then
* super.checkAccess
should
* be called by the first statement in the overridden method, or the
* equivalent security check should be placed in the overridden method.
*
* @param g the thread group to be checked.
* @exception SecurityException if the calling thread does not have
* permission to modify the thread group.
* @exception NullPointerException if the thread group argument is
* null
.
* @see java.lang.ThreadGroup#destroy() destroy
* @see java.lang.ThreadGroup#resume() resume
* @see java.lang.ThreadGroup#setDaemon(boolean) setDaemon
* @see java.lang.ThreadGroup#setMaxPriority(int) setMaxPriority
* @see java.lang.ThreadGroup#stop() stop
* @see java.lang.ThreadGroup#suspend() suspend
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkAccess(ThreadGroup g) {
if (g == null) {
throw new NullPointerException("thread group can't be null");
}
if (g == rootGroup) {
checkPermission(SecurityConstants.MODIFY_THREADGROUP_PERMISSION);
} else {
// just return
}
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to cause the Java Virtual Machine to
* halt with the specified status code.
*
* This method is invoked for the current security manager by the
* exit
method of class Runtime
. A status
* of 0
indicates success; other values indicate various
* errors.
*
* This method calls checkPermission
with the
* RuntimePermission("exitVM."+status)
permission.
*
* If you override this method, then you should make a call to
* super.checkExit
* at the point the overridden method would normally throw an
* exception.
*
* @param status the exit status.
* @exception SecurityException if the calling thread does not have
* permission to halt the Java Virtual Machine with
* the specified status.
* @see java.lang.Runtime#exit(int) exit
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkExit(int status) {
checkPermission(new RuntimePermission("exitVM."+status));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to create a subprocess.
*
* This method is invoked for the current security manager by the
* exec
methods of class Runtime
.
*
* This method calls checkPermission
with the
* FilePermission(cmd,"execute")
permission
* if cmd is an absolute path, otherwise it calls
* checkPermission
with
* FilePermission("<<ALL FILES>>","execute")
.
*
* If you override this method, then you should make a call to
*
* This method is invoked for the current security manager by
* methods
* This method calls
* If you override this method, then you should make a call to
*
* This method calls
* If you override this method, then you should make a call to
*
* This method calls
* If you override this method, then you should make a call to
* If If
* If you override this method, then you should make a call to
*
* This method calls
* If you override this method, then you should make a call to
*
* This method calls
* If you override this method, then you should make a call to
*
* This method is invoked for the current security manager by the
*
* This method calls
* If you override this method, then you should make a call to
*
* A port number of
* This method calls
* If you override this method, then you should make a call to
*
* A port number of If
* Otherwise, the port number is checked. If it is not equal
* to -1, the
* If you override this method, then you should make a call to
*
* If port is not 0, this method calls
*
* If you override this method, then you should make a call to
*
* This method is invoked for the current security manager by the
*
* This method calls
* If you override this method, then you should make a call to
*
* This method calls
* If you override this method, then you should make a call to
*
* This method calls
* If you override this method, then you should make a call to
*
* This method is used by the
* This method calls
* If you override this method, then you should make a call to
*
*
* @exception SecurityException if the calling thread does not have
* permission to access or modify the system properties.
* @see java.lang.System#getProperties()
* @see java.lang.System#setProperties(java.util.Properties)
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkPropertiesAccess() {
checkPermission(new PropertyPermission("*",
SecurityConstants.PROPERTY_RW_ACTION));
}
/**
* Throws a
* This method is used by the
* This method calls
*
* If you override this method, then you should make a call to
*
* See class
* This method calls
*
* If you override this method, then you should make a call to
*
* This method calls
*
* If you override this method, then you should make a call to
*
*
* @exception SecurityException if the calling thread does not have
* permission to initiate a print job request.
* @since JDK1.1
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkPrintJobAccess() {
checkPermission(new RuntimePermission("queuePrintJob"));
}
/**
* Throws a
* This method calls
* If you override this method, then you should make a call to
*
* This method calls
* If you override this method, then you should make a call to
*
* This method is used by the
* This method first gets a list of
* restricted packages by obtaining a comma-separated list from
* a call to
*
* If this method is overridden, then
*
* This method is used by the
* This method first gets a list of restricted packages by
* obtaining a comma-separated list from a call to
*
* If this method is overridden, then
*
* This method calls
* If you override this method, then you should make a call to
*
*
* @exception SecurityException if the calling thread does not have
* permission to specify a socket factory or a stream
* handler factory.
