/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util.stream; import java.util.IntSummaryStatistics; import java.util.Objects; import java.util.OptionalDouble; import java.util.OptionalInt; import java.util.PrimitiveIterator; import java.util.Spliterator; import java.util.Spliterators; import java.util.function.BiConsumer; import java.util.function.BinaryOperator; import java.util.function.IntBinaryOperator; import java.util.function.IntConsumer; import java.util.function.IntFunction; import java.util.function.IntPredicate; import java.util.function.IntToDoubleFunction; import java.util.function.IntToLongFunction; import java.util.function.IntUnaryOperator; import java.util.function.ObjIntConsumer; import java.util.function.Supplier; /** * Abstract base class for an intermediate pipeline stage or pipeline source * stage implementing whose elements are of type {@code int}. * * @param type of elements in the upstream source * @since 1.8 */ abstract class IntPipeline extends AbstractPipeline implements IntStream { /** * Constructor for the head of a stream pipeline. * * @param source {@code Supplier} describing the stream source * @param sourceFlags The source flags for the stream source, described in * {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */ IntPipeline(Supplier> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } /** * Constructor for the head of a stream pipeline. * * @param source {@code Spliterator} describing the stream source * @param sourceFlags The source flags for the stream source, described in * {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */ IntPipeline(Spliterator source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } /** * Constructor for appending an intermediate operation onto an existing * pipeline. * * @param upstream the upstream element source * @param opFlags the operation flags for the new operation */ IntPipeline(AbstractPipeline upstream, int opFlags) { super(upstream, opFlags); } /** * Adapt a {@code Sink to an {@code IntConsumer}, ideally simply * by casting. */ private static IntConsumer adapt(Sink sink) { if (sink instanceof IntConsumer) { return (IntConsumer) sink; } else { if (Tripwire.ENABLED) Tripwire.trip(AbstractPipeline.class, "using IntStream.adapt(Sink s)"); return sink::accept; } } /** * Adapt a {@code Spliterator} to a {@code Spliterator.OfInt}. * * @implNote * The implementation attempts to cast to a Spliterator.OfInt, and throws an * exception if this cast is not possible. */ private static Spliterator.OfInt adapt(Spliterator s) { if (s instanceof Spliterator.OfInt) { return (Spliterator.OfInt) s; } else { if (Tripwire.ENABLED) Tripwire.trip(AbstractPipeline.class, "using IntStream.adapt(Spliterator s)"); throw new UnsupportedOperationException("IntStream.adapt(Spliterator s)"); } } // Shape-specific methods @Override final StreamShape getOutputShape() { return StreamShape.INT_VALUE; } @Override final Node evaluateToNode(PipelineHelper helper, Spliterator spliterator, boolean flattenTree, IntFunction generator) { return Nodes.collectInt(helper, spliterator, flattenTree); } @Override final Spliterator wrap(PipelineHelper ph, Supplier> supplier, boolean isParallel) { return new StreamSpliterators.IntWrappingSpliterator<>(ph, supplier, isParallel); } @Override @SuppressWarnings("unchecked") final Spliterator.OfInt lazySpliterator(Supplier> supplier) { return new StreamSpliterators.DelegatingSpliterator.OfInt((Supplier) supplier); } @Override final void forEachWithCancel(Spliterator spliterator, Sink sink) { Spliterator.OfInt spl = adapt(spliterator); IntConsumer adaptedSink = adapt(sink); do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink)); } @Override final Node.Builder makeNodeBuilder(long exactSizeIfKnown, IntFunction generator) { return Nodes.intBuilder(exactSizeIfKnown); } // IntStream @Override public final PrimitiveIterator.OfInt iterator() { return Spliterators.iterator(spliterator()); } @Override public final Spliterator.OfInt spliterator() { return adapt(super.spliterator()); } // Stateless intermediate ops from IntStream @Override public final LongStream asLongStream() { return new LongPipeline.StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void accept(int t) { downstream.accept((long) t); } }; } }; } @Override public final DoubleStream