/* * Copyright (c) 1995, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; import java.io.*; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.LongBuffer; import java.util.stream.IntStream; import java.util.stream.StreamSupport; /** * This class implements a vector of bits that grows as needed. Each * component of the bit set has a {@code boolean} value. The * bits of a {@code BitSet} are indexed by nonnegative integers. * Individual indexed bits can be examined, set, or cleared. One * {@code BitSet} may be used to modify the contents of another * {@code BitSet} through logical AND, logical inclusive OR, and * logical exclusive OR operations. * *
By default, all bits in the set initially have the value * {@code false}. * *
Every bit set has a current size, which is the number of bits * of space currently in use by the bit set. Note that the size is * related to the implementation of a bit set, so it may change with * implementation. The length of a bit set relates to logical length * of a bit set and is defined independently of implementation. * *
Unless otherwise noted, passing a null parameter to any of the * methods in a {@code BitSet} will result in a * {@code NullPointerException}. * *
A {@code BitSet} is not safe for multithreaded use without * external synchronization. * * @author Arthur van Hoff * @author Michael McCloskey * @author Martin Buchholz * @since JDK1.0 */ public class BitSet implements Cloneable, java.io.Serializable { /* * BitSets are packed into arrays of "words." Currently a word is * a long, which consists of 64 bits, requiring 6 address bits. * The choice of word size is determined purely by performance concerns. */ private final static int ADDRESS_BITS_PER_WORD = 6; private final static int BITS_PER_WORD = 1 << ADDRESS_BITS_PER_WORD; private final static int BIT_INDEX_MASK = BITS_PER_WORD - 1; /* Used to shift left or right for a partial word mask */ private static final long WORD_MASK = 0xffffffffffffffffL; /** * @serialField bits long[] * * The bits in this BitSet. The ith bit is stored in bits[i/64] at * bit position i % 64 (where bit position 0 refers to the least * significant bit and 63 refers to the most significant bit). */ private static final ObjectStreamField[] serialPersistentFields = { new ObjectStreamField("bits", long[].class), }; /** * The internal field corresponding to the serialField "bits". */ private long[] words; /** * The number of words in the logical size of this BitSet. */ private transient int wordsInUse = 0; /** * Whether the size of "words" is user-specified. If so, we assume * the user knows what he's doing and try harder to preserve it. */ private transient boolean sizeIsSticky = false; /* use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = 7997698588986878753L; /** * Given a bit index, return word index containing it. */ private static int wordIndex(int bitIndex) { return bitIndex >> ADDRESS_BITS_PER_WORD; } /** * Every public method must preserve these invariants. */ private void checkInvariants() { assert(wordsInUse == 0 || words[wordsInUse - 1] != 0); assert(wordsInUse >= 0 && wordsInUse <= words.length); assert(wordsInUse == words.length || words[wordsInUse] == 0); } /** * Sets the field wordsInUse to the logical size in words of the bit set. * WARNING:This method assumes that the number of words actually in use is * less than or equal to the current value of wordsInUse! */ private void recalculateWordsInUse() { // Traverse the bitset until a used word is found int i; for (i = wordsInUse-1; i >= 0; i--) if (words[i] != 0) break; wordsInUse = i+1; // The new logical size } /** * Creates a new bit set. All bits are initially {@code false}. */ public BitSet() { initWords(BITS_PER_WORD); sizeIsSticky = false; } /** * Creates a bit set whose initial size is large enough to explicitly * represent bits with indices in the range {@code 0} through * {@code nbits-1}. All bits are initially {@code false}. * * @param nbits the initial size of the bit set * @throws NegativeArraySizeException if the specified initial size * is negative */ public BitSet(int nbits) { // nbits can't be negative; size 0 is OK if (nbits < 0) throw new NegativeArraySizeException("nbits < 0: " + nbits); initWords(nbits); sizeIsSticky = true; } private void initWords(int nbits) { words = new long[wordIndex(nbits-1) + 1]; } /** * Creates a bit set using words as the internal representation. * The last word (if there is one) must be non-zero. */ private BitSet(long[] words) { this.words = words; this.wordsInUse = words.length; checkInvariants(); } /** * Returns a new bit set containing all the bits in the given long array. * *
More precisely,
*
{@code BitSet.valueOf(longs).get(n) == ((longs[n/64] & (1L<<(n%64))) != 0)}
*
for all {@code n < 64 * longs.length}.