*
* @see java.net.ServerSocket#setSocketFactory(java.net.SocketImplFactory) setSocketFactory
* @see java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory) setSocketImplFactory
* @see java.net.URL#setURLStreamHandlerFactory(java.net.URLStreamHandlerFactory) setURLStreamHandlerFactory
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkSetFactory() {
checkPermission(new RuntimePermission("setFactory"));
}
/**
* Throws a
* The default policy is to allow access to PUBLIC members, as well
* as access to classes that have the same class loader as the caller.
* In all other cases, this method calls
* If this method is overridden, then a call to
* If the requested permission is allowed, this method returns
* quietly. If denied, a SecurityException is raised.
*
* This method creates a See the documentation for
* If you override this method, then you should make a call to
* super.checkExec
* at the point the overridden method would normally throw an
* exception.
*
* @param cmd the specified system command.
* @exception SecurityException if the calling thread does not have
* permission to create a subprocess.
* @exception NullPointerException if the cmd
argument is
* null
.
* @see java.lang.Runtime#exec(java.lang.String)
* @see java.lang.Runtime#exec(java.lang.String, java.lang.String[])
* @see java.lang.Runtime#exec(java.lang.String[])
* @see java.lang.Runtime#exec(java.lang.String[], java.lang.String[])
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkExec(String cmd) {
File f = new File(cmd);
if (f.isAbsolute()) {
checkPermission(new FilePermission(cmd,
SecurityConstants.FILE_EXECUTE_ACTION));
} else {
checkPermission(new FilePermission("<SecurityException
if the
* calling thread is not allowed to dynamic link the library code
* specified by the string argument file. The argument is either a
* simple library name or a complete filename.
* load
and loadLibrary
of class
* Runtime
.
* checkPermission
with the
* RuntimePermission("loadLibrary."+lib)
permission.
* super.checkLink
* at the point the overridden method would normally throw an
* exception.
*
* @param lib the name of the library.
* @exception SecurityException if the calling thread does not have
* permission to dynamically link the library.
* @exception NullPointerException if the lib
argument is
* null
.
* @see java.lang.Runtime#load(java.lang.String)
* @see java.lang.Runtime#loadLibrary(java.lang.String)
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkLink(String lib) {
if (lib == null) {
throw new NullPointerException("library can't be null");
}
checkPermission(new RuntimePermission("loadLibrary."+lib));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to read from the specified file
* descriptor.
* checkPermission
with the
* RuntimePermission("readFileDescriptor")
* permission.
* super.checkRead
* at the point the overridden method would normally throw an
* exception.
*
* @param fd the system-dependent file descriptor.
* @exception SecurityException if the calling thread does not have
* permission to access the specified file descriptor.
* @exception NullPointerException if the file descriptor argument is
* null
.
* @see java.io.FileDescriptor
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkRead(FileDescriptor fd) {
if (fd == null) {
throw new NullPointerException("file descriptor can't be null");
}
checkPermission(new RuntimePermission("readFileDescriptor"));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to read the file specified by the
* string argument.
* checkPermission
with the
* FilePermission(file,"read")
permission.
* super.checkRead
* at the point the overridden method would normally throw an
* exception.
*
* @param file the system-dependent file name.
* @exception SecurityException if the calling thread does not have
* permission to access the specified file.
* @exception NullPointerException if the file
argument is
* null
.
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkRead(String file) {
checkPermission(new FilePermission(file,
SecurityConstants.FILE_READ_ACTION));
}
/**
* Throws a SecurityException
if the
* specified security context is not allowed to read the file
* specified by the string argument. The context must be a security
* context returned by a previous call to
* getSecurityContext
.
* context
is an instance of
* AccessControlContext
then the
* AccessControlContext.checkPermission
method will
* be invoked with the FilePermission(file,"read")
permission.
* context
is not an instance of
* AccessControlContext
then a
* SecurityException
is thrown.
* super.checkRead
* at the point the overridden method would normally throw an
* exception.
*
* @param file the system-dependent filename.
* @param context a system-dependent security context.
* @exception SecurityException if the specified security context
* is not an instance of AccessControlContext
* (e.g., is null
), or does not have permission
* to read the specified file.
* @exception NullPointerException if the file
argument is
* null
.