asDoubleStream() { return new DoublePipeline.StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void accept(int t) { downstream.accept((double) t); } }; } }; } @Override public final Stream boxed() { return mapToObj(Integer::valueOf); } @Override public final IntStream map(IntUnaryOperator mapper) { Objects.requireNonNull(mapper); return new StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void accept(int t) { downstream.accept(mapper.applyAsInt(t)); } }; } }; } @Override public final Stream mapToObj(IntFunction mapper) { Objects.requireNonNull(mapper); return new ReferencePipeline.StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void accept(int t) { downstream.accept(mapper.apply(t)); } }; } }; } @Override public final LongStream mapToLong(IntToLongFunction mapper) { Objects.requireNonNull(mapper); return new LongPipeline.StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void accept(int t) { downstream.accept(mapper.applyAsLong(t)); } }; } }; } @Override public final DoubleStream mapToDouble(IntToDoubleFunction mapper) { Objects.requireNonNull(mapper); return new DoublePipeline.StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void accept(int t) { downstream.accept(mapper.applyAsDouble(t)); } }; } }; } @Override public final IntStream flatMap(IntFunction mapper) { return new StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(int t) { // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it IntStream result = mapper.apply(t); if (result != null) result.sequential().forEach(i -> downstream.accept(i)); } }; } }; } @Override public IntStream unordered() { if (!isOrdered()) return this; return new StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_ORDERED) { @Override Sink opWrapSink(int flags, Sink sink) { return sink; } }; } @Override public final IntStream filter(IntPredicate predicate) { Objects.requireNonNull(predicate); return new StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SIZED) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(int t) { if (predicate.test(t)) downstream.accept(t); } }; } }; } @Override public final IntStream peek(IntConsumer consumer) { Objects.requireNonNull(consumer); return new StatelessOp(this, StreamShape.INT_VALUE, 0) { @Override Sink opWrapSink(int flags, Sink sink) { return new Sink.ChainedInt(sink) { @Override public void accept(int t) { consumer.accept(t); downstream.accept(t); } }; } }; } // Stateful intermediate ops from IntStream private IntStream slice(long skip, long limit) { return SliceOps.makeInt(this, skip, limit); } @Override public final IntStream limit(long maxSize) { if (maxSize < 0) throw new IllegalArgumentException(Long.toString(maxSize)); return slice(0, maxSize); } @Override public final IntStream substream(long startingOffset) { if (startingOffset < 0) throw new IllegalArgumentException(Long.toString(startingOffset)); if (startingOffset == 0) return this; else return slice(startingOffset, -1); } @Override public final IntStream substream(long startingOffset, long endingOffset) { if (startingOffset < 0 || endingOffset < startingOffset) throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset)); return slice(startingOffset, endingOffset - startingOffset); } @Override public final IntStream sorted() { return SortedOps.makeInt(this); } @Override public final IntStream distinct() { // While functional and quick to implement, this approach is not very efficient. // An efficient version requires an int-specific map/set implementation. return boxed().distinct().mapToInt(i -> i); } // Terminal ops from IntStream @Override public void forEach(IntConsumer action) { evaluate(ForEachOps.makeInt(action, false)); } @Override public void forEachOrdered(IntConsumer action) { evaluate(ForEachOps.makeInt(action, true)); } @Override public final int sum() { return reduce(0, Integer::sum); } @Override public final OptionalInt min() { return reduce(Math::min); } @Override public final OptionalInt max() { return reduce(Math::max); } @Override public final long count() { return asLongStream().map(e -> 1L).sum(); } @Override public final OptionalDouble average() { long[] avg = collect(() -> new long[2], (ll, i) -> { ll[0]++; ll[1] += i; }, (ll, rr) -> { ll[0] += rr[0]; ll[1] += rr[1]; }); return avg[0] > 0 ? OptionalDouble.of((double) avg[1] / avg[0]) : OptionalDouble.empty(); } @Override