*
*
This method is equivalent to * {@code BitSet.valueOf(LongBuffer.wrap(longs))}. * * @param longs a long array containing a little-endian representation * of a sequence of bits to be used as the initial bits of the * new bit set * @return a {@code BitSet} containing all the bits in the long array * @since 1.7 */ public static BitSet valueOf(long[] longs) { int n; for (n = longs.length; n > 0 && longs[n - 1] == 0; n--) ; return new BitSet(Arrays.copyOf(longs, n)); } /** * Returns a new bit set containing all the bits in the given long * buffer between its position and limit. * *
More precisely,
*
{@code BitSet.valueOf(lb).get(n) == ((lb.get(lb.position()+n/64) & (1L<<(n%64))) != 0)}
*
for all {@code n < 64 * lb.remaining()}.
*
*
The long buffer is not modified by this method, and no * reference to the buffer is retained by the bit set. * * @param lb a long buffer containing a little-endian representation * of a sequence of bits between its position and limit, to be * used as the initial bits of the new bit set * @return a {@code BitSet} containing all the bits in the buffer in the * specified range * @since 1.7 */ public static BitSet valueOf(LongBuffer lb) { lb = lb.slice(); int n; for (n = lb.remaining(); n > 0 && lb.get(n - 1) == 0; n--) ; long[] words = new long[n]; lb.get(words); return new BitSet(words); } /** * Returns a new bit set containing all the bits in the given byte array. * *
More precisely,
*
{@code BitSet.valueOf(bytes).get(n) == ((bytes[n/8] & (1<<(n%8))) != 0)}
*
for all {@code n < 8 * bytes.length}.
*
*
This method is equivalent to * {@code BitSet.valueOf(ByteBuffer.wrap(bytes))}. * * @param bytes a byte array containing a little-endian * representation of a sequence of bits to be used as the * initial bits of the new bit set * @return a {@code BitSet} containing all the bits in the byte array * @since 1.7 */ public static BitSet valueOf(byte[] bytes) { return BitSet.valueOf(ByteBuffer.wrap(bytes)); } /** * Returns a new bit set containing all the bits in the given byte * buffer between its position and limit. * *
More precisely,
*
{@code BitSet.valueOf(bb).get(n) == ((bb.get(bb.position()+n/8) & (1<<(n%8))) != 0)}
*
for all {@code n < 8 * bb.remaining()}.
*
*
The byte buffer is not modified by this method, and no * reference to the buffer is retained by the bit set. * * @param bb a byte buffer containing a little-endian representation * of a sequence of bits between its position and limit, to be * used as the initial bits of the new bit set * @return a {@code BitSet} containing all the bits in the buffer in the * specified range * @since 1.7 */ public static BitSet valueOf(ByteBuffer bb) { bb = bb.slice().order(ByteOrder.LITTLE_ENDIAN); int n; for (n = bb.remaining(); n > 0 && bb.get(n - 1) == 0; n--) ; long[] words = new long[(n + 7) / 8]; bb.limit(n); int i = 0; while (bb.remaining() >= 8) words[i++] = bb.getLong(); for (int remaining = bb.remaining(), j = 0; j < remaining; j++) words[i] |= (bb.get() & 0xffL) << (8 * j); return new BitSet(words); } /** * Returns a new byte array containing all the bits in this bit set. * *
More precisely, if
*
{@code byte[] bytes = s.toByteArray();}
*
then {@code bytes.length == (s.length()+7)/8} and
*
{@code s.get(n) == ((bytes[n/8] & (1<<(n%8))) != 0)}
*
for all {@code n < 8 * bytes.length}.