* @see java.lang.SecurityManager#getSecurityContext()
* @see java.security.AccessControlContext#checkPermission(java.security.Permission)
*/
public void checkRead(String file, Object context) {
checkPermission(
new FilePermission(file, SecurityConstants.FILE_READ_ACTION),
context);
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to write to the specified file
* descriptor.
* checkPermission
with the
* RuntimePermission("writeFileDescriptor")
* permission.
* super.checkWrite
* at the point the overridden method would normally throw an
* exception.
*
* @param fd the system-dependent file descriptor.
* @exception SecurityException if the calling thread does not have
* permission to access the specified file descriptor.
* @exception NullPointerException if the file descriptor argument is
* null
.
* @see java.io.FileDescriptor
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkWrite(FileDescriptor fd) {
if (fd == null) {
throw new NullPointerException("file descriptor can't be null");
}
checkPermission(new RuntimePermission("writeFileDescriptor"));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to write to the file specified by
* the string argument.
* checkPermission
with the
* FilePermission(file,"write")
permission.
* super.checkWrite
* at the point the overridden method would normally throw an
* exception.
*
* @param file the system-dependent filename.
* @exception SecurityException if the calling thread does not
* have permission to access the specified file.
* @exception NullPointerException if the file
argument is
* null
.
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkWrite(String file) {
checkPermission(new FilePermission(file,
SecurityConstants.FILE_WRITE_ACTION));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to delete the specified file.
* delete
method of class File
.
* checkPermission
with the
* FilePermission(file,"delete")
permission.
* super.checkDelete
* at the point the overridden method would normally throw an
* exception.
*
* @param file the system-dependent filename.
* @exception SecurityException if the calling thread does not
* have permission to delete the file.
* @exception NullPointerException if the file
argument is
* null
.
* @see java.io.File#delete()
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkDelete(String file) {
checkPermission(new FilePermission(file,
SecurityConstants.FILE_DELETE_ACTION));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to open a socket connection to the
* specified host and port number.
* -1
indicates that the calling
* method is attempting to determine the IP address of the specified
* host name.
* checkPermission
with the
* SocketPermission(host+":"+port,"connect")
permission if
* the port is not equal to -1. If the port is equal to -1, then
* it calls checkPermission
with the
* SocketPermission(host,"resolve")
permission.
* super.checkConnect
* at the point the overridden method would normally throw an
* exception.
*
* @param host the host name port to connect to.
* @param port the protocol port to connect to.
* @exception SecurityException if the calling thread does not have
* permission to open a socket connection to the specified
* host
and port
.
* @exception NullPointerException if the host
argument is
* null
.
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkConnect(String host, int port) {
if (host == null) {
throw new NullPointerException("host can't be null");
}
if (!host.startsWith("[") && host.indexOf(':') != -1) {
host = "[" + host + "]";
}
if (port == -1) {
checkPermission(new SocketPermission(host,
SecurityConstants.SOCKET_RESOLVE_ACTION));
} else {
checkPermission(new SocketPermission(host+":"+port,
SecurityConstants.SOCKET_CONNECT_ACTION));
}
}
/**
* Throws a SecurityException
if the
* specified security context is not allowed to open a socket
* connection to the specified host and port number.
* -1
indicates that the calling
* method is attempting to determine the IP address of the specified
* host name.
* context
is not an instance of
* AccessControlContext
then a
* SecurityException
is thrown.
* context
's checkPermission
* method is called with a
* SocketPermission(host+":"+port,"connect")
permission.
* If the port is equal to -1, then
* the context
's checkPermission
method
* is called with a
* SocketPermission(host,"resolve")
permission.
* super.checkConnect
* at the point the overridden method would normally throw an
* exception.
*
* @param host the host name port to connect to.
* @param port the protocol port to connect to.
* @param context a system-dependent security context.
* @exception SecurityException if the specified security context
* is not an instance of AccessControlContext
* (e.g., is null
), or does not have permission
* to open a socket connection to the specified
* host
and port
.
* @exception NullPointerException if the host
argument is
* null
.
* @see java.lang.SecurityManager#getSecurityContext()
* @see java.security.AccessControlContext#checkPermission(java.security.Permission)
*/
public void checkConnect(String host, int port, Object context) {
if (host == null) {
throw new NullPointerException("host can't be null");
}
if (!host.startsWith("[") && host.indexOf(':') != -1) {
host = "[" + host + "]";
}
if (port == -1)
checkPermission(new SocketPermission(host,
SecurityConstants.SOCKET_RESOLVE_ACTION),
context);
else
checkPermission(new SocketPermission(host+":"+port,
SecurityConstants.SOCKET_CONNECT_ACTION),
context);
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to wait for a connection request on
* the specified local port number.