public final IntSummaryStatistics summaryStatistics() { return collect(IntSummaryStatistics::new, IntSummaryStatistics::accept, IntSummaryStatistics::combine); } @Override public final int reduce(int identity, IntBinaryOperator op) { return evaluate(ReduceOps.makeInt(identity, op)); } @Override public final OptionalInt reduce(IntBinaryOperator op) { return evaluate(ReduceOps.makeInt(op)); } @Override public final R collect(Supplier resultFactory, ObjIntConsumer accumulator, BiConsumer combiner) { BinaryOperator operator = (left, right) -> { combiner.accept(left, right); return left; }; return evaluate(ReduceOps.makeInt(resultFactory, accumulator, operator)); } @Override public final boolean anyMatch(IntPredicate predicate) { return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ANY)); } @Override public final boolean allMatch(IntPredicate predicate) { return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ALL)); } @Override public final boolean noneMatch(IntPredicate predicate) { return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.NONE)); } @Override public final OptionalInt findFirst() { return evaluate(FindOps.makeInt(true)); } @Override public final OptionalInt findAny() { return evaluate(FindOps.makeInt(false)); } @Override public final int[] toArray() { return Nodes.flattenInt((Node.OfInt) evaluateToArrayNode(Integer[]::new)) .asPrimitiveArray(); } // /** * Source stage of an IntStream. * * @param type of elements in the upstream source * @since 1.8 */ static class Head extends IntPipeline { /** * Constructor for the source stage of an IntStream. * * @param source {@code Supplier} describing the stream * source * @param sourceFlags the source flags for the stream source, described * in {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */ Head(Supplier> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } /** * Constructor for the source stage of an IntStream. * * @param source {@code Spliterator} describing the stream source * @param sourceFlags the source flags for the stream source, described * in {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */ Head(Spliterator source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } @Override final boolean opIsStateful() { throw new UnsupportedOperationException(); } @Override final Sink opWrapSink(int flags, Sink sink) { throw new UnsupportedOperationException(); } // Optimized sequential terminal operations for the head of the pipeline @Override public void forEach(IntConsumer action) { if (!isParallel()) { adapt(sourceStageSpliterator()).forEachRemaining(action); } else { super.forEach(action); } } @Override public void forEachOrdered(IntConsumer action) { if (!isParallel()) { adapt(sourceStageSpliterator()).forEachRemaining(action); } else { super.forEachOrdered(action); } } } /** * Base class for a stateless intermediate stage of an IntStream * * @param type of elements in the upstream source * @since 1.8 */ abstract static class StatelessOp extends IntPipeline { /** * Construct a new IntStream by appending a stateless intermediate * operation to an existing stream. * @param upstream The upstream pipeline stage * @param inputShape The stream shape for the upstream pipeline stage * @param opFlags Operation flags for the new stage */ StatelessOp(AbstractPipeline upstream, StreamShape inputShape, int opFlags) { super(upstream, opFlags); assert upstream.getOutputShape() == inputShape; } @Override final boolean opIsStateful() { return false; } } /** * Base class for a stateful intermediate stage of an IntStream. * * @param type of elements in the upstream source * @since 1.8 */ abstract static class StatefulOp extends IntPipeline { /** * Construct a new IntStream by appending a stateful intermediate * operation to an existing stream. * @param upstream The upstream pipeline stage * @param inputShape The stream shape for the upstream pipeline stage * @param opFlags Operation flags for the new stage */ StatefulOp(AbstractPipeline upstream, StreamShape inputShape, int opFlags) { super(upstream, opFlags); assert upstream.getOutputShape() == inputShape; } @Override final boolean opIsStateful() { return true; } @Override abstract Node opEvaluateParallel(PipelineHelper helper, Spliterator spliterator, IntFunction generator); } }