*
* @return a byte array containing a little-endian representation
* of all the bits in this bit set
* @since 1.7
*/
public byte[] toByteArray() {
int n = wordsInUse;
if (n == 0)
return new byte[0];
int len = 8 * (n-1);
for (long x = words[n - 1]; x != 0; x >>>= 8)
len++;
byte[] bytes = new byte[len];
ByteBuffer bb = ByteBuffer.wrap(bytes).order(ByteOrder.LITTLE_ENDIAN);
for (int i = 0; i < n - 1; i++)
bb.putLong(words[i]);
for (long x = words[n - 1]; x != 0; x >>>= 8)
bb.put((byte) (x & 0xff));
return bytes;
}
/**
* Returns a new long array containing all the bits in this bit set.
*
*
More precisely, if
*
{@code long[] longs = s.toLongArray();}
*
then {@code longs.length == (s.length()+63)/64} and
*
{@code s.get(n) == ((longs[n/64] & (1L<<(n%64))) != 0)}
*
for all {@code n < 64 * longs.length}.
*
* @return a long array containing a little-endian representation
* of all the bits in this bit set
* @since 1.7
*/
public long[] toLongArray() {
return Arrays.copyOf(words, wordsInUse);
}
/**
* Ensures that the BitSet can hold enough words.
* @param wordsRequired the minimum acceptable number of words.
*/
private void ensureCapacity(int wordsRequired) {
if (words.length < wordsRequired) {
// Allocate larger of doubled size or required size
int request = Math.max(2 * words.length, wordsRequired);
words = Arrays.copyOf(words, request);
sizeIsSticky = false;
}
}
/**
* Ensures that the BitSet can accommodate a given wordIndex,
* temporarily violating the invariants. The caller must
* restore the invariants before returning to the user,
* possibly using recalculateWordsInUse().
* @param wordIndex the index to be accommodated.
*/
private void expandTo(int wordIndex) {
int wordsRequired = wordIndex+1;
if (wordsInUse < wordsRequired) {
ensureCapacity(wordsRequired);
wordsInUse = wordsRequired;
}
}
/**
* Checks that fromIndex ... toIndex is a valid range of bit indices.
*/
private static void checkRange(int fromIndex, int toIndex) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);
if (toIndex < 0)
throw new IndexOutOfBoundsException("toIndex < 0: " + toIndex);
if (fromIndex > toIndex)
throw new IndexOutOfBoundsException("fromIndex: " + fromIndex +
" > toIndex: " + toIndex);
}
/**
* Sets the bit at the specified index to the complement of its
* current value.
*
* @param bitIndex the index of the bit to flip
* @throws IndexOutOfBoundsException if the specified index is negative
* @since 1.4
*/
public void flip(int bitIndex) {
if (bitIndex < 0)
throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
int wordIndex = wordIndex(bitIndex);
expandTo(wordIndex);
words[wordIndex] ^= (1L << bitIndex);
recalculateWordsInUse();
checkInvariants();
}
/**
* Sets each bit from the specified {@code fromIndex} (inclusive) to the
* specified {@code toIndex} (exclusive) to the complement of its current
* value.
*
* @param fromIndex index of the first bit to flip
* @param toIndex index after the last bit to flip
* @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
* or {@code toIndex} is negative, or {@code fromIndex} is
* larger than {@code toIndex}
* @since 1.4
*/
public void flip(int fromIndex, int toIndex) {
checkRange(fromIndex, toIndex);
if (fromIndex == toIndex)
return;
int startWordIndex = wordIndex(fromIndex);
int endWordIndex = wordIndex(toIndex - 1);
expandTo(endWordIndex);
long firstWordMask = WORD_MASK << fromIndex;
long lastWordMask = WORD_MASK >>> -toIndex;
if (startWordIndex == endWordIndex) {
// Case 1: One word
words[startWordIndex] ^= (firstWordMask & lastWordMask);
} else {
// Case 2: Multiple words
// Handle first word
words[startWordIndex] ^= firstWordMask;
// Handle intermediate words, if any
for (int i = startWordIndex+1; i < endWordIndex; i++)
words[i] ^= WORD_MASK;
// Handle last word
words[endWordIndex] ^= lastWordMask;
}
recalculateWordsInUse();
checkInvariants();
}
/**
* Sets the bit at the specified index to {@code true}.