* checkPermission
with the
* SocketPermission("localhost:"+port,"listen")
.
* If port is zero, this method calls checkPermission
* with SocketPermission("localhost:1024-","listen").
* super.checkListen
* at the point the overridden method would normally throw an
* exception.
*
* @param port the local port.
* @exception SecurityException if the calling thread does not have
* permission to listen on the specified port.
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkListen(int port) {
if (port == 0) {
checkPermission(SecurityConstants.LOCAL_LISTEN_PERMISSION);
} else {
checkPermission(new SocketPermission("localhost:"+port,
SecurityConstants.SOCKET_LISTEN_ACTION));
}
}
/**
* Throws a SecurityException
if the
* calling thread is not permitted to accept a socket connection from
* the specified host and port number.
* accept
method of class ServerSocket
.
* checkPermission
with the
* SocketPermission(host+":"+port,"accept")
permission.
* super.checkAccept
* at the point the overridden method would normally throw an
* exception.
*
* @param host the host name of the socket connection.
* @param port the port number of the socket connection.
* @exception SecurityException if the calling thread does not have
* permission to accept the connection.
* @exception NullPointerException if the host
argument is
* null
.
* @see java.net.ServerSocket#accept()
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkAccept(String host, int port) {
if (host == null) {
throw new NullPointerException("host can't be null");
}
if (!host.startsWith("[") && host.indexOf(':') != -1) {
host = "[" + host + "]";
}
checkPermission(new SocketPermission(host+":"+port,
SecurityConstants.SOCKET_ACCEPT_ACTION));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to use
* (join/leave/send/receive) IP multicast.
* checkPermission
with the
* java.net.SocketPermission(maddr.getHostAddress(),
* "accept,connect")
permission.
* super.checkMulticast
* at the point the overridden method would normally throw an
* exception.
*
* @param maddr Internet group address to be used.
* @exception SecurityException if the calling thread is not allowed to
* use (join/leave/send/receive) IP multicast.
* @exception NullPointerException if the address argument is
* null
.
* @since JDK1.1
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkMulticast(InetAddress maddr) {
String host = maddr.getHostAddress();
if (!host.startsWith("[") && host.indexOf(':') != -1) {
host = "[" + host + "]";
}
checkPermission(new SocketPermission(host,
SecurityConstants.SOCKET_CONNECT_ACCEPT_ACTION));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to use
* (join/leave/send/receive) IP multicast.
* checkPermission
with the
* java.net.SocketPermission(maddr.getHostAddress(),
* "accept,connect")
permission.
* super.checkMulticast
* at the point the overridden method would normally throw an
* exception.
*
* @param maddr Internet group address to be used.
* @param ttl value in use, if it is multicast send.
* Note: this particular implementation does not use the ttl
* parameter.
* @exception SecurityException if the calling thread is not allowed to
* use (join/leave/send/receive) IP multicast.
* @exception NullPointerException if the address argument is
* null
.
* @since JDK1.1
* @deprecated Use #checkPermission(java.security.Permission) instead
* @see #checkPermission(java.security.Permission) checkPermission
*/
@Deprecated
public void checkMulticast(InetAddress maddr, byte ttl) {
String host = maddr.getHostAddress();
if (!host.startsWith("[") && host.indexOf(':') != -1) {
host = "[" + host + "]";
}
checkPermission(new SocketPermission(host,
SecurityConstants.SOCKET_CONNECT_ACCEPT_ACTION));
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to access or modify the system
* properties.
* getProperties
and
* setProperties
methods of class System
.
* checkPermission
with the
* PropertyPermission("*", "read,write")
permission.
* super.checkPropertiesAccess
* at the point the overridden method would normally throw an
* exception.
* SecurityException
if the
* calling thread is not allowed to access the system property with
* the specified key
name.
* getProperty
method of
* class System
.
* checkPermission
with the
* PropertyPermission(key, "read")
permission.
* super.checkPropertyAccess
* at the point the overridden method would normally throw an
* exception.
*
* @param key a system property key.
*
* @exception SecurityException if the calling thread does not have
* permission to access the specified system property.
* @exception NullPointerException if the key
argument is
* null
.
* @exception IllegalArgumentException if key
is empty.
*
* @see java.lang.System#getProperty(java.lang.String)
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkPropertyAccess(String key) {
checkPermission(new PropertyPermission(key,
SecurityConstants.PROPERTY_READ_ACTION));
}
/**
* Returns false
if the calling
* thread is not trusted to bring up the top-level window indicated
* by the window
argument. In this case, the caller can
* still decide to show the window, but the window should include
* some sort of visual warning. If the method returns
* true
, then the window can be shown without any
* special restrictions.
* Window
for more information on trusted and
* untrusted windows.
* checkPermission
with the
* AWTPermission("showWindowWithoutWarningBanner")
permission,
* and returns true
if a SecurityException is not thrown,
* otherwise it returns false
.
* super.checkTopLevelWindow
* at the point the overridden method would normally return
* false
, and the value of
* super.checkTopLevelWindow
should
* be returned.
*
* @param window the new window that is being created.
* @return true
if the calling thread is trusted to put up
* top-level windows; false
otherwise.
* @exception NullPointerException if the window
argument is
* null
.
* @see java.awt.Window
* @see #checkPermission(java.security.Permission) checkPermission
*/
public boolean checkTopLevelWindow(Object window) {
if (window == null) {
throw new NullPointerException("window can't be null");
}
try {
checkPermission(SecurityConstants.AWT.TOPLEVEL_WINDOW_PERMISSION);
return true;
} catch (SecurityException se) {
// just return false
}
return false;
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to initiate a print job request.
* checkPermission
with the
* RuntimePermission("queuePrintJob")
permission.
* super.checkPrintJobAccess
* at the point the overridden method would normally throw an
* exception.
* SecurityException
if the
* calling thread is not allowed to access the system clipboard.
* checkPermission
with the
* AWTPermission("accessClipboard")
* permission.
* super.checkSystemClipboardAccess
* at the point the overridden method would normally throw an
* exception.
*
* @since JDK1.1
* @exception SecurityException if the calling thread does not have
* permission to access the system clipboard.
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkSystemClipboardAccess() {
checkPermission(SecurityConstants.AWT.ACCESS_CLIPBOARD_PERMISSION);
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to access the AWT event queue.
* checkPermission
with the
* AWTPermission("accessEventQueue")
permission.
* super.checkAwtEventQueueAccess
* at the point the overridden method would normally throw an
* exception.
*
* @since JDK1.1
* @exception SecurityException if the calling thread does not have
* permission to access the AWT event queue.
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkAwtEventQueueAccess() {
checkPermission(SecurityConstants.AWT.CHECK_AWT_EVENTQUEUE_PERMISSION);
}
/*
* We have an initial invalid bit (initially false) for the class
* variables which tell if the cache is valid. If the underlying
* java.security.Security property changes via setProperty(), the
* Security class uses reflection to change the variable and thus
* invalidate the cache.
*
* Locking is handled by synchronization to the
* packageAccessLock/packageDefinitionLock objects. They are only
* used in this class.
*
* Note that cache invalidation as a result of the property change
* happens without using these locks, so there may be a delay between
* when a thread updates the property and when other threads updates
* the cache.
*/
private static boolean packageAccessValid = false;
private static String[] packageAccess;
private static final Object packageAccessLock = new Object();
private static boolean packageDefinitionValid = false;
private static String[] packageDefinition;
private static final Object packageDefinitionLock = new Object();
private static String[] getPackages(String p) {
String packages[] = null;
if (p != null && !p.equals("")) {
java.util.StringTokenizer tok =
new java.util.StringTokenizer(p, ",");
int n = tok.countTokens();
if (n > 0) {
packages = new String[n];
int i = 0;
while (tok.hasMoreElements()) {
String s = tok.nextToken().trim();
packages[i++] = s;
}
}
}
if (packages == null)
packages = new String[0];
return packages;
}
/**
* Throws a SecurityException
if the
* calling thread is not allowed to access the package specified by
* the argument.
* loadClass
method of class
* loaders.
* java.security.Security.getProperty("package.access")
,
* and checks to see if pkg
starts with or equals
* any of the restricted packages. If it does, then
* checkPermission
gets called with the
* RuntimePermission("accessClassInPackage."+pkg)
* permission.
* super.checkPackageAccess
should be called
* as the first line in the overridden method.
*
* @param pkg the package name.
* @exception SecurityException if the calling thread does not have
* permission to access the specified package.