*
* @param bitIndex a bit index
* @throws IndexOutOfBoundsException if the specified index is negative
* @since JDK1.0
*/
public void set(int bitIndex) {
if (bitIndex < 0)
throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
int wordIndex = wordIndex(bitIndex);
expandTo(wordIndex);
words[wordIndex] |= (1L << bitIndex); // Restores invariants
checkInvariants();
}
/**
* Sets the bit at the specified index to the specified value.
*
* @param bitIndex a bit index
* @param value a boolean value to set
* @throws IndexOutOfBoundsException if the specified index is negative
* @since 1.4
*/
public void set(int bitIndex, boolean value) {
if (value)
set(bitIndex);
else
clear(bitIndex);
}
/**
* Sets the bits from the specified {@code fromIndex} (inclusive) to the
* specified {@code toIndex} (exclusive) to {@code true}.
*
* @param fromIndex index of the first bit to be set
* @param toIndex index after the last bit to be set
* @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
* or {@code toIndex} is negative, or {@code fromIndex} is
* larger than {@code toIndex}
* @since 1.4
*/
public void set(int fromIndex, int toIndex) {
checkRange(fromIndex, toIndex);
if (fromIndex == toIndex)
return;
// Increase capacity if necessary
int startWordIndex = wordIndex(fromIndex);
int endWordIndex = wordIndex(toIndex - 1);
expandTo(endWordIndex);
long firstWordMask = WORD_MASK << fromIndex;
long lastWordMask = WORD_MASK >>> -toIndex;
if (startWordIndex == endWordIndex) {
// Case 1: One word
words[startWordIndex] |= (firstWordMask & lastWordMask);
} else {
// Case 2: Multiple words
// Handle first word
words[startWordIndex] |= firstWordMask;
// Handle intermediate words, if any
for (int i = startWordIndex+1; i < endWordIndex; i++)
words[i] = WORD_MASK;
// Handle last word (restores invariants)
words[endWordIndex] |= lastWordMask;
}
checkInvariants();
}
/**
* Sets the bits from the specified {@code fromIndex} (inclusive) to the
* specified {@code toIndex} (exclusive) to the specified value.
*
* @param fromIndex index of the first bit to be set
* @param toIndex index after the last bit to be set
* @param value value to set the selected bits to
* @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
* or {@code toIndex} is negative, or {@code fromIndex} is
* larger than {@code toIndex}
* @since 1.4
*/
public void set(int fromIndex, int toIndex, boolean value) {
if (value)
set(fromIndex, toIndex);
else
clear(fromIndex, toIndex);
}
/**
* Sets the bit specified by the index to {@code false}.
*
* @param bitIndex the index of the bit to be cleared
* @throws IndexOutOfBoundsException if the specified index is negative
* @since JDK1.0
*/
public void clear(int bitIndex) {
if (bitIndex < 0)
throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
int wordIndex = wordIndex(bitIndex);
if (wordIndex >= wordsInUse)
return;
words[wordIndex] &= ~(1L << bitIndex);
recalculateWordsInUse();
checkInvariants();
}
/**
* Sets the bits from the specified {@code fromIndex} (inclusive) to the
* specified {@code toIndex} (exclusive) to {@code false}.