* @exception NullPointerException if the package name argument is
* null
.
* @see java.lang.ClassLoader#loadClass(java.lang.String, boolean)
* loadClass
* @see java.security.Security#getProperty getProperty
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkPackageAccess(String pkg) {
if (pkg == null) {
throw new NullPointerException("package name can't be null");
}
String[] pkgs;
synchronized (packageAccessLock) {
/*
* Do we need to update our property array?
*/
if (!packageAccessValid) {
String tmpPropertyStr =
AccessController.doPrivileged(
new PrivilegedActionSecurityException
if the
* calling thread is not allowed to define classes in the package
* specified by the argument.
* loadClass
method of some
* class loaders.
* java.security.Security.getProperty("package.definition")
,
* and checks to see if pkg
starts with or equals
* any of the restricted packages. If it does, then
* checkPermission
gets called with the
* RuntimePermission("defineClassInPackage."+pkg)
* permission.
* super.checkPackageDefinition
should be called
* as the first line in the overridden method.
*
* @param pkg the package name.
* @exception SecurityException if the calling thread does not have
* permission to define classes in the specified package.
* @see java.lang.ClassLoader#loadClass(java.lang.String, boolean)
* @see java.security.Security#getProperty getProperty
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkPackageDefinition(String pkg) {
if (pkg == null) {
throw new NullPointerException("package name can't be null");
}
String[] pkgs;
synchronized (packageDefinitionLock) {
/*
* Do we need to update our property array?
*/
if (!packageDefinitionValid) {
String tmpPropertyStr =
AccessController.doPrivileged(
new PrivilegedActionSecurityException
if the
* calling thread is not allowed to set the socket factory used by
* ServerSocket
or Socket
, or the stream
* handler factory used by URL
.
* checkPermission
with the
* RuntimePermission("setFactory")
permission.
* super.checkSetFactory
* at the point the overridden method would normally throw an
* exception.
* SecurityException
if the
* calling thread is not allowed to access members.
* checkPermission
* with the RuntimePermission("accessDeclaredMembers")
*
permission.
* super.checkMemberAccess
cannot be made,
* as the default implementation of checkMemberAccess
* relies on the code being checked being at a stack depth of
* 4.
*
* @param clazz the class that reflection is to be performed on.
*
* @param which type of access, PUBLIC or DECLARED.
*
* @exception SecurityException if the caller does not have
* permission to access members.
* @exception NullPointerException if the clazz
argument is
* null
.
* @see java.lang.reflect.Member
* @since JDK1.1
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkMemberAccess(Class> clazz, int which) {
if (clazz == null) {
throw new NullPointerException("class can't be null");
}
if (which != Member.PUBLIC) {
Class stack[] = getClassContext();
/*
* stack depth of 4 should be the caller of one of the
* methods in java.lang.Class that invoke checkMember
* access. The stack should look like:
*
* someCaller [3]
* java.lang.Class.someReflectionAPI [2]
* java.lang.Class.checkMemberAccess [1]
* SecurityManager.checkMemberAccess [0]
*
*/
if ((stack.length<4) ||
(stack[3].getClassLoader() != clazz.getClassLoader())) {
checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
}
}
}
/**
* Determines whether the permission with the specified permission target
* name should be granted or denied.
*
* SecurityPermission
object for
* the given permission target name and calls checkPermission
* with it.
*
* {@link java.security.SecurityPermission}
for
* a list of possible permission target names.
*
* super.checkSecurityAccess
* at the point the overridden method would normally throw an
* exception.
*
* @param target the target name of the SecurityPermission
.
*
* @exception SecurityException if the calling thread does not have
* permission for the requested access.
* @exception NullPointerException if target
is null.
* @exception IllegalArgumentException if target
is empty.
*
* @since JDK1.1
* @see #checkPermission(java.security.Permission) checkPermission
*/
public void checkSecurityAccess(String target) {
checkPermission(new SecurityPermission(target));
}
private native Class currentLoadedClass0();
/**
* Returns the thread group into which to instantiate any new
* thread being created at the time this is being called.
* By default, it returns the thread group of the current
* thread. This should be overridden by a specific security
* manager to return the appropriate thread group.
*
* @return ThreadGroup that new threads are instantiated into
* @since JDK1.1
* @see java.lang.ThreadGroup
*/
public ThreadGroup getThreadGroup() {
return Thread.currentThread().getThreadGroup();
}
}