*
* @param fromIndex index of the first bit to be cleared
* @param toIndex index after the last bit to be cleared
* @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
* or {@code toIndex} is negative, or {@code fromIndex} is
* larger than {@code toIndex}
* @since 1.4
*/
public void clear(int fromIndex, int toIndex) {
checkRange(fromIndex, toIndex);
if (fromIndex == toIndex)
return;
int startWordIndex = wordIndex(fromIndex);
if (startWordIndex >= wordsInUse)
return;
int endWordIndex = wordIndex(toIndex - 1);
if (endWordIndex >= wordsInUse) {
toIndex = length();
endWordIndex = wordsInUse - 1;
}
long firstWordMask = WORD_MASK << fromIndex;
long lastWordMask = WORD_MASK >>> -toIndex;
if (startWordIndex == endWordIndex) {
// Case 1: One word
words[startWordIndex] &= ~(firstWordMask & lastWordMask);
} else {
// Case 2: Multiple words
// Handle first word
words[startWordIndex] &= ~firstWordMask;
// Handle intermediate words, if any
for (int i = startWordIndex+1; i < endWordIndex; i++)
words[i] = 0;
// Handle last word
words[endWordIndex] &= ~lastWordMask;
}
recalculateWordsInUse();
checkInvariants();
}
/**
* Sets all of the bits in this BitSet to {@code false}.
*
* @since 1.4
*/
public void clear() {
while (wordsInUse > 0)
words[--wordsInUse] = 0;
}
/**
* Returns the value of the bit with the specified index. The value
* is {@code true} if the bit with the index {@code bitIndex}
* is currently set in this {@code BitSet}; otherwise, the result
* is {@code false}.
*
* @param bitIndex the bit index
* @return the value of the bit with the specified index
* @throws IndexOutOfBoundsException if the specified index is negative
*/
public boolean get(int bitIndex) {
if (bitIndex < 0)
throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
checkInvariants();
int wordIndex = wordIndex(bitIndex);
return (wordIndex < wordsInUse)
&& ((words[wordIndex] & (1L << bitIndex)) != 0);
}
/**
* Returns a new {@code BitSet} composed of bits from this {@code BitSet}
* from {@code fromIndex} (inclusive) to {@code toIndex} (exclusive).
*
* @param fromIndex index of the first bit to include
* @param toIndex index after the last bit to include
* @return a new {@code BitSet} from a range of this {@code BitSet}
* @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
* or {@code toIndex} is negative, or {@code fromIndex} is
* larger than {@code toIndex}
* @since 1.4
*/
public BitSet get(int fromIndex, int toIndex) {
checkRange(fromIndex, toIndex);
checkInvariants();
int len = length();
// If no set bits in range return empty bitset
if (len <= fromIndex || fromIndex == toIndex)
return new BitSet(0);
// An optimization
if (toIndex > len)
toIndex = len;
BitSet result = new BitSet(toIndex - fromIndex);
int targetWords = wordIndex(toIndex - fromIndex - 1) + 1;
int sourceIndex = wordIndex(fromIndex);
boolean wordAligned = ((fromIndex & BIT_INDEX_MASK) == 0);
// Process all words but the last word
for (int i = 0; i < targetWords - 1; i++, sourceIndex++)
result.words[i] = wordAligned ? words[sourceIndex] :
(words[sourceIndex] >>> fromIndex) |
(words[sourceIndex+1] << -fromIndex);
// Process the last word
long lastWordMask = WORD_MASK >>> -toIndex;
result.words[targetWords - 1] =
((toIndex-1) & BIT_INDEX_MASK) < (fromIndex & BIT_INDEX_MASK)
? /* straddles source words */
((words[sourceIndex] >>> fromIndex) |
(words[sourceIndex+1] & lastWordMask) << -fromIndex)
:
((words[sourceIndex] & lastWordMask) >>> fromIndex);
// Set wordsInUse correctly
result.wordsInUse = targetWords;
result.recalculateWordsInUse();
result.checkInvariants();
return result;
}
/**
* Returns the index of the first bit that is set to {@code true}
* that occurs on or after the specified starting index. If no such
* bit exists then {@code -1} is returned.
*
*
To iterate over the {@code true} bits in a {@code BitSet}, * use the following loop: * *
{@code * for (int i = bs.nextSetBit(0); i >= 0; i = bs.nextSetBit(i+1)) { * // operate on index i here * }}* * @param fromIndex the index to start checking from (inclusive) * @return the index of the next set bit, or {@code -1} if there * is no such bit * @throws IndexOutOfBoundsException if the specified index is negative * @since 1.4 */ public int nextSetBit(int fromIndex) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex); checkInvariants(); int u = wordIndex(fromIndex); if (u >= wordsInUse) return -1; long word = words[u] & (WORD_MASK << fromIndex); while (true) { if (word != 0) return (u * BITS_PER_WORD) + Long.numberOfTrailingZeros(word); if (++u == wordsInUse) return -1; word = words[u]; } } /** * Returns the index of the first bit that is set to {@code false} * that occurs on or after the specified starting index. * * @param fromIndex the index to start checking from (inclusive) * @return the index of the next clear bit * @throws IndexOutOfBoundsException if the specified index is negative * @since 1.4 */ public int nextClearBit(int fromIndex) { // Neither spec nor implementation handle bitsets of maximal length. // See 4816253. if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex); checkInvariants(); int u = wordIndex(fromIndex); if (u >= wordsInUse) return fromIndex; long word = ~words[u] & (WORD_MASK << fromIndex); while (true) { if (word != 0) return (u * BITS_PER_WORD) + Long.numberOfTrailingZeros(word); if (++u == wordsInUse) return wordsInUse * BITS_PER_WORD; word = ~words[u]; } } /** * Returns the index of the nearest bit that is set to {@code true} * that occurs on or before the specified starting index. * If no such bit exists, or if {@code -1} is given as the * starting index, then {@code -1} is returned. * *
To iterate over the {@code true} bits in a {@code BitSet}, * use the following loop: * *
{@code * for (int i = bs.length(); (i = bs.previousSetBit(i-1)) >= 0; ) { * // operate on index i here * }}* * @param fromIndex the index to start checking from (inclusive) * @return the index of the previous set bit, or {@code -1} if there * is no such bit * @throws IndexOutOfBoundsException if the specified index is less * than {@code -1} * @since 1.7 */ public int previousSetBit(int fromIndex) { if (fromIndex < 0) { if (fromIndex == -1) return -1; throw new IndexOutOfBoundsException( "fromIndex < -1: " + fromIndex); } checkInvariants(); int u = wordIndex(fromIndex); if (u >= wordsInUse) return length() - 1; long word = words[u] & (WORD_MASK >>> -(fromIndex+1)); while (true) { if (word != 0) return (u+1) * BITS_PER_WORD - 1 - Long.numberOfLeadingZeros(word); if (u-- == 0) return -1; word = words[u]; } } /** * Returns the index of the nearest bit that is set to {@code false} * that occurs on or before the specified starting index. * If no such bit exists, or if {@code -1} is given as the * starting index, then {@code -1} is returned. * * @param fromIndex the index to start checking from (inclusive) * @return the index of the previous clear bit, or {@code -1} if there * is no such bit * @throws IndexOutOfBoundsException if the specified index is less * than {@code -1} * @since 1.7 */ public int previousClearBit(int fromIndex) { if (fromIndex < 0) { if (fromIndex == -1) return -1; throw new IndexOutOfBoundsException( "fromIndex < -1: " + fromIndex); } checkInvariants(); int u = wordIndex(fromIndex); if (u >= wordsInUse) return fromIndex; long word = ~words[u] & (WORD_MASK >>> -(fromIndex+1)); while (true) { if (word != 0) return (u+1) * BITS_PER_WORD -1 - Long.numberOfLeadingZeros(word); if (u-- == 0) return -1; word = ~words[u]; } } /** * Returns the "logical size" of this {@code BitSet}: the index of * the highest set bit in the {@code BitSet} plus one. Returns zero * if the {@code BitSet} contains no set bits. * * @return the logical size of this {@code BitSet} * @since 1.2 */ public int length() { if (wordsInUse == 0) return 0; return BITS_PER_WORD * (wordsInUse - 1) + (BITS_PER_WORD - Long.numberOfLeadingZeros(words[wordsInUse - 1])); } /** * Returns true if this {@code BitSet} contains no bits that are set * to {@code true}. * * @return boolean indicating whether this {@code BitSet} is empty * @since 1.4 */ public boolean isEmpty() { return wordsInUse == 0; } /** * Returns true if the specified {@code BitSet} has any bits set to * {@code true} that are also set to {@code true} in this {@code BitSet}. * * @param set {@code BitSet} to intersect with * @return boolean indicating whether this {@code BitSet} intersects * the specified {@code BitSet} * @since 1.4 */ public boolean intersects(BitSet set) { for (int i = Math.min(wordsInUse, set.wordsInUse) - 1; i >= 0; i--) if ((words[i] & set.words[i]) != 0) return true; return false; } /** * Returns the number of bits set to {@code true} in this {@code BitSet}. * * @return the number of bits set to {@code true} in this {@code BitSet} * @since 1.4 */ public int cardinality() { int sum = 0; for (int i = 0; i < wordsInUse; i++) sum += Long.bitCount(words[i]); return sum; } /** * Performs a logical AND of this target bit set with the * argument bit set. This bit set is modified so that each bit in it * has the value {@code true} if and only if it both initially * had the value {@code true} and the corresponding bit in the * bit set argument also had the value {@code true}. * * @param set a bit set */ public void and(BitSet set) { if (this == set) return; while (wordsInUse > set.wordsInUse) words[--wordsInUse] = 0; // Perform logical AND on words in common for (int i = 0; i < wordsInUse; i++) words[i] &= set.words[i]; recalculateWordsInUse(); checkInvariants(); } /** * Performs a logical OR of this bit set with the bit set * argument. This bit set is modified so that a bit in it has the * value {@code true} if and only if it either already had the * value {@code true} or the corresponding bit in the bit set * argument has the value {@code true}. * * @param set a bit set */ public void or(BitSet set) { if (this == set) return; int wordsInCommon = Math.min(wordsInUse, set.wordsInUse); if (wordsInUse < set.wordsInUse) { ensureCapacity(set.wordsInUse); wordsInUse = set.wordsInUse; } // Perform logical OR on words in common for (int i = 0; i < wordsInCommon; i++) words[i] |= set.words[i]; // Copy any remaining words if (wordsInCommon < set.wordsInUse) System.arraycopy(set.words, wordsInCommon, words, wordsInCommon, wordsInUse - wordsInCommon); // recalculateWordsInUse() is unnecessary checkInvariants(); } /** * Performs a logical XOR of this bit set with the bit set * argument. This bit set is modified so that a bit in it has the * value {@code true} if and only if one of the following * statements holds: *
The hash code is defined to be the result of the following * calculation: *
{@code * public int hashCode() { * long h = 1234; * long[] words = toLongArray(); * for (int i = words.length; --i >= 0; ) * h ^= words[i] * (i + 1); * return (int)((h >> 32) ^ h); * }}* Note that the hash code changes if the set of bits is altered. * * @return the hash code value for this bit set */ public int hashCode() { long h = 1234; for (int i = wordsInUse; --i >= 0; ) h ^= words[i] * (i + 1); return (int)((h >> 32) ^ h); } /** * Returns the number of bits of space actually in use by this * {@code BitSet} to represent bit values. * The maximum element in the set is the size - 1st element. * * @return the number of bits currently in this bit set */ public int size() { return words.length * BITS_PER_WORD; } /** * Compares this object against the specified object. * The result is {@code true} if and only if the argument is * not {@code null} and is a {@code Bitset} object that has * exactly the same set of bits set to {@code true} as this bit * set. That is, for every nonnegative {@code int} index {@code k}, *
((BitSet)obj).get(k) == this.get(k)* must be true. The current sizes of the two bit sets are not compared. * * @param obj the object to compare with * @return {@code true} if the objects are the same; * {@code false} otherwise * @see #size() */ public boolean equals(Object obj) { if (!(obj instanceof BitSet)) return false; if (this == obj) return true; BitSet set = (BitSet) obj; checkInvariants(); set.checkInvariants(); if (wordsInUse != set.wordsInUse) return false; // Check words in use by both BitSets for (int i = 0; i < wordsInUse; i++) if (words[i] != set.words[i]) return false; return true; } /** * Cloning this {@code BitSet} produces a new {@code BitSet} * that is equal to it. * The clone of the bit set is another bit set that has exactly the * same bits set to {@code true} as this bit set. * * @return a clone of this bit set * @see #size() */ public Object clone() { if (! sizeIsSticky) trimToSize(); try { BitSet result = (BitSet) super.clone(); result.words = words.clone(); result.checkInvariants(); return result; } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Attempts to reduce internal storage used for the bits in this bit set. * Calling this method may, but is not required to, affect the value * returned by a subsequent call to the {@link #size()} method. */ private void trimToSize() { if (wordsInUse != words.length) { words = Arrays.copyOf(words, wordsInUse); checkInvariants(); } } /** * Save the state of the {@code BitSet} instance to a stream (i.e., * serialize it). */ private void writeObject(ObjectOutputStream s) throws IOException { checkInvariants(); if (! sizeIsSticky) trimToSize(); ObjectOutputStream.PutField fields = s.putFields(); fields.put("bits", words); s.writeFields(); } /** * Reconstitute the {@code BitSet} instance from a stream (i.e., * deserialize it). */ private void readObject(ObjectInputStream s) throws IOException, ClassNotFoundException { ObjectInputStream.GetField fields = s.readFields(); words = (long[]) fields.get("bits", null); // Assume maximum length then find real length // because recalculateWordsInUse assumes maintenance // or reduction in logical size wordsInUse = words.length; recalculateWordsInUse(); sizeIsSticky = (words.length > 0 && words[words.length-1] == 0L); // heuristic checkInvariants(); } /** * Returns a string representation of this bit set. For every index * for which this {@code BitSet} contains a bit in the set * state, the decimal representation of that index is included in * the result. Such indices are listed in order from lowest to * highest, separated by ", " (a comma and a space) and * surrounded by braces, resulting in the usual mathematical * notation for a set of integers. * *
Example: *
* BitSet drPepper = new BitSet();* Now {@code drPepper.toString()} returns "{@code {}}".
*
* drPepper.set(2);* Now {@code drPepper.toString()} returns "{@code {2}}".
*
* drPepper.set(4); * drPepper.set(10);* Now {@code drPepper.toString()} returns "{@code {2, 4, 10}}". * * @return a string representation of this bit set */ public String toString() { checkInvariants(); int numBits = (wordsInUse > 128) ? cardinality() : wordsInUse * BITS_PER_WORD; StringBuilder b = new StringBuilder(6*numBits + 2); b.append('{'); int i = nextSetBit(0); if (i != -1) { b.append(i); for (i = nextSetBit(i+1); i >= 0; i = nextSetBit(i+1)) { int endOfRun = nextClearBit(i); do { b.append(", ").append(i); } while (++i < endOfRun); } } b.append('}'); return b.toString(); } /** * Returns a stream of indices for which this {@code BitSet} * contains a bit in the set state. The indices are returned * in order, from lowest to highest. The size of the stream * is the number of bits in the set state, equal to the value * returned by the {@link #cardinality()} method. * *
The bit set must remain constant during the execution of the * terminal stream operation. Otherwise, the result of the terminal * stream operation is undefined. * * @return a stream of integers representing set indices * @since 1.8 */ public IntStream stream() { class BitSetIterator implements PrimitiveIterator.OfInt { int next = nextSetBit(0); @Override public boolean hasNext() { return next != -1; } @Override public int nextInt() { if (next != -1) { int ret = next; next = nextSetBit(next+1); return ret; } else { throw new NoSuchElementException(); } } } return StreamSupport.intStream( () -> Spliterators.spliterator( new BitSetIterator(), cardinality(), Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED), Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED, false